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HNochster's formule on Beltl numbers and
Buchsboum complexnes

- Takayuki Hibi

Department of Mathematics
Faculty of Science
Hokkaido University
Kita-ku, Sapporo 060, Japan

Abstract. The Betti numbers dimyTor;A(k[Alk)
with i>v-d of the Stanley-Reisner ring k{A] = A/l
of a Buchsbaum compleg A of dimension d -1 over
a field k with v vertices are studied.

§1. Betti numbers of Stanley-Reisner rings

First, we recall some fundamental material for algebra,
topology and combinatorics on simplicial complexes.

(1.1) Fix a finite set V = {xq,xp, ...,xy}, called the vertex
set, and let A be a simplicial complex on V .Thus A is a family
of subsets of V such that (i) {x;}e A foreach 1<i<v and
(ii) oe A, Te o imply Te A. Each element o of A is called
a face of A. Let d:=max{#(c);ceA}. Here #(o) is the
cardinality of o as a finite set. Then the dimension of A is
defined by dim A=d - 1. R simplicial complex A is called pure
if every maximal face has the same cardinality. '

When W is a subset of V, we write Ay for the simplicial
comples {ceA;c C W)} onthevertex set W. 0n the other
hand, given a face o of A, we define the subcomplexr linkx (o)



and stafA(cr) of A by
linka(o):={T1eA;ont=CandocUTte A}
starp(o)i={teAj;cUTe A}.

Thus, in p’articular, linka(D) = A .

(1.2) Let A =k[x1,x9,...,xy] be the polynomial ring over
a field k¥ whose indeterminates are the elements of V with
the standard grading, i.e., each deg x;=1. Define [5, to be the
ideal of A which is generated by those square-free monomials
Xij1Xi{2 .+« Xjry L ¢iq1 <ip<...<ip ¢ v, such that {x{1,xi9,...,
Xir} ¢ A, and set k[A]:= A/I, . The algebra k[A] over k is
called the Stanley-Reisner ring of A over k ([5], [6]). From
now on, we regard k[(A] as a graded module over A with the
“quotient grading." Then dimp(k[A]) =d.

Let H,,i(k[a]) be the i-th local cohomology module of k[A]
over A with respect to the irrelevant maximal ideal m = (x1,
X9y« ,Xy) OF A, l.e,,

Hpnl(k[AD) := lim Extpl(A/mn,k(A]),
o "
and t:= depthp(kla]) . Then (i) Hy,i(k[A]) =0 unless t<icd
and (ii) Hy,t(k[a])) = 0, Hyp,d(k[A]) = 0. Consult, e.g., [8] for

basic facts on local cohomology modules Henl(k[AD .

(1.3) We say that a simplicial complek A is Cohen-Macaulay
(resp. Buchsbaum) over k if the module k{A] over A is Cohen-
Macaulay (resp. Buchsbaum), i.e., Hp, 1(k[A]) =0 (resp.
dimy (Hpp(k[A]) < e ) for every O0<¢i<d . Let Hj(A;k) be the
i-th reduced homology group of A with coefficients k. Then
A is Cohen-Macaulay if and only if, for every face o of A
(possibly, o =@ ) and for each i= dim(linka(c)), we have

Hi{(linka(o);k) = 0 . Every Cohen-Macaulay compler is pure.
Moreover, a simplicial complex A is Buchsbaum if and only



if A is pure and linka(c) is Cohen-Macaulay for every
non-empty face o of A . We refer the reader to, e.g., [3], [7]
and [8] for further information on Cohen-Macaulay and
Buchsbaum compledes. See also [1].

On the other hand, in [2], we study the integers o*(A) =
o*(Ak) and ¥*(A) = ¥*(A}k) defined as follows:

a*(A) i= max { j; Hmi(k[A]) =0 foreach 0<¢i<j (<d)}

¥*(A) 1= max { j; dimp(Hmi(k[A]) < oo
foreach O0<i<j (¢<d)}.

Thus 1 ¢ o*(A) ¢ ¥*(A) < d and o*(A) = depthp(k[A]) . Moreover,
the simplicial complex A is Cohen-Macaulay (resp. Buchsbaum)
if and only if o*(A) =d (resp. ¥*(A) =d ). Note that the
integer o*(A) (resp. ¥*(A) ) is equal to the topological
invariant «(A) + 1 (resp. ¥(A)+ 1) in Munkres [4].

(1.4) The i-th Betti number p;A(k[A]) of the module k[A]
over A is defined to be

BiAk[A]) = dimyTor;AklALk) .

Let p:=v =~ o*(a). Then BiA(k[A]) =0 unless O<i<p. The
following formula on Betti numbers fsiA(k[A]) is given by
Hochster [3, Theorem (5.1)] :

BiAklAD = = dimp(Ho-#(W)-i-1(Av-wik)) . (1)
WcV

We are now in the position to state our main result in this
paper.

(1.5) THEOREM. Let A be a simplicial complex on the vertex
set V={xq,x9,...,8y} of dimension d-1, A=k(xq,...,xyl
the polynomial ring over a field k, and k[A]= A/Ip . Suppose



that (1 ¢) o*(A) <¥*(A) (¢ d). Then, for each integer i with
v - ¥*(A)<i¢ v~ oa*(A), we have

v - o*(A) - i ~
piAklal) = ) (7)) dimp(Hy-j-1-j(45K) .

(1.6) COROLLARY. Let A be a simplicial complex on the vertex
set V ={x4q,...,xy} of dimension d-1, A =k[xq,..., Xy]
the polynomial ring over a field k, and k[A] = A/I5p . Suppose
that A is Buchsbaum, but not Cohen-Macaulay. Then, for each
integer i with v -d<i¢v-depthp(klal), we have

v - deptha(kla]) - i ~
piA(k[A]) = > () dimg(Hy-i-1-j(A5k) .

§2. Proof of Theorem (1.5)
We inherit the notation in the preceding section.

(2.1) LEMMA. «o*(starpa(o)) 2 ¥*(A) for every non-empty face
o of A.

Proof. See [2, Lemma (2.7)] for an algebraic proof based on
[?, Theorem 4.1, p.70]l. Also, consult [4, Lemma (6.1)] for a
topological proof. Q.E.D.

(2.2) LEMMA. Hp J(k[A]) = Hynd(klavy-(x)]) for every xe V
and for each j< y*(A)-1. '

Proof. We have an eRact sequence



0 — klstarpa({xh] — kla] — klay-(x}] — O

as graded modules over A. See, e.g., [2, Theorem (1.7)]. Hence,
there exists a long eract sequence

0 — HpOklstarpa({xh]) — Hm,Okial) — l'I_mO(k[AV_{x}])

— Hpl(klstara(x)) = Hml(kIAD — Hpl(klAy-(x))

= Hpdklstara(x)]) = Hpdkla) = Hpd(klAay-(x))

of local cohomology modules. Since Hp,J(k[starp({x})]) = (0) for
every i< a*(starp({x})) , Lemma (2.1) guarantees that
HmJ(klstaro({=)]) = (0) for every i< ¥*(A). Thus Hp J(k[A]) =
Hmd(k[ay-(x)]) for each j< ¥*(aA) -1 as regired. Q.E.D.

(2.3) LEMMARA. ¥*(Ay-w) 2 ¥*(A) - #(W) for every W C V.

Proof. By Lemma (2.2), dimp(Hmi(klAy-(x}])) < = for each
O<i<y*(a) - 1. Hence ¥*(Ay-(x)) 2 ¥*(A) - 1. Thus ¥*(Ay-w) 2
¥*¥(Ay-(w-{x})) -1 for every xe W. Hence ¥*(Ay-w):2
¥*(8) - #(W-{x})) - 1 = ¥*(A) - #(W) as desired. Q.E.D.

(2.4) PROPOSITION. HyJ(k[AD) = HynJ(klay-w]) for every
W C V and for each j< ¥*(A) - #(W).

Proof. Let W = {xi{,xi2,...,xis} and, for each 0< ¢s,
W) ={xi1,xi2, . ..,%{)) . Lemma (2.2) enables us to see
ﬂ_m\j(k[Av_W(g)]) = ﬂmj(k[AV_W(Q+1)]) for each 0 ¢ 0 <s and
for every j< ¥*(Ay-w(p)) -1 . On the other hand, by Lemma
(2.3), ¥*(Aayv-w(p)) 2 ¥*¥(A) - #(W(2)) (> ¥*(a) - #(W) ). Thus
Hmd(kl[A) = Hypd(klay-w]) for each j< ¥*(A) - #(W) . 0Q.E.D.
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(2.5) COROLLARY. For every subset W of the vertex set V
and for each j< ¥*(A) - #(W), dimk(ﬁj_l(A;k)) is equal to
dimp(Hj-1(Av-w;k)) .

Proof. It follows from, e.g., [?, Theorem 4.1, p.?70] that
dimy (Hmik[a]) = dimHi-1(A3k) if dimp(Hmik[AD) < e .
| | Q.E.D.

We are now in the position to give our proof of Theorem
(1.5). Suppose that o*(A) < ¥*(A). Let i be an integer with
v-¥*A)<isv - oa*(A) and ‘W a subset of V. By Corollary
(2.5), we have the equality

dimk(ﬁv_#(w)_i-l(A;k)) = dimk(ﬁv-#(w)—i—l(AV_W;k))
since v-#(W)-i< ¥*(A) - #(W) . Hence, by virtue of Eq. (1),

piAkIAD = ¥ dimpHo-#(W)-i-1(Av-wik))
wcVv .

= 3 dimk(ﬁv-#(w)-i-i(A;k))
WcV

v - o*(A) - i B
= > ( :\]f ) dimp (Hy-j-1-(A5k))

as required. Q.E.D.
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