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Abstract

We give a survey of some recent results on b(k[A]) = dim; Torf (k[A], k)
of the face ring (Stanley-Reisner ring) k[A] of a simplicial complex A.
In particular, we study Cohen;l\/la.caulay types and canonical modules

of partially ordered sets.

Introduction

Let A = k[zy, 24, , ] be a polynomial ring over a field k, I an ideal of 4,

and R = A/I. A finite free resolution of R as a module over A is an exact sequencé
O M, - My,_y— =M — My— R—0, (1)

where each M; is a free module over A of finite positive rank. The existence of a
finite free resolution of R over A is guaranteed. Moreover, it can easily be shown
that these ranks can be simultaneously minimized. The finite free resolution (1) is
said to be minimal if each M; has the smallest possible rank. A minimal (finite) free
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resolution of R over A is uniquely determined. Define b*(R) to be the rank of M;
appearing in the minimal free resolution of R over A. Thus, in particular, b3(R) = 1
and b#(R) is the minimal ﬁumber of generators of the ideal I. In the language of
homological algebra, b*(R) = dim, Tor?(R, k). The purpose of this paper is to give
an outline of recent developments on the study of b{(R) when I is generated by
square-free monomials, i.e., R is equal to the face ring (or Stanley-Reisner ring)
k[A] of a simplicial complex A, see (1.4).

Here is a brief description of this paper. In Section 1 some fundamental matérial
for algebra, topology and combinatorics on simplicial complexes and partially or-
dered sets is summarized. In Section 2, first, a result on Betti number sequences
B(AK) = (Bo, Bry+ -+, Ba-1) (cf. (1.3)) of a Buchsbaum simplicial complex A (cf.
(1.7)) is given, and, secondly, some relations between by (k[A])’s and B(4;k) of a
Buchsbaum simplicial complex A are studied. On..the other hand, Section 3 is de-
voted to the computation of Cohen-Macaulay types of Cohen-Macaulay complexes.
If R is Cohen-Macaulay, then the rank b (R) of M (# 0) in the minimal free res-
olution (1) of R over A is called a Cohen-Macaulay type of R, say type(R). Even
though the Cohen-Macaulay type is an important invariant of a Cohen-Macaulay
ring R, in general, to compute type(R) is quite difficult. We give a combinato-
rial formula, see Corollary (3.6), for £he computation of Coheri-Macaulay types of
Stanley-Reisner rings of order complexes of modular lattices by means of Mobius
functions. Moreover, in Section 4 we find an explicit expression of the canonical

module (cf. (1.12)) of the Stanley-Reisner ring of the order complex of a modular



lattice. Finally in Section 5 we conclude this paper with some open questions, which
might stimulate further research in the field.

The author is grateful to N.V. Trung, A. Simis and G. Valla for organizing the
Workshop on Commutative Algebra with some topics on interactions between al-
gebraic combinatorics and commutative algebra, and, moreover, for showing great

hospitality during the meeting.

§1. Background

We here summarize some fundamental material for algebra, topology and com-
binatorics on simplicial complexes and partially ordered sets. See [12] for an intro-
duction to the topic of algebraic combinatorics on convex polytopes and simplicial
complexes. Concerning the detailed and further inf.ormation, we refer the reader to,
e.g., [8], [16] and {22, Chap. II] on commutative algebra and simplicial complexes,

[23, Chap. III] on partially ordered sets, and [18] on algebraic topology.

(1.1) Let V = {&),z9,--+,2,} be a finite set, called the vertez set, and A a
simplicial complez on V. Thus A is a family of subsets of V' such that (i) {z;} € &
foreach1 <i<wvand (ii) o € A, 7 Coimply 7 € A. Each element of A is called
a face of AA. Set d = max{#(0);o € A}. Here (o) is the cardinality of o as a finite
set. Then the dimension of A is defined by dim A = d —~1. We say that a simplicial

complex A is pure if every maximal face has the same cardinality.
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(1.2) When W is a subset of V, we write A for the simplicial complex {o €
A;o C W} on the vertex set W. On the other hand, given a face o of A, we define

the subcomplex linka (o) and stara(o) of A by

linka(o)={r€DjonNT=¢and cUT € A}

stara(o) = {r € A;joUT € A}

Thus, in particular, linka(¢) = A. Also, if 7 € &' = linka(o), then linka:(7) =

linkA(& U 7). Moreover, if A’ = stara(o), then linka (o) = linka/(o).

(1.3) Fix a field k.» Let Hi(A;k) be the i-th reduced simplicial homology group
of A with coefficients k. The ¢-th (reduced) Betti nymber Bi = Bi(D; k) of A over
k is the dimension dimg H;(A; k) of H;(A; k) as a vector space over k. We say that
the sequence B(A; k) = (Bo, By ++ , Ba-1) is the B'etti number sequence of A\ over
k. The reduced Fuler characteristic x(A) of A is defined to be

Y(A) = ;(—1)‘dimk Hi(D k).

Then, the Euler-Poincaré formula says

where f;(4) is the number of faces o of A with (o) = i+1 (and f_;(A) = 1). Thus,
in particular, ¥(4) is independent of the characteristic of k. Note that A_;(A; k) =

0if A # ¢, 1:/,-(¢; k) = 0 for each 7 > 0, and [?[_l(é; k) = k. Hence, x(¢) = —1.



o

(1.4) We consider the elements of V to be indeterminates over a field k with each
degz; = 1. Let A = k[zy,2,,--,z,] be the polynomial ring in v-variables over
k and write m for the irrelevant maximal ideal (z1,z2,--- ,z,) of A. Define In to
be rthe ideal of A which is generated by those square-free monomials :v,-lzc,-,; R THR
1<4 .< ip < ++- < i, < v, such that {z;,zi,, -+ ,z:i,} € A. Set k[A] = A/Ia.
The algebra k[A] over k is called the Stanley-Reisner ring of A over k ([19], [20]).
The set of those monomials [, ¢;¢, 2i", each 0 < a; € Z, such that {zi;0; >0} e &
is a basis of k[A] as a vector space over k. We may regard k[A] as a graded module
over A with the “quotient grading.” It follows easily that the maximal number of
homogeneous polyﬁomials of A whose images in k[A] are algebraically independent
over k is equal to d, i.e., dim4 k[A] = d. Recall that the depth of k[A] over A is the
greatest integer ¢ for which there exists a regular sequence 8;, 85, -- - , 0, on k[4A] such
| that each 0; € A is a hdmogeneous polynomial with deg(6;) > 1. Let t = t4(k[A)])
denote the depth of k[A] over A. Note that ¢t > O since 2y + 22+ -+ 2, € Aisa

non-zero divisor on k[A].

(1.5) The i-th local cohomology module H: (k[A]) of k[A] over A is defined to be

i, (K[A)) = bimExt),(A/m", HA]).

—m

n

Then H (k(A]) = 0 unless ¢ < i < d and HE(K[A]) # 0, HL(KA]) # 0. If

—m
—m

dimg (H: (£[A])) < oo, then climk(Hi (k[A])) = Bici (A k). Note that dimy(HE (k[A]) =

0.
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(1.6) Let b(k[A]) be the non-negative integer defined by
b ([A)) = dimy TorA(KA], B)

Thus b (k[A] = 0 unless 0 < ¢ < v. Let h = hy(k[A]) be the greatest integer h
for which b (k[A]) # 0. Then h = v — t (Auslander-Buchsbaum [1]). Moreover,
Hochster [16, Theorem (5.1)] says that the non-negative integer b (k[A]) is given
by
BAKA) = Y dimp(Hv_yor)-i-1(Dvowi k). (2)
wev
We refer the reader to Munkres {17] and Stanley [21] for topological and combina-

torial applications of Eq.(2).

(1.7) Wesay thag a simplicial complex A is Cohen-Macaulay over k if H: (k[A]) =
0 forevery 0 <7< d,ie,t =d(or h =v~—d), and that A is Buchsbaum if
dimy (H:, (k[A])) < oo for every 0 < i < d. Every Buchsbaum complex is pure. On
the othér hand, Reisner’s criterion {19] guarantees that a simplicial complex A is
Cohen-Macaulay if and only if, for every face o of A (possibly, o = ¢) and for each
1 # clim(linkA(a)L we have H;(linka(o); k) = 0. Moreover, a simplicial complex A
is Buchsbaum if and only if A is pure and linka(o) is Cohen-l\"lacaulay for every

non-empty face o of A.

(1.8) If a simplicial complex A is Cohen-Macaulay over k, then the positive in-

teger b2 ,(k[A]) is called the Cohen-Macaulay type of A over k, and is written as



type(k[A]). We say that a Cohen-Macaulay complex A over k is Gorenstein over k
if type(k[4A]) = 1. Every subcomplex linka(c) of a Gorenstein complex A is again

Gorenstein.

(1.9) A Cohen-Macaulay complex A is called doubly Cohen-Macaulay (Baclawski |

(3]) if the subcomplex Ay _(4 is Cohen-Macaulay of the same dimension as A for

every ¢ € V. If A is a doubly Cohen-Macaulay complex, then linka(o) is also

doubly Cohen-Macaulay for every face o of A. Moreover, a Gorenstein complex A

with ¥(A) # 0 is doubly Cohen-Macaulay. On the other hand, a Cohen-Macaulay
de1s

complex A is doubly Cohen-Macaulay if and only if type(k[A]) = (=1)*"1%(A), see

(3, Corollary (4.7)].

(1.10) A finite free resolution of k[A] as a graded module over A is an exact

sequence
0 — A% Ty Afemi Db g0 T gl R LA g, (3)

where each A% i’s a free module over A of rank § > 0 with the basis e(i;5) =
(0,--+,0,1,0,---,0) € A% the “1” in the j-th component, dege(i;j) € Z,1 < j <
8;, and where the maps 7;’s are clegree-presérving. Then s > h(k[A]) and each
§; > bi(k[4]). We say that the finite free resolution (3) is minimal if s = ha(k[A])
and & = b (k[A]) for every 0 < i < hy(k[A)). it is known that there exists a
“unique” minimal free resolution of k[A] over A. The non-negative integer k4(k[A])

is called the homological dimension of k[A] over A.



(1.11) Let * denote the functor Hom4(—, A) and V the Matlis dual Hom 4(—, E4(k)).
Here E4 (k) = k{z7!,--- ,27"], the injective hull of k¥ as a module over A. Then the -

local duality theorem is Ext%(k[A], A)Y = HE (K[A]).

(1.12) Suppose that A is a Cohen-Macaulay complex over k and that
0 — Abvma 22§ Abo-ams T2t T, b T, B[A] — 0, (4)

is a minimal free resolution of k[A] over A with each b; = b#(k[A]). Note that

Ext’(k[A], A) # 0 only for i = d since H. (k[A]) = 0if ¢ # d. Define the canonical

module Q(k[A]) of k[A] to be the graded module
Q(k(A]) = Exti(k[A], A)

over k[A]. Thus, if we apply * to (4), then we obtain the exact sequence of graded

modules over A as follows:
0 — (d) I (ah)" T T (4vma) — Q(RA]) — 0.

The Cohen-Macaulay type type(k[A]) = b2 (k[A]) of A over k coincides with the
minimal number of generators of the canonical module Q(k{A]) as a module over
k[A). On the other hand, if A is Gorenstein over k, then b ,_;(k[A]) = b2(£[A])

forevery 0 <1 <v-—d.

(1.13) Every partially ordered set (“poset” for short) to be studied is finite. A
chain is a totally ordered set. The length of a chain C is ¢{(C) := {(C) — 1. A

totally ordered subset in a poset P is also called a chain of P. The rank of a poset



P is defined by rank(P) = max{{(C);C is a chain of P}. A poset P is called pure
if every maximal chain has the same length. When z,y € P, we say that y covers
zifz <yand z < z<yfornoz¢€ P. Achainz; < 73 <:-:2, of Pis called
saturated if x;, covers z; for each 1 <7 < s. If £ <y in P, then the open interval
(z,y) (resp. closed interval [z,y]) of P is the induced subposet {z € P;z < z < y)
(resp. {z € P;z < z < y}) of P. In particular, (z,z) = ¢ and [z,z] = {z} for every
z € P. Given an arbitrary poset P, we write A(P) for the set of chains of P. Then
A(P) is a simplicial complex on the vertex set P. We say that A(P) is the order
complez of P. Note that dim A(P) = rank(P), and that A(P) is pure if and only
if P is pure. On the other hand, we define the poset P* by P* = PU {0%,1"} such
that 0" < z < 1* for revery gz € P. If P is pure of rank d — 1, then there exists
a unique function p : P* — {0,1,--+,d + 1}, called the rank function of P*, such

that p(0%) =0, p(1*) = d + 1, and p(8) = p(a) + 1if B covers « in P

(1.14) The Mébius function pp of a partially ordered set P is the map up :

{(z,y) € P x P;a <y} — Z, where Z is the set of integers, defined as follows:
(i) up(z,2) =1 for each z € P, and
(i) up(2,y) = = Licocy tp(a, 2) for every z < y in P,

One of the most important formula for us on Mdbius functions is

pa(07,17) = S (A(P)). - (3)
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Here x(A(P)) is the reduced Euler characteristic of the order complex A(P) of P.
Moreover, if both 0" =z <z, < - <z,=zandy=yo<y1 <--- < y; = 1" are
saturated chains of P* with z < y in P* and ¢ = {xo;--- ' Tsy Y0, 1 Ye} € A(P),

then linka(p)(c) is just the order complex of the open interval (z,y) of P*. Hence
ppa(z,y) = X(linkacp) (o). (6)

(1.15) A lattice is a poset L for which every pair of elements a and 3 has a
least upper bound (or “join”) denoted by a V B, and a greatest lower bound (or
“meet”) denoted by a A B. Thus, in particular, every (finite) lattice has a unique
minimal element 0* and a unique maximal element 1*. Every closed interval of a
lattice is again a lattice. An atom of a lattice L is an element which covers 0* in
L. A lattice L is called atomic if every element is .the join of atoms of L. Also, a
lattice L is called complemented if, for every = € .L, there exists y € L such that
zAy =0"and zVy = 1" Moreover, a lattice L is called relatively complemented
if every closed interval of L is complemented. On the other hand, we say that
a lattice Lvis modular if, for all elements z, y and z in L with 2 < 2z, we have
zV(yAz)=(zVy)Az A lattice L is called semimodular if the following condition
is satisfied: If z,y € L both cover 2 A y, then z V y covers both = and y. Every
modular lattice is semimodular. A semimodular lattice is atomic if and only if it
is relatively complemented. A geometric lattice is a lattice which is both relatively
co‘mplemented and semimodular. If L is a geometric lattice, then pr(07,1%) # 0.

Moreover, a modular lattice L is geometric if and only if pf(0%,1%) % 0. A boolean
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lattice B,, 0 < n € Z, is a lattice which consists of all subset of {1,2,---,n},

“ordered by inclusion.” Every boolean lattice is geometric.

(1.16) We say that a poset P is Cohen-Macaulay (resp. Gorenstein, Buchsbaum,
doubly Cohen-Macaulay) over a field k if the order complex A(P) of P is Cohen-
Macaulay (resp. lGorenstein, Buchsbaum, doubly Cohen-Macaulay) over k. For
example, if L = P” is a semimodular lattice, then P is Cohen-Macaulay (see, e.g.,
(2], [5] and [6]). If L = P” is a boolean lattice, then P is Gorenstein. Moreover, if

L = P" is a geometric lattice, then P is doubly Cohen-Macaulay (3].

§2. Betti number sequences

First, recall from (17) that if a simplicial complex A of dimension d — 1 is
Cohen-Macaulay over a field k; then 8; = B;(A; k) vanishes for every 0 <1< d~1
since A = linka(@). Thus, in particular, the Betti number sequence of A over k is
B(A;k) = (0,0,--+,0,(=1)41%(A)). We now ask what can be said aBout the Betti

number sequences of Buchsbaum complexes?

(2.1) Theorem ([7]). Given a finite sequence (Bo, 1, ,Bu—1) € Z% with each
Bi > 0, there exists a simplicial complex /N of dimension d — 1 such that, for an
arbitrary field k, the simplicial complez A\ is Buchsbaum over k with B(Ak) =

(ﬂo’lgl, e ,;Bd—l)-‘

Let A be a simplicial complex on the vertex set V = {z, 22, ,2,} of dimension

d—1, A = kfay,22, -+ ,2,) the polynomial ring in v-variables over a field k and
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K[A] = A/Ia. By (13), if A is Buchsbaum (but not Cohen-Macaulay) over & with
B(Ak) = (Bo,Bry++ Ba-1), then B; = 0 for every 0 <7 <t -2 and B, # 0.
* Here t = t4([k[A)]) is the depth of k[A] over A. The following result says that each
bA(k[A])y v —d <i< h(=v—1t),is a linear combination of 3;’s with noh-negative
integer coefficients, where b = h4(k[A]) is the homological dimension of K[A] over

A.

(2.2) Theorem ([15]). We inherit the notation as above. Suppose that A\ is Buchs-
baum, but not Cohen-Macaulay. Then, for each integeri withv—d <i < h (= v—1),

bA(E[A]) = ui‘ (;)ﬁv—i-—l—j'

j=0

~ The i-th skeleton A, 1 <4 < d, of a simplicial cvomplex A is defined to be the
subcomplex {o € A;#(c) < i} of A. Thus, AW is a, simplicial complex of dimension
¢ — 1. If A is Cohen-Macaulay(resp. B‘uchsbaum), then A@ is Cohen-Macaulay
(reép. ‘Buchsbaum) for every 1 < ¢ < d. Moreover, if A is Cohen-Macaulay,
then Al is doubly Coheh-L\/Iacaulay for every 1 < i < d, see [10, Proposition
('2.1)].) It is known, e.g., 11, Corollary (2.6)] that h4(k[A1)])) = ha(k[4)), ie.,
ta(k[AB]) = t4(k[A]) for every t < i < d. Thus, in particular, A® is Cohen-
Macaulay. Let f,(A) denote the number of faces o of A with (o) = ¢ + 1. Since
AW, = Ayv_iwY, by the definition of reduced homology groups, if W # ¢,
then H_ygvy_1(Dv_iv; k) = Hiyovy-1(AB i k). Tt follows from the well-known

technique on the long exact sequence of local cohomology modules, e.g., in [11], {13]
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and [15] that
dimg (H;_1(AY; k))
= dime(Hi (A K)) + fi(D) — dime (Hi(AT; R))
= dim(Hi1 (D k) + £i(A) = dimy (H (A, k)
for every 1 <1 < d. Hence

dimy(Fo_ (AY; 1))

= dime(Hi (D 5) + fi &) = dimg(H,(AHY; k)

= (D) BBk Y (1) fras( D).

0<i<d—t 0<i<d—t-1

Thus,
type(K[AW))(= b3 (x[a1)))

=b,q*(k[A])+(—1)*-1{ 3 (—1)‘(;9;(A;k)—f,-(/-\))}-

t<i<d~1

Moreover, by the Euler-Poincaré formula

Yo (FDB(LR)) = Y (D)D)

t-1<i<d—1 —1<i<d-1

(since Bi(A; k) = 0 for every i < t — 1), we obtain
type(k[AY])

S (=1 T (21 FA) + BEKA]) = Beoa(D:8)

—1<i<t-1
= (=1)7"(AY) + (B (KA]) ~ Beer (D5 ).
(2.3) Corollary. Let A be a Buchsbaum complex which is not Cohen-Macaulay.

Then the t-th skeleton AW of A, t = ta(k[A]), is doubly Cohen-Macaulay.
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§3. Cohen-Macaulay types

It would, of course, be of great interest to find an effective (combinatorial) for-
mula to compute Cohen-Macaulay types of Cohen-Macaulay complexes. We here

give a brief sketch of [13]. Every result, except Theorem (3.2), appears in [13].

Definition. (a) A face o of a Cohen-Macaulay complex A is called fundamental if
(i) X(linka(o)) # 0 and (ii) X(linka(7)) = 0 for every face 7 of & with 7 C o and
T# 0.

(b) We say that a Cohen-l\/Iacatxlay complex A is superior if linka(o) is doubly

Cohen-Macaulay for every fundamental face o of A.
We write F(A) for the set of fundamental faces of A.

Remark. (a) Let A be a Cohen-Macaulay complex. Then, the empty face ¢ is a
fundamental face of A if and only if ¥x(A) # 0. Moreover, since %(¢) = —1, the

existence of a fundamental face of A is guaranteed.

(b) Suppose that a Cohen-Macaulay complex A is superior. Then, for every
face 7 of A with Y(linka(7)) # 0, the subcomplex linka(7) of A is doubly Cohen-
Macaulay. Moreover, the Cohen-Macaulay complex linka (o) is again superior for

every face o of A.

(c) Every Gorenstein complex is superior.

(3.1) Proposition. Suppose that a simplicial complex /N is Cohen-Macaulay. Then,



 we have the lower bound inequality
type(k[A]) = > (=1)4-1=#=) % (linka (o)) (1)
cEF(A)

for the Cohen-j\f!acaulayitype type(k[A]) of A.

Sketch of Proof. Let a simplicial complex A on the vertex set V be Cohen-Macaulay

of dimension d — 1. Then, it follows from Eq.(2) that

type(k[A]) = Z dimk(ﬁd_g(w)_l(ﬁv_w;k)).

wev
The required inequality (7) follows from (a) Hy_sw)-1(Ov-wik) = 0 unless W
is a face of A (13, Lemma (3.7)], (b) Hay(r)-1(Dv-r;k), 7 € A, vanishes un-
less 7 D o for some ¢ € F(A) [13, Corollary (3.5)], and (c) if ¢ € F(A) then

dimy(Hy-soy-1(Dvoe; k) = (=1)* 1" g(linka (o)) [13, Lemma (3.4)]. Q.E.D.

In order that the equality holds in the above inequality (7), what condition is

necessary and sufficient?

(8.2) Theorem. Let A be a simplicial complez on V = {z1,22,++ , 2y}, dimA =
d—1, A= Ky, 22, ,2,), k[A] = A/ln, and hy(k[A]) the homological dimen-
sion of K[A] over A. If A is Cohen-Macaulay, then the following conditions are

equivalent:
(1) type(k[A)]) coincides with the right-hand side of the inequality (7);

(ii) f[d‘_ﬁ(r)_l(AV_T; k) =0 for every face v of I with 7 ¢ F(A);
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(iii) Hd_:(f)_l(Av_,; k) = 0 if T is face of A such that ¢ C 7 and o # 7 for some

o € F(Q);

(iv) ha(k[Av-o]) = ha(k[Av_;]) for all faces o and T of & witho € F(A), 0 C T

and §(r) = #(o) + 1;

(v) ha(k[Dv-r]) <v—(d— (7)) if T is a face of A\ such that o C 7 and o # 7

for some o € F(A);

(vi) the (d —§(o))-th skeleton Ay _ 48D of Ay, is doubly Cohen-Macaulay for

every face o € F(A).

Proof. If Hy_yry-1(Dv-r;k) # 0, 7 € A, then hy(k[Av_;]) = v — (d - §(r)), i.e,,
ta(k[Av_;]) = d = §(r). Here ts(k[Av_,]) is the depth of k[Av..;]. In fact, thanks
to Eq. (2), ta(k[Ov-]) < d— §(r), while tA(k[A\./_f]) > d —§(r) by [13, Lemma
(3.1)]. Hence, (v)=(iii). Moreover, since h4(k[Av_,]) = v—(d—f(0)) if o € F(A),
again by (13, Lemma (3.1)], we see (iv)&>(v). Let G(A) denote the set of those faces
T of A such that ¢ C 7 and ¢ # 7 for some o € F(A). Since

b:"—(d—ﬁ(r))(k[AV—T‘])= Z dimk(gd—ﬂ(r')~1(AV—r';k)),
rCr'eld

by Eq. (2) and [13, Lemma (3.7)], if f[d_u(,)_l(Av_,;k) = 0 for every face 7 €
G(4), then b;‘_(d_s(,))(k[a‘,_,]) =0, ie., ha(k[Dv.s]) < v —(d = (7)), for every
face 7 € G(A). Thus, (iii)=>(v), while (i)« (iii) by {13, Corollary (3.5)]. On the

other hand, (iv)«(vi) follows from, e.g., [11, Corollary (2.6)], see also the proof of
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[13, Lemma (3.7)]. Moreover, we see (i)« (iii) from the above Sketch of Proof of

Proposition (3.1). Q.E.D.

It is desirable to find a combinatorial (sufficient) condition for a Cohen-Macaulay
complex to satisfy one of (ii), (iii), (iv), (v) and (iv) of Theorem (3.2). The following
~ Lemma (3.3), which plays an important role in our research on the computation of

- Cohen-Macaulay types, is essentially [13, Lemma (3.6)].

(8.3) Lemma. Ifa Cohen-Macaulay complez I\ is superior, then gd._g(.,-)_l(Av_f; k)= .

0 for every face T of A with 7 & F(A).

(3.‘4) Corollary. Suppose~ that a Cohen-Macaulay complez /N is superior. Then
the Cohen-Macaulay type type(k[A]) of A is equal to the right-hand side of the

inequality (7).

The above Corollary (3.4) is a powerful tool .f.or the explicit computation of
Cohen-Macaulay types of certain Cohen-Macaulay partially ordered sets. Let P be
a Coheg-Macaulay poset. If C: 0" =290 <2y <.+ <z, < T,47 = 1" is a chain of
P", then we set

H(C) = (o, 2)a(@1,22) -+ (T, To11).

Here p - f:p~ is the Mobius function of P*. Thus, by Eq. (6), |u(C)| = [X(linka(py(0))],
where o = {z1,22,-++ ,2,} EA(P). Achain C: 0" =2p <21 < -+ < Ty < Tyqq =
1* of P is called fundamental if the face {z,,---,z,} of A(P) is fundamental. Let

F(P") denote the set of fundamental chains of P*. We say that a Cohen-Macaulay

poset P is superior if the Cohen- Macaulay complex A(P) is superior. For example,
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if L = P*is a modular lattice, then the Cohen-Macaulay poset P is superior, since
every closed interval [z,y] of L = P* with upa(0",1%) # 0 is geometric, see (1.15).
(3.5) Corollary. If a Cohen-Macaulay poset P 1.3 superior, then type(k[A(P)]) =
Tcerpry [(C)]-

(3.6) Corollary. We have the equality type(k[A(P)]) = Ccerpay I(C)] if L =
P* is a modular lattice.

(3.7) Example. Let L = P” be the semimodular lattice drawn below. Then
F(A(P)) = {{z},{y}}. We easily see that the Cohen-Macaulay complexkA(P) sat-
isfies the condition (iv) of Theorem (3.2). Hence type(k[A(P)]) = Teerpn I0(C) =
3. Note that the Cohen-Macaulay poset P is not superior since the open intervall

(0%, z) is not doubly Cohen-Macaulay.

§4. Canonical modules

The topic of this section is the canonical module of the Stanley-Reisner ring of
the order complex of a Cohen-Macaulay partially ordered sets. Let P be a Cohen-

Macaulay poset and, since P is pure, let p denote the rank function of P*. Let us
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first recall that the set of those monomiais [Macp a®®) each 0 < e(a) € Z, such
that {a;e(a) > 0} € A(P) is a basis of k{A(P)] as a vector space over k. Hence,
if @ < B in P" with p(8) — p(a) = r + 1, then the (r — 1)-th reduced homology
group H._1(A((a, B)); k) of the order complex A((e, B)) of the open interval (a, 8)
of P* can be imbedded in L[A(P)] Given achain C : 0" = 25 < 21 < .-+ <
T, < Top1 = 1" of P with each p(zi1) — p(z;) = r(3) + 1, we write R(C) for the
subspace of k[A(P)] spanned by those polynomials fo$12f1$22"'fs_1$52f8 such
that f; € ﬂr(;)_l(A((m;,x;H));k) for every 0 S‘i < s, where each monomial of f;
is of the form ayep -« iy With z; < oy < -+ < ap) < Ziz1. Thus, in particular,
dimp(R(C)) = |u(C)]. Lef F(P") denote the set of fundamental chains of P*
and define Z*(k[A(P)]) to be the ideal of k[A(P)] generated by all R(C) with

C € F(P).

(4.1) Theorem ([14]). Suppose that P is a Cohen-Macaulay partially ordered set.
Then, the ideal I=(k[A(P)]) is isomorphic to the canonical module Q(k[A(P)]) of

E[A(P)], as graded modules over k[A(P)] up to shift in grading, if and only if the

Cohen-Macaulay type of k[A(P)] is equal to Coeripny [1(C)I-

Remark. If x(0%,1%) # 0, then the above Theorem (4.1) essentially coincides with

Baclawski [4, Theorem 2].

Since, by Corollary (3.6), type(A[A(P)]) = Tcerppm I#(C) if L = P" is a

modular lattice, we immediately obtain

(4.2) Corollary ([14]). If L = P" is a modular lattice, then I*(k[A(P)]) is iso-
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morphic to the canonical module Q(K[A(P)]) of k[A(P)).

§5. Open questions

We conclude with some open questions, which is unlikely to be terribly difficult.

(5.1) Let p“> 0 be a prime number, A = (X,Ag, vy A) EZEwith Ay > X >0 >
A¢ >0, and Gi(p) the finite abelian p-group of tyée A ie, (Z/pMZ) x (Z]p*1Z) x
oo x (Z/pMZ). Let L{Gi(p)) denote the lattice of subgroups of Gy(p), ordered
by inclusion. It is known, and easy ta prove, that £L(Gi(p)) is a modular lattice.
Let 4 be the Moébius function of L(Gi(p)). If H C N are subgroups of G(p), then
w(H,N) # 0if and only if the quotient group N/H is of type (1,1,---,1). Moreover,
if N/H is of type (1,---,1) € Z", then u(H,N) = (.-;1)"p(;). See, e.g., [23, pp. 126-
127]. Hence, if a chain C : 0" = Hy < Hy < -+ < H, < Hyyy = 1% of L(Ga(p)) is
fundamental, then |4(C)| is a power of p. Given a sequence § = (8,82, ,8,41) €
Zs+! with each 6,-/ > 0 such that ¥icico1 6 = Ticice A, define fs(p) to be the
number of those fundamental chains 0" = Hy < H; < -+ < Hy < Hypy = 17 of

L(Gx(p)) such that H;/H;_; is of type (1,-+-,1) € Z% for every 1 <i < s+ 1.

Question. (a) Is fs(p) a polynomial in p with non-negative integer coefficients?
(b) (follows from (a)) Let P be the Cohen-Macaulay poset with P* = L(G,(p)).

Is type(k[A(P)]) a polynomial in p with non-negative integer coefficients?
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(5.2) Suppose that L = P” is a semimodular lattice and let p = ppa be the
Mobius function of PA. Then,‘ the Cohen-Macaulay poset P is superior if and only
if the following condition is satisfied: f 0" < 2z < z L w Ly £ 1" in P" and
p(z,y) # 0, than u(z,w) # 0. See [13, Example (4.13)]. On the other hand, there
exists a semimodular lattice L = P” such that the Cohen-Macaulay poset P is not

superior, but type(k[A(P)]) = Lcer(pa) |£(C)] (cf. Example (3.7)).

Question. (a) Find a combinatorial formula to compute type(k[A(P)]) for a semi-
modular lattice L = P".

(b) Classify the semimodular lattices L = P* for which the Cohen-Macaulay

type of A(P) is equal to Yeex(pay [1(C)].

(5.3) Recall that a boolean lattice B, is a lattice which consists of all subsets of -
{1,2,--+ ,n}, ordered by inclusion. Let P denote .the Cohen-Macaulay poset with
B, = P". Since §(P) = ‘2‘" ~ 2 and P is Gorenstein, hy(k[A(P)]) = 2" = n — 1
and bon_,_(k[A(P)]) = type(k[A(P)]) = 1. Moreover, bt"gn_n_l)_i(k[A(P)]) =
b (E[A(P)]) for évery 0 <7< 2" ~n—1. Let b = bi(n) = bHA[A(P)]) and

f=2"—n—1.

Question. (a) Find an explicit formula for b;(n).

(b) Is the sequence (bo, by, -+, b¢) unimodal, i.e., by < by < -+ < bygygy ?

(5.4) We inherit the notation in, e.g., (1.6) and (1.10). It follows immediately

from (2) that b5 (k[A]) = 1 and b;'(k[4A]) is the minimal number of generators of
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IA, i.e., the number of minimal subsets W of V' with W & A. Thus, in particular,
| b2 (k[A)) is independent of the field characteristic of k. On the other hand, let A
denote the simplicial complex drawn below with v = 7 and d = 3. Then A is Cohen-
Macaulay over every field k with b3 (k[4]) = 1, b#(k[A]) = 13 and b4 (k[A]) = 27.

If char(k) # 2, then b3 (k[A]) = 22, b(k[A]) = 7, however, if char(k) = 2, then

b4 ([ A]) = 23, b(K[A]) =S8,

2

Question. (a) Suppose that A is a simplicial complex with v — d < 2. Then is
H;(A; k) independent of char(k) ?
(b) (follows from (a)) Let A be an arbitrary simplicial complex. Then is b5 (k[A])

independent of char(k) ?

(5.5) Again, let G be a finite group and £(G) its lattice of SlegrOLlps. Then,
(a) £(G) is Cohen-Macaulay if and only if G is supersolvable ([3]); (b) £(G) is
Gorenstein if and only if G is a cyclic group whose order is either square-free or prime

power ([9]); (c) £(G) is doubly Cohen-Macaulay if and only if G is supersolvable

with pge) (07, 17) # 0 ([24]).
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Question. (a) Classify the supersolvable groups G for which the Cohen-Macaulay
poset L(G) is superior.
(b) What can be said about the subgroup lattices £L(G) of supersolvable groups

G with type(k[A(L(G)) =27
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