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HOLONOMIC SYSTEMS OF CLAIRAUT TYPE

SllyuichiIZUMNA and Yasuhiro KUROKパ Wh

0. Introduction

The Clairaut equation (Alex Claude Clairaut [3], 1734) is one of the typical examples

of first order differential equations which has a (classical) complete solution and a singular

solution such that the singular solution is the envelope of a family of hyperplanes given

by the complete solution. In this article rve consider equations with the same geometric

structure as the Clairaut equation. Here we give another example as follows :

=0

= 0 ,

We ctt exactt solve ths equatおn and the com」ete sdutぉnお y=:(,ュ 十サ)2,whereサ

is a parttmeter. ′rhe complete solution Of this equation does nOt consist of hyperplanes.

However, the singular solution is the enve10pe of the faIIIllly of graphs Of the cOmplete

solution. We lwill refer such a system as a systeln of Clairaut type.

A  s y s t e m  o f  a r s t  o r d e r  d i f F e r e n t i a l  e q u a t i o n s  w i t h ( c l a S S i C a l ) c o m p l e t e  s o l u t i o n  i s  c a l l e d

a S7StCtt θメθra,Ta竹ササ解C・In tlll a characterization of systems of Cl嵐raut type has been

given.The next problem is tO classify these systems by a natural equivalence relation.

In this paper we give a generic classincation of hOlonOmic(1・ e.maximally over deter―

mined)systems of Clairaut type under the equivalence relation given by the group of point

transformations in the sense of Sophus Lie.

Since our concern is the 10cal classincation of difFerential equations,we can formulate

as follows: Letブ1(Rれ,R)be the l_jet bundle Of 7,―Variables functions which may be

considered as R2れ+l with natural coordinates given by(多1,・…,。.,7,pl,・…,p")・We have

t h e  c a n o n i c a l  p r o j e c t i o n  7 r :ブ1( Rれ
,R )‐→R"×R,7 T ( 2 , y , p ) = ( 2 , y )・Lc t  θ b e  t h e  c a n o n i c a l

contact form Onブ
1(Rれ
,R)WhiCh iS siven by θ =ど

y一 めE推 lp:ど
伊:・ Using this approach,

a irst order diferential equatiOn is lnost naturally interpreted as being a closed subset of
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"It(R",lR). Unless the contrary is specifically stated, we adopt a submanifold of Jl(R",R)

as an equation. We stick to holonomic systems in this article. A holonornic system of

first order ilifferential equation gerrn (or, briefl.y, aholonornic system) is defined to be an

immersion germ,f : (R"+t,0) * /t(R",R). We also say that / is cornpletely integrableif.

there exists a submersion germ F : ([q,"+t,0) - IR such that (dp)s. ) (f*0)e,., where tu is

the ring of smooth function germs on ([R"'+t, 0) and its unique maximal ideal is denoted by

9J1,,. Here, u: (rt , . . .  runfr) are canonical coordinates of (R"+t,0). We call  p a cornplete

integral of f  and the pair (p,f),(R"*r,0) - R x "Ir( lR",R) is cal led a holonomic system

with complete integral. We observe that z'of(p-1(t)) is the graph of the solution in lR" x lR.

If a'o f (p-t (t)) are non-singular map germs for each t € (R, p(0)), then {a' o f (t t-L(t))}ren

is the family of graphs of a (classical) complete solution (cf. [1,9]). We call such a system

a holonomic system of Clairaut type. These situation lead us to the follorving definition.

Let (p,,9) be a pair of a map germ 9 : ([R"+1,0) - (R" x R,0) and a submersion germ

F : (P"+t,0) - (R,0). Then the diagram

(R,o)  41R"+t ,o )  g  (R"  x  R,o)

or briefly (p,g),, is called a (holonomic) integral d,iagram if there exists a holonomic system

,f : (p'+t,0) * Jl(R", R) such that (p, /) is an equation germ with complete integral and

r o f - 9, md we say that the integral diagram (p,g) is iniluced, by f .If. / is a system

of Clairaut type, then (p, r o f) is called of Clairaut type. Furthermore \4€ introduce an

equivalence relation among integral diagrams. Let (p.,g) and (p', g') be integral diagrams.

Then (p,g) and (pr',9') are equiualent (respectiuely, strictly equiualent) if the diagram

( R , 0 ) ,  F  ( R ' * t , O )  o ' ( R " x R , 0 )

^ l  , t ' l  I t
rnlol  (R';1,0) --  1m'Jn,o;

Itt gt

commutes for some diffeomorphism germs K,,Ih and / (respectively, rc : id3).

In [10] it has been defined an ecluivalence relation among systems under the group of

point transformations and shown that trvo completely integrable holonomic systems / and

f 
' are equivalent if and only if induced integral diagrams (p,n o /) and (p',r o /') are

equivalent for generi. (tt, f ) and (p', /') (see $1). Moreover, it has been given generic

classifications of holonomic integral diagrams by the strict equivalence in the case when

I I n ( 3. For general n, it is very hard to give classification by technical reasons. However,

we give a generic classification of holonomic systems of Clairaut type as follorvs :



Theorem A. For a generic holonomic system of Clairaut type

0t,,  f)  :  (Rn+r,o) * R x "Ir(R',R.),

the integral diagram (p,n o /) is strictly equivalent to on of germs in the following list :

D A t ;

μ =“ れ+ 1 ,

9 = ( 切 1 , …・,竹れ+ 1 ) .

DA2;

1
μ = 切ォ 1 - ヂ 1 ,

o=(竹1,…・,竹的竹名+1)・

DAで(3≦ゼ≦角+1);

μ = 竹 " + 1 ,

で一ユ

g=(竹…・切れ,切生+ュ十Σ叩1+1)。
j = 1

DAれ +2;

μα= 竹角+ 1 + αO g  F o r a  c 効枚を, j ) ,

g = 仰 h … …切れ, 切鷲 ? 十 ΣE 竹沖名+ 1 ) ・
: = 1

This theorem gives a generic classincation ofintegral diagrams of Clairaut type under the

strict equivalence. However,our purpose is to classify these subjects under the equivalence.

We remark that each germs of types DAど(1≦ ゼ≦角+1)and DA"+2 are nOt equivalent.

Thus the problem is reduced to classify serms which are cOntained in the falnily DA"+2

under the equivttencc. This falnily is parallletrized by function gerills cYヽVhich are called

れれCt'θηar 7れ0″竹材。 We shall characterize functional lnoduli relative to the equivalence.

For the purpose,we now adOpt coordinates(ご1,…・,伊れ,y)of R"× R and deaneっ
n=

{(21,… .,密",y)cR・ ×RIF=キ 芽
=・ … =雪

拝
=O fOr someサ },Where F(サ ,,1,・…辞ぃy)=

t"r2 + xf i  * ' . .* xntn - y. Then rve have the fol lorving characterization theorem.



Theorem B. Let (po,g) be an integral diagrarn of fAn+2. Then for any a,, there exjsts

a finction gerrn o' : (lR'*t,0) - (R,0) such that

(1) (p., g) is equivalent to ( lr",,9).

(2)  a ' lD"  = Q.

This theorem is a generalization of Dufour's result in [6]. He has also shown that the

uniqueness of functional moduli relative to the equivalence, so that we now consider a

generalization of his uniqueness result. Define

A : {(cr, . . .rxnty) € R" x R.lThe (n } 2)-degree algebraic equation

F(xr,,..,xn,y)(t) - 0 has (n * 2)-real roots with multiplicity),

where F(r r , . . . , rn ,y) ( t ) :  F( t rx1r . . . , rnry) .We say that  a  and c 'are equiaalent  as modul i

i f  t he re  ex i s t s  o  €  IR -  {0 }  such  tha t  aa (a1 r . . . , t n , y )  =  a t (a " * t t l ,  en t2 , . . . , , e2 tn ro "12A)

for any (rt,.. . ,tn,y) € A. We remark that this definition of the equivalence among

functional moduli is slightly different from Dufour's definition of it in [6]. If we adopt

his definition, we cannot assert the necessity of the condition that functional moduli are

equivalent. Then we correct the definition as the above.

Theorem C. Let (pr,g) *d (po,,g) be integral d. iagrams of t lAna2 such that alD' -

a'lD" : 0. Then (p",g) *d (tto,,g) tre equivalent if and only if a and ott are equivalent

as moduji.

We emphasize that this theorem asserts that the equivalence classes of functional moduli

c with dlD" : 0 are the complete invariant for generic classifications of holonomic systems

of Clairaut type under the equivalence relation given by the group of point transformations.

We define ,n(D"): {a € ff i( , ,s)lolD": 0} and tA(f,,1,.*z) :  i ! t(D^)l -,  where -

denotes the equivalence relation as moduli. The above theorem asserts that the moduli

space for generic holonomic systems of Clairaut type is M(fri,,a2).

In $1 we shall prepare basic tools to prove theorems including quick reviervs of ([9,10]).

We shall give a proof of Theorem A in $2. Theorems B and C will be proved in $3 by using

an analogous method of Dufour[6].

Acknowledgment. The authors rvould like to thank Professor G. Ishikawa for helpful

conversations.

All map germs considered here are differentiable of class C-, unless stated otherwise.



1. Preparations (Including quick reviews of [9,10])

In this section we review some results on completely integrable systems and the theory

of Legendrian unfoldings [9,10] which will be used in later sections.

Firstly we introduce an equivalence relation among systems under the group of point

transformations of IR' x IR. .4 point transfonnation S on lR' x lR is, by definition, a diffeo-

morphism of IR" x lR onto itself.

To define a lift of 6, we give a contact manifold which is a fiberwise compactification of

"Ir(R",R). Let f :  P?.(R" x R) -r lR'x R be aprojective cotangent bundle over lR'x lR,

which contains r : JI(R",R) + lR'x IR, as an affine part. Then we have a canonical

con tac t  l i f t  a :  P?* (R 'x  lR )  - r  P? . (R"  x  R )  o f  $ .Le t  f ,  9 :  (R"+ t ,O)  -  , I 1 ( IR" ,R)

be equation gerrns. Following Lie, we say that / and g are equiaalent as equations if.

there exist a diffeomorphism germ /: (6,"+t,0) * (R'+t,0) and a point transformation

d, (R" x R,z'(zs)) * (R" x R,z'(21)) such that the l i f t  A of /  satisf ies that 6Qo) - r,

and f o f : g o $,rvhere zs - f(0) and z1 - 9(0). In [10] it has been shown the following

theorem.

Theorern L.L.  Let  (p , f )  and (p. ' , , f ' )  ,  (R"+t ,0)  -  (R x . I r (R ' ,R) ,0 x  u)  be holonomic

sysfem with complete integral sucJr that the set of critical points of r o f and r o ft are

closed sets wit.hout interior points. Then the followings are equivalent:

(1) / md f 
' are equivalent as equations.

(2) (p,r o f) and (p,',7r o f 
') a,re equivalent as integial diagrams.

Secondly, w'e briefly review the theory of one-parameter Legendrian unfoldings in [,].
We norv consider the 1-jei bundle /t(R X R', R.) and the canonical l-form O on the space.

Le t  ( t ,  l c r t . . . ,  z r r )  be  the  canon ica l  coo rd ina te  on  IR  x  IR '  and  ( t ,  r r t . . . , xn tAsQ,p t r . . .  r pn )
be the corresponding coordinate on "Il(R x R'",R).Then the canonical l-form is given by

@ : da - DLr p;dx; - qdt - 0 - qdt. We also have the natural projection

I I  :  - I r (R.  X R' ,  R)  *  (R x R")  x  R

defined by II(t, x,U, Qtp) : (t, c, y). lVe call the above 1-jet bundle an unfolded, I-jet bundle.

Let (pr,/) b" a holonomic system with complete integral. Then there exists a unique

elenrent h € tu such that (.*0 : lz. dp. Define a map germ

ゼ(′↓, n i ( R " + 1 , 0 )→ ブ
1 ( R×
Rれ, R )



by

\  u ,  r>(u)  = ( t r (u) ,  a  o ( , (u) ,  y  o  L(u) ,  h(u) ,  p  o [ . (u) ) .

Then we can easily shorv that t@,f) is a Legendrian immersion germ. We call t(p,f) o

complete Legendrian unfoliling associateil with (pr,/). By the aid of the notion of Legendrian

unfoldings, holonomic systems of Clairaut type are characterized as follows :

Proposit ion 1.2. [9]. Iet (p, f)r ( lR"*t,0) + R x "Ir( lR', R) be a holonomic system with

complete integral. Then (p, f) is a holonomic system of Clairaut type if and only if t@,f)

is Legendrian non-singula.r.

A complete Legendrian unfolding /1u,yy associated with (pr,/) is called a Legenilrian

unfolding of Clairaut type if (,1u,y,1is a holonomic system of Clairaut type.

Returning to the study of equations with complete integral, we now establish the notion

of the genericity.

Let U q pn*r be an open set. We denote by Ini(t/, R x Jr(R", R)) the set of systems

with complete integrul (p, f) , U -- R x /1(R', R). We also define .t(U, Jr(R X R', R)) to

be the set of complete Legendrian unfoldinEs t(p,n : U -+ "/t(R x R', R).

These sets are topological spaces equipped with the Whitney C--topology. A subset

of either spaces is said io be generic if it is an open dense subset in the space.

The genericity of a property of germs are defined as follows. Let P be a property of

equation germs rvith complete integrul(p,"f):  (R."+t,0) * R. x Jl(R",R) (respectivelg

Legendrian unfoldings t(t, , f)t  ( lR"*t,0) - . / t(R X R',R)). For an open set U C lR',

we define P(U) to be the set of (p,/) e Int([/ , lR x /t( lR',R)) (respectively, t(r, i l  e

,(U,.Ir(R X R', R.))) such that the germ at r whose representative is given bV (p, /)

(respectively, l1u,y1) has property P for any x €U.

The property P is said to be generic if for some neighbourhood U of 0 in IR', the set

P(U) is a generic subset in Int([/ ,R x Jr(R",R)) (respectively, ,(4 /r(R x R',R)).

By the construction, \\'e have a rvell-defined continuous mapping

( [11 l r ) .  :  L(U, , . / t (R X R' ,R))  *  In t ( t / ,R x  " I1(R' ,  R))

def ined by ( I I1) . ( / (p ,D)  -  I I r  o t tu ,J \ :  (p , / ) ,  where t I1  :  " I r (R X R' ,R)  *  Jr (R" ,R)  is

the canonical projection. Then it has been shown that the following fundamental theorem.

Theorem 1.3. [9,10]. ?he continuous map

(Hl)Ⅲ :L(y,ブ
1(R×
Rれ,R))‐→ Int(y,R× Jl(Rれ ,R))



』s a hοmeomorphfsm.

On the other hand, sinceゼ (P,ァ)is a Legendrian iHllnersion germ, then there exists a

generating family ofだ by the Arnol'd_Zalttlyukin's theory(11,121).In thiS Case the gen―

erating faIIllly is naturally constructed by an one―paralneter family of generating faHlihes

associated with(μ,0・Let F:((R×Rり×Rた,0)→(R,0)be a function germ such that
ど2]0×R"×Rたおnon―Sngdatt whereど2F(サ,2,?)=(鉢|,2,0,…Ⅲ器(サ,2,0〉醜
call F a′ c,cttrど zctt Pれ asc拘 切所 ry.Then σ (F)=ど 2F~1(0)iS a smOOth(角 +1)‐ manifOld

germ and TF:(σ (P),0)→ R iS a submersion germ,where TF(t,2,?)=サ 。We call the

submanifold σ (F)a Caを a3サToPあ C3Cサ ザ エ Denne

3F:(o(F),0)→ ブ1(Rれ,R)

by

and

6FO,″,の=し,駅サ,密,の,努|,α,0)

OF:(σ (F),0)→ ブ
1(R×
Rれ,R)

by

Oれを,の=|,α,恥。,の,名伊●,″,の,寄|,名?》・
ShCe寄 =OOn σ

(F),we Can eaSly sho■ v that(3F)中 θ=寄 lσ(F)。 どサ10(F)=0.By the

deinition,OF iS a Legendrian unfolding assOciated with the Legendttan falnily(7「 F,3F)・

By the same method Ofthe theOry of Arnol'd― Zakalyukin(11,121),we Can show the fol10wing

proposition.

P r o p o s i t i o n  l . 4 . A F F  L t t e n ど�a n  u n f O F d f n g  g e m s  a r e  c o n s むr u c t e d  b / むh e  a b οv e  m e t h o ど.

L c t ( μ, メ) b e  a  h O 1 0 n O l ■i c  s y s t e m  o f  C l a i r a u t  t y p e . B y  P r O p o s i t i O n ■2 , ゼ( μ, r ) i s  L e g e n …

drian nOn_singular. Then、ve can choOse a faHlily of functiOn germ

F : ( R ×R れ, 0 ) →( R , 0 )

s u c h  t h a t  l m a g e ブ1 見= メ( μ
~ 1 ( サ
) ) f O r  a n y サC ( R ) a l . d

ブiF:(R× R・,0)→ Jl(Rれ,R)



is an immersion gerrn, where Ft(r) -- F(t,r) and jlP(t,x): jrFl(c). The fact that jfF

is an immersion leads us to the following equality :

,u'k(ffffir:t.
In this case, we have (C(F),0) : (R x R.' ,0) and

(Dr  :  j tF  t (R x  R" ,o )  +  " I r (R x  lR ' , lR) ,

so that it is a complete Legendrian unfolding associated with (n,-n,ji.F'). Thus the gen-

erating family of a Legendrian unfolding of Clairaut type is given by the above germ.

2. Proof of Theorem A

The main idea of the proof is to define an equivalence relation which can ignore func-

tional moduli and to do everything in terms of generating families for Legendrian unfold-

ings like as those of in [10]. Let (p,g) and (p',g') be holonomic integral diagrams. Then

Ut,g) and (pr',9') are R+-equiualentif. there exist a diffeomorphism germ V: (R x (R" x

R),0)  - *  (R x (R"  *  R) ,0)  o f  the form i l r ( t ,c ,y)  :  ( ,  *  c(c ,V) , rh(x ,y) )  and a d i f feo-

morphism germ O :  ( [ t "+t ,0)  *  (R"+t ,0)  such that  V o(p,g) :  ( l t ' ,g ' )  o  O.  We remark

that if (tt,g) and (p',g') are R+-equivalent by the above diffeomorphisms, then we have

p(u)+aog(u)  :  p 'oQ(u)  and , l tog(" )  :  g 'o  Q(u)  for  any u € ( lR"+t ,0) .  Thus the d iagram

Q" + o o g, g) is strictly equivalent to (p' , g').

We now define the corresponding equivalence relation among Legendrian unfoldings. Let

t ( rJ) ,  ( ( r , ,1 , ) :  (R"+t ,0)  r  (J t (R X R' ,R) , ro)  be Legendr ian unfo ld ings.  We say that

t(u,il and (.1u' ,y'; are S.P+ -Legendrian equiualent (respectiaely, S.P -Legendrian equiualent)

if there exist a contact diffeomorphism germ /( : (/r(R X R', R), "o) -r ("71(R X R', R), 16),

a diffeomorphism germ o : ([R"+t,0) * (R"+t,0) and a diffeomorphism germ itrr : (R. x

(R'  x  R) ,  t l (zs) )  - '  (R x  (R"  *  R) ,  n("6))  o f  the form i ! ( t ,  r ,a)  :  ( t  +  a(x ,v) , rh(* ,y) )  ( . " -

s p e c t i v e l y ,  t ! ( i , r , a ) : ( t , r h @ , y ) ) ) s u c h t h a t I I o . I ( : i l o I I a n d . I ( o L : L ' o Q . I t i s c l e a ^ r

that if t(u,f\ and [.1r,,y,; &re .S.P+-Legendrian equivalent (respectively, ̂ 9.P-Legendrian

equivalent), then (p,nol) *d (p',n o/ ') are R+-equivalent (respectively, str ict ly equiva-

lent). By Theorem 1.1 in [12], the converse is also true for generic (tt,f) and (p',/'). The

notion of the stability of Legendrian unfoldings rvith respect to ^S.P+-Legendrian equiv-

alence (respectively, ̂ S.P-Legendrian equivalence) is analogous to the usual notion of the



stability of Legendrian immersion germs with respect to Legendrian equivalence (cf. Part

/II in [1]).

On the other hand, we can interpret the above equivalence relation in terms of generating

families. For the purpose, we use some notations and results in [1,4,8,10,12]. Let F,G:

(R. x (R" * R),0) * (R,0) be generating families of Legendrian unfoldings of Clairaut

type. We say that F and G are P-C+-equivalent (respectivelg P-C-equivalent) if there

exists a diffeomorphism germ O : (R x (R" t R),0) * (R, x (R" >< R),0) of the form

O( t ,c ,  V)  -  G *  a (c ,  y ) ,Q{x ,V) ,62(n ,y ) )  ( respec t ive ly ,  O( t ,c ,  y ) :  ( t ,6 {x ,y ) ,62(* ,V) ) )

such that (FoO)e1,,",r; : (G)c,,,",r) wh€r€ (Glep,,,ry is the ideal generated by G in te,r,y).

We also say that F1t,,r,y) is C+ (respectively, C)-versal deformation of /: FIR x 0 if

df Atr Atrr ,  = (fr)n + (/)s, * ( fr lR x 0, . . . ,?ulR x 0, l)e

(respectively,

t ,  -- (f)e, * (#lR x o, ,#lR x 0,1)q).

By the similar arguments like as those of Theorems 20.8 and 21.4 in [1], we can show

the following :

Tlreorenr 2.L. Let F,G t (R x (R" x R), 0) -' (R, 0) be generating families of Legendrian

unfo.ldings of Clairaut type Qr, Oc respectively. Then

(1) Or and Q6 are S.P+ (respectively, S.P)-Legendrian equivalent if and only if F and G

are PC+ (respectively, C )-equivalent.

(2) Or is S.P+ (respectively, S.P)-Legendrian stable if and only if F is aPl+ (respectively,

C)-versal deformation of f - F'IR x 0.

The following theorem is a corollary of Damon's general versality theorem in [ ].

Theorem 2.2. Let F,G , (R x (R." * R),0) r (R,0) be generatingfamil ies of Legen-

drian unfo/dings of Clairaut type such that Q p,(D6 are S.P+ (respectively, S.P)-Legenddan

stable. Then Or, Oc are S.P+ (respectively, S.P)-Legendrian equivalent if nd only if

"f  :  ^F'IR x 0, 9: GIR x 0 are C-equivalent ( i .e. ("f)s, :  (g)e,).

Then the classification theory of function germs by the C-equivalence is quite useful for



o u r  p u r p o s e . F o r  e a c h  f u n c t i o n  g e ェェェェメ: ( R , 0 ) →( R , 0 ) , w e  S e t

C―cod(メ)=dimRど↓/(メ)どc,

Ct‐codげ)=dmR残/げ)島+(材温,
κ―codげ)=dmRどサ/げ)島十仁捺)4.

Then we have the following well‐known classincation(ci t81).

Lemma 2.3.五etメ:(R,0)→(R,0)be a Functfon geム4」�むhκ‐coど(メ)<∞ ・Thenメお

CcequゴvaFent to the map ge14Hせゼ+l rbr someゼ cN.

By the drect calculation,we have

C―cod(メ+1)=ゼ+1,

c十_cod(メ+1)=セ・

Thus we can easily determne C(respectively,C十 )_verSal defoェェェェations of the abOve germs

b y  t h e  u s u a l  m e t h o d  a s  f o l l o w s :

The C―versal deformation:
ゼ

サど十1+Σ切+1メ.
| = 0

The C+―versal defoェェェェatiOn:
ゼーI

↓ぞ+二十Σ切キ1ヂ.
= = 0

We now ready to prove Theorem A.

PT00/0/『 あCθ TC拘 ム .Lct(μ ,メ )be a h010nOmic system of Clairaut type such that the

corresponding Lesendrian unfoldingゼ (″,ァ)is ScP+…Legendrian stable. By the assulnption,

the generating family炉 〈を,2,y)Ofゼ (μ,す)is C十
…verstt deformation of r=FIR× o.By

Theorem 2.2 and Lemma2.3,P(サ ,″,7)iS P―C十_equivalent to one of germs in the fol10wing

list:

DAど(1≦ゼ≦拘+1);メ十Σと!″メ十Σ巧とがす―υ,
瓦乙れ+2'サ"+2+Σとュ":一y,
We now detect the corresponding normal forms of integral diagrams as S01lows:

DAゼ (1≦ゼ≦れ+1),We Can choose

F (を,″, ) =メ十ΣE″〃十ΣEαブ
ど=1      ブ =ゼ

10



as a generalized phase faE工ly,so that

ゼー1      ■

。F = | , ' h…″れ,土メ十Σ。メ十Σ″ゴ,
t=1      す =ゼ

ゼー1

土ゼをセ~1+ΣEれどサ
ト1,を,……サゼ~1,1,…Ⅲり.

: = 1

Then Rre can easily calculate that the coresponding integral diagrtt is strictly equい 躍述ent

to

μ= “れ+ 1 ,

ど一I

g=仰h…“れ,切生+1+Σu沖1+1)・
f = 1

T h i s  i s  t h e  n o r m a l  f o ェェH  i n  t h e  c a s e  o f  3 < ゼ≦角+ 1 . I f ゼ= 2 , w e  h a v e

I t r :  un* l t

g  :  ( u t t .  .  . , , u n t u 2 * + t  *  u t u n + t ) .

We norv define a transformation bv

( J ;  :  u i  ( i  =  1 ,  . . . r n ) ,  ( J n + t  :  u n + r  * * u r ,

then (p,9) is strictly equivalent to

F : u r + t - l u r ,

g  :  (u t r . .  . run , , (u ' r * ,  -  
i "?>1 .

We also apply a transformation which is defined by

X ;  :  x ;  ( i  : 1 , . . . ,  n ) ,  Y  :  y  + ) * ' r ,

then rve have the normal form.

6"A**r; In this case the generalized phase family is given by

駅サ,2,の=サ・+2+ΣE。メ.
: = 1



By the sarne calculations as those of the case when t 3 n f 1, we can show that the

corresponding integral diagram is R+-equivalent to

F :  u n * l t

e = (ur, . .  . ,un,*t i l?+ i  uiul ,+r) .
i= l

Since the generalized phase family is C*-versal and not C-versal, then the integral di-

agram is strictly equivalent to the normal form. This completes the proof of Theorem

A.

3. Proof of Theorems B and C

For the proof of Theorem B, we now introduce another equivalence relation among

integral diagrams. Let (p,g) and (p',g') be holonomic integral diagrams. Then (p, g) .trd

(lt',g') are weak equiualent if there exist a diffeomorphism germ ilr: (R x (R" x R),0) *

(R x (R" * R),0) of the form i[(t ,  t ,y) :  (ht(t, t ,U),rbz(c,V)) *d a diffeomorphism germ

O: (R'+t ,0)  -  (R"* t ,0)  such that  V o(p,g)  = ( l t ' ,g ' )oQ.By the def in i t ion,  i f  e i ther

0t,g) and (p,g') are equivalent or R+-equivalent, then these are weali equivalent.

There also exists the corresponding equivalence relation among Legendrian unfoldings.

Let tg,,y1, t(u,,f ,) '  (R'*t,0) - '  ( /r( lR x lR.' ,  R), zo) be Legendrian unfoldings. We say that

t(u,f) alnd l1u',yt1 ?,te P-Legendrian equiaalentif. there exist a contact diffeomorphism germ

K :  ( " I l (R X R' ,R) , ro)  - -  ( " I l (R,  X R' ,R) ,16) ,  a  d i f feomorphism germ Q:  ( [R"+t ,0)  *

( R " + t , 0 ) a n d a d i f f e o m o r p h i s m g e r m V : ( R x ( R " x R ) , I I ( z s ) ) * ( R x ( R " x R ) , I I ( z [ ) ) o f

the  fo rm ! [ r ( t , 2 ,  A ) :  (b ( , x ,U ) , rbg ,A ) )  such  tha t  I I o / { :  Vo I I  and  K  oL :  L 'oQ.  I t  i s

clear that if (,6,71 and (.1u,,yty are P-Legendrian equivalent, then (p,o o /) and (p',n o f 
')

are weali equivalent. By Theorem 1.1 in [12], the converse is also true for generic (p,f)

and (,u', "f'). W" can also define the notion of the stability of Legendrian unfoldings with

respect to P-Legendrian equivalence exactly the same way as in the previous section. The

corresponding equivalence relation among generating families are also given as follows : Let

F,G, (Rx(R"xR),0) - (R,0) begeneratingfamil ies of Legendrianunfoldings of Clairaut

type. We say that F and d .." P-K-equivalent if there exists a diffeomorphism germ tD :

(R  x  (R ' x  R ) ,0 )  - -  (R  x  (R"  x  R ) ,0 )  o f  t he  fo rm O(1 ,  r ,A ) :  (d t ( t ,  r ,U ) ,62 (x ,A ) ,6s (x , y11

such that (tr 'o O)e1,,,,01 : (G)t(r,",y). We also say that F1t,,x,y) is,C-versal deformation of

" f : F l R x o i f  
d . f  , a F , ^  ^  a Ft t  :  ( f r ,  f ) t ,  *  ( f t lR x o,  . . . , f ; lR x o,  1)e.
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By the silnilar arguments litt as those of irheorems 2.l and 2.2, we can show the

following:

T h e o r e m  3 。1 . L e t  P , 3 : ( R ×( R れ×R ) , 0 ) →( R , 0 ) b e  g e n e r a む血g  F a m ゴ五e s  o f L e g e n d r f a n

u」。rdingS OF Crttraut type OF,。C respecばげ的 .Trlen

(1)OF狐 どOC are P―Legendだan equゴvaFent r and ody r F and c are P―κ―equFwttent.

(2)OFゴsP車 たgenttan stabre rand onF/FPゴsaP_κ _verstt deFomatfon oFメ=PIR× 0。

(3)SuppθSe ttat F,C be breneratれどFamゴ五es OFPtegeraどritt stabre Lttp血臣an unfordfコ。rs

oF,CC OF Crが raut type.Then OF,Oc are P_Legenど rfan equharent fF and onry rメ =

FIR× 0,g=CIR× O are κぃoqttvaFerlt.

Since r=FIR× oお a functおn gerln of one_varttble,we have(孝)R十 (メ)島=(材 ,メ)島,

so that P is a c+"verstt defoェェェェation of r if and only ifit is a X卜verstt defOrmatiOn.By

Theorems 2.l and 3.1,a Lesendrian unfolding of Clairaut type is S,P+―Legendrian stable

if and Only ifit is P_Legendrian stable. Then the following lemma is a corollary of Theorem

A.

L e m m a  3 . 2 . L cむ (μ
′
,すり b e  a nゴn t e g r叡』姥唱Ft t  O F  C rがr a u t  t y p e  1 7 r l f C hゴs  e q u f v a r e n t  t。

(μα,す) F O r  s o m e  α c捌 (を, y )・T r l e n  t r l e r e  t t s t s  α
′
c捌 (を, y ) S u t t  t h a t (μ

′
, 9′) a nど(μα′,す)

are sttctFy equFvttent.

The lnain idea of the proOfis a generalizatiOn of methods、vhich have been developed in

(161).Let(μ,o)be an integral diagraln which is cquivalent to(μα,9)fOrSOme a c捌 (″,v).

Deflne

S u :  { ( c r , . . . , c n * 2 ) l A l l  o f  c r , . . . t c n * 2  a r e  d i f f e r e n t  a n d o(μ
~1(Cす
))≠0}.

We call it the Carneiro hypersurface of. (p,,g). lVe can detect a defining equation of the

closure of the Carneiro hypersur{ace of. (pt* g).

Propositiou 3.3. Tie c/osure S^ of the Cameiro surface of (po,g) in R'+2 is defined

bv

s 1  :  ( n  * 2 ) a ( r 1 , . . . , a n , U ) ,

w h e r e

弾
∩
日
脚

SJ= C,1・ ・・Cど
す



f o r j - 1 , . . . , n * 2 a n d

k _ r

; r n 1 1 2 - k  =  D D i s * - ; s i  ( k : 2 , , . . . , n  +  1 )
i=0
n* l
F r  ;

V :  L  o ; s 2 1 2 - ; s i
i=0

for some real numbers b; which depend on n, le .

Proof .  Let  t1  , . . . , tn*2 wi th  t1  S . . .  l  tn+2 be the (n*2)- rea l  roots  of  F1, , ry( t )  =  0

for each (r,V) € A. We define map germs cj: A - '+ (R,0) bV ci@,y) : t j  * o,(a,V),

where  j  :  ! , . . . , n *  2 .  Then  we  se t  C  :  ( c t , . . . , cn *z ) :  A  -+  (R ' * ' , 0 ) .  Moreove r  l e t  s  :

(rr, . . . , sn+2), (lR'*2,0) -r (R"+2,0) be a map germ defined by sr':slsrnentary symmetric

polynomial of degree f. By the relation betrveen roots and coefficients we have

サ1 + …・十ち+ 2 = 0

サ: 1 …・せれ= ( - 1 ) た″" + 2 - た( ん= 2 , 中●, 砲+ 1 )

{11,…・,|た)C{1,"・,"+2}

サ1… ・サ"+2=(~1)"+2(_y).

( た= 2 , … . , れ+ 1 )

/ - -  \  /  - - \
rvhere ( T ) denotes the binomial coefficient and we presumably use ( T ) : r

\ r /  \ u /
From these formulae and by direct calculations we can inductively show that xr112-1r,y

are uniquely expressed as in the statement of this proposition. Furthermore 1ve can show

that  f  :  Ua€6,+r lmage("o(r ) , . . . tco(n*21) ,  where 6n112 is  the symmetr ic  group of

degree n * 2.It follorvs that S^ is included by the hypersurface which is defined by ihe

equat ion s1 :  (n  *2)a(x,y) ,  where (* ,V)  is  the pre image of  (s1, . . . ,s ,+z)  by the map ger

s oC and si is the elementary symmetric polynomial of degree j with respect to c1, . . . t cn*2.

Therefore rve obtain a defining equation of S^. This completes the proof.

By the same reasons as those of in [6], rve have the follorving lemma.
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Lemma 3.4. Under the same hypothesis as in Lemma 3.3, alD":0 if and only if

( " r , . . . , cn+z )  € i l ' l

c2:  . . .  :  cn ' r * -2, i  
*  " t  :  - (n  *  1)c"12 '

We now ready to prove Theorem B.

Proof of Theorern B.By Proposition 3.3 and the implicit function theorem, there exists

a function germ h: (R,0) -r (R,0) rvhose form is given by h(c) : -(n * 1)c a o(fcl) such

that

3 [ n { ( " r , , " r , . . . , c , , + z ) l c 2 : . . . : c n + 2 } - { ( A ( c , a z ) , c 2 , . . . , c n + z ) l c z : . . . : c n + 2 } .

Applying a linearization theorem of Sternberg, there exists a diffeomorphism germ ) :

(R,0)  - '  (R,0)  such that  )oho)- t ( . )  :  - (n*1)c.  Thus we have ) (c1)+)(c)+.  .  .+) (c)  :  0

for any ("r,",. . . ,c) € t.  By this relation and the fact that the (n*2)-fold product of

)  sends  on to3 i . ^ ,  we  can  show tha t  i f  ( c1 ,  . . . , cn t2 )€  iw i th  c2  :  . . .  :  cn *2

then c1 : -(n * 7)cn,r2. Furthermore, by Lemma 3.2 there exists q' E lllpt,) such that

the following diagram commutes

(R, o) ,  
^o'o

il
(R,0)  { -

P O ,

e ,  ( R "

The commutativity of the diagram implies that ^91"f" : S p"t. Thus by Lemma 3.4 we

have a'lD' : 0. This completes the proof of Theorem B.

Proof of Theorem C. Firstly we prove the necessity of the condition that functional moduli

are equivalent. Assume that (p",,g) and (tr lo' ,g) are equivalent, where alD": a' lD":0.

Let us assume that ) o Fa:Fa, o r/ and d o g : g o rh for some diffeomorphism germs

) :  (R . ,0 )  *  (R ,0 ) , / :  ( 6 , "+ t ,0 )  *  (R . "+ t ,O)  and  d '  (R"  x  R ,0 )  - r  (R ' x  R ,0 ) .  We  de -

termine the form of ). Since () r ..' * )X4;; : f, and by Lemma 3.4 we have

)(-(" + 1)c) : -(n + 1))(c), so that we inductively have

) ( c )  - ( - ( " + 1 ) ) o ) ( - - * l\  '  "  ' ( - ( n * 1 ) ) n '

for all integers p. By the same arguments as those of Dufour ([5] p.466,[6] p.231,[7] p.27a)

we carl show that the form of ) is given by )(c) : ac (a * 0).Also we determine the
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form of dlA. Let C be the map germ as in Proposition 3.3. By the assumption we have

(A *  . . .  x  ) )  oC :  ( .o( t ) , . . . tco(n*2r)  o  d lA for  some o € 6r ,+2.  We recal l  the fact

that s o C is invertible and the inverse map germ is given as in Proposition 3.3. Thus

we have 6@,y)  = (c^+ro1 ,enx2, , . . . ,d2tn,o"+2y)  on A,  where a € R -  {0}  such that

) (c)  -  ac.  Now for  each ( r ,V)  € A wr i te  C(r ,y) :  (cr ,  . . . ,cn*2) .Then by Proposi t ion 3.3

we have cr  *  .  . .  *  cn+z = (n *  2)a(x,y)  *d aq *  . . .  *  acn+z :  (n  *2)a ' ($( r ,  y) ) .  Hence

aa(x,V) - a'(6(x,V)) on A. Therefore we obtain the necessity.

Conversely  suppose that  aa(c1 1. . .1rn1y)  = at (a"* ls l ,  anf i2r .  . .  rQ2tnro"+2y)  on A for

some o € R - {0}. Then we have the following commutative diagram

Pa1 - g

+ - g
It a,

w h e r e  ) ( c )  -  a c , $ ( u 1 , . .  .  ,  u r * l )  -  ( a n * L u r s c t r n l t r 2 t , .  .  , a 2 u n , e u n * r ) , 6 ( r t , . . .  , t n ; y )  :

( o n t t  r  r ,  a n t 2 r ,  .  . ,  d 2  r  n ,  o n + 2 g ) .

The proof is based on the follorving result of Carneiro [2].

Theorern 3.5. Let (p,, g) and (pr,o, , g) be integral diagrams of fA,a2. Then (po, g) and

}to' ,, g) are equivaJent if and only if there exists a diffeomorphism germ ): (R, 0) -r (R,,0)

such that () r ... x )Xil) : t.

trVe remark that the commutativity of the above diagram implies that the (n*2)-fold

product of ) sendr il onto f. Thus it follows from Theorem 3.5 that (p.,g) and

0to',g) are equivalent. This completes the proof of Theorem C.
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