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HOLONOMIC SYSTEMS OF CLAIRAUT TYPE

Shyuichi IZUMIYA and Yasuhiro KUROKAWA

0. Introduction

The Clairaut equation (Alex Claude Clairaut (3], 1734) is one of the typical examples
of first order differential equations which has a (classical) complete solution and a singular
solution such that the singular solution is the envelope of a family of hyperplanes given
by the complete solution. In this article we consider equations with the same geometric

structure as the Clairaut equation. Here we give another example as follows :

Oy

{ v (5L =0
Oz,
We can exactly solve this equation and the complete solution is y = %(ml + t)%, where ¢
is a parameter. The complete solution of this equation does not consist of hyperplanes.
However, the singular solution is the envelope of the family of graphs of the complete
solution. We will refer such a system as a system of Clairaut type.

A system of first order differential equations with (classical) complete solution is called
a system of Clairaut type. In [11] a characterization of systems of Clairaut type has been
given. The next problem is to classify these systems by a natural equivalence relation.
In this paper we give a generic classification of holonomic (i.e. maximally over deter-
mined) systems of Clairaut type under the equivalence relation given by the group of point
transformations in the sense of Sophus Lie.

Since our concern is the local classification of differential equations, we can formulate
as follows : Let J!(R™ R) be the 1-jet bundle of n-variables functions which may be
considered as R?"*! with natural coordinates given by (z1,...,Zn,y,D1,... ,Pn). We have
the canonical projection « : JI(R™, R) — R" xR, n(z,y,p) = (z,y). Let 8 be the canonical
contact form on J!(R",R) which is given by § = dy — Y, p;dz;. Using this approach,

a first order differential equation is most naturally interpreted as being a closed subset of
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J!(R",R). Unless the contrary is specifically stated, we adopt a submanifold of J1(R",R)
as an equation. We stick to holonomic systems in this article. A holonomic system of
first order differential equation germ (or, briefly, a holonomic system) is defined to be an
immersion germ f : (R"*!,0) —» J}(R",R). We also say that f is completely integrable if
there exists a submersion germ u : (R"*1,0) — R such that (du)g, D (f*6)¢,, where &, is
the ring of smooth function germs on (R™*?,0) and its unique maximal ideal is denoted by
9M,. Here, u = (uy,...,un+1) are canonical coordinates of (R"*?,0). We call u a complete
integral of f and the pair (g, ) : (R**?,0) = R x J}(R™,R) is called a holonomic system
with complete integral. We observe that wo f(u~1(t)) is the graph of the solution in R® x R.
If 7o f(u~(t)) are non-singular map germs for each t € (R, u(0)), then {mro f(x~1(¢))}ter
is the family of graphs of a (classical) complete solution (cf. [1,9]). We call such a system
a holonomic system of Clairaut type. These situation lead us to the following definition.
Let (u,g) be a pair of a map germ g : (R**!,0) —» (R™ x R,0) and a submersion germ
p: (R*"10) — (R,0). Then the diagram

(R,0) &£ (R™*1,0) & (R™ x R, 0)

or briefly (u, g), is called a (holonomic) integral diagram if there exists a holonomic system
[ (R™1,0) - JY(R",R) such that (g, f) is an equation germ with complete integral and
7w o f = g, and we say that the integral diagram (y,g) is induced by f. If f is a system
of Clairaut type, then (u, = o f) is called of Clairaut type. Furthermore we introduce an
equivalence relation among integral diagrams. Let (u,g) and (4, ¢') be integral diagrams.

Then (u, g) and (p', ¢') are equivalent (respectively, strictly equivalent) if the diagram
(R,0) —— (R*10) —L— (R" x R,0)

g g L

(R,0) ——— (R"™1,0) — (R" x R,0)
I", gl

commutes for some diffeomorphism germs &, 3 and ¢ (respectively, & = idz).

In [10] it has been defined an equivalence relation among systems under the group of
point transformations and shown that two completely integrable holonomic systems f and
f' are equivalent if and only if induced integral diagrams (u,m o f) and (u',7 o f') are
equivalent for generic (g, f) and (p', f') (see §1). Moreover, it has been given generic
classifications of holonomic integral diagrams by the strict equivalence in the case when
1 < n £ 3. For general n, it is very hard to give classification by technical reasons. However,

we give a generic classification of holonomic systems of Clairaut type as follows :
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Theorem A. For a generic holonomic system of Clairaut type
(w, f) : (R™1,0) - R x J'(R™, R),

the integral diagram (p, = o f) is strictly equivalent to on of germs in the following list :
DAI H

H = Un4a,
g = (ul,. .. ,un+1).
DA2;
1
H=Upy1 — ;;Ul,
g=(u1,...,un,ui+1).
DA (3<8<n+1);
H = Unii,
-1

¢ ,
g=(us,...Un,Upy; + Zuiu;_,_l).

=1
mn+2 )
Ba = Ungy +aog fora € M, ),

n
— +2 ]
g = (U1, s Un,upiy + Zuiu:z+l)'
=1

This theorem gives a generic classification of integral diagrams of Clairaut type under the
strict equivalence. However, our purpose is to classify these subjects under the equivalence.
We remark that each germs of types DA, (1 <2< n+1)and 574,,+2 are not equivalent.
Thus the problem is reduced to classify germs which are contained in the family 574,,.*.2
under the equivalence. This family is parametrized by function germs « which are called

functional moduli. We shall characterize functional moduli relative to the equivalence.

For the purpose, we now adopt coordinates (zy,...,2,,y) of R® x R and define D" =
{(z1,...,2n,y) E R*XR|F = %? =...= %"tf = 0 for some t}, where F(¢,z1,...,2,,y) =

t"*2 gyt + .-+ 2,t" — y. Then we have the following characterization theorem.
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Theorem B. Let (uq,9) be an integral diagram of 2—)71,,4.2. Then for any a, there exists
a function germ o' : (R**?,0) — (R, 0) such that

(1) (Ba»g) is equivalent to (ko ).

(2) &'ID™ =0.

This theorem is a generalization of Dufour’s result in [6]. He has also shown that the
uniqueness of functional moduli relative to the equivalence, so that we now consider a

generalization of his uniqueness result. Define

A ={(z1,...,Zn,y) € R" X R|The (n  2)-degree algebraic equation
Fizy,...20.9)(t) = 0 has (n + 2)-real roots with multiplicity},

where F;, . . n(t) = F(t,z1,...,2,,y). We say that o and o' are equivalent as moduli
if there exists a € R — {0} such that aa(z,...,2,y) = &'(a®z;,a"2,,...,a%2,,a"2y)
for any (z1,...,2Zn,y) € A. We remark that this definition of the equivalence among

functional moduli is slightly different from Dufour’s definition of it in [6]. If we adopt
his definition, we cannot assert the necessity of the condition that functional moduli are

equivalent. Then we correct the definition as the above.

Theorem C. Let (pta,g) and (o, g) be integral diagrams of DA, 4, such that a|D" =
o'|D" = 0. Then (pq,9) and (o, g) are equivalent if and only if @ and o' are equivalent

as modulli.

We emphasize that this theorem asserts that the equivalence classes of functional moduli
a with a|D™ = 0 are the complete invariant for generic classifications of holonomic systems
of Clairaut type under the equivalence relation given by the group of point transformations.

We define M(D™) = {a € M, )|a|D™ = 0} and M(DAny2) = M(D™)/ ~, where ~
denotes the equivalence relation as moduli. The above theorem asserts that the moduli
space for generic holonomic systems of Clairaut type is M (1371,,4.2).

In §1 we shall prepare basic tools to prove theorems including quick reviews of ([9,10]).
We shall give a proof of Theorem A in §2. Theorems B and C will be proved in §3 by using

an analogous method of Dufour[6].

Acknowledgment. The authors would like to thank Professor G. Ishikawa for helpful

conversations.
All map germs considered here are differentiable of class C'*°, unless stated otherwise.

4



1. Preparations (Including quick reviews of [9,10])

In this section we review some results on completely integrable systems and the theory
of Legendrian unfoldings [9,10] which will be used in later sections.

Firstly we introduce an equivalence relation among systems under the group of point
transformations of R™ x R. A point transformation ¢ on R™ x R is, by definition, a diffeo-
morphism of R™ x R onto itself.

To define a lift of ¢, we give a contact manifold which is a fiberwise compactification of
JY(R™ R). Let # : PT*(R™ x R) — R™ x R be a projective cotangent bundle over R” x R
which contains 7 : J!(R®,R) — R" X R as an affine part. Then we have a canonical
contact lift ¢ : PT*(R™ x R) — PT*(R™ x R) of ¢. Let f, g : (R**,0) — JYR™,R)
be equation germs. Following Lie, we say that f and g are equivalent as equations if
there exist a diffeomorphism germ % : (R**1,0) — (R"*1,0) and a point transformation
¢ : (R™ x R,m(20)) = (R™ x R, 7(21)) such that the lift ¢ of ¢ satisfies that ¢(zo) = 2z
and do f = g o ¢, where z, = f(0) and z; = g(0). In [10] it has been shown the following

theorem.

Theorem 1.1. Let (g, f) and (¢/, f') : (R**1,0) — (R x JY(R™, R),0 x v) be holonomic
system with complete integral such that the set of critical points of w o f and 7w o f' are
closed sets without interior points. Then the followings are equivalent:

(1) f and f' are equivalent as equations.

2) (u,mo f) and (u', 7 o f') are equivalent as inte ral diagrams.
&

Secondly, we briefly review the theory of one-parameter Legendrian unfoldings in [,].
We now consider the 1-jet bundle J}(R x R™,R) and the canonical 1-form © on the space.
Let (t,z3,...,5) be the canonical coordinate on R x R"™ and (¢, %1,...,Zn, Y, ¢ P1,--+,Pn)
be the corresponding coordinate on J!(R x R”, R). Then the canonical 1-form is given by

O =dy — > I, pidz; — gdt = § — qdt. We also have the natural projection
II: JY(RxR™R) = (RxR®) xR

defined by II(t, z,y, ¢, p) = (¢, z,y). We call the above 1-jet bundle an unfolded 1-jet bundle.
Let (g, f) be a holonomic system with complete integral. Then there exists a unique

element h € &£, such that £*¢ = h - du. Define a map germ

Lyt (R™10) — JH(R x R™,R)
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by
€, p)(u) = (p(u), z 0 &(u), y o (u), hA(u), po £(u)).

Then we can easily show that £, s) is a Legendrian immersion germ. We call £(, f) @
complete Legendrian unfolding associated with (u, f). By the aid of the notion of Legendrian

unfoldings, holonomic systems of Clairaut type are characterized as follows :

Proposition 1.2. [9]. Let (g, f) : (R**1,0) — R x J}(R™,R) be a holonomic system with
complete integral. Then (u, f) is a holonomic system of Clairaut type if and only if £,

is Legendrian non-singular.

A complete Legendrian unfolding £, s) associated with (u, f) is called a Legendrian
unfolding of Clairaut type if £(, r) is a holonomic system of Clairaut type.

Returning to the study of equations with complete integral, we now establish the notion
of the genericity.

Let U C R™*! be an open set. We denote by Int(U,R x J(R"®,R)) the set of syster.ns
with complete integral (g, f) : U — R x J}(R",R). We also define L(U, J}(R x R* R)) to
be the set of complete Legendrian unfoldings £(, s : U — J'(R x R*,R).

These sets are topological spaces equipped with the Whitney C*-topology. A subset
of either spaces is said to be generic if it is an open dense subset in the space.

The genericity of a property of germs are defined as follows. Let P be a property of
equation germs with complete integral (g, f) : (R"*1,0) — R x J}(R",R) (respectively,
Legendrian unfoldings £(, s : (R**1,0) — J!(R x R",R)). For an open set U C R,
we define P(U) to be the set of (i, f) € Int(U,R x J'(R",R)) (respectively, £, 5) €
L(U,J}(R x R",R))) such that the germ at z whose representative is given by (g, f)
(respectively, £, ) has property P for any = € U.

The property P is said to be generic if for some neighbourhood U of 0 in R", the set
P(U) is a generic subset in Int(U,R x J}(R",R)) (respectively, L(U, J}(R x R™,R)).

By the construction, we have a well-defined continuous mapping
(). : L(U, J*(R x R™,R)) — Int(U,R x J}(R™, R))

defined by (I11).(£(,,5)) = 1 0 &, 5y = (&, f), where II; : J}(R x R*,R) — J}(R™,R) is

the canonical projection. Then it has been shown that the following fundamental theorem.

Theorem 1.3. [9,10]. The continuous map
(1)« : L(U, JY(R x R, R)) — Int(U,R x J*(R™,R))

6



is a homeomorphism.

On the other hand, since {(, ) is a Legendrian immersion germ, then there exists a
generating family of £ by the Arnol’d-Zakalyukin’s theory ([1,12]). In this case the gen-
erating family is naturally constructed by an one-parameter family of generating families
associated with (g, £). Let F : (R x R™) x R¥,0) — (R, 0) be a function germ such that
d2F|0 x R™ x RF is non-singular, where d2F(t,z,q) = (aq1 (t,z,9),..., aq,, 2E.(t,z,q)). We
call F o generalized phase family. Then C(F) = dF~}(0) is a smooth (n + 1)-manifold
germ and 7p : (C(F),0) — R is a submersion germ, where np(t,z,9) = t. We call the
submanifold C(F) a catastrophe set of F. Define

&r: (C(F),0) = JY(R™,R)

by

N OF

QF(t7w’q) = (x’F(t’z’q)7 E(t’x7 q))
and

F:(C(F),0) = JY(R x R*,R)
by
oF OF
q)p(t,(t,q) = (taz,F(t7$1Q)) Et—(t1x1Q)’ E(taz) Q))

Since 3£ = 0 on C(F), we can easily show that ($p)*8 = I:IC(F) -dt|C(F) = 0. By the

deﬁmtlon, ®r is a Legendrian unfolding associated with the Legendrian family (7 g, ® F)-
By the same method of the theory of Arnol’d-Zakalyukin ([1,12]), we can show the following

proposition.
Proposition 1.4. All Legendrian unfolding germs are constructed by the above method.

Let (u, f) be a holonomic system of Clairaut type. By Proposition 1.2, £, 5y is Legen-

drian non-singular. Then we can choose a family of function germ
F:(RxR"0)— (R,0)
such that Image j! Fy = f(u~!(t)) for any ¢ € (R) and

jIF: (R x R",0) —» JYR",R)
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is an immersion germ, where Fy(z) = F(t,z) and j1F(t,z) = j!Fy(z). The fact that j1F

is an immersion leads us to the following equality :

In this case, we have (C(F),0) = (R x R™,0) and
&p =j'F: (R x R",0) — J}(R x R*,R),

so that it is a complete Legendrian unfolding associated with (w,_p,j1F). Thus the gen-

erating family of a Legendrian unfolding of Clairaut type is given by the above germ.

2. Proof of Theorem A

The main idea of the proof is to define an equivalence relation which can ignore func-
tional moduli and to do everything in terms of generating families for Legendrian unfold-
ings like as those of in [10]. Let (u,g) and (¢',g') be holonomic integral diagrams. Then
(1,9) and (p', g') are R*-equivalent if there exist a diffeomorphism germ ¥ : (R x (R™ x
R),0) — (R x (R™ x R),0) of the form ¥(¢,z,y) = (¢t + a(z,y),¥(z,y)) and a diffeo-
morphism germ ¢ : (R**!,0) — (R™*?,0) such that ¥ o (u,g) = (¢',g') o . We remark
that if (4,¢) and (i',¢') are R*-equivalent by the above diffeomorphisms, then we have
p(u)+aog(u) = p'o®(u) and Yog(u) = g’ o &(u) for any u € (R™*1,0). Thus the diagram
(4 + a0 g,g) is strictly equivalent to (u',g").

We now define the corresponding equivalence relation among Legendrian unfoldings. Let
Ciu,pyr L gy 2 (R*10) — (JY(R x R™,R), z9) be Legendrian unfoldings. We say that
(u,f) and €, pry are S.P*-Legendrian equivalent (respectively, S.P-Legendrian equivalent)
if there exist a contact diffeomorphism germ K : (J}(RxR™ R), z9) — (J}(Rx R™ R), 2{),
a diffeomorphism germ @ : (R"*!,0) — (R"*1,0) and a diffeomorphism germ ¥ : (R x
(R™ xR),II(z0)) — (R x (R™ x R), I(24)) of the form ¥(¢,z,y) = (¢ + a(z, y), ¥(z,y)) (re-
spectively, ¥U(¢,z,y) = (¢,¢(z,y))) such that To K = VoIl and KoL = L'0 ®. It is clear
that if £, sy and £, sy are S.P*-Legendrian equivalent (respectively, S.P-Legendrian
equivalent), then (u, 7o f) and (u', 7o f') are R*-equivalent (respectively, strictly equiva-
lent). By Theorem 1.1 in {12], the converse is also true for generic (g, f) and (g, f'). The
notion of the stability of Legendrian unfoldings with respect to S.P%-Legendrian equiv-

alence (respectively, S.P-Legendrian equivalence) is analogous to the usual notion of the
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stability of Legendrian immersion germs with respect to Legendrian equivalence (cf. Part
I in (1]).

On the other hand, we can interpret the above equivalence relation in terms of generating
families. For the purpose, we use some notations and results in [1,4,8,10,12]. Let F.G:
(R x (R® x R),0) — (R,0) be generating families of Legendrian unfoldings of Clairaut
type. We say that F and G are P-C"'-equivaleﬁt (respectively, P-C-equivalent) if there
exists a diffeomorphism germ & : (R x (R™ x R),0) — (R x (R® x R),0) of the form
®(t,z,y) = (1 + a(z,y), $1(2,y), $2(,y)) (respectively, @(t,z,y) = (¢, d1(z,y), $2(,y)))
such that (Fo®)¢, ., = (G)g,.,, Where (G)¢, . ,, is the ideal generated by G in £ ; 4.
We also say that F(t,z,y) is CT (respectively, C)-versal deformation of f = F|R x 0 if

df oF oF

&= (m+(f)e +(_6:v_1le 0,---,5$—n|RX0,1)R
(respectively,
OF OF
E=(fle + (6_x1|R x0,..., axan x 0, 1)R).

By the similar arguments like as those of Theorems 20.8 and 21.4 in [1], we can show

the following :

Theorem 2.1. Let F,G : (R x (R™ xR),0) — (R,0) be generating families of Legendrian
unfoldings of Clairaut type ®r, ®¢s respectively. Then

(1) @F and &g are S.P* (respectively, S.P)-Legendrian equivalent if and only if F and &
are P-C* (respectively, C)-equivalent.

(2) ®F is S.P* (respectively, S.P)-Legendrian stable if and only if F' is a P-Ct (respectively,
C)-versal deformation of f = F|R x 0.

The following theorem is a corollary of Damon’s general versality theorem in [4].

Theorem 2.2. Let F,G : (R x (R™ x R),0) — (R,0) be generating families of Legen-
drian unfoldings of Clairaut type such that ® p, &g are S.P* (respectively, S.P)-Legendrian
stable. Then ®p,® are S.P™ (respectively, S.P)-Legendrian equivalent if and only if
f=F|Rx0, g=G|R x 0 are C-equivalent (i.e. (f)s, = (9)e, )-

Then the classification theory of function germs by the C-equivalence is quite useful for

9



our purpose. For each function germ f : (R,0) — (R, 0), we set

C-cod (f) = dimg&:/(f)e,,
C+-C0d(f) = dimmgt/(f)g‘ + (%)R,

. d
K-cod (f) = dime&/(f)e, + (L)
Then we have the following well-known classification (cf. [8]).

Lemma 2.3. Let f: (R,0) — (R,0) be a function germ with K-cod(f) < oo. Then f is
C-equivalent to the map germ t‘*! for some £ € N.

By the direct calculation, we have

C-cod (t**) = £ +1,
Ctocod (t**1) = ¢.

Thus we can easily determine C (respectively, Ct)-versal deformations of the above germs
by the usual method as follows :
The C-versal deformation : .
tt+1 + Z u;+1ti.
i=0

The C*-versal deformation : .
-1

4wt
i=0

We now ready to prove Theorem A.
Proof of Theorem A. Let (u, f) be a holonomic system of Clairaut type such that the
corresponding Legendrian unfolding £, sy is S.P*-Legendrian stable. By the assumption,
the generating family F(t,z,y) of (u,p) is Ct-versal deformation of f = F|R x 0. By
Theorem 2.2 and Lemma 2.3, F (t,z,y) is P-C*-equivalent to one of germs in the following
list :
DA (1<€<n+1); 4+ Tl ot + X075 — v,
DApga; ™24 30 2t —y,

We now detect the corresponding normal forms of integral diagrams as follows :
DA, (1 £¢<n+1); We can choose

-1 n
F(t,z,) =te+2miti+2xj
i=1 7=¢

10



as a generalized phase family, so that

-1 n
Op = (t,z,4,.. o Tn, tl + Zx,-t’ + ij,
=

=1
-1 )
04 izl ).
i=1 -

Then we can easily calculate that the corresponding integral diagram is strictly equivalent

to

H = Unt1,
-1
P .
g = (uy,... yUn, Upyq + Zu;u;“)-
=1

This is the normal form in the case of 3 < ¢ < n+ 1. If £ = 2, we have

H = Unta,

2
g= (ulv ceeaUnyUpyyg + ulun+1)-

We now define a transformation by

) 1
U,' = U; (l = 1,...,n), Un+1 = Un+1 + Sul,

2
then (p, ¢) is strictly equivalent to
B =Ungr — SU,
2 L
9=(u1,...,un,(upy; — Z“l))
We also apply a transformation which is defined by
. 1 2
Xi=z;(1=1,...,n), Y=y+Z:1:1,

then we have the normal form.

5?1,,+2 ; In this case the generalized phase family is given by

F(t,z,q) =t"*? + inti.

i=1

11



By the same calculations as those of the case when £ < n + 1, we can show that the

corresponding integral diagram is R*-equivalent to
H = Un4l,
n -
g = (ul, ceey un, :tuzi? + z u'u:t_i_l).
i=1
Since the generalized phase family is C*-versal and not C-versal, then the integral di-

agram is strictly equivalent to the normal form. This completes the proof of Theorem
A.

3. Proof of Theorems B and C

For the proof of Theorem B, we now introduce another equivalence relation among
integral diagrams. Let (u,¢) and (x',¢') be holonomic integral diagrams. Then (g, ¢) and
(u',g") are weak equivalent if there exist a diffeomorphism germ ¥ : (R x (R™ x R),0) —
(R x (R™ x R),0) of the form ¥(t,z,y) = (¢1(¢, z,y), ¥2(z,y)) and a diffeomorphism germ
® : (R**1,0) — (R™*1,0) such that ¥ o (u,g) = (u',¢') o ®. By the definition, if either
(1, g) and (u,g') are equivalent or R*-equivalent, then these are weak equivalent.

There also exists the corresponding equivalence relation among Legendrian unfoldings.
Let £, 1y, e,y 2 (R™1,0) = (JH(RxR™, R), z0) be Legendrian unfoldings. We say that
£u,py and £ ¢y are P-Legendrian equivalent if there exist a contact diffeomorphism germ
K : (JY(R x R*R),z0) — (J}(R x R*,R), 2}), a diffeomorphism germ & : (R"+!,0) —
(R™*1,0) and a diffeomorphism germ ¥ : (R x (R™ x R), II(2)) — (R x (R™ x R), II(z})) of
the form ¥(t,z,y) = (¥, z,y),%@,y)) such that Ho K =¥olland KoL =L'0d. It is
clear that if ¢, sy and {(, sy are P-Legendrian equivalent, then (y, 7 o f) and (p',7 o f')
are weak equivalent. By Theorem 1.1 in [12], the converse is also true for generic (u, f)
and (', f'). We can also define the notion of the stability of Legendrian unfoldings with
respect to P-Legendrian equivalence exactly the same way as in the previous section. The
corresponding equivalence relation among generating families are also given as follows : Let
F,G: (Rx(R"xR),0) — (R,0) be generating families of Legendrian unfoldings of Clairaut
type. We say that F and G are P-K-equivalent if there exists a diffeomorphism germ & :
(Rx(R™xR),0) = (Rx(R™ xR),0) of the form ®(¢,z,y) = (¢1(¢, 2, y), $2(z,y), #3(z,y))
such that (Fo®)g, ., = (G)e,.,.,,- We also say that F(t,z,y) is K-versal deformation of
f=FRx0if

If OF oF

d
gtz(a—t-,f)st+<-éx—1|R><0,...,-5—x—-|RX0,1>R.

12



By the similar arguments like as those of Theorems 2.1 and 2.2, we can show the

following :

Theorem 3.1. Let F,G : (R x (R™ xR),0) — (R,0) be generating families of Legendrian
unfoldings of Clairaut type ® p, &g respectively. Then

(1) ®F and &g are P-Legendrian equivalent if and only if F and G are P-K-equivalent.
(2) ®F is P-Legendrian stable if and only if F' is a P-K-versal deformation of f = F|R x 0.
(3) Suppose that F,G be generating families of P-Legendrian stable Legendrian unfoldings
®p,®g of Clairaut type. Then ®p, &g are P-Legendrian equivalent if and only if f =
FIR x 0, ¢ = G|R x 0 are K-equivalent.

Since f = F|R x 0 is a function germ of one-variable, we have (%)R +(f)e, = (-“%, e,
so that F is a C*-versal deformation of f if and only if it is a K-versal deformation. By
Theorems 2.1 and 3.1, a Legendrian unfolding of Clairaut type is-S.P¥-Legendrian stable

if and only if it is P-Legendrian stable. Then the following lemma is a corollary of Theorem
A.

Lemma 3.2. Let (¢',¢') be an integral diagram of Clairaut type which is equivalent to
(Kasg) for some o € M, ,y. Then there exists o' € M, ) such that (p',g") and (g, g)

are strictly equivalent.

The main idea of the proof is a generalization of methods which have been developed in
([6])- Let (u,g) be an integral diagram which is equivalent to (piq,¢) for some a € M, ).
Define

n+2
Su={(c1,...,cnt2)|All of ¢,...,cpyo are different and ﬂ g(u™(c;)) # 0}.

j=1

We call it the Carneiro hypersurface of (u,g). We can detect a defining equation of the

closure of the Carneiro hypersurface of (u4, g).

Proposition 3.3. The closure S, of the Carneiro surface of (pg,g) in R*2 is defined
by
s1=(n+2)a(z1,...,Tn,y),

where

SJ-: E Cil"'Ci,-

{(ir,ij YC{1,...,n+2}
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forj=1,...,n+2 and

k-1
Tpto—k = Z b,-sk-.-si (k=2,...,n+1)

1=0
n+1
y= Z bi3n+2—isi

i=0
for some real numbers b; which depend on n, k.
Proof. Let t1,...,tp42 With ;7 < -+ < t,42 be the (n42)-real roots of Fi, (1) = 0
for each (z,y) € A. We define map germs ¢;: A — (R,0) by c;j(z,y) = t; + ofz,y),
where j = 1,...,n + 2. Then we set C = (c1,...,cn42): A — (R"*2,0). Moreover let s =
(s1,..+,8a42): (R**2,0) — (R"*2,0) be a map germ defined by s;=elementary symmetric

polynomial of degree j. By the relation between roots and coefficients we have

t1+"’+tn+2=0

Z iy ooty = (1) znpo-k (k=2,...,n+1)
(it yorin JC {1,042}

ty e tape = (=1)"F2(—y).
Putting s o C(z,y) = (S1,...,Sn42), We have

s1=(n+2)a(z,y)

k
+2—2 i i +2
3’°=Z:<nk__iz)(-—l):1:n+2—;ar(:1:,y)‘L +<nk )a(:c,y)" (k=2,...,n+1)

=2
n+1 . .
Snt+2 = (_1)n+2(_y) + Z(_l)lxn+2—ia(mv y)n+2—1 + a(m,y)n+2,
i=2
m . . . m
where < , ) denotes the binomial coeflicient and we presumably use 0 )= 1.

From these formulae and by direct calculations we can inductively show that z,42_k,y
are uniquely expressed as in the statement of this proposition. Furthermore we can show
that S,, = UseBn 4. Image (Co1)s - -+ Ca(n+2)), Where &pnpo is the symmetric group of
degree n + 2. It follows that S,_ is included by the hypersurface which is defined by the
equation s; = (n+ 2)a(z,y), where (z,y) is the preimage of (si,...,Sn+2) by the map ger
soC and s; is the elementary symmetric polynomial of degree j with respect to cy, ..., cny2.

Therefore we obtain a defining equation of S, . This completes the proof.

By the same reasons as those of in [6], we have the following lemma.

14



Lemma 3.4. Under the same hypothesis as in Lemma 3.3, a|D™ = 0 if and only if

(Cl,...,Cn+2) € S#a
= = —(n + 1)cn+2.
€2 = -+ = Cn42

We now ready to prove Theorem B.
Proof of Theorem B. By Proposition 3.3 and the implicit function theorem, there exists

a function germ h: (R,0) — (R,0) whose form is given by h(c) = —(n + 1)c + o(|c]) such
that

Sya N {(61,02,---,Cn+2)|02 == Cn+2} = {(h(cn+2),C2,-~,Cn+2)|02 == Cn+2}-

Applying a linearization theorem of Sternberg, there exists a diffeomorphism germ X :
(R,0) — (R, 0) such that AohoA™!(¢c) = —(n+1)c. Thus we have A(c1)+A(c)+- - -+A(c) =0
for any (c1,¢,...,¢) € S,,. By this relation and the fact that the (n + 2)-fold product of

A sends S, onto Sxou,, We can show that if (¢1,...,cn42) € Srop, With co =+ = cpq9

then ¢1 = —(n + 1)cp42. Furthermore, by Lemma 3.2 there exists a' € M, ,) such that

the following diagram commutes

Aopg

(R,0) <= (R"*1,0) —— (R" x R,0)

ll v L

(R,0) —— (R™1,0) —— (R" x R, 0).
g9

Bor

The commutativity of the diagram implies that Sxou, = S,_,. Thus by Lemma 3.4 we
have a'|D™ = 0. This completes the proof of Theorem B.

Proof of Theorem C. Firstly we prove the necessity of the condition that functional moduli
are equivalent. Assume that (14, 9) and (g, g) are equivalent, where o|D" = o'|D™ = 0.
Let us assume that A o po=po 0% and ¢ 0 g = g 09 for some diffeomorphism germs
A (R,0) = (R,0),%: (R*1,0) — (R™*1,0) and ¢: (R™ x R,0) — (R™ x R,0). We de-
termine the form of A. Since (A x -+ x A)(S,,) = S,., and by Lemma 3.4 we have
A(—=(n +1)c) = —(n + 1)A(c), so that we inductively have

¢

Ale) = (— DPA——————

(©) = (~n + DY M gy)
for all integers p. By the same arguments as those of Dufour ([5] p.466,[6] p.231,[7] p.274)

we can show that the form of A is given by A(¢) = ac (a # 0). Also we determine the
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form of ¢$|A. Let C be the map germ as in Proposition 3.3. By the assumption we have
(Ax -+ xA)oC = (coq1)r---rCa(nt+2)) © |A for some 0 € &,42. We recall the fact
that s o C is invertible and the inverse map germ is given as in Proposition 3.3. Thus
we have ¢(z,y) = (a"t'z1,a"z,,...,a%z,,a"?y) on A, where a € R — {0} such that
A(c) = ac. Now for each (z,y) € A write C(z,y) = (c1,...,Cnt2). Then by Proposition 3.3
we have ¢; + -+ cpp2 = (n +2)a(z,y) and acy + -+ - + acp42 = (n +2)a’(4(x, y)). Hence
aa(z,y) = a'(¢(z,y)) on A. Therefore we obtain the necessity.

Conversely suppose that aa(z1,...,2,,9) = a'(a"*'zy,a z,,. .. ,a%z,,a" ?y) on A for

some a € R — {0}. Then we have the following commutative diagram

(R,0) «=— g7'(8) —— A

3| [+ e
(R,0) &—— g7(4) — A
Bar 9

where A(c) = ac,¥(uy,...,uns1) = (@™ luy,auy,...,a%uq,, atny1), $(T1,- .-, Tnyy) =
(a"tlzy,amz,,...,a%z,,a™t?y).

The proof is based on the following result of Carneiro [2].

Theorem 3.5. Let (itq,9) and (e, g) be integral diagrams of DAp4o. Then (pq,g) and
(Ko, g) are equivalent if and only if there exists a diffeomorphism germ A: (R,0) — (R, 0)
such that (A x -+- X A)(Spu.) = Sp_, -

We remark that the commutativity of the above diagram implies that the (n+2)-fold
product of A sends S, onto Sy, . Thus it follows from Theorem 3.5 that (xq4,g) and
(o, g) are equivalent. This completes the proof of Theorem C.
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