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On Bloch’s metaconjecture

Hiroshi Saito

Introduction
In [ 6 J, Bloch raises the following conjecture:
For any smooth projective variety V, there exists a filtration on
CHO(V), at least the beginning of which is given by

1
F CHO(V)

Ker(deg : CHO(V) — 1),

H

F2CHO(V) Ker(F1CH0(V)-——+ Alb(V)).
(Presumably the filtration will in general have m steps where
m = dim V.) Let S ©be a surface and let =z be a cycle on V X §
with dim 2 = m = dim V. Then =z induces a map
z CHo(V) — CH, (S).
The above filtration being functorial for correspondences, we get
also
[z1: gr CHy (V) — gr CH,(S).
CONJECTURE(L 6 1,1.8). The map [zl depends only upon the
cohomology class {z} € H4(V X S).
Moreover,
METACONJECTURE(L 6 1,1.10). There is an equivalence of category

between a suitable category of polarized Hodge structures of weight 2

and a category builtl up from ngCHO(S).

The present article gives an affirmative answer to the conjecture

and the metaconjecture. above in a.weak form. To give the reader a
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perspective, it will be worthwhile to describe an (ideal) picture the

author has in mind, a very small portion of which is really proven.
To each smooth projective variety V over € , there are

filtrations FQCHP(V), 'FQCHP(V) on CHp(V), which are functorial for

correspondences:

ci? vy = FO%cHP vy o --- o FlerPvy o P lewPovy o
It U U
o vy o oo 5 FlenPovy o P lcuP vy o )

(i) F = '"F for O-cycles: FQCHO(V)'= 'FQCHO(V) for all 2, and 'FQ
is generated by FQCHO.
(ii) Set gr%CHp(V) - rlenP vy /Ft lenP vy .
For a cycle =z € CHp+q(w X V), we have

L LonP vy,

F
. 2p+2qg
which depends only on the cohomology class { 2z } € H (W X V).

[z] : ngCHq(W) — gT

(iii) We set

[} '}

arlcHP vy = FleuP vyt

cHP vy n il

cHP (v .

The standard conjecture holds, and we have the theory of
Grothendieck's motives as in [ 12 1, i.e., the motives whose
morphisms are given by algebraic cycles modulo numerical eguivalence.
Let %Q be the (Q-abelian) category of motives of pure niveau £.
Then there exists an anti-equivalence of category between the

pseudo—-abelian envelope 0of the Q-additive category built up from
[}

Gr CHr(V) and the category ﬂQ, given by
GrQCHr(V) —— er 2™ vy,
2

CHP (V) — grP ,2p-2

(or equivalence of category given by Gr (VY (p-0)>.

r 2r+ﬂ(

where gr h V) denotes the pure niveau & part of the motive

h2T*% vy, and (r) denotes the Tate twist.

(iv) FICH(V) is the cycles homologically equivalent to zero, and
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Gr1CHp(V) is naturally isomorphic to the algebraic part of the
p-th intermediate jacobian JE(V) (or gr%CHp(V) is isomorphic to
the image of the Abel-Jacobi map).

vy FPHleuPevy = o.

The reason why one filtration is insufficient is this:

Nofe that grp—QhQP_Q(V)(p—Q) is generated by groh1 of curves.

Hence by (iii), Gr1CHp(V) is generated by jacobians (of curves), so

that GrICHp(V) is generated by cycles algebraically equivalent to
zero. But by (ii), F1CHp(V) cannot be the cycles algebraically

equivalent to zero. More concretely, we have a 3-fold V such that

grlha(V) = 0, hence JZ(V) = 0, but the image of Abel-Jacobi map 1is

%CHZ(V) = 0. In other words, gr2 tn2P %y,
controls not griCHp(V) , but another object Gr!l

for ¢ = 1. The nature of the part FQCH(V)/'FQCH(V) remains

non-zero, hence gr

cHP(v), at least

mysterious. For example, it is, in general, not finitely generated
(L7 .

For (v), we have no direct evidence for p > 1. Recall, however,
another Bloch's conjecture that cubic equivalence for cycles of
codimension 2 coincides with rational equivalence([ 4 1). Also

compare [ 17 3, n. 30.

We shall explain the organization and the relation with the above.
In 81, we introduce the notion of product of adequate equivalence
relations. An adequate equivalence relation E consists of subgroups
ECH(V) of CH(V) which are stable under the correspondences. For

adequate egquivalence relations E, E’', the product denoted by ExE'

—263—



is the minimum adequate eguivalence relation satisfying the condition
X € ECH(W) , and vy € E'CH(V) ===> x X y € ExE'CH(W x V).

As a consequence, the filiration given by powers of homological

equivalence has the property of (ii) above. We also introduce the

group GricHP (V).

8§82 and 3 are preliminaries:in 82, we define the fundamental class
(or cohomology class) of families of subschemes, following [ 18 1,
and prove that the subfunctor of product of Hilbert schemes
corresponding to the pairs of subschemes having the same fundamental
classes is representable. 83 is concerning the Chow schemes by
[ 1 1, i.e., families 0of cycles on a scheme over a base scheme (of
characteristic zero), and we show that the direct image morphism for
a proper morphism is defined on the whole of the Chow scheme, when we
add the cycle "zero" to the Chow scheme.

In §4, we show that on a smooth projective variety over an
algebraically closed uncountable field of characteristic zero, for a

family of cycles {Z(s)} if at each closed point s, Z(s) is

s€S’
equivalent to zero with respect to a power of homological
equivalence, so is generically. This is an analogue of [. 14 ], 5.6.

From 85 on, the ground field is assumed to be the field of complex
numbers.

In §5, we generalize the theorem 3.2 of [ 15 1, which, in
particular, says, in Severi's terminologyl[l 17 1, that a family of
O-cycles on a surface in a class of cube of homological equivalence
is a eircolazion algebrica. Further, we introduce a category € (4)

of GrQCHr(V) and define a functor

n . gy — Hdgl) , GrQCHr(V) — grrH2r+£(V,Q)(r),
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as (iii) above, where Hdg(l) denotes the category of effective

polarizable Q-Hodge structures of weight (. We notice that €(2)
is defined from mnot all of GrQCHr(V) , but those with certain
0

conditions with respect to V, £, and r. For £ = 0, Gr CHr(V) is
the r-cycles modulo homological equivalence, and the condition is
that the map Gr CH' (V) — Hom(Gr'CH_(V)5,® induced by
intersection pairing is injective, whose universal validity is
equivalent to the standard conjecture in chracteristic zero case.

86 is preliminary for faithfulness of 7. We remark that a much
stronger result could be obtained if we suppose the standard
conjecture. The "trivial" case £ = 0 1is also mentioned: the
restriction of n to the subcategory generated by GrOCHr(V) for
which the above map GrOCHr(V)® A Hom(GrOCHr(V)Q,Q) is bijective
is faithful.

In §7, the faithfulness of 7 for & =1 is dealt with. Let Jg(V)
denote the algebraic part of intermediate jacobian. Then, the
restriction of the functor n to the subcategory €'(1) of €(1)
generated by GricHP(V) such that J2V)  and J;_I(Y) are
naturally dual is an equivalence of category between {he Q-additive
categories €'(1) and Hdg(l). We also show that GrICHp(V) has a
structure of abelian variety such that the natural map

acHP? (vy —— arlicuPv)
is regular, where A denotes the algebraic equivalence. Further, the
kernel of the natural map

GricH? (v) — JP v

is finite for arbitrary V and p. More precisely, the Kernel of

the map
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ACHP (V) —— 4P (V)
is the product of algebraic 'equivalence and homological equivalence
up to finite groups, and it is even bijective for p =1, 2, or
dim V. This is an analogue of the converse to a theorem of Abel:
cycles on a curve of degree zero which vanish in the jacobian are

rationally equivalent to zero. Also c¢f. [ 19 1, p.534.

In §8, the faithfulness of n for £ = 2 is treated. Here, we can
prove very little. If we denote by 9(2)Surf the subcategory of
£(2) generated by Gr2CH0 of the surfaces, then the restriction

8(2) ., € €(2) = Hdg(2)
is faithful. We can define the motives h2, gr0h2 of surfaces
constructed from algebraic cycles, and let ﬂz be the category
generated by groh2 of the surfaces. Then ﬂz is semi—simplé

Q-abelian category and we have an anti-equivalence of categories
Q(2)surf — ﬂz,
the composition of which with the Betti realization gives the above

functor €(2)Sur — Hdg(2). The Bloch's metaconjecture is, in our

f
context, equivalent to the fully faithfulness of the realization
Mz —— Hdg(2), and it is equivalent to fhe Hodge conjecture on the
products of surfaces.
A part of the work was done while the author was staying at the

University of Chicagoe. He would like to express his sincere gratitude

to the university and Prof. Spencer Bloch for the hospitality.
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§ 1. Products of adequate equivalence relations

1.1. Let Kk be an algebraically closed field, ‘and we work in the
category of smooth projective varieties. First recall the definition
of adequate equivalence relation.
DEFINITION 1.1.1(L 16 1). An adequate equivalence relation E 1is an
equivalence relation on cyecles such that

i) 141 is compatlible with addition of cycles;
1077 W oa Finite number of
subvarieties on V. Then there exists a cycle X' equivalent to X

ii) Let X be a cyele on V, and W

such that X' and W intersect properly;
iiiy If Z +1is a ecycle on V X W, +if X 1is a cyele on V

equivalent to zero, and if Z(X) = (Z.XXW) 1is defined, then

er*
the cyecle Z(X) on ‘W 1is equivalent to zero.

1.1.2. It is well-known that the rational equivalence relation,
which we denote by O , is the finest adequate equivalence relation
and the numerical equivalence relation is the non-trivial coarsest
one. We denote the trivial adequate equivalence relation that all
cycles are equivalent by I. The cycles on V modulo rational
equivalence is called the Chow ring CH(V) of V and it has a ring
structure by intersection, and is graded by codimension. The

codimension p part will be denoted by CHp(V).
1.2. Let E be an .adequate equivalence relation and

ECH(V):= { cycles on V E-equivalent to zero}/rational equivalence.

Then ECH(V) has the following properties:
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i) ECH(V) is a graded submodule of CH(V);
ii) IF x € ECH(V) and if =z € CH(VxW), then

z{(x) := prw*(z.xxl) € ECH(W).

PROPOSITION 1.2.1. Giving an adequate equivalence relation E 1is
equivalent to assigning ECH(V) < CHWV) to each V which satisfies

‘the condition i) and ii) of 1.2.

Let E and E® be adequate eguivalence relations. Then we define

the adequate equivalence relations E + E', ENE' by

(E+E')YCH(V) ECH(V) + E'CH(V},

(ENE"')YCH(V) ECH(V) n E'CH(V).

We shall denote E c E' if ECH(V) < E'CH(V) for all V.

1.3. For adequate equivalence relations E and E', we shall
define their product denoted by ExE' as follows:

(ExE')CH(V) is a submodule of CH(V). generated by the elements of
the form prv*(x.y), where x € ECH(T X V), y € E'CH(T x V), T
is a (smooth projective) variety, pry T X V— V is the

projection.

LEMMA 1.3.1. ExE' satisfies the conditions of 1.2. i),ii) and hence
defines an adequate equivalence relation. A cycle Z on V 4is
ExE'-equivalent to zero if and only if Z 1is a sum of cycles of the
forms prV*(X.Y), where X 1is a ecyecle on T X V E-equivalent to
zero and Y is8 a cycle on T X V E'-equivalent to zero and the

cyeles X and Y intersect properly, and where T 1is a variety and
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Pry T X V—— V 4{is the projection.

By linearity, it is sufficient to show that if 2z € CH(V X W) and
x € ECH(V x T) and y € E'CH(V x T), then
z(prv(x.y)) € (ExE')CH(W).
z(prv(x.y)) = prw(z.prv(x.y)xlw)
= prw(lTXz.xxlw.yxlw)

and 1T><z.xx1w € ECH(T x V X W), yx1

part results from the moving lemma.

W € E'CH(T x Vv xW). The latter

LEMMA 1.4. Let E, E', E" be adequate equivalence relations.
Then the following are equivalent:

i) if x € ECH(V) and y € E'CH(V), then x.y € E"CH(V) for
arbitrary V.
ii) if X € ECH(V) and y € E'CH(W) then x x y € E"CH(V X W) for
arbitrary VvV and W.

iti) ExE' < E".

It is clear that i) implies iii) and ii) implies i). To see
that iii) implies ii), let T := Spec k. Then

I.x x X 1, € ECH(T X V X W), 1. x 1, X y € E'CH(T X V X W), and

T W T v
X Xy = Pry o w(1T>< X XIW‘ITX 1v X y).
1.5. For adequate equivalence relations E, E', E", we have
(E+ E') + E" = E+ (E' + E"), (E % E') = E" = E = (E' * E"),
E + E'" = E' + E, Ex E' = E' % E |,
E+ 0 = E, Ex 1 =E
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E % (E' + E") = E *« E' + E % E",

E' c E" implies E x E' ¢ E % E".
Let EX¥ = E % -+ xE (0 times for & > 0, and E*0 = 1),
and set
gr%CH(V) = B*cnan /e T Venovy .

By virtue of lemma 1.4, we have

LEMMA 1.5.1. The ring structure of CH({(V) defines the bigraded ring

"CH" (V). In particular, =z € CHp+q(V X W) defines the

structure on BT g

nap

[zl : gréCHq(V) — gréCHp(W), X — 2(x)
0

and il depends only on the class of 2z in grECH(V X W).

REMARKS 1.6.1. Let E, E' be adequate equivalence relations. Then
2 € CH(V) is 'in (ExE')YCH(V) if and only if there exits a finite

number of x X, € ECH(T X V) and yl,---, yk € E'CH(T X V)

17 g
z

such that = > pry, (x,.v.).

In fact, if x € ECH(T X V) and y € E'CH(T x V), then for any
variety T°', and a point t of T°', we have

prv*(x.y) = prv*(t X X.lT, X v),

where pr& : T'" X T XV —— V¥V is the projection, and

t' X x € ECH(T' X T X V) and lT, Xy € E'CH(T' X T X V).

1.6.2. More generally, let El,--~, EQ be adequate equivalence
relations and Z a cycle of codimension p on V. Then Z 1is
(El*---*EQ)—equivalent to zero if and only if there exist a variety

W, a (projective) morphism f : W — V, cycles Xij of

codimension pij on W, Ei—equivalent to zero (1 £ i1 < ¢,
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1 £ j £ K ) such that Xil’.."xik intersect properly on W,
> pij=p—dimV+dimW for all i,
;
and that
z=§ £ xlj .x“).
J
By 1.4, it is clear that Z is (El*---*EQ)—equivalent to zero.
To see the converse, by induction, it suffices to consider the case
2 = 3. Let u € (El*Ez)CH(T X V), v € EBCH(T X V). By linearity, we
may assume that u = prTxV*(x.y), where Xx € EICH(T' X T X V) and
y € Ech(T' X T X V). Then,
prv*(u.v) = prv*(prTxv*(x.y).v)
= prv*(x.y.lT,x V),
where prﬁ T X T X V—— V is the projection and
lT,x v € EBCH(T X T X V).

1.7. Let E be an adequate equi

adequate equivalence relation <
generated by O-cycles E-equivale

2

runs over all smooth p

<E>OCH(V) Z(CHO(T

where T

over the cycles on T X V. It i

adequate equivalence relation.

LEMMA 1.7.1. Let E, E' be adeq
(i) <E>0 c E, and <E'>O c E {1
for every variety V.

(ii) <E>O*<E >0 c <ExE >O'

valence relation. We define the

E)O as the equivalence relation

nt to zero. More precisely,

)),

rojective varieties, and 2 runs

CE> CH(V)

0 defines an

s clear that

uate equivalence relations.

f and onty if E'CHO(V) c ECHO(V)
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(i) is trivial, and (ii) follows from the formula
z2Z(xX) X z'(x') = (z X z2'"){(x X x")
for z € CH(V X T), X € ECHO(T), 2' € CH(V' x T'), and

X' € E'CHO(T').

Example 1.8. We work in the category of varieties over the complex
numbers €. We denote by H® the Q-homological equivalence in

H (V,Q) and H = HZ the homological equivalence in H (V,Z), which
are both adequate equivalence relations . We have a filtration of
CH by powers of H:

(1.8.1) I =095 n=n* 5 p*? 5t 5 i o ptts pD
We set

(1.8.2> GricH( = <H*Q>OCH(V)/(<H*Q>OH H* 5 cn ey

By 1.7.1, Gr.CH‘(V) has a bigraded ring structure, and for

z € CH(T X V), the induced map

[z] : GrQCH(T) — GrQCH(V)

depends only on the cohomology class of z. For O-cycles, notice

that GrQCHO(V) is the associated graded to the filtration 1.8.1.

Example 1.9. Let ACH(V) denote the classes of cycles which are
algebraically equivalent to zero. Then ACH(V) defines an adequate

equivalence relation, and A*Q is nothing but the ¢-cubic

eguivalence relation [ 16 1. Note that A = < H >, = < H@ >

0 0°

LEMMA 1.10. Let E and E' be adequate equivalence relations, and

assume that E'CH(V) are divisible for all V. Then ExE'CH(V) are
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also divisible. In particular, A*ECH(V) 1is divisible for each

smooth projective variety V.

Example 1.11. Let TP(V) denote the Griffiths intermediate
jacobian; we have the Abel-Jacobi map
c? i HeHP (v) — TP (V)
and the image of the restiriction to ACHp(V) is, by definition,
iPvy. For z € cHP ? (W x V), the diagram

p
HCHq(W) W HCH™ (V)

A\ v
T W) ——— TP (V)

commutes, where the map below is induced by the fundamental class

(zy € H*P'29y x v,Z). It follows that

JcHP (v) = Ker¢ HCHP (v) — TP (v))
JcHP (v) = Ker( acH®(v) — Jg(V))
define adequate equivalence relations J and J. We have J =J N A.

It also follows from the diagram above that CP(H*HQCHP(V)) = 0, which

shows that n*e Hp*H < J. In particular,

%2 = = = _
<H >O C <H®*H>O c < J >O c Jn<<H >O = JnNnA-=17].

Hence we have a surjective canonical map

2 . aricuP vy — Jz(V).

1

For p =1, JcHlvy = Jecul«v) = 0, hence H¥?

CHl(V) 0, and we

have a bijection

1

Y : Gr1CH1

(V) — J;(V) = PiCO(V).
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§ 2. Fundamental classes for Hilbert scheme
2.1. Let S be a locally noetherian scheme and f : X — S be a
compactifiable morphism, F an etale sheaf on S. For an integer n,
we define
0 -n !

Hn(X/S,F):= H (S,R f*Rf F).
If g : Y— S is a compactifiable morphism and h : X — Y is a
proper S-morphism, we have

h* : Hn(X/S,F) —_ Hn(Y/S,F)

1 1 ] 1

induced by adjunction Rf*Rf‘F = Rg*Rh*Rh'Rg'F —_— Rg*Rg'F.
It is clear that h +—— h* is functorial.

For a morphism ¢ : S' — S, we have a cartesian diagram

X 25
i | |
§' — S
¢

Then we obtain ¢~ : H_(X/S,F) — H (X'/S',0"F),
ice., HYs,R " Rre'F) — HO(s,0 R Rt '0*F)  as follows:
By [ 31, 2.3.1, we have @' Rf'F — Rf' @*F, or
RE'F — Re' Rf''@"F. Applying Rf_, we get

Rf Rf'F — Rf_Ro' Rf''@"F = Ro_Rt' Rf''o"F.
By Leray spectral sequence, we obtain
n

“Ne pe! oy L%
R f* f'F — @, f *Rf ¢ F.

The following diagram is commutative:

h
H_(X/S,F) —*, H_ (Y/S,F)
¢* l lw*
L] 1 * 1 1 *
H (X'/S',¢"F) TaN H (Y'/S',0"F).
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2.2, Let g : Z — S be a flat morphism of pure relative dimension

r , and e be a prime integer invertible in S. By definition,

-2r

. _ 40 —
H, (Z/S,L (-r)) = H (S,R “"g Rg'Z_(-1)),

On the other hand, we have

-2r

: !
Hom(Ze,R g*Rg Ze( r)) Hom(Ze,Rg*Rg Ze( r)i-2r1

L]
= Hom(g*ze,ng'ze(—r)[—zr])
= Hom(Rg, & Z,(ry[2r3,Z )
- 2r %
= Hom(R £.8 Ze(r),Ze).
We have the trace map ([ 3 1, §2)
. plr *
Trg : R £,8 Ze(r) —_— 7,

e

hence the corresponding map Tr' : Ze——+ R—2

g
0
Therefore we get H (S,Ze) —_ H2r(Z/S’ze( r)).

r !Z
g*Rg e(—r),

Suppose Z is a closed subscheme of X over S : j : Z «—— X.

The image of 1 € HO(S,Ze) by
Ty

HO(S,Z ) — H. (2/S,Z (-13) —F+ H. (X/S.Z_(-r))
e 2r e r e

2
will be called the fundamental class of Z/S and denoted by ({Z/S}.
For o ¢ §' — S, and Z' = Z § S', the base-change of Z,

we have @ (Z/S) = {Z'/S'} € H, (X'/S',L_(-r)).

If X is smooth of pure relative dimension m over S, denoting

P =m- r, we have

HO(S,R_2

r !
{Z/8}) € H2r(X/S’Ze(_r)) f*Rf Ze( r))

2

1

0 -2r
H”(S,R f*Ze(p)[Zm])

0 2p
H (S,R f*Ze(p)).

2.3. Suppose X is smooth projective over S of pure relative

dimension m, and let Hilbr(X/S) denote the set of subschemes flat
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of pure relative dimension 'r over S.
We have

{ /Sy : Hilbr(X/S) E— HO(S,BZPf*Ze(p)), Z +— {(Z/S},

and set
{/Stpr
Hilb_(x/$)%% " = Ker(Hilb_(X/S) x Hilb_(X/S) . HO¢s,R?Ps.Z (p)).
r r r 4 * e
{/S}pr2
It is clear that, for ¢ : S' — S,
0¥ Hilbr(X/S)Xz’H —_ Hilbr(X'/S')xz’H,(Zl,Z2) — (Z,',Z,")

defines a functor Hilb;;é“r on locally noetherian schemes over S.
PROPOSITION 2.4. With above hypotheses, the functor Hilbi?éHr i8

representable by an open subscheme of the product of Hilbert schemes

Hilb /S, T g Hilb

X X/s,r’

It is enough to show that if (21,22) € Hilbr(X/S) X Hilbr(X/S)
and if, for s € S, ((Z,) ,(Z,) ) € Hilb_ (X /s)xz’H, then there exists
1's 2°s r s
an open neighbourhood U of s such that
3 x2 ,H
((Zl)U’(ZZ)U) € Hllbr(XU/U) .
Let o = {Zl/S) - {ZZ/S} € HO(S,Rzpf*Ze(p)). If s 1is a geometric
point of s, the pull back of ¢ in Hzp(Xg,Ze(p)) vanishes. It
suffices to see that there exists an open neighbourhood U of s

where o = 0.
LEMMA 2.4.1. et f : X — S be a smooth proper morphism and s aQ

geometric point of S, o € HO(S,Rnf*Ze(k)). If the pult back of o

in Hn(Xs,Ze(k)) is zero, then o = 0 on the counected component
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of S containing s.

We have o = (ov) € (HO(S.Rnf*(Z/ev(k))))v and the hypothesis
means that (o) =0 in Hn(Xs,Zlev(k)) = (Rnf*(Z/ev(k)))s for any
v, since f is proper. The morphism f is smooth proper, hence

Rnf*(Z/ev(k)) is a locally constant. Let U be an etale

neighbourhood of s where Rnf*(Z/ev(k)) is constant. Then

ole = 0 (===> (0,)7 = 0 at some geometric point t of U.
It follows that Ov = 0 on the connected component of S containing
s, and o = 0 on it.

REMARKS 2.4.2. If S is the spectre of an algebraically closed field
k, and Z 1is a closed subscheme o0of pure dimension r of a smooth
projective variety V over k, then (Z/k} € Hzp(V,Ze(p)) is the
fundamental class of the cycle associated to the subscheme Z, cf.

[ 18 1, 3.3.4.

2.4.3. The homological equivalence relation we have considered above
is the Ze—homological equivalence. We can also consider the
@e—homological equivalence and in that case, the proposition remains
true. In fact, with the notation of proof of the proposition, if the
pull back of ¢ in H2p(Xg,®e(p)) vanishes, then k.0 = 0 1in
Hzp(Xg,Ze(p)) with Kk # 0, hence k.o vanishes in a neighbourhood of
s with Ze-coefficient, hence ¢ vanishes there with @e—coefficient.
2.4.4. Let E be a set consisting of some prime integer invertible
in S. We could consider the intersection of Ze—homological
equivalence, i.e.,

Hilbr(X/S)xz’H’E
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O(S,Rzpf*le(p)) for e € E}.

= { (21’22): (Zl/S) = {ZZ/S) in H
x2,H,E

In view of lemma 2.4.1, the functor S +—— Hilbr(X/S) is also

representable by an open subscheme of Hl]bx/s,r § Hlle/S,r'

Moreover, we can replace the eguivalent relation by the mixture of

the type considered in 2.4.3.
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§ 3. Direct image morphism of Chow schemes

3.1. Let S ©be a locally noetherian scheme. Recall that a morphism
h : X —— § of finite type is called of pure relative dimehsion

r if Xs = h—l(s) is of pure dimension r for every s € h(X).
We set

X(r) = { x € X ; dimxh—l(h(x)) =r }.

Then X(r) is a closed subset of X.

Note that h is of pure relative dimension r if and only if

X(r) = X, provided that all the fibres of h are of dimension

< r.

PROPOSITION 3.2. Let X, Y be S-schemes of finite type,

f: X — Y be a proper surjective S—morphism with Y irreducible
and X — S of pure relative dimension r. Suppose that there
erists s € S such that dim Yo =71 . Then Y — S i3 of pure

relative dimension r.

The conclusion is equivalent to Y = Y(r). If f is finite, then

fs: XS——ﬂ Ys is also finite, and it is clear that Y = Y(r). In

general case, let YO be the maximum open subscheme of Y such that

fo = XO — YO is finite; then YO # ¢. In fact, consider

£y©y:

Xs — YS. If x € XS is the generic point of a component of Xs

such that dim f(x) = r, then the restriction X — f(x) of fs is

generically finite( the bars denote the closure in the fibres), and
f(x) € YO. Since XS — YS is surjective, such an X exXists by

hypothesis, hence Y° = ¢. Let g : Y —— S, and g° : YO — S be
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-1

its restriction. Then Yo(r) = { y € YO ; dimygO (go(y)) 271}

= Y% n Y(r). For y € Y°, dimygo"lcgo(y)) - dimy(YOn g Ligymn

= dimygﬁl(g(y)). Since £°: x° — ¥° is finite, Y% = Y°, so

that Y° = Y%r> = Y9 A Y(r) ¢ Y(r) ¢ Y . Since the closure of Y° is

Y , Y(r) =Y.

LEMMA 3.3. Let S be a locally noetherian scheme and f ;: X — Y be
a proper S-morphism, and suppose that X — S 1is of pure relative

dimension r. Then there exist closed subsels Y Y., of Y such

17 72
that £(C X ) = Y, VY, and Y, —™ § s of pure relative dimension
r , and dim (Y2)s {r for any s € S.
We can suppose X reduced,and replacing f by X — f( X ) , we

may assume f is surjective. If Y 1is a union of closed subsets

YA’ then for y € YS c Y, since

d1myYS = sup d1my(Y)\)S < r,

A
Y{r) is the union of Yl(r) . Let X = U Xl is the decomposition
A
into irreducible components. Then Y = U f¢( XA) . Consider
A

Xl———+ f( XA)’ and we have either f¢( XA)(r) = f( Xl) or

f( Xl)(r) = ¢ by 3.2. It will suffice to put Y 1= £fC X >(r) and
Y2:= U f( Xl)
where the union is over those Xk with f¢( XA)(r) = .

3.4. Let S be an affine scheme of characteristic zero, and X be
a smooth projective S-scheme of pure relative dimension m. Then for

an integer p, 0 £ p < m, we have the Chow scheme Cp

X/S of cycles of
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relative codimension p on X/S (L 1 1), while is, in fact,

p
“x/s
only an algebraic space in general. If X 1is a subscheme of S X PN
§/S is embedded in N m+p = CN&m+p

SxP /S P

is the usual Chow variety of PN,

for some N, then, C X S, and

N—m+p)

since (CpN red

Cg/s is an
S-scheme, a countable union of proper S-schemes.

We set
11 o8y, o(S) = 8.
Intuitively, 0(S) corresponds to the cycle "zero" of codimension p.
We shall show that, for a proper S-morphism f : X — Y of smooth

projective S-schemes, we can define the direct image morphism
. =P =p+n-m
fe P Cxss 7 Cyrs
of Chow schemes, where n is the relative dimension of Y/S. To do

this, it suffices to define a morphism as functors.

Let S' ©be an S-scheme, and put

X' =X¥S8", Y' =Y xS,

£' = f X idg, : X' — Y',

p 1] * —

cPxr/sy = X/S(s Y,

_p 1] 1] — p— p 1] 1 3
cPx'/sy = X/S(s )y = ¢Px'/s) 1l (idg,) -

Recall that an element of Cp(X'/S‘) is a pair (Z,c) of a closed

subset Z < X' of pure relative dimension r = m - p over S', and
an element ¢ € Hp(X QX /S' which satisfy some conditions (cf.
{11, 4.1, 4.2). By Lemma 3.3, Z' = f'(Z) = Zi V) Zé, where Zi is
of pure relative dimension r over S, and Zé is of relative
dimension < r.
Note that
er'_l(z'§X',?) = RFZ,(Y',Bf‘*?).
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Putting d = m - n, we have

Hom(RE*, 0, o ,0PT9  1-d1)
= Hom(@y bo . Re 'QPT9  [-aD)
= Hom(QX,gs,,Rf'!QY,?SJ[n]®(f'*Q;,/S,)v[—m])
= Hom(QX,ES,,QX,?S,[m]®(f'*QY,fS,)V[—mJ)
= Hom(QX,fs,®f'*QY,§s,,QX,?S.),

and the canonical map

p * r P r m
® t 3 3
QX'/S' f va/s| va/sv® va/sc va/sv'
hence, we get
' p p-d . _
RE' Sy vysr 7 Qyh g0 L-dd.
Therefore we obtain

DL, p ; p . p S S p
AL VALK Hf'—l(z-)(X Syiyge) = Hy (YT, RET QDo)
p-d  ,, oP-d
— 1 ar,epTo ).

LEMMA 3.5. The canonical map

p-d

HE vr,P7d oy Hgﬁd(Y',Q p-d
1

Y'/s: Y'/S!'

i8s an isomorphism.

SUBLEMMA 3.5.1. (cf.[ 2 1) Let g : Y —> S be a morphism of relative
dimension < r of locally noetherian schemes, then we have
Rig!OS =0 for i £ -r.

The question is local on Y. ©For any 2 € Y, We have a commutative

diagram
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where j is an open immersion, and h is a quasi-finite morphism.
By Zariski's Main theorem, there is a finite morphism h V — Ag—l
and an open immersion Kk U— V such that h = h- We have
rRig'o.lu = Ri(g-)'o
3 - ]
= R‘(a-h-k)‘os
- 1T R ; i lu,
A g /S
-t - ~ -
Rh'Q 771 = R¥RHomg,  (R,0,,0 TT1 ),
where h (v, O ) — (Ar l,h*Ov) Since h is flat, we have
i~ _
R'R'Q 70 =0 for i <o,
AS /S
3 ]
Therefore we have ng'OS =0 for i +r -1<20, i.e., for
i < -r + 1.
LEMMA 3.5.2. Let g Y — S be a smooth morphism of locally

noetherian schemes

of pure relative dimension n, E

a locally free

O,~Module of finite rank and Z c Y a closed subscheme of relative

Y

dimension < r over

i
Ext (OZ,E) 0,

Let ] Z

o

Y

Exti(OZ,E)

and we have a spect

S and set p' = n - r. Then we

and H;(Y,E) =0 for i<p'.

have

denote the closed immersion. We get
Hom(O yEL[1 D)

Hom(OZ QY/S Hom ( Y/S,E)[ll)
Hom(OZ®Hom(E QY/S Y/S[n][l nl)

Hom (R j J Hom(E Q ),Rg'OS[i—n])

Y/S

o .
Hom( j Hom(E QY S),R(g'J) Os[l—n]),

/

ral sequence
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a,i-a
2

By sublemma 3.5.1, R

_ a, . % n
= Ext™ (] Hom(E,QY/s

i—~-g-— 1
i-a-n . !

for i -'a < p'. Since Ea,;—a =
i

Extl(OZ,E) = 0 for i < p'. It follows that HZ(X,E) = 0 for i £ p'.

a L i
S) ===) Ext (OZ,E).

=0 for i - a~-n< -r, i.e.,

I - — ]
E Y,R* 2 M gei00

OS
0

unless a =2 0 and i -—a>p',

The proof of lemma 3.5 1is now easy: we have an exact segquence

p-d-1 .\, gP~d p-d v, oP-d p-d v, oP-d

HZ'\Zi(Y Z15Qy. /g0 — H 21,(Y Qyvjgd ™ Hy m (Y00 o) —
p-d 7 p-d

— HZ,\Zi(Y NZ1LR )

and the both extremes vanish by virtue of sublemma 3.5.2, because

Z'\Z1 c 22.

3.6. We define
£ cPxr/s'y — cP(yr/s)

as follows: the image of idg,( = 0(S)(S')) is idg, € cPeyr/sy.

For (Z,c) € CP(X'/S'), ve have

e p-d p-d p-d

£, Hg(x',QX,ﬁs,) — Hy (Y0000 Hggd(Y',QY,/S,).
If Zi # ¢, we put
£:((Z,c)) = (Zi,f‘*(c)),
and otherwise,
f,((Z,e)) = idg,.

PROPOSITION 3.7. Under the above hypothesis, £1,.((Z,c)) € c¥(y'/s"y,
and we have a morphism of functors
£ 1 C cbd

——

p
« - X/s v/s"

It suffices to see f£' _((Z,c)) € CP(y'/s")
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Let 2z' € Zi, and (Uu',B',9') be a projection of Zi around z'.

It is also a projection of Zi around 2" for any generization

2" € Zi of z', hence (Zi,
a Chow class at 2z". Let Z1 be the pull-back of Zi by
Z c X' —iﬂ Y', and let Zf be the closed set of Zi of points y

such that the fiber of Z1 —_— Zi over y has positive dimension.

Take an irreducible component of Zi ;it is not contained in Zé,

E'*(c)) is a Chow class at z' if it is

nor in Zf, i.e., z' has its generization 2z" € Zi\(Zf U Zé).

To show (Zi,f'*(c)) is a Chow class at =z", set

Y" = Y'\(ZI V) Zé), X" = f'—l(Y"), f* ¢ X" — Y" the base-~change
of f'. Then, we have
§"*(restriction of ¢ to Han"(X",QX,ﬁs,))
= restriction of I' _(¢) in Hz§;%"(y",QYR;§,),
and Z N X" is finite over Y". In that case, the proof can be found

in [ 1 31, 6.3.

3.8. With the notations and hypotheses in 3.2, let (Z,c) and
(Z',c') be Chow classes. We have the sum ¢ + c¢' of ¢ and c'
by the natural maps

H2x, .20 — .2 x, 0.2,

Z X/8 Zuz’ XIS
p p p p
and HZ,(X,QX/S) — HZUZ'(X’QX/S)’

respectively and (Z U Z',c + ¢') 1is a Chow class, hence we get a
morphism of functors + : CP(X/s) x cP(x/s) — cP(x/s). We extend it
to the morphism of functors

+ @ cPxssy x cParsy — cPrsy

as follows: it coincides with + above on Cp(X/S) X Cp(X/S), and
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the first projection on CP(X/S) X {ids), the second projection on

{ids) x Cp(X/S), and the image of (ids,ids) is ids. Therefore we
obtain the morphism of algebraic spaces

P ~ P

.= - P
* 1 Cyys 8 Cxys T Sxusc
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§ 4. Genericity Theorem
4.1. In this section, the ground field Kk is supposed to be
algebraically closed of characteristic zero and uncountable. Recall
that we denote by H® the Q-homological equivalence relation and we
have the adequate equivalence relations Hgﬁ( See 1.5). The purpose

of this section is to prove the following

THEOREM 4.2. Let V be a smooth projective variety of dimension m,
S a smooth variety, 8 an integer and 7 a cyele on S X V of
codimension p. Assume that for an arbiilrary closed point s € S,
the cyecle Z(s) 1is defined, and is Hgﬁ—equivalent to zero. Then
there exist a smooth variety T, a dominant morphism e : T —— 5,
a smooth projective morphism n : F — T, cycles Xij of
codimension pij on F xV (1<i=<$¥8, 1< j < k) such that
i) ? Pi; =P+ dim % - dim T;

ii) For any t € T, (j, X% idv)*( Xij) is Q-homologous to zero on

t
?tx V, uwhere jt : ?t——a 7 is the inclusion.
oL . % _ .
1i1) (e x idy) " (Z) = % (xidy) ¢ X

X,.) im CH(T x V).

lj’... 0

Let na : ?a — Ta ( ¢ € A ) be countable families of smooth
projective. morphisms such that Ta are affine algebraic schemes over
k and that for any smooth projective variety W, there exist an

. _
¢ € A and t € Ta with W o ( ?a)t'

For a smooth projective morphism gq : X — T, integers pl,---,pQ

2 0, let
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Py Py

4 = {(Zl,"',Zﬂ) € CX/T X =00 X CX/T

3 (Zl)t,'--,(Zl)t intersect

properly for t € T }.

— b.
. , i .
9 is an open subscheme of Iil/T CX/T and we have a morphism([ 1 3,
8§.1).
S p. =
1 P -
—1
L 1)p Cxyr 2 8 > Cx/T o0 P=20p;-
1 w w 1
(Zl’...’Z,Q) |_>Z]_'i‘.‘.'i‘z,0,
By [ 1 1, 7.1.6, there is a morphism
x2,H i P, Py Py
Hlle/T’riC Hilb X/Tx Hilb X/T_—* CX/T e CX/T
x2,H
where Hilbx/T r are defined in 2.4.3 (cf. also, 2.4; note that

Q-homological and @ghomological equivalences coincide since we are in

characteristic zero), ri = rel.dim X/T - pi, hence their product
— X2 ,H - P .. P .
t : | |,. Hilb b Co,t x c,,b
: i /T X/T,r /T X/T X/T"°
Let Z[I’Q] be the set of maps from the interval {1,2] of integers to
the set (0,1) and for o € 20121 14y
- Pi Pi - Pi
PT, |iI/T CCyyr X Cxyp) 'i‘/T Cx/T
be the product of projections pro(i) where pro(i) is the
projection to the first factor if o(i) = 0, and to the second factor
if (i) = 1. Then we have
a prlay e TTon ¢ cod x el
i Pry /T X/T X/T°°

and,
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-1 N P P
N pr &/D) > CX/T X CX/T
7 v w
( Z(?),Z(i)) | ( z n/T Z(Ggl)z E "/T Z(0§1)))’
lol=0 i lol=1 i
where |o| = 5 o¢i), and |o]l = 0 means that the summation is over

1

all o with even |ol, and |o] = 1 means the summation over o

with odd |o].
pl,...,p.Q.

Let « X/T

be the pull-back of n pro—l(ﬂ) by the morphism 1.
o

Thus we get a morphism

p,,*""*,pP - -
1 4 P P
X/t » Syt ¥ S
Consider the morphisms
p)...1p
p 1 2 Ip| Ipl = P =~ p
¥ = % — C C — C x C
(74
vxF /8, “VxF /s, VXF /S, §a VXF /S, VxS, /8, VxS, /S,
_ =P ~P =P =P
= CV X CV x Sa — CV X CV’
= . = = - im F
where p = (p,, pg), Ipl =2 p.,p Ipl rel.dim F_ /S,
= P _ P . : .
and CX/S = CX/S | | 0(S) (cf. 3.4) and the second arrow is induced
by the morphism V X ?a — V X Sa'
For an integer n = 1 and a sequence of {@-tuples pl,"',pn,
putting
Qpl’;'.’pn - l I/S ﬁVX;j/S’
j o o
we get a morphism
p)...’p p’..’p p!‘.’p
1 n _ 1 n . 1 n ~p -p .Xn =P . =P
wvx?a/sa =¥ 8Ty € Cy x Cy ) > Cy X Cys

the second arrow being the sum given by

YY), e, (Y LY ) % Y., % Y! ),

(cf. 3.8). For a k-rational point x of the left hand side, the image
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: =P =P
in Cv X CV

Let s bDe the image of x in S_. Then x consists of subschemes

o
€0) Z(lz) of V %X (%) of codimension p. . (where pj =

i,i’71,1] x's 1,15
ZFO? and Zfl?
1,1] 1,1

are QO-homologically equivalent on V X (ya)s' The image of X in

is given as follows:

(Z

(p1 j’.‘.’pl j)) such that the associated cycles to

EP X EP corresponds to the pairs of cycles

v v
(S S oy (zUN . Fedy, s 5
o ok l,J Q,J j IOIEl

j lol=o0
Zfo§1))

(1)), . (0
M) (207 -z g D,

where for simplicity, we denote by the associated cycles

on V X (¥ to the subschemes Zfogl)), and by 7 the
0" s 1,] o

. . . . P .
morphism AV vV X (?a)S — V. Since Hllbvxzz /S . r e CVX? /g 1S
o’ et I> S'» ¢
surjective, any r-cycles on V which are H6Q~equivalent to zero can
be written as the differences 2z - z' cof pairs (Z,Z') in this form

for some o (cf. 1.6.2). We have a morphism defined by
P,,"°,P
. 1 n
Py,""°,P idxy _ - _ _
1 n = \cpxcpxchcp——»ochcp,

Y v o oYY v % w
(Zy2Zg22522,) F—(Zy+2g, 2 +Z )

2
pl’ 9pn ) ~p
denote by @& o the pull-back of the diagonal of Cv X CV’ and
' p "'-sp p )...:p
consider the projection = 1 nooa 1 N5 P x P, The
o (54 Vv Vv
union of the images for all n, p 1---,p n and o
Py,""",P
1 n P P
U Im 7w C CV X Cv

is the set of the pairs (Z,Z2') of effective r-cycles which are
Hgl—equivalent.

Since the set of possible n, pl,"-,pn, @ is countable and the
pl’... !p
Vx?a/sa

n

number of irreducible components of @R is countable, the

-above union is a countable union of irreducible subsets. Now,
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shrinking S if necessary, write Z as a difference of effective

cycles which are non-degenerate on S: Z = Z+ - Z . 1t defines a
morphism
. P P
¢ : § — Cv X CV'
By hypotheses,

Ime < U Immx o

as k-rational point. Since the ground field Xk 1is uncountable, we

can find n, pl,---,pn, and o such that there exits a locally
Dl, ,Dn
closed subvariety of @& such that the image of the
VX?a/Sa
plt...)pn
restriction of =« o to the subvariety contains the generic
point of Im @. Hence we have a diagram
p’.--,p p’...lp
1 n 1 n
S x R _— R
cP P Vx?a/SOC VX?a/Sa
v V o & e
Wpl’ ,Dn
\V pv p o
S @ — Cv bs CV

and the left vertical arrow is dominant. There exist, therefore, a

smooth affine variety T, and a dominant morphism e : T — S which

sit in the diagram

T ; %pl"."pn
Vx?a/sa
e T[pl’...!pn

\'4 D Vp [54

S ” > CV X CV’
We have the morphism T — Sa and let

F = & T.
« ¥,
Dl,"',Dn

By base-change, we get an element £ of %Vx?/T (T) whose image

pl)...’pn

3 . P Y .
by HVX?/T is @-e € Cv XCL,(T). Let the image of £ under the

v

—291—



morphism induced by t

P, **,P P
1 n 1).] 11.]
R o IiI/T Ijl/T VX?/T i\ CVX‘I/T
0 (1) . .
be ((Z ; J, i J)) I[f we denote the generic point of T by =, the
_ 0 (1)
pull-backs (Z. ’J),c and (Zi,j)r are the cycles on V X ?t/K(t).
Let Z§O; and 2(1; be the closures of them in V X &, and put
X, = z9 -z,
1] 1,.] 1,1
Then Xij and e : T — S satisfy the conditions of the theorem.



§ 5. Definition of the functor
In the sequel. the ground field is assumed to be the field of
complexr numbers.
5.1. Recall the definition of coniveau filtration(cf. [ 15 1):

For a smooth variety, let

n
F

U Ker( HYv,Q) — HY(VWF,Q)),

where F runs over the set of Zariski closed subset of V of

(5.1.1) NPHD (v, Q) : U ImHY v, ) — HM(v,Qn

codimension = p. NpHn(V,Q) define a decreasing filtration of
Hn(V,®) and we denote by grpHn(V,Q) the associated graded module:
grPHM v, @ = NPHR v, @) /NPT THR (v, @) .

Ouv.Q) and NPH®(V,Q) = 0 if n < 2p.

We have HYv,Q) = N
Note that Hn(V,@) has a mixed Q-Hodge structure. In view of 5.1.1,
NpHn(V,Q) is a mixed Hodge sub-structure of Hn(V,Q), and hence,

grpHn(V,Q) has also a mixed Q-Hodge structure. If V is
projective, it is pure of weight n.

The coniveau filtration has the following functorial properties:
(i) for a morphism £ : V — W, NPH"(W,®) c H"(W,R) is mapped into
NPH®(V,0) by the pull-back £ : N"(W,® — H"(V,®); hence f"

induces the map

£ . grpHn(w,Q) — grpHn(V,Q).

(ii) for a proper morphism f : V — W, NPHT v, Q) < HP(V,0) s
mapped into Np_dHn_Ed(w,Q)(—d) by the push-forward
£ BV v, ) — " %9w,Q)(-d), where d = dim W - dim V. Hence

f* induces the map

£+ grPpM P-dyn=2d v 0y (-q).

k3

(V,0) — gr
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n

(iii) The cup-product U : HMv,@ x H™ v,0) — H"™ (v,Q) maps

NPHP v, @) x NP H™ (v,® into NPYP H"'P U (v,®): hence we get

U grfH v, x gr? B v, ) — grPTP TR v ).

The fundamental class of an algebraic cycle =z of codimension p
on V will be denoted by {2z} € grPH?Pv, @ p) = NPHPP OV, @) (p)
H2P (v, @) ().

For smooth varieties T, V, with V projective, dim V = m, and
for z € CHP(T x V), & an integer, r = m - p, we define a

morphism of mixed Hodge structure

0,8

t pry2r+d HY (T, Q)

{2}y : g vV, (r) — gr

as the composite
5k

2r+4 Py r. 2r+d

griH (V,Q)(r) —— gr'H (T X V,Q) (r)

m,2m+4 Ploy

— ™ (T % V,0) m —I* grot

(T,
where the second map is defined by the cup-product with

(Y2 € grPH?P(T x V,Q) (p).

THEOREM 5.2. Let V be a smooth projective variety of dimension m,

S a smooth varietly, z € CHP (s x V), r=m-p, and 2 an

integer. If z(s) € HE(Q+1)CHP(V) for all s € S, then the map
oy et oo o) — grfutes,

18 Zero.

Let Z ©be a cycle on S X V representing 2z € CHP(S X V). By
shrinking S, if necessary, we may assume that Z(s) are defined for
all s € S. Then Z({s) are HE(Q+1)—equiva1ent to zero. By theorem
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4.2, there exist a smooth variety T, a dominant morphism

e : T — 8§, a smooth projective morphism n : Z — T, and cycles
Xij of codimension pij on ¥ xV (0<<i<4g, 1< 3j<n") such
that

> Py = dim F - dim T + p;

]

For any t € T, XijISFt Xx V are QR-homologous to zero;
. B _ . .
(e x idy) (Z) = 2 n*(xoj. -Xg ;) in CH(T x V).

J
¥e have a factorization

*

t (5,0) & gr

(tce x 1@ ;g .

0,4

t
T 2r+@ { 2} nt et

H v, 2 o0y
and e  is injective(cf. [ 15 1, 1.7). The following lemma will

complete the proof of the theorem:

LEMMA 5.2.1. Let T, X, V be smooth varieties, g : X — V be a
morphism and f : X — T a smooth proper morphism of relative
dimenston m, Zi (0 < i< @) be cycles-on X of codimension P,

such that the restriction of Zi to a fiber Xt is Q-homologically

equivalent to zero. Put p = Py * *°° * Py, T =m - p, and

2 = (Z)U---U(Zy) € HZP (X, Q(p)).

2
Then the map
*

9 g :
2Ty nryy — pirte

Uz

i
(X,0(r)) — pml *, gt

(X,Q(m)) — H(T,®)

18 Zero.

We have the Leray spectral sequence
Ep’g—p(f) = Hp(T,Rn-pf*Q(k)) ===> FPH"(X,0(k)).

(i) By intersection, we get a pairing of spectral sequence
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HP (1, R" Pz Qx)) x HPCT,R™ TPf @k LN HP*P (7, RP TP TPTPE Qekek'))

| | U

n '

HY(X,0(k))  x HY (X,Q(k")) ——2— H™" P (X, 0Ck+k"))
in particular, we have
FPHP (X, Qk)) U FP H" (X,Qk')) c FPPP 4™ (X, Q(k+k')).
(ii)> 1I£ f£' : X* — T 1is smooth of relative dimension m' and
h : X — X! is a proper T-morphism, and if d =m - m', we have a
morphism of spectral sequence
Ep'g"p(f) = HP(T,R“'Pf*Q(k)) =========) FPHD (X, Qk))
h* h*
\4 \4
Ep'n;2d_p(f') = HP(T,R" 29 Py Qk-d)) =====> FPH" 29 x' Qek-d)),
in particular, h, FPH"(X',Q() c FPHP 24 (x0  ak-d)) .
By Lemma 2.4.1 (see also Remark 2.4.3.),
1.2P;4
(Z,) € FFH 1(X,Q0p,)).
For « € BT v, 0y, g5 w0 € BT x, 0 = FOR%T Y (X, Qer)), and

by (ii) and iterated use of (i), we obtain

241 .8

* = * 1 =
f .0z VU g () = £ ({ZHU---UZyIU g (x)) € F "H (T,Q = 0,

hence, the lemma is proven.

5.3. For a smooth projective variety W and integers gq, £, we
consider the condition:
H(W,q,%): There exist smooth projective varieties Tj, and cycles uj
on Tj X W of codimension dim W - g such that

(i) the map

2g+4 2

eriH (W,0¢q)) — | | erH

(Tj,®)
i

induced by uj is injective;
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(ii) The following condition H(Tj,ﬂ) holds for £ and all Tj‘
H(T,%):There exist smooth varieties S, %, morphisms ¥ — S, and
cycles ESTTRRRES FP% (1 £k <n, n=21) on Fx T such that
i) F — S is smooth projective;
ii) > codim X, = rel.dim /5 + dim T, for all k;
i
iii) Xiklgs X T are homologous to zero for all i, k and s € §S;

iv) The map

) 0,8

erlutr, ) — gr%tcs, @

induced by the cycle 2 X
kK

(for & =0, E Xy -Eg = D.lg o # 0, and by ii), T must be a

lk'.. ‘Xﬂk is injective.

point;in that case, H(T,0) always holds ).

COROLLARY 5.4. Let VvV and W be smooth projective varieties of
dimenston m and n respectively, z € CHp+q(W XV, r=m-p,
and & an integer, and suppose that the condition H(W,q,%) holds.
If the map
. 2 2
[z]l : Gr CHq(W) — Gr CHr(V)

(cf. 1.8 ) is zero, then the map

tay e a0y — 2riu29 ey 0ca))

18 also zero.

With the notations of 5.3, we have

[u.]
0 = [zwu,] : GrQCHO(Tj) —3 GrQCHq(W) _Lz], GrQCHr(V)
and
t r, 2r {tz} q,.2q+4 ‘
2« (z'uj)} T gr H° (V,Q(r)) —=25 gr H (W,0¢q))

J
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S (tuy o 0
— L1 gron (Tj,®),
J

and since 2 (tu} is injective, we may assume that H(W,2) holds and
J

g = 0. The notation being as in the definition of  H(T,%) with

T =W, let x = E Xy Xy If m : F —— S is the morphism,
then we set y = (& XidT)*(x) € CH(S X T). For s € S,
xf
y(s) € <H™> CH (T),
and zoy(s) € H*(£+1)CHr(V). By the theorem, we have that
t t
tzoyyy ¢ oertHET R v ey 2 g%t v, oy A g%t s

is zero. But by 5.3, iv), (ty} is injective, so that (tz} is zero.

5.5. We shall reformulate the corollary 5.4. To do so, we introduce
a pseudo-abelian category €({). First, we define an additive
category ﬁ*(ﬂ)z as follows:
. . [} ..
Objects: formal sum | | Gr CHr (Vi), where the condition H(Vi,ri,Q)
i i

holds for each smooth projective variety Vi.

Morphisms : Hom( GrQCHq(W), GrQCHr(V)) =

= { [2]1 : GrQCHq(W) —_ GrQCHr(V) c 2z e CH" YW x V), p +r = dim V }

and for general objects, we define

Hom(¢] | GrQCHq (Wj), L GrQCHr (Vi))
J i i i

= | I Hom(GrQCH (W.),GrQCH (V.)).
P q. i r. i
1,1 J 1
It is clear that Q*(Q)Z is an additive category, and we define a
Q-additive category Q*(Q) having the same objects as 9*(ﬂ)l and

Hom * (M,N) = Hom * (M,N) @ Q.
g (1) 14 (Q)Z

Then the pseudo-abelian category €(1) is obtained as the
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pseudo-abelian envelope of Q*(Q).

Let Hdg be the category of polarizable Q-Hodge structures and
Hdg(f) be the full subcategory of Hdg whose objects are effective
of weight &. As noted above, gr H2T*¥(v,Q(r)) € Hdg®). By

Corollary 5.4, we have

COROLLARY 5.6. We have an additive contravariant functor

n o gy —— Hdg), GrQCHr(V) — ar'nt v, a0,
LEMMA 5.7. (i) IFf =z 1is a cyecle of codimension q + dim W' - q°'
on the product W X W' of smooth projective varieties such that the

induced map

t

{ "z} : grq H2q 2

2q+4

(W',QCq)) — grin (W,Q¢q)

is injective and if the condiftion HW,q,%) holds, themn the condition
HW',q',%) also holds.

(ii) IFf H(T,2) holds, then H(T,0,%£) also holds.

For (i), let Tj's and uj's be as in 5.3 (for H(W,q,2)). Then,

the map

ty

(W' ,Qq"y) 21 griy 2

2q'+4 2q+8

gr? H (W,0¢q)) — | | er%H

(Tj,®)
J

induced by zouj is injective, and H(Tj,ﬂ) hold for all Tj'

(ii) is trivial by taking the diagonal as u = u1 in the definition

of H(T,0,%2).

PROPOSITION 5.8. For a smooth projective variety V, the condition

H(V,0,1) holds.
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By virtue of 5.7, the weak Lefschetz theorem, and the fact that
grOH1 = H1 , we are reduced to proving H(T,l1) where T 1is a curve
(cf. proof of 5.9). Let 8§ =T, F =T X T, pr, : F — S the second
projection, t € T a point, and let x = t X AT -t X T X t, a cycle
on ¥ X T of codimension 2 . Then the conditions i) - iv) of 5.3

are satisfied.

PROPOSITION 5.9. For a smooth projective variety V, the condition

H(V,0,2) holds.

Let 1 : V' &—— V ©be a smooth hyperplane section. Then
i* s H v, — HEOV,®)
is injective if dim V' = 2. Note that
&
N1H2(V,®) = HZ(V,Q) N Hl’l(V) = Q-1 p.
Since Hom,. (grlHZ(V,Q),Q(-1)) = 0 = Hom., (Q(-1),grlH® (V,2)), we
Hdg ’ ’ Hdg 4 ’ ’
have the canonical decomposition
HE v, @) = grlu® (v, e griu’ (v,
% 0.2 0.2 . . .. .
and i~ : gr H°(v,8) — gr H°(v',8) 1is also injective. Therefore,
there exist a surface S, and j : S —&™ V such that the map
i* s erPwt v, — grf? s,
is injective. Then, by lemma 5.7, it suffices to show H(S,0,2).
If b :S'"— S is surjective, b¥ grOHz(S,Q) -— grOHz(S‘,Q) is
injective, hence by 5.7, we can suppose S has a fibration

nm: S — C over a curve C with smooth generic fibre, and a

section o : C — S.
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LEMMA 5.9.1 Let S be a smooth projective surface. Then there exisis
a 2-cyele Z on S x S with Q-coefficients inducing the projector

H (s.Q) — grOHz(S,Q), i.e., the induced map H'(s,Q) — Hn(S,Q)
are zero for n # 2, N1H2(S,®) — Nle(S,Q) is also zero, and the

nap grOHZ(S,Q) — grOHz(S,Q) ig the identity.

Sketceh of proof. Let Y be the full subcategory of smooth
projective schemes consisting of schemes whose components V
satisfy the condition B(V) of [ 9 1(See 7.9.1). Note that the
condition B is stable under product, that the Kunneth components of
the class of the diagonal of V are algebraic (loc. cit., 2.5, 2.9,
that the condition I(V,L) (loc. cit.) holds for those schemes by the
Hodge theory, and that all the curves and all the surfaces ( and all
the abelian varieties) belong toa V¥. Starting from V, employing
algebraic cycles modulo numerical equivalence as morphisms, we can
construct the category # of true motives as in [ 12 1. The
category # is semi-simple, and we have a faithful (tensor) functor

H: { —— Hdg
with Hh™v)) = H?(V,Q), the Betti realization. By [ 8 1, there
exist a finite number of curves Cl,‘---,Ck and morphisms
¢. : C. — S such that the image of

1 1
Z wi*

| | HO(Ci,@) _— HZ(S,@)(I)
i
is N1H2(S,®)(l). Since Ci’ S € Ob ¥, we have as well
2 @, ‘
] hO(Ci) i, R s ).
i

in #. Denote the image by I. Since the category £ is

semi-simple, we have the projector p : hZ(S)(l) — I C h2(S)(1).
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The composite of the morphism h(S>)(1l) — h2(S)(1) with id - p s
represented by a 2-cycle with B-coefficient on S X S which has the

required properties, by considering the Betti realization.
LEMMA 5.9.2. For a surface S which has a fibration n : S — T
over a curve with smooth generic fiber and a section o : C — §,

the condition. H(S,2) holds.

Let C be an open subset of C such that

0
. R | . -
nO : SO 1= X (CO) —_ C0 is smooth, and set % = S0 é S. We have the
projections Ty F — SO and T, F — 8, and put
nl = nl X id + F X § — SO X S, and
iz =7, X id : F x § — 5 x S.

Note that nl

Let Z be the cycle with Q-coefficients as in 5.7.1, and let N be

is smooth projective, so that % is smooth.

a sufficiently large integer > 0 such that Z1 = N.?Z has
Z-coefficients, and put X1 = ﬁz*(zl), a 3-cycle on % x S . To the
C-morphisms wl : SO — S, the inclusion, and Wz = g SO — S,
there correspond the morphisms tl, 12 : SO — %, and
%1, 52 : S0 X § —> F X S, the base-changes. Finally, we set

X2 = 'cl*(lS xS) - tZ*(lS xs)b

0 0
For s € SO, putting ¢ = n(s), ?S = 5 X SC = SC, and we have
. % _ _
j (Xz)— ¢1(s) X 8 wz(s) X S,

where j : SC X 8 = ?S X § — F x 8§, and j*(Xz) is homologous to
Zero on ?S X S. Denoting the natural inclusion Sc XS — § X § by

j' , we have j*(Xl) = (iz-j)*(zl) - j'*(zl> =71 8s x 8.
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In the Kunneth decomposition
Hi(s x §,002)) = || H4 s, e nics, @ (2,
0<i< 4

Z1 has no other than H2(S) ® H2(S)—component, and further, in the

decomposition

HZ(S,0) ® H2(S,Q)(2)

= grlu%¢s,@ ® grlH% (s, (2) @ grou?(s,m) ® grliH2(s.Q)(2)

® grin? (s, ® groH?(S,(2) @ grin®(s,®) ® grin’(s,@ (2),

Z1 has only grOH2 ® grOHz—Component. Hence le Sc X 5 is

f-homologous to zero, by grOHz(SC,Q) = 0. Taking N larger if

necessary, we may assume that it is Z-homologous to zero.

We claim that

t - _ " 0.2 0.2
C Ot (X X,00) = Ny groH”(S,@) — gr H(5,,@),
hence, injective. We have Xl.X2 = Xl.rl*(lsoxs) - Xl.rz*(lsoxs),
and
T, (X..T. (1 M) o=, (. . Tz = b, x ido ¥z
1 %1 Tix Sox8”7 T T1x Tix'Ty T 4 = 1dg 17
for i = 1, 2. Therefore,
*
¢ 0.2 ‘tz1} 0.2 wl* ~ ¥, 0.2
(0t (XX, ¢ grUHT (8,0 ——— gr H™(§,8) ———=— gr H"(5,,Q).
on grlu%¢s,m), {tzl} = N.id, ¥,* = 0 because
s 0.2 o 0.2 i 0,2
wz gr H°(8,Q0) ——— gr 'H°(C,Q) = 0 —— gr'H (SO,®).

This completes the proof of 5.9.2 and hence that of 5.9.
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§ 6. Faithfulness : Preliminary

LEMMA 6.1. Let T and V be smooth projective varielties and
H2P(T x v,@y(p) = o nhcr,o) e n2P7t
[}

be the Kunneth decomposition, and let 2z € Nszp(T x V,0) (p) be

(v, (p)

decomposed into

z = 9 Zy z, € HQ(T,Q) ® Hzp_l(v,Q)(p).
[}
Then zy € nter,@ e NPTEREP R v, @) 0y for all 4.
Let e ,,--",e, € HQ(T) be a basis, and e*,---, e* € Hzt—Q(T)
1 b 1 b
its dual basis: < ei, e? > = Bij ('t =dim T. We omit the
coefficients and twists). If ZQ = > ej® xj, Xj € Hzp_Q(V), then
]
XJ = prv*( e. ® 1 U ZQ),
and e? ®1uUz € p2t2+K oy o u2P L yy 5o that
* —
prv*( ej ® 1 U zk) = 0 for k # £&. Hence, we have
*
xj prv*( ej ® 1 U z).

If t < 4, then,

¥ o1 Uz e NPHEVEZPr « vy,

J
and X, = pry,( ej ® 1 U z) € NPT 2P E vy e NPTEH2P (.
1+ t > &, then H2EV % = nt 2V L¢r), ang

ej ® 1 Uz e NPT E2E-RR2p 0 oy

hence, xj € Np_ﬂHzp—Q(V).

LEMMA 6.2. Under the hypotheses of lemma 6.1, we fiz an L and we

assume further that

(i) DV,r,8) : the intersection pairing
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NHZT Y v ) e NPTER2P Ly oy (py —s

2r+Q 2p-2

— H vV,0) ® H 2

(V, M (p) — H v,y = Q

is perfect ( p + r = m = dim V),
(ii) the map

0,2

2r+l v oy cry — grlitor, @

{tz} : grrH
18 zZero.
If 2 < 2, then N.zJl 18 represented by an algebraic cycle
degenerate on T for some N = 0.

r,2r+f 1..8

The assumption (ii) implies {tz Y} (N"H (V) ©¢ NH(T). By (i)

and lemma 6.1, z, € nintory NP—QHZP—Q(V), so that if 2 < 2,

then 22 = 0, trivially. Let @2 = 2, and e1,°--,ep € NIHQ(T) and
ej,-~-,ez e N'UTH2Y"2 (1) be dual bases( By Lefschetz, N'HZ(T) and
— ] _
iRt 2(Ty are dual via intersection). Let 2z, = > e; ® X5
i
xj € H2p—2(V). Then as in the proof of lemma 6.1, we have
_ * p-1,2p-2

xj = prv*( ej ® 1 Uz ) €N H (V),

and z. € NIH?(T) & NP 1y2P 2 (y).

2

REMARK 6.2.1. For ¢ = 1, without the condition D(V,r,%), we have:

if the map

1

Czy @ erluter,@ 1) — 2rP 2P oy o) (py

is zero, then N.z1 is represented by an algebraic cycle degenerate
on T for some N &= 0.

The proof  is similar to that of 6.2.

1
<

REMARK 6.3. 1f we assume the condition (i) of lemma 6.2 for @
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universally, i.e., for any V, r, then we can get rid of the
restriction £ < 2. In fact, the universal validity of the condition
(i) means that the condition D of [ 9 1 holds universally. Since
we are in the field of complex numbers, the condition I(X,L) holds

universally, hence we can assume the standard conjecture.

LEMMA 6.3.1. We assume the standard conjecture for all varieties over
the field of complex numbers. Let F c V be a Zariski closed subset
of a smooth projective variety, Z an algebraic cycle of codimension
p on V such that Z | VN F is homologous to zero on V \ F.

Then Z 1is Q-homologically equivalent to a cycle supported by F.

Let Fl,---, FS be the irreducible components of F. Then denoting

the resolutions of Fi by ¢i : ﬁi —_— Fi C V and the codimension

of Fi in V by pi, we have an exact sequence

2p-2p; ®9 2
® H 1(Fi,(l;))(p—pi) — 5 B P v, ) (p) — HP(V N\ F,Q) (p),

[ 8 1,8.2.8. Since we suppose the standard conjecture, we have also

the theory of motives, and a morphism of motives

2p-2p. & @,

pod 1

® h HED (mp) —— h2P ).
The above map is the Betti realization of this morphism. Let 1 be
its image. By semi-simplicity of the category of motives, I is a

direct summand of th(V)(p), and there is a morphism
2p-2p. _

g : 1 — & h 1(Fi)(p—pi) with (& @i)'o = idI' 0 1is induced by

an algebraic cycles on V X ﬁi' Considering the Betti-realization, we

have a map

2 2P=2py
o' : H'P(v,Q)(p) — e H (F, @ (p-p,)
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induced by algebraic correspondence with (@ wi)-o' = id on HB(I).

If {z 1} € Hzp(V,Q)(p) is the fundamental class of Z, then,

2p-2p.

{ 2z} € H,(I) by hypotheses, and 0'({ z }) € & H l(ﬁi,Q)(p-pi) is

B

then represented by algebraic cycles Yi' The algebraic cycle

> @i*(Yi) supported by F is Q-homologically equivalent to Z.

Returning to the proof of the remark, ZQ is algebraic and

zﬂ € NIHQ(T) ® NP_QHzp—Q(V) as in the proof of 6.2, i.e., there is

a closed subset F # T such that ZQ is homologous to zero on

(T N F) x V, and zﬂ is @-homologically equivalent to a cycle on

T X V supported by F X V.

LEMMA 6.4. Let T be a smooth projective variety of dimension t,

and assume the condition B(T) of [ 9 1 holds. Let AT be the.

diagonal and

{Ap ) = > A, in nter x T, (t)
i

be the Kuiineth decomposition, &, € HY T, @ @ H2PTleT, @) (t), and
H € CHl(T) be the hyperplane section. Then there exits an integer

N > 0 such that N.Ai is represented by the algebraic cycle

ui”tx 1.0.4; for i =t and is represented by (1 X Ht_l).A"i

for t > i, where A'i and A"i are algebraic cyecles on T x T.

Let h € H2(T,®)(1) be the class of H. Then we have isomorphisms

ol H' (T,@) — B2V i r, @ ¢t-i), x —— hI7 U x
{1 <t ), and the inverses are algebraic by B(T). If i > t, then

b = i te sy ccaiThH e id)(4,)), and

—307—



i-t. -1 2t

(L'"HTe idy ) € H “Tr.ey e pet

“l(T,@)(2t-i) is algebraic, hence

there is an algebraic cycle A'i on T X T which represents

(i Hle id)(N.A, ). The case of i ¢ t is similar.

COROLLARY 6.5. Let T and V be smooth projective varieties of
dimension § < 2 and m, respectively, z € CHP(T X V), and assume

that the condition D(V,r,%) of 6.2 holds for V, and that

r. 2r+ 2

0 = {tz ) ¢ gr H (V,)(r) — grOH (T,Q)-.

Then for some N # 0, we have

3 [}

0 N.[l z 1 : Gr CHO(T) — Gr CHr(V).

Since £ x 2, the condition B(T) holds, hence, we have cycles

A{, A"i on T X T, an integer N as in 6.4, and zi =z C Ai is
the Kunneth components of z. I£f i > 8, N.zi = zo((Hl_Q® 1T).Ai‘)

induces the map

P-4 A"
GrQCHO(T) Ao, GrQCH_(i_ﬂ)(T) —1s GrQCHO(T) lzld, GrQCHr(V),

which vanishes by dimension reason. If i ¢ 2, then

N.zi = z O ((1T X HQ_I).A"i) gives the map

A, ] 8-i
GrQCHO(T) — i, et vty A erfeon oy L2 1, GrQCHr(V).

0
Since 0 < i ¢ & £ 2, GrQCHl(T) = 0 (cf. 1.11), [N'Zi] = 0.
Taking N large enocugh, we may assume that N.zQ is represented by

an algebraic cycle on T X V degenerate on T. Hence we have

[ N.z 1 : GrQCH (T) — GrQCH (V).
[} 0 r

N.[L z 1

REMARK 6.5.1. For &

H
—
-

in correspondence with 6.2.1, by similar

proof, we have:
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if
0= (21 : grler,® ) — gr? WP v, ),
then, for some N & 0O,

0=N.[ 21 : Gr1CH0(T) — GricHP(v)

LEMMA 6.6. Let 4 be an additive category, and d' its full
subcategory, %, and 3B* be their respective pseudo—abelian
envelopes. Then, the canonical functor B' —— B is fully faithful.
We identify B' with ils image and we shall say that the

pseudo—abelian subcategory B' is generated by the objects of dA'.
The proof is straightforward, and omitted.

6.7. Let €'(0) be the pseudo-abelian subcategory of €0)

generated by GrOCHr(V) with the condition D(V,r,0), and we have the

restriction €'(0) c €0) -, Hdg (0), which we denote also by n.

PROPOSITION 6.7.1. The functor n : €'(0) —— Hdg(0) is faithful.

Note that grrﬁzr(V,Q) = GrOCHr(V) ® @, and the proposition results

from duality of vector spaces by the condition D(V,r,0).

REMARK 6.8. The condition H(V,r,0) means that the map
er'H2 T v, @) (r) —— grPH?Pov,on®
induced by intersection is injective. The condition D(V,r,0) is that

this is bijective, hence D((V,r,0) ===> H(V,r,0). Incidentally, the

fully-faithfulness of n in 6.7 is equivalent to the Hodge
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conjecture for cycles of codimension r of varieties V with

DW,r,0).
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§ 7. Faithfulness : case of niveau 1
Theorem 7.1. Let V and T be a smooth projective varieties,
z € cHP' (T x V). If the map

2q-1

¢ z) : gr¥7 1y (T, Q) — grP 1P 1y o

i8 zero, then the map
[z 1 : Gr1CHq(T) — arlicHP vy

18 also zero.

Let t =dim T and q' =t - gq. To see [ z 1 = 0, it suffices to
show that for any curve <€ and for any u € CHq,(C X T), the
composite

tzoul:arieng ) —4s arlen o 2L erlen v
vanishes because <H>OCHq(T) = ACHq(T) is generated by u(ACHO(C))
for all C and u. But we have

grlulcc, o B8 97 1y29 gy L2 3, o0 P 1g2P 1y g
is zero by hypothesis. Since Gr1CHO(C) is divisible, [ 2z Oul =20

by 6.2.1.

COROLLARY 7.2. Let T and V be smooth projective varieties,

z € CHp+q(T X V), m=4dimV, and r = m - p. Assume the condition

DV,r,1) of 6.2 holds. [If the map

t T 2r+1 2gq+1

(‘2 y : gr'H (V,Q) (r) — griH (T,Q) (q)

18 zero, themn the map
[z 1 : GrICHq(T) — GrICHr(V)

8 also zero.

—311—



As in the proof of 7.1, we may assume that q = 0, and
dim T = 1. Note that D(T,1,1) always holds, and we have
NPTIRZP v, @) ~ grPTH?PTl(v,@). The condition D(V,r,1) means that

the map (tz } above is dual to the map

2p-1

{ z Yy grOHl(T,Q)(l) —_— grp°1H v, p,

and we conclude by 7.1.

7.3. Let Pich denote the higher Picard variety in the sense of
[ 13 ]. Then we have the canonical map([ 13 1, 5.1)

P . Pyy — PicPv).
\Y a

LEMMA 7.3.1. For. a variety Vv, integers p, r with p + r = nm

= dim V, consider the following conditions:

(i) The condition H(V,r,1) holds, i.e., GrICHr(V) € ob €(1).

(ii) the conditiom D(V,r,1) holds, i.e., the pairing

r.,2r+l 2r+1

N H v, ) x NPTHPPT Loy ey (p) c H

Y L "y, om = @

. ) x BPPT Loy oy (o

i8 perfect.

(iii) the canonical map n(s) J?(V) — Picp(V) 18 an isogeny.
(iv) the canonical map n(§+1) : Jrgl(V) — Picr+1(V) i8 an isogeny.

Then we have the implications (ii) <===> ((iii) and (iv)), and (i)

{===> (iv).

By [ 13 1, 1.2, since the Abel-Jacobi map o : ACHP(V) — Jz(V)
is regular, we have a cycle B on Jg(V) X V of codimension p

such that the induced map

84

9y —
B2 200, penP vy S g2

h

p
B Ja(V)
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is multiplication by an integer

resulting kX is minimum. Similarly,

I'+1

(V) X V of codimension r+l

the p-th intermediate Jacobian by

2p-1

Hl(Tp(V),Q) = H (V,Q) (p).

N TI?P oy @y py by

k > 0.
we choose a cycle
and the integer
TP (v,

We identify H (Ji(V),@)

We can choose P so that the

33 L]

on
k'. If we denote
we have Jg(V) C Tp(V) and

1 with

HI(J§(V),®) — Hl(Tp(V),@)

[
Np'lﬂzp'lcv,ﬁ)(p) c

Then H (h is

$)

consider the cycle.
map

h, (tgropy
ProP

Denoting the

inclusions

r,2r+l 2r+1

N"H (V,)(r) c H (V,2)(r) by j

have the commutative diagram

Hl([tB‘OB],Q)

HeP-
tgop € CHl(Jg(V) x Jr;1

Jz(V) —— acut gt

NIRRTl oy @y py € H

Lov.ay ).

identified with the multiplication by k. Now

{(V)), which induces the

r+l1

Lovyy = ¢ : Y

2P~y ©)(p) and

and j', respectively, we

r+1

M)

b
Hy (3,0, ®
H

(v, (p>

e v, @) oy

—1H2p—1

where

K.j

.____)H

2p

NP Lov,a) op)

intersection product.

t .,

j NP2l oy

|
is associated to the pairing in (ii).
(ii) <(===> [ 9 oP1]

Now, we have the diagram
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is regarded as the dual of

D (p) —— (NT

is an

> H J (V))

t 2r+1

v, o’
2p- 1(V,@)(p)

(NT

H via

Therefore the map

oy oy e ®

Hence,

isogeny



t

QN _ '
Py BCLEIZCOD) , peyP vy i ACHl(Jrgl(V))
o 8
v n(5)
Jg(V) » PicP(v) ,

and the dotted morphism is obtained by the universality of Picp(V),

cf.[ 13 1, 3.5. Since h!B is an isogeny, and n(s) is surjective,
[tB'O$] is an isogeny ===> n(s) is an isogeny, i.e., (iii).
By symmetry, we have also (ii) ===> (iv).

Since Ji(V) — Pich is surjective, there exists a morphism
. . P p (p) _ . . .
s : Pic (V) —— Ja(V) such that =n y °s = m, the multiplication
by m € Z. The pull-back p = (s x idv>*($) e cHP(PicP(v) x )

induces the mapping

(p)
T
Q_

m.k : PicP(v)y 2 Ji(V) B0 L aenP vy —— JE(V) —~ L picPvy.
.. . , . T+l r+l . .
Similarly, we have a morphism s : Pic (V) —m J a V) with
n(rsl)os' =m', m' € 7, and the pull-back Pp' = (s' X idv)*(ﬁ’)
induces m'.k' : Piel*l(vy — Pic™*l(v). Then,

torep = (s x K>¥ctp o8y € cal (PicP (V) x Pict*l(v)) induces an

r+1

isogeny Picp(V) — (Pic (V))V, (cf. [ 13 1, 4,4.) which is

factorized as

tao v |
picPv) - 3P +5»-Jz(v> L3 -3] (Jrgl(V))v ST, (pictt vV,

The conditions (iii) and (iv) mean that s and s' are isogenies,
hence [t$’°$] is an isogeny, and we have the Condition (ii>.
We shall show that (iv) ===> (i). With notations as above,

the cycle tp € CHP(V X Picp(V)) induces a homomorphism

Jrgl(V) — (Picp(V))V, which is factorized as
r+1
7T A
3Ty =Y pic™ vy — (picPvnV.

a
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r+1

We know A is an isogeny(loc. cit.). If m v is an isogeny," the
H1 of the above mapping is an isomorphism, which is identified with
oy ¢ arTHAT OV, @ () = NTHETT N v, ) (r) —— grlulricP vy, @),

and, the condition H(PicP(V),0,1)> holds by 5.8.

Assume (i). By definition, there exist varieties Tj’ cycles uj
of codimension p = dim V - r such that
({tuj}) s oerTH T L oy @ () — || groﬂl(Tj,Q) =1 Hl(Tj,®)
J J
is injective. Denoting the graph of the projection T = | | T, — Tj
k
by Fj, and putting u = Z.ujorj , & cycle on T X V of codimension
Jj
P, we get an injection
fuy s oerTHATM N v, () — mbtar,@) = || Hl(Tj,Q).
J

This is H1 of

t . r+l 1

[ "ul : Ja (V) — Ja(T),
and the kernel of [tu] is finite. By the universality of
Pic(r+1)(V), [tu] is factorized as

n(r+1)
oy ——— pic T Yy — iten,

hence K6r+1) is an isogeny, t.e., (iv).

COROLLARY 7.4. Let €'(1) be the subcategory of €(1) generated by
Grchr(V) for VvV with DV,r,1). The resiriction of the functor

n : €(1) — Hdg(l) to €'(l) gives an anti—-equivalence of
categories

n ot €'(l) — Hdg(l).

By definition, the condition D(V,r,1) is satisfied if
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Gr1CH(V) € ¢€'(1). It is shown that n is faithful (7.2), and is

fully-faithful by virtue of 7.3.1, and [ 13 1, 4.6.

Theorem 7.5. Let V be a smooth projective variety, p ke an

integer. Then,

(1) Gr1CHp(V) has a structure of abelian variety, and the canonical

nap AcHP (v) — Gr1CHp(V) i8 regular:i.e., for an arbitrary smooth

projective variety T, a cyecle z € cHP (T x V), and to €T, the

mnap

T —— Grick® vy, t —— 2((1)= (1))

i8 a morphism of varieties.

(ii) The canonical mapping (cf. 1.11)
P 1 arler o — P

is surjective and the kernel is finite.

P

(iii) If <H>OCHP(V)to Jg(V) is injective, then ¥ 1is

rs
bijective.

LEMMA 7.5.1. There exist an abelian variety A of dimension a,
u € CHP (A x V) such that the induced mapping
[ul: grdlw?@ a0 — gr? 1P v,

is bijective. Moreover, putting 'GricHP(v) = AcHP (v)/asHCHP (V), the

mapping
(uy “GrICHO(A) — raricHP(v)
L8 surjective.
As in the proof of 7.3.1, (ii) ===> (i), we have a surjective map

2p-1

HI(P) — Np_lH (V) induced by an algebraic cycle. Since the
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2p-1

kernel of H (P) — NPTy (V) is a sub-Hodge structure of weight

-1 of Hl(P)’ there exits an abelian variety K of P such that

0 — H (K) — H (P) — NPTIH2P 1 vy  i5 exact. Let A be an

abelian subvariety of P such that A + K =P and A N K is finite.

2p-1

Then the map Hl(A) — Np—lH V) induced by an algebraic cycle

u € CHP(A X V) is an isomorphism. Replacing u by u - 0 X u(0),

we may assume u(0) =0.

We shall show that L ul : 'Gr1CHO(A) —_— 'GrICHp(V) is

surjective. It suffices to show that u : A — 'GrICHp(V),

x H—— u(x) 1is surjective.
Let B be an abelian variety and =2z € CHp(B X V), z(0) = 0. Put
w = 1B X u + 1A X z € CHP(B x A X V). We have

u:A~0XxA< BxA—5 GricH?v),

2t B~BxO0“s BxA—5 'grica®(v).

Let K, ©c B X A be an abelian subvariety such that

1
Hy (K) = Ker (H (B x A) — 2P vy,
By 7.1, K c B X A X, 'GrICHp(V) vanishes. Therefore, we obtain

A

l

0 — K— B X A— (B X A/K — 0,

W 1i
'Gr - CHF (V)
and

Hl(A)

l

(B X A) — Hl((B‘x AY/K) — 0,

{W}\A +

NPT1g2P1 oy,

0 — Hl(K) B— H1

where the dotted maps are not necessarily algebraic. Since
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2p-1

{ur : HI(A) — Hl((B X AY/K) &—— NP-IH (V) 1is bijective, so is

the map Hl(A) — Hl((B X AY/K). Hence A — (B X A)/K 'is an

isogeny, in particular, is surjective. If therefore follows that

Im(B — GricHP(V)) € Im(B x A —¥ 'aricH®?(v))

c Im((B X AY/K — 'GricH?(vy)y = Ima =% raricuP vy

Since, for any element of 'GrICHp(V), we can find an abelian variety

B and =z € CHp(B X V) as above such that the element is contained

1 u 1

in the image of B —%» 'Gr CHP(V), we see that A —> 'GrocH (V) is

surjective.

We shall prove the theorem 7.5. Note that we have

1

P o gricuPv) — Gri

p
cH? (vy X— Jﬁ(V).

Let 'N be the kernel of A . SN ’Gr1CHp(V). The map
u 1,..,pP 'YP P
A — 'Gr CH (V) —/—— Ja(V) is an isogeny, since its H1 is

u 2p-1

identified with the bijection Hl(A) — Np_lH (V). Hence 'N 1is

contained in the Kernel, and finite. By the surjectivity of
A -4, 'GrICHp(V), and of the maps in the factorization of 'Yp,
the kernel of each of these maps is finite.
P P . .- .
Suppose ACH (V)tors — Ja(V)tors is injective, and put
K = KercacH?(v) — Jg(V)).
For k € 7Z, we have a commutative diagram
0 — K — ACHFP (V) —— Jg(V) — 0
1x k lx k lx k
0 — K —— ACHP(V) — Jg(V) — 0
and we see that K is torsion-free. From AxHCHP(V) ¢ K follows

that A*HCHP(V) is torsion-free and divisible (cf. 1.10). Hence

Ker('?p) = f/A*HCHP(V) is torsion-free. Since it is finite,
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Ker('yp) = 0. As its quotient, Ker(Yp) = 0, too. In particular,

p P

for p = dim V, the maps 'V and 7 are bijective by [12].

We shall prove (i). Putting N = Ker( A NI Gr1CHp(V)), a finite
group, we have

A/N ~ GricHP (v).
The right hand side has a structure of abelian variety, and we
endow the left hand side with the structure of abelian variety via
the isomorphism above. We shall show that the natural homomorphism
acHP (v —— arlcHP (v

is regular. Let T and 2z be as in (i), and B be the Albanese
variety of T : 8 : T — B, with B(to) = 0. Assume

2z = (B x id,) (z"), z' € cH?(B x V). Then,

v
2+ T L B 25, gricuP(v).

With the notations of the proof of lemma 7.5.1, 2 replaced by

z', we have
B
A— B X A —— (B X A)/K.
u > aricHP (v)
Let N®' = Ker(A —— (B X A)/K). We get (B x A)/K = A/N' and

N' < N. Then,
A/N = (A/N")/(N/N") = ((B X A)Y/K)/(N/N"),
and the map
B— (B X A)/K — ((B x AY/K)Y/(N/N") = A/N
is a morphism.(Notice we are in characteristic 0.) Therefore,
z T —ﬁﬂ B 2, Gr1CHp(V) is also a morphism. Next we shall

assume dim T = 1. Let J be the jacobian of T and B be the

Poincare divisor on J x T. The map
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() : H D) — ul(ry = H, (T)

is the inverse of 8 : H (T) —— H (J). For z € cHP(T x V), 1let

z'' = 20 P € CHP(J x V). We have
B _
(2} = (B x 1d D" (2 : H (T) — H (] 3, H, (T) L2}, y2r 1y,
hence z = (8 x id)7(z') @ T — GricHP(v) and
J =~ GrICHO(T) —_ GrICHp(V) is a morphism. Consider the general
case. Let C ©be a general curve of T : i1 : C —— T. Then

i* : Alb(C) — Alb(T) is surjective, and we have

c — T 2 » ACHP (V)

Lo, L,

Alb(C) —%5 AIB(T) ——— Gr1CHp(V).

As shown above, 2 O i* : Alb(C) — Gr1CHp(V) is a morphism, and

so is the map Alb(T) — Grchp(V) by the surjectivity of i*. It

follows that 2z : T — Gr1CHp(V) is a morphism.

Corollary 7.6. For p = 0, 1, 2, dim V, the canonical map
v? . aricHP(v) — 12

is bijective.

We may assume p = 2. By virtue of [ 10 1, for any prime e, we
have an isomorphism CH2(V)(e) ~ N1H3(V,®é/le(2)), where CHFP (V) (e)
is the e-torsion subgroup of CHP(V), and the map is induced by
Bloch's map [ 5 1. Summing up over all primes, we get

ACH2(V)t0rS c CH? (V) ~ N3 v, 0/2) ¢ v v,Q/2) ~ T2 (W)

tors tors’

which is induced from the Abel-Jacobi map

ACHZ (V) ——s Ji(V) c T? V).
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REMARK. 7.7. In the course of the proof of 7.5, we have proven that
the subgroups

AxHCH (V) © <H> CHP (V) n H*2cHP (V) < Ker (<H>,CHP (V) — JP(v))
coincide up to finite groups, and if the assumption 7.5, (iii) is

satisfied, then they coincide precisely.

REMARKS 7.8.1. The condition B(V) implies the condition D(V,r,%2)
for arbitrary r, and 2: let h € N1H2(V,®)(1) be the class of a

hyperplane section. We set
HY T v, @ i= Ker hi*ly ¢« g™ v, @) — gmtit2

Then, by Hard Lefschetz theorem, X € Hn(V,Q) is uniquely decomposed

(v, .

into

X =9 ht v x.,

L& i

1210
where iO = max (n-m,0), Xx. € Hn~21(V,®)(—i). We put

i pr
Ax =2 hi™1 y X, i; = max(n-m,1).
i=2i
1
We have A € ® Hom(H'(V),H" 2(v)(-1)) = H?™ 2(v x V) (m-1).
n

The condition B(V) is that A € N 1u2™ 2y 0)(m-1).

n+2

Note that h u NPHD(V,@) < NP*1y™*2(v,@) (1), and

A NPHY (v, @) c NP 12 v @) (1) if A is algebraic.
In particular,

NPHP v, @) = | | nt ou NPTEEPT2 vy oy (-1,

. . pr
p-
1 1O

where NPH" v,@) =NPH"(v,0) n H' (v,Q).
pr pr

Now assume 2r + £ < m. Put j =m - (2r + 2), then
m+ j = 2p - £, and we have
R v NTEETYR v ) (o) = NPTR2P Ly ) (p-g).
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1f x=3h'Ux, x € Nr'lﬂzr;§1+ﬂ(v,®)(r-io, then,
hETI X, € NPT L2P v @) (p-2), and
, k+j _ 2k -
x U (h U Xk) = (h U Xk ka) # 0O unless Xk = 0,
by the Hodge's positivity, which implies D(V,r,%). I£f 2r + & > m,
exchanging the roles of NrH2r+Q(V,®)(r) and NP—QHzp_Q(V,Q)(p—Q),

we conclude that B(V) implies D(V,r,%) for any r, and {.
Incidentally, put

rPy™ i v, m

= ¢ x € N°H"1(v,@) ; x is orthogonal to NPTMTIg™ v @ym) )
for i € Z. 1f the condition B(V) holds, then we have

arPu™ (v, =~ grPH" (v, @),
and a perfect pairing

r..2r+4

Gr'H v, (r) x Gr2 iy2e-t

v, (p-2) — HE™(V, @) m) = Q
via cup-product, where r + p = m, since D(V,r,4) and D(V,r+1,4-2)>
hold.
7.8.2. If the condition B(V) holds, then

A*HCHP (V) ® @ = Ker(acH® (V) — Jb(V)) @ @,
for arbitrary p. In particular, the equations hold for an abelian

variety [ 9 J, or a variety V with

H v,Q) = 0 for odd n = dim V, and

Hn(V,®) Q(-n/2) for even n # dim V.

Note that a complete intersection in PN satisfies these conditions.

—322—



§ 8. Faithfulness : case ofvniveau 2
THEOREM 8.1. Let T, V be smoolh projective varieties m = dim V,
z € cHP"9(T x V) and assume the condition D(V,r,2):
NTHZTY 2 (v @) (r) @ NPTZHEPTZ (v, @) (p-1) — HEM OV, @) (m) = @

is a perfect pairing, where p = m - r. If

0= 2y : gr'HTTP (v, (r) — griu%i T, @),
then, we have

0=102z1: GrZCHq(T) — GrZCHr(V).
LEMMA 8.1.1. The adequate equivalence relation <H*2>O 18 generated
by <H*2>OCH0 of surfaces. More precisely, for an arbitrary smooth
projective variety V, we have

*2 _ *2
<H™ 7> CH(V) = 2 z(<H >oCHy (52,

where S ranges over all surfaces, and 2z ranges over all of

elements of CH(S x V).

We denote the right hand size by ECH(V). It is clear that E

gives an adequate egquivalence relation, and that <H*2>0 > E. Note

that <H*2>O is generated by H*2CHO, and, by 7.6, and 7.7, we
have <H*2>OCHO = A%HCH,, hence that

ECH(V) = 2 z(A%HCH (S5)),
where S runs over all surfaces and =z € CH(S X V). We may assume

dimV > 2 .and it is sufficient to show that A*HCHO(V) = ECHO(V),
i.e., that for a smooth projective variety T, X € HCHP(T X V),
y € ACHY(T x V), with p + g = dim T + dim V, we have

PTV*(X,Y) € ECHO(V).
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By definition, there exist a curve C, u € cHY(Cc x T x V), and
points a and b of C such that y = u(y), where
vy = (a) - (b). Since
prv*(X;y) = prv*(lC X X.u.¥Y X lT x 1v¥),
it suffices to show that lc X X.u.y X 1T X 1v € ECHO(C X T X V). We

are thus reduced to show the following assertion:

Let Vv be a smooth projective variely of dimension > 2 with a
morphism n : V—— C to a curve, x € HCHI(V), Y € ACHO(C), Then

x. 70 () € ECH(V).

et X be a l-cycle representing x, and let Supp(X) denote the
support of X with reduced scheme structure. Blowing-up V at
singular points of Supp(X), we get b : V—— V such that the
proper transform of Supp(X) is smooth. Then the proper transform

X of X 1is a l-cycle whose support is smooth and b*(X) = X. By
the following sublemma, we can find a smooth hyperplane section

V' ¢V, with respect to some embedding into a projecitive space,

containing the support of X, if dim V > 2.

SUBLEMMA 8.1.2. Let X be an r-dimensional smooth subscheme of a

smooth projective varieiy V, IX the ideal sheaf of X +im V,
L an ample line bundle. If 2r < dim V, a general member of
IIX® .o | is a smooth variety containing the scheme X for

sufficiently large n.

For sufficiently large n, the map
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®n ®n
®
X L )®OV —_ IX®L

®
is surjective. Then (IX/IX2)®L N ys generated by the global

HO(V,I

sections of HO(V,I ®L®n). Since the rank of ithe vector bundle

X

1./1 2 on X is dimV - r > r, the image of a general member s

X" X
® ® ®
of 11,8L°"] by the canonical map I.8L°" —— (1,/1.%)eL®"
X X XX
vanishes nowhere. Then, V' = (s) € V is smooth at the points of
X. By Bertini's theorem, it is smooth off X, whence the sublemma

8.1.2.

We return to the proof of 8.1.1. Taking hyperplane sections

repeatedly, we obtain a smooth surface S 31, ¥ containing the

support of X. Let ©b' = bei. Denoting by X' the l-cycle X
regarded as a cycle on S, we have b'*(X') = X. In the commutative
diagram

PicOV = GrICHl(V) — GrICHl(S)

x| b’ l X

GricH. (V) <— GricH . (S),
0 B, 0

Alb V

the horizontal map below is an isogeny, since

ok . Xk
¥ oontoyy —2 gty 25 wlesy

is an isomorphism. The cycle X "is homologous to zero, hence the
left vertical arrow vanishes, which means that b'*(a).X‘ = 0 in

1

GrICH (s>, for any o € Gr CHI(V) = ACHl(V). In other words,

0
b ¥ (). X' € A¥HCH,(S). 1Tt follows that
o.X = b'*(b'*(a).X') € ECH, (V).

It is now enough to take o € n*(Y).

We shall prove the thecrem 8.1. By means of 8.1.1, we are reduced
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to the case where q = 0 and T 1is a surface, as in the proof of

theorem 7.1. By virtue of 6.5, there exists an integer N # 0 with
0 = N.[z1 : GriCH (T) — Gr°CH_(V).

Since A*HCH (T) = <H*?> CH (T) as noted above, Gr CH,(T) is

divisible by 1.10, so that [ 2z 1 = 0.

8.2. We shall define the pseudo-abelian category €'(2), as in
5.5, starting from GrQCHr(V) with H(V,r,2) and D(V,r,%). Then,
g£'(2) is a full subcategory of €(2) (6.6) and we have the
composite
€'(2) c €(2) —> Hdg(2),
which we shall also denote by n. Note that Gr2CHO(V) are objects
of €'(2) for all smooth projective varieties V, since the

condition D(V,0,2) holds trivially for 1r = 0, and the condition

H(V,0,2) holds by 5.9.

COROLLARY 8.3. The contravariant functor
n : €'(2) — Hdg(2)
is faithful.

8.4. Let €(2) be the full pseudo-abelian subcategory of

surf
g(2) obtained from Gr2CH (S) with surfaces §, and let 4 be

0 2
the full subcategory of motives defined in 5.9.1, consisting of the
subobjects of sums of grohz(S), where S is a surface,
gr’h?(s) = h2(s)/N'h%(S), and N'h?(S) is the submotive of
2 . 1,,2

h“(S) whose Betti realization is N H (5,8) (c¢f. 5.7.1). Then ﬂg

is a semi-simple abelian subcategory of 4. Note that by Betti
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realization, w

Q(Z)Surf is
restriction n
where n° € (

COROLLARY 8.5.

categories:

In particular,

category.

We have shown

0,2

from gr h (S8)

codimension 2
fully-faithful

n'(Gr2CHO(S))

REMARKS 8.6.1.
intersection,
Q(Z)Sur
is an eguivale
8§.6.2. Bloch's
subcategory of
fully-faithful

fully-faithful

e have a faithful functor

H ﬁz — Hdg(2).

a full subcategory of €'(2) and, we have the

g(2) is factorized as

surf
g(2)

— Hdg(2), which

1 4, M, yagoy,

is given by Gr2CH0(S)

n surf

K —— gr’h?(s).

2) 2

surf

The functor n' gives an anti—equivalence of
n' Q(Z)Surf e ﬂz.
the category €(2) is a semi—simple Q-abelian

surf

that n° is faithful. By definition, the morphisms

0

to gr hz(S‘) are induced by algebraic cycles of

on S' X S. Hence it is clear that =n' is

4

its essential image is 2 because

grOhZ(S).

and

b4

0,2

Since grOHz(S,Q) and gr H7(S,®)(2) are dual via

we could formulate the corollary 8.5 as

—_ ¥ Gr2CHO(S) — gr0h2(S),

f 2’

nce of categories.

[z] —— {2}

original metaconjecture is equivalence with a

Hdg(2). It is, now, equivalent to the

ness of n. It is easily seen that the

ness 1s equivalent to the Hodge conjecture on the
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products of surfaces.
8.6.3. By 8.1.1, for any smooth projective variety V,  Gr CH (V)
is generated by those of surfaces as abelian group. We do not know,
however, whether the inclusion from Q(Z)Surf into the category
generated by all GrZCHO(V) is an equivalence of categories, or more
generally, whether %"(2)Surf — g(2) is an equivalence of
categories. Notice that if the standard conjecture B(V) holds
universally, then the conditions H(V,r,2) and D(V,r,2) are true,
GrZCHr(V) is an object of €'(2) for arbitrary VvV and r, hence,
g'(2) = 8(2), and Q(Z)Surf — g(2) is an equivalence of
categories and, moreover, they are equivalent to the category 4 2
via the functor n.

REMARK 8.7. So far, we have assumed that the ground field k is the
complex numbers. Some statements remain true even if Kk 1is
algebraically closed of characteristic zero. For example, theorems 7.1
and 8.1 are those ones when the Betti cohomology is replaced by etale
cohomology or De Rham cohomology, the proof being reduced to the case
cf complex numbers by the comparison theorem. However, theorem 4.1
(hence 5.1) makes essential use of the hypothesis that the ground
field is uncountable, and it is plausible that it is false if Kk |is
the algebraic closure of the field of rational numbers. Hence it

might be a right formulation to define first a functor of the form

H, — (L)

')
and to show it is (fully) faithful when Kk 1is, for example, the

field of complex numbers.

—328—



References

Angeniol, B., Familles de cycles algebriques - schemas de Chou,
Lecture Notes in Math. 896, Springer Verlag, Berlin Heidelberg
New York, 1981
Angeniol, B., and El Zein, F., La classe fondamentale relative
d'un cycle, Bull. Soc. Math. France, Memoire, 58 (1978), 67-93.
Artin, M., Grothendieck, A., Verdier, J-P., Théorie des Topos
et Cohomologie étales de schemas, expose XVIII par Deligne, P.,
Lecture Notes in Math., 305, Springer Verlag, Berlin Heidelberg
New York, 1973.
Bloch, S., An example in the theory of algebraic cycles, in
Algebraic K-theory, Evanston, 1376, Lecture Notes in Math.,
561, Springer Verlag, Berlin Heidelberg New York, 1976

, Torsion algebraic cycles and a theorem of Roitman,
Comp. Math., 39 (1979), 107-127.

, Lectures on algebraic cycles, Duke University
Mathematics Series IV, Durham, 1980.
Clemens, H., Homological equivalence modulo algebraic
equivalence are not finitely generated, Publ. math. IHES. 58
(1983) 231-250.
Deligne, P., Theorie de Hodge 111, Publ. math. IHES, 44 (1974)
5-77.
Kleiman, S., Algebraic cycles and the Weil conjecture, in Dix
ezposes sur la cohomologie des schemas, North-Holland,

Amsterdam, 1968.

10 1 Merkur'ev, A.S., and Suslin, A. A., K-cohomology of

—329—



[ 12 ]

[ 13 1

[ 14 1

[ 15 1

[ 16 1

[ 18 1

[ 19 1

Brauer-Severi varieties and the norm residue homomorphism, Izv.
Acad. Nauk, 46 (1982), 1011-1046 (= Math. USSR. Izv. 21
(1983), 307-340.)
Roitman, A. A., The torsion of the group of O-cycles modulco
rational equivalence, Ann. of Math., 111 (1980), 553-569.
Saavedra, N., Categories Tannakiens, Lecture Notes in Math.
265, Springer Verlag, Berlin Heidelberg New York, 1972.
Saito, H., Abelian varieties attached to cycles of intermediate
dimension, Nagoya Math. J., 75 (1979) 95-119.

, The Hodge cohomology and cubic eguivalences, Nagoya
Math. J., 94 (1984) 1-41.

, A note on cubic equivalences, Nagoya Math. J., 101
(1986) 1-26.
Samuel, P., Relations d'equivalence en geometrie algebrique, in
Proceeding of International Congress of Mathematicians. 19488,
Cambridge University Press, Cambridge, 1960.
Severi, F., Ulterior sviluppi della teoria delle serie di
equivalenza sulle suerfidie algebriche, appendice 1 a
Geometria dei sistemi algebrici sopra una superficie e sopra
una varieta algebrica, vol. terzo, Edizioni Cremonese, Roma,
1959.
Verdier, J-P., Classes d'homologie associee a un cycle,
Asterisque, 36-37 (1976), 101-151 (expose VI).
Weil, A., Oevres Scientifiques, Collected papers. Vol 11,
Corrected second printing, Springer Verlag, New York-

Heidelberg-Berlin, 1980.

—330—



Department of Mathematics
Nagoya University
Chikusa—-ku, Nagoya, 464

Japan

—331—



A

A remarx on truncated Krichever maps

Yuji Shimizu

Mathematical Institute, Tohoku University

Sendai 987, Japan

Introduction

In this note, I report on some remarks about the truncation of
the so-called Krichever map, which appears in the algebro-geometric
formulation of the confermal field theory {of abelian type or with
G(l)—symmetry), cf.[ENTY].

The dressed moduli spaces appear as a projective limit of

their truncated analogues. However a naive way to truncate the
Krichever map fails (cf.Remark{(3.2)). Then a way is just to
truncate the Fock spaces and Grassmannians. This view-point is
carried out in § 2,3 (but not fully yet) and is motivated by the
truncated KP hierarchy, due to Harada, Noumi et al. [HI,INI.
Another way is to reinterpret the Xricnever map in terms of “'curves”
in the sense of Cartier. This view-point is roughly sketched in §4
and is a simple application of ideas in [KSU2]. The author hopes to
proceed further in this directicn.

Through these observations, we can verify that the usage of
infinite degree 0of freedom in not superficial contrary to the
author's common sense with respect to simple structure of the
dressed moduli spaces.

[deas of these remarks were concelved wnile the author was
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staying in the Japan-U.S. Mathematics Institute (JAMI) at the Johns
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conversation.

51 Review of a geometric realization of abelian conformal field
theory after L[KNTY]
1.1 Conformal field theory deals with representations of the
Virasoro Lie algebra. Krichever's construction connects the
geometry of moduli spaces of algebraic curves with extra data and a
field theory of free fermions (i.e. Clifford algebra’ through an
infinite dimensional Grassmannian manifold. Basic ingredients are
the bosonization, T-functions of the KP hierarchy in soliton theory.
Representations in this context are Fock representations of central
charge 1 (or -2(6j°-6i+1) for jeiZi.
1.2 According to Mumford's formulation, one can associate a
commutative subalgebra of the ring of formal differential operators
in one variable to a datum ¥ = (C,Q,z) consisting of a projective
smooth curve C aver €C, a point @ = C and a formal local coordinate
at Q (cf.[S,Appendix0]). Here we have chosen a theta characteristic
Lo« 222: Qé) wnich supplies the torsion-free sheaf of rank 1
required in addition to the above datum.

The subspace U(%¥} of the ring of ordinary differential

i [ L
operators is actually realized as HJ(C—Q,ID = H(C,L*Q3* in
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C((z3: dz = €©({z))=: K . So U(¥: defines a point of the
Grassmannian Grass(K) :

~

Grass(K}) = { UC K ; U is a closed subspace
of finite index 1.

K is a linear topological space, defined by the filtration FPK L=

2PCirz11.  Put sz F P as usual. Closedness of U is defined by this

topology. Being of finite index means that both of Ker and Coker of
the natural map U — K — K/FOK are finite dimensional. The index
0of U is by definition dim Ker ~ dim Coker of the above map.

The Grassmanian is a scheme and is a disjoint union of its

components Grassd(K) 0f those U of index d

L1 Grassd (x)
dsZ

Letg%g denote the dressed moduli space, the collection of the

Grass (K)

above data ¥ = (C,Q,z) together with a level f-structure, 4}3.
Then Jug has a structure of scheme and C is naturally equipped with

a theta characteristic. Then the above correspondece ¥r— L(¥) is a

morphism U :/Mg — GrassO(K), which is called the Krichever map.
1.3 ©Our Grassmannian has a kind of Plucker embedding

Pl : Grass(K) — P{(F =] [P{F)
=7 p
p_,
Here ¢ is the module of semi-infinite exterior products,i.e.,

~

the Fock space. 3?has a topological basis {|M>) indexed by a pair

M= {p,\:, psZ, A = (Kl,...,lﬁ) a Young diagram (i.e. Alz...z KD>O):
F=IOC|M> = & TC]p,\d>. K =TIClip,\:> is the charge (or index: P
psZ \ P

~
i

part of % and Pl preserves the index.

Consider formally the exterior product
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- - _ e 4 9
Zp+&1 1Azp+ko éA--- A2p+lg @Azp \Q+1)Azp \Q+_)A._‘

which can be thought as | (p,A)>. Then to a point U € Grass{i), one
can take an admissible basis of U so that its semi-infinite exterior
product det U 'is well-defined up to a constant multiple, just as in
the finite dimensional case.

1.4 It is the so-called bosonizaticn that makes the composition
PloU calculable in some sense. The standard way to introduce
bosonization is to define a Hamiltonian time-evolution using current
operators. We look it differently in view of bosonization over Z.

Consider &= ® @C{(p,A)> ¢ & and ¥ = C[tl,tv,...JQC[u,u_ll, H =

peEZ A -
1. .,

E[Etl,tz,...JJSC[u,u_ ] {deg tizi). Denote the Schur polynomial
associated to A by xk(t). Then the bosonization means the
isomorphism of C-vector spaces

B:%— 1 ; l(p,l\)>r~>xi\(t)up.
1.5 Summing up, we have the following maps

szg U, Grass(f() a IP(_‘A?Z‘)' —,—\,B—> P(}AO
Note that Grass(%), P(én and P(ﬁ) have a natural C -bundle on each
of them. The main result of abelian conformal field theory is that
we can lift BoPlolU to 3Exusing the Riemann theta function and find a
system of differential equations characterizing the lift.

In this note, we consider only the preparatory part of this

formulation in the truncated case.
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§2 Various Grassmannians and truncated Fock spaces

Grassmannians

2.1 We recall some facts about the structure of Grassmannians. cf.
£551, IN], [K]T.

Denote the Grassmannian of closed subspaces of dimension {resp.
codimension) m of a (linearly topologized) vector space V by
Grass(m,V) {(resp. Grass(V¥,m)). Grass{m,V) has a structure of
smooth C-scheme, naturally embedded into PA\v) by the Plucker
coardinatés. Then Grass(m,V) is the quotient by GL(1) of Gras;(m,V)
which consists of those vectors of A"V-(0} whose ({inhomogenious)
Plucker coordinates satisfy the Plicker relations

-~

Grass(m,V) — ATy -(0}
L |
Grass(m,V) — PAO™)
We will consider only those Grassmannians which are related to
% = £((z)) and its topological basis {Zn}nEZ'
Take V = F "/F". Then Grassim,V) 1is the usual finite
dimensional Grassmannian which is denoted as GM(m,n) in [SS] and is
a scheme of finite type over T, embedded into PA™(F ™/F™)) by the
Plucker coordinates.
Take V = Fp—mi' Then Grass(m,Fp_m%) appears in [HI,[N] and 1is

a C-scheme of countable type in the sense of Kashiwara (K]J.

Truncated Fock spaces

2.2 Now we turn to the (truncated) Fock spaces. The bosonization

suggests how to truncate the Fock space ?p or 3? (peZ).

The boson Fock space ¥ can be considered as the character ring
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tensored with € over Z of the general linear group GL{w} : ¥ =

lim R(GLOm))®,C c¢i.[DJKMI, [KSU1].

Zz
m
To trace the inverse image of R{GL{(m})) under the bosonization
B, recall that B(| (p,A)>) = x\(t)up and | (p,A)> zp+*1“lA
zp+AQ_QAzp_(g+l)A... where A = (Kl,...,KQ) is a partition. In

- )
conformity with the notation in [KNTY],[KSUl] we also use eu= zu 1/2

_ 9 - + ~ /9
P Q+1/i«ep 2 l”1’“/\... by e(p-£1.

(u52+%). Denote e
The Young diagrams which correspond to finite dimensional
irreducible representations of GL{(m} are contained in the zone of

LrcoLmirec) is A™FE ™Ky A

depth m. Thus by the above remark, B
e(p-m). Therefore we are led to the

Definition (truncated Fock spaces)

?;m):z ATEPTTRy ?I()m) 1= AMFPTTg)
ﬂ;m):= R(GL(m))@Cu®

o

2.3 We have the following natural maps

$(m+1) 7 S;(m)

P p

J5 B LS B

(a} restriction

Hm+1) m, 3¢ (m) ;o 4y > xy 1f A has depth < m
P p A A\
0 otherwise
= {m+
(by inclusion : ¢ : jgm) — fﬁgm 1
— )
Xae{p-m) > erp m+l/“/\e(p—(m+1))
Aom
we nave also m and ¢ for ?5 .
T ~-{m+ . -m. Lo Bom,
R :;\m+l{Fp \m l)K) — A™FPTPRy and ¢ AT EPTRy —
. I .
AM l(FL ‘M*LYK) can be obtained from the short exact segquence
0 — FPTME Fp—{m+l)K,—* ﬂ2p~(m+l} — 0

[t is clear that F_ is the inductive limit of ?gmf ¢} and  Foois

—337—



{li(m)

tha projective limit of jp , ).

Helation amocng various Grassmannians

2.4 For m< &, n £ Kk, we have the maps

At Es ;:%:z AV ETE T e\ p ™ R
e—@/\ v A e~m~l
induced from the decompasition F °/FF = (F Y/F ™er ™/ rNa "/ FY .
We can similarly consider AM(F ™/ FY = APCGE ™/ FNer™ = AT "R
Thus we c¢cbtain the commutative diagram
AT/ ET i:%éz; AR,
b y
jo—:(m) ‘_:T,L—’_ }F{ﬂ,)
This induces
Grassim,F "/F"; t=%%=; Grass (3,7 Y/FK,
¥ v
Grass(m,F_m/Fn) i=%==$ Grass(@,F_@/Fk)

Propoesition [S5S]

~ A

(1) Grass(%) (resp. Grass{(K?Y) is the projective limit of
(Grass(m,F—m/Fn),n} (resp. {Gras;(m,F—m/Fn),n}).

(2 Grass(IA()fin = 1im {Grass(m,F—m/Fn),L} (as sets) i1s dense in
Grass(%).

2.2 In a similar way, using the restriction and the inclusion
e (m) —~ {m+1) ) - me e . -
jp rm— \fp , we& have maps for Grassmannians
. ) -m.,. T = (m+130 .
urass&m,Fp K3 th:; Gr:ss(m+l,Fp K>

¢ sends a subspace U to U%Czp—tm+l}.

L . . o . ) -my
Proposition (1) urassp\h) = lim GF&SS\m,FP Ko as schemes and

i
L
m
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lgm Grass(m,Fp_mK) is dense in Grassp(K).

m
() AMEFPTTO = 1im ATGEPTFY induces
n
Grass(m,Fp—mK) = llm Grass(m,Fp—m/Fn)
n

as schemes.

Infinitesimal structure

2.6 We have a usual description of tangent spaces of Grassmannians.

For V € Grass(m,FF TK;,

By - Hom(v,FP Mk/v)

1]

TVGras(m,F

~ A

TL(V>Grass(m+1,Fp-(m+l)K) = Hom(verzP ™ (ML pP=(m* Dy yge, prim+ly,
= Hom(v@rzP™ (M 1) gP gy,
= HomiV,FP R/ V)@Hom(CzP T (PTEIER TRy v
Then dné(v) is the projection te the {first factor and dLV 13 the

R ~ P4 )
injection onto the first factor. [If 8= Pl(V) ¢ P(S%m)), TQP(3$m )y =

ﬁémfﬂ and we have an obvious description for dnt(g) and dtg.
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$3 Truncated Krichever map

a

3.1 The Krichever map is the correspondence
% = (C,Q,z) +—— U(E> = tHY(C,L0%Q)) < T((z))=K

Here t means the Laurent expansion at @ using the coordinate z.
U{(*), as a subspace of K, is naturaily filtered

~

; . - 0

' Y * = (%Y = i ) = ¥

Lm(%; p= F UG U(%)nF_K tH (C,L(mQ)) C F_K
For m > g, FmU(i) is m—dimensional and is a point of Grass(m,FmK).
Thus we have a morphism, called m-truncated Krichever map

Um : jng — Grass(m,FmK1

Since Um(})nF@K = UQ(%) for § £ m, we have a projective system of

morphisms

A U N
m
Aig Grass(m,FmK)
\\\\\\\x J restriction
U@ Grass(@,FDK) (3 £ m>.

Passing to the projective limit,we recover the original Krichever
map /&g — Grasso(%).
By the truncated version of Pliucker embedding, bosonization in
2, we aobtain the following proposition.

Proposition We have a projective system of morphisms

~ U ”~ A ~ -
M —P Grassm,F Ky <23 pexE™y B opar™y (g
g m ra ) p

{
p
3.2 Remark 1) [If we use f?l instead of £ for any integer j, we have

~

a similar diagram for sufficiently large m. (FmK remains the same,

but the dimension m is replaced by m+{j-1)(g-1) while the charge is

(i-1)y{g-1).>

5 . L e L J&(m) . o A

2) We hoped to have a morphism from & into some finite
dimensional Grassmanian. But the identification of the fraction
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field KQ of @C Q and K=C{(z)) is so important that we cannot produce

a non-trivial morphism of this kind. Iin this respect, notice the
following

Lemma The isomorphism Fp—mKQ/FpKQ =5 gPTM%/FPK  induced by z,
i.e., t : K. — K , is invariant under the action of the group D

Q
Aut@(C[z]/(zm+l)), but not under DMLY

{m)

3.3 The interest in the truncated Krichever maps lies in the
connection with the truncated KP hierarchy of Harada, Noumi, etc.
[HI,IN]. They have established the correspondence between points of
Grass(m,FOR) and wave functions, Hirota's bilinear equations for
T-functions, among others.

In principle, over €, we can define a truncated version of the
T-function associated to a point of M&g’ starting from the
T-function defined in [KNTY] via the Riemann theta function: Tm(t,})

5 (m) . ~ 7 m)
E}fo (restiction of T (t,¥) =3{O to]{o ). By the results of

Harada, Noumi, etc., Tm(t,i) satisfies Hirota's bilinear equations

for Osk0<...<km_2, OsQO<...<Qm, ki,ﬁjez,
m 1~ 1~
s - ~ g =

o' Trgook 8 QP g (TEPPTR(DTRD = 0

i=0 m-2"1i 0 i m

where ¥ (b denotes X+ (t) for the partition A= (k__,~-(m-1),

k . m 1 A m-1
.,kl—l,ko) and Dt means Hirota differentiation cf.[DJKM].

3.4 At present there are several defects compared with the original
version. First we haven't developped the aperator formalism for
the truncated KP hiervarchy {or it may have been developped but does
not appear in the literature). Secondly we haven't explicitly

written down rm(t,}) in terms of the theta function.
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&4 Another approach to the truncated Krichever map
We sketch a reformulation of the Krichever map and a way to
truncate it.

4.1 Definition For a pointed C-scheme (X,Q), i.e., QsX{(C), we put

C(m)(X,Q) = {morphism Spec C[z]/(zm+1) —> X , which sends

the closed point to @ )

Elements of C(m (X,Q) are calied m-truncated curves at Q@ in X.

)

C(m‘ is a covariant functor on the category of pointed
C-schemes. C(m) {mell) form a projective system and put C :=
I;m C(m) , which is also a covariant functor. Elements of C(X,Q)
m

are called curves at Q in X. When X is a group scheme and @ is its

identity element, we recover the covariant Dieudonne module (Cartier

module).
4.2 Let ém) denote the collection of pointed curves with
m-truncated formal coordinate c¢f.[KNTY]l. Then,

n

_ o))
Lemma  For (C,Q) M

{(m) (0>
. .
. Cimy (C»Q) equals the fiber of Akg —%/Mg

at (C’Q).

[f we apply C,_. to the "universal” family of pointed curves

{(m?
07 . , {m)
(/{/Zg /Jf/(.g) L/Mg .

o
aﬂg — M%g , then C .
Now consider the "universal'" family of pointed principally

~

polarized abelian varieties .}420) — g‘]g and put C(Mém/ ﬂg) =:

3

g
s 0N
which is an Aut€€tlelxaﬂéo)—torsor over sﬂ;“).
1.3 Albanese morphism ¢ : (C,Q) — (Jac{l),[Ql}, [Q1=0-:Q), induces
C(m}(C,Q) — C(m)(JaC{C),[Q])

) ; . . . {03 Q)
If we consider Albanese morphism for the family M~/ M —%Lﬁg /5Qg,
o o

we get
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—
JKE ‘ﬂg
and its truncations
(m > (m) (0>
— 1= C,
‘Mg ﬂg (m)(ﬁg /ﬂg)
Remark Notice a theorem of Cartier
C{Jaci(Cy,IQ]1) — Homf.gp(W,JaC(C)/[Qlf

For the notation and its content, cf.[KSU2].
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Deformations of Complex Analyvtic Subspaces with Locally Stable
Parametrizations of Compact Complex Manifolds
By Shoji Tsuboi

Department of Mathematics, Kagoshima University

Introduction. In this paper we shall give a definition of
compler analytic subspaces with locally stable parametrizations of
compact complex manifolds, which is a generalization of closed
complex analytic subsets of simple normal crossing in [3]1 and
analytic subvarieties with ordinary singularities in [9], and we show
that their logarithmic deformations and locally trivial displacements
{cf. Definition 1.5 below) are equivalenl to deformations of locally
stable holomorphic maps (cf. Definition 1.1 below). From this
equivalence and Miyajima-Namba-Flenner's theorem on the existence of
the Kuranishi family of deformations of holomorphic maps, it follows
that there exist the Kuranishi family of logarithmic deformations and
the maximal family of locally trivial displacements of a complex
analytic subspace with a locally stable parametrization. These are
a unification and a generalization of the results in [3] and [91].
Throughout thnis paper all complex analytic spaces are assumed to be
reduced, second countable, and finite dimensional. For notation and
terminology concerning logarithmic deformations , locally trivial
displacements of a complex analytic subspace and deformations of a

holomorphic map, we refer to [3], [8] and [2], respectively.
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81 Complex analyvtic subspaces with locally stable parametri-
zations and their deformations

Let X and Y Dbe complex manifolds, and & and T finite
subsets of X and Y , respectively. A multi-germ f:(X,5) —
(Y, T) of a holomorphic map at S is an equivalence class of
holomorphic maps g:U—>Y with g(5)=7, where U are open
neighborhoods of S in X. Throughout this paper we shall
interchangeably use a multi-germ of f and a representative g of f. A
germ of a parametrized family of multi-germs of holomorphic maps is a
multi-germ FI(XX@T,SXU)——%(YX@T,TXO) of a holomorphic map such that
FiXxt)cYxt for any ¢ in some open neighborhood of U in cr. An
unfolding of a multi-germ f:(X,8)—=(Y,7) of a holomorphic map is a
germ of a parametrized family of multi-germs of holomorphic maps
F:(XxCT, 5x0) —(YxC", Tx0) such that Fix, 0)=(f(z),0) tor z€X.
We say that an unfolding F:oXxCl, sx0)—(vxCh, Ix0) of a multi-germ
f:¢(X,8)— (Y, T) of a holomorphic map is trivial if there exist
germs of ft-levels (teth preserving analytic automorphisms G:xxct

L Sx0)—— (XxCT, Sx0y  and  H:(YxCT, Tx0)— (YxCT, ITx0) with & d

1xx0” Yy
HIYXO: idY , such that HOFéij: fxidﬁr. We say that a multi-germ
F:(X,8)—(Y,7T) of a holomorphic map-is simultaneously stable if
any unfolding of f is trivial.

1.1 Definition. A holomorphic map f:X——Y between complex
manifolds is said to be locatly stable if, for any point y€Y and
any finite subset SCf_](y) , a multi-germ f:(X,S8) —(Y,y) is
simul taneously stable.

1.2 Definition. A complex anlytic subspace Z of a complex

manifold Y is said to be with a locally stable paramelrization if
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(i) the normal model X of Z is non-=singular, and

(ii) the composite map f:= t°n: X—>Y is locally stable, where
n:X—>7Z is the normalization map and 11:ZcY is the inclusion map.

1.3 Example. A closed complex analytic subset Z of simple
normal crossing of a complex manifold Y is a complex analytic
subspace with a locally stable parametrization. This follows from
Preposition(7.1) in [91]. Here we say that a closed complex analytic
subset Z of a complex manifold Y is of simple mormal crossing if
the following conditions are satisfied:

(i) Z= \}Zi ,where Zi (1<i<k) are complex submanifolds of Y.

=1
(i) For any point p€Z , if we let Z. , Z_ ., ..., Z. be all
i 1 1
! A k
irreducible components of Z which are through p , then there
exists a local coordinate system
(z,,..., 2 4 e Z ey Z ., Z z ...y 2. ) of
? y 1 + 14 ? ¥ Y + ? ’ y + 14 y
7 r, Ty ! r, L 7 LT ! n
Y with center p such that each Zr (/<xx<k) is defined by
o
zra_]+j = .. :zra: 0 , where we understand rO:O.

1.4 Example. Suppose that (dimY, dimZ) belongs to the mnice
4ange in the sense of J.N.Mather (L{41, or [9, Definition(3.3)1),
then an analytlic subvariely Z with ordinary singularities in a
complex manifold Y is with a locally stable parametrization.
Here ordinary singularities are defined to be the ones which occur in
the image of a manifold by a generic linear projection ([91).

From now on let Z be a complex analytic subspace with a
locally stable parametrization of a compact complex manifold Y.

1.5 Definition. An analytic family of logarithmic deformations
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of a pair (Y,Z) (resp. of locally trivial displacements of Z 'in Y)
parametrized by a complex analytic space M is a sextuplet

F={y,q,n, M4, 0, (resp. a quintuplet  F=(YxM,%,n, M4, 0)) satisfying
the following conditions:

(i) m:%——4 is a proper smooth holomorphic map between complex
spaces ¥ and M ( resp. m:¥—>H is the restriction to % of the
canonical projection PTM:YXM——%M ),

(i) £ 1is a closed complex analytic subspace of % (resp. of

Yx#),

(jiy 0 1is an assigned point of H# and W:Y——ﬁn_j

isomorphism such that W(Z):n_](O)nﬁ (resp. n*j(O):ZXO), and

(0g) is an

(iyY mw 1is locally a projection of a product space and the
restriction of m to ¥ is so ( resp. m is locally a projection of a
product space); that is, for each point pe€¥ (resp. peYxM), there
exist an open neighborhood ﬂpc@ (resp. %DCYXM) of p and an
isomorphism ¢p:ﬂp——%va, where U:ﬂpﬁn—](n(p)) and V:n(ﬂp) (resp.

V:PrM(ﬂp)), such that (a) the diagram

]
U p >sUXVY
p
Tt PrV
{resp. PrM)
v

is commutative, (b) ¢p(%pn%):(Uh%)xV, and (c) ¢

p U (0) " s (p) -
For a pair (Y,Z) we denote by f:=ten:X—Y the composite of
the normalization map 2:X——7 and the inclusion map t:ZcY ,and by

2(F,X,Y) (resp. 92¢(f, X)) the category of germs of families of
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deformations of f:X—Y with Y wvaried (resp. with Y fixed), and
by 2(Y,Z) (resp. £(Z}) the category of germs of families of
logarithmic deformations of (Y,Z) (resp. of locally trivial
displacements of Z in Y ).

1.6 Theorem. 2(F, X,Y) and £(Y,Z) (resp. 9(f,X) and £(Z))
are isomorphic as categories.

Proof. The proof is almost identical with that of Theorem(l11.1)
in [91 (= Main theorem in [8]). Although in [9] we consider only
locally trivial displacements of Z in a fixed ambient manifold Y
and deformations of JfFf:X—Y with Y fixed, the proof of
Theorem(11.1) in [9]1 is also valid for logarithmic deformations of a

pair (Y,Z) and for deformations of Jf:X—Y with Y wvaried. Q.E.D.

§2 Comparison of infinitesimal deformation spaces

As in the preceding section, let Z be an analytic subspace
with a locally stable parametrization in a compact complex manifold
Y, and let f:=t.n: X—Y be the composite of the normalization map
n:X—7 and the inclusion map t:ZcY. We denote by TY the sheaf
of holomorphic tangent vector fields on Y, and by TY(LogZ) the
sheaf of logarithmic tangent wector fields along Z in Y, that is,
the subsheaf of TY consisting of the derivations of 0 which send

Y

the ideal sheaf of 7 in OY into itself. We define a sheaf

NZ/Y by the following exact sequence:

— (]

/Y

bd

(2.1) (] TY(LogZ) — TY — NZ

and TX/Y by the following one:
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J
(2.2) 0 — Ty df, FATy — Ty 0 — 0.

The infinitesimal deformation spaces of logarithmic deformations of a
pair (Y,Z), locally trivial displacements of 7 'in Y and

deformations of a map f:X—Y with Y fixed, are H](Y,TY(LogZ)),

0

H (Z,NZ/Y) and HO(X,ﬁx/Y), respectively. Their obstruction

2 » ! 7
classes belong to H (Y,TY(LOQZ)), H (Z,NZ/Y) and H (X,?X/Y

respectively. As to the infinitesimal deformation space of a map

F:X—Y with Y wvaried, there are two spaces; H](TX,Ty,f*TY)

defined by Namba in [6]1 and Exté((Q%,Q;),(OX,OY)) defined by

Flenner in [11]. Here € is an abelian category whose objects are

)

triplets (%,49,¢), where F 1is a coherent OX—module, % a coherent

OY—module and wEHom@(f*@,?), and for (7, %,90), (F ,% ,0 )€g, a
X

morphism from (%, %, @) to (3,9 ,0 ) is (a,B)eHomO(?,g’)xHomO(@,@’)
X Y
such that the diagram
fre —L28 ragr
w‘ Jw'
g — % g
is commutative. The obstruction classes to deformations of f:X—>Y

2

with Y wvaried belong to H (TX,Ty,f*TY).

2.1 Proposition.

(i) NZ/YQ f*?X/Y , and so there exisits an’ isomorphism

]‘L

ez, Ny )= gtex, Ty ) for ix0.

(i) There exist isomorphisms



i i
2 ) A
H (TX,T f*TY)e—— H (Y,TY(LOQZ))——+ Emt ((QX,Q )y (OX,GY)) for i=0.
Proof. For the proof of (j) we refer to Proposition(9.1) in [91].
Here we prove (ji). By (2.1),(2.2) and (j) of the proposition, we

have the following diagram of exact cohomology sequences;

. 5 . , .
i1 1 1 Jf i u i L
— ut e o—TIs it T o—s wtex, e Wtk T,
(2.3) 5];3"7 ]a ]f* ﬁ]ft
— gtz X Z/Y)—2> Wt T, (LogZ))—FP— ntey, 1)~ 0tz n, ) —

Since f!X—Y is an immersion outside a two-codimensional subset
of X (cf. Corollary(4.2)in [91), it naturally induces a homomorphism
HL(Y,TY(LogZ))——aHL(X,TX). This is the map o in (2.3). By (2.3)

we have an exact sequence of cohomologies

i1 (1097) )28, iy TX)@Hi(Y, T,)

__)H
(2.4)
_ii:iﬁ HL(X,f*TY)——*

(X, f*T )=2, gyt (Y, T

Here & is the composite of the homomorphisms:

v lex, pero S gt lex, g )M nt ez, x )6—2> By, To(LogZ))
' Y XY "7y Lyt t0g

On the other hand there are exact sequences of cohomologies;

1—17

_)H

(2.5)

‘ i i i

—s i tex, FAT)—
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([6, Proposition{(3.6.9)]1, and

I 61

— izt gl o

6, )Tt ((Q4, Q1) (0,,0,))
2.6)
—Extl b, 0,)0@ztl @l 0 ) —Eztl el 00—
X Y X
(L7, (2.2)1). By comparing (2.4) with (2.5) and (2.6), we have the
assertion (j). Q.E.D.

Suppose we are given an analytic family F=0, %, x, M, 0,¥¢) of
logarithmic deformations of a pair (Y,Z) (resp. F=(YxM, %, n, 4, 0) of
locally trivial displacements of Z in Y). Then, by normalization
(cf. [9, Theorem(10.1>1, or [8, Theorem2l) from F we get a family
?r(%,F,w,n;wjﬂ,O,@,w) (resp. ?r(ﬂ,F,n,M,O,w)) of deformations of

F:X—Y with Y wvaried (resp. with Y fixed):

X ———7J;———4 Y resp. X ———f—i;——ﬁ Yx(0
¢ §t X, s v @ 5 IX, I
XO——~—————4 YO XO Y %0
N n n n
o — & LN

q [////
" \ W /
2.2 Proposition. The characteristic maps of F=(%,%,n, M, 0,¢)

and &=(4, F, %, W, M, 0, 0,¥)) (resp. F=(YxM, %, m M4, 0 and

ﬁ:(%,F,n,M,O,w)) are related as follows;
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Hf(TX,Ty,f*TY) resp. wlex, s

. o XY
o~ =
? 0

TO(M) $ TO(M) -7
Po ; ;;\\\&0
i (Y,TY(LogZ)) \ H (Z,ﬂZ/Y)
Proof. By Direct calculation of the characteristic maps. Q.E.D.

By Miyajima-Namba-Flenner's theorem on the existence of the
Kuranishi family of deformations of holomorphic maps ([5, Main
Theoreml),[6, Theorem(3.6.10>1,[1, Theorem(8.5)1), Proposition 2.1
and Proposition 2.2, we obtain the following.

2.3 Theorem. For an analytic subspace Z wilh a locally stable
parameirization of a compact complex manifold Y, there exists an
analytic family F=%, %, M4, 0,¥) of logarithmic deformations of a
pair (Y, Z) (resp. F=(YxM,%,n,M,0) of locally trivial displacements
of Z in Y) such that;

(i) the characteristic map

O(M)——eHO(Z,NZ/Y)) is injective,

R 1
pO.TO(M)——*H (Y,TY(LogZ)) {(resp.
GO:T
(ii) it is comptete al any point (€M (resp. it is maximal at
any point te€M )), and

iy it is semi—universal at 0 (resp. it is universal at 0 ).
2

Furthermore, if H (Y,TY(LogZ)):O {(resp. H](Z,ﬂZ/Y):O), then
the parameter space M is non—-singular and the characteristic map
. 7 . 0 .
pO.TO(M)——+H (Y,TY(aogZ)) {resp. oO.TO(M)——aﬂ (Z,NZ/Y)) i8
bijective.
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Non-Galois triple coverings and double coverings
by Hiro-o TOKUNAGA
20. Introduction

To study non-Galois triple coverings of smooth projective varieties, " the
Cardano formula” plays an important role. In preceding two papers [7],
[8] we have studied non-Galois triple coverings of algebraic surfaces by
using the Cardano formula. The method used there was different from R.
Miranda's one which was developed in his paper [4]. This article can he
regarded as a research by the same method as preceding papers [7], [8].
But, our view point is different from them in the following sense :

Let p:X-—>Y be afinite normal non-Galois triple covering of a
smooth projective variety Y. In[7], we have defined " the discriminant
variety, D(X/Y)" and " the minimal splitting variety, X ." (Cf. [7],
Definition1.1 and Definition .1.2.) Both of them are Galois coverings of Y,
and satisfy the diagram :

(diagram 1)

p, : X' ———> Y :a Galois covering with Galois group(g ..
B, : DIX/Y) ———Y :a double covering,

B, X ——— DIX/Y):acyclic triple covering,

a X - X :a double covering.

In [7], 18], we have studied the structure of a given triple covering p: X
——>Y and a concrete construction for a given Y and a given non-Galois
cubic extension of the rational function field of Y. In both cases, our main
problem was concerned with the base variety and its non-Galois triple
coverings. In this paper, we will attend the double covering DIX/Y). From
the above diagram, we can consider the following natural correspondence :

(diagram 2)

We would like to consider something like an "inverse” of this
correspondence, that is, to give some conditions for a double covering 7 of
Y such that there exists a non-Galois triple covering of Y whose
discriminant variety is 7. Concerning with this problem, we-have a partial
answer as follows :

Research partially supported by the Grant-in-Aid for Encouragement of Young
Scientist (A) 01740055.
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Proposition 1.1, Let f: 7 —— -Y be a smooth linite double covering
over Y. Let D, be areduced effective divisor and D,, D; be effective

divisors. We denote the involution induced by the covering transformation
by o, and ¢*D, is the transformed divisor of D; by 0.  Assume that

(i) D, " o*D, has codimension at least 2,

(i) D, + 3D, is linearly equivalent to o*Dy + 3D
Then, there exitsts a non-Galois triple coVering of Y whose discriminant
variety is 7, and f(D,) is just the totally branched divisor of the non Galois
triple covering.

The conditions in the above proposition can be reasonable, becauvse we
have the following proposition.

Proposition 1.2. Let p: X ——>Y be alinite normal non-Galnis triple
covering. Assume that the discriminant variety D(X/Y)} is emooth. Then
there exist three effective divisors D, D,, Dy which satisfy the conditions
as follows:

(i) D, is reduced and the intersection ol U, and oD, has codirnension at

least 2, where o denotes the involution on DIX/Y),

(ii) D, + 3D, is linearly equivalent to o"D; + 3D; |

(iii) D, + ¢*D, is just the branch divisor ol i,

There are some application of the above propositions. For the lirst, we

will consider non-Galois totallv ramified triple coverings of abelian
varieties, and we have :

Therorem 2.4. Let p:X-———> A be a smooth, finite, non-Galois totally
ramified triple covering of an abelian variety A. Then, there exist an
elliptic curve E and a non-Galois totally ramified triple covering p: C
————> K such that the following diagram commutes :

{diagram 3)
where g has a connected fibre.
Next, we will studv noni-Galois triple coverings of algebiaic surfaces with

Picard number = 1. Let ¥ be such a surface, and C be a smooth curve on
> . Then, we have :
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Theorem 3.1. Let (2, C) be as above, D be a smooth curve on 2, and
p:S—— % be afinite normal triple covering of = which satisfies :

(i) the branch locus A(S/2) = C+ D,

(ii) for any x € C, p Hx) consists of two points,

(iii) for any vy € D. p Hy) consists of one point.
Assume that C = 2n/where [/ is a generator of NS(I).
Then, we have :

a) D= m/ m< 2n.

bl for each xe Ca D, p (%) is a singular point of Ay type, where k

depends on x.

Moreover, if X is simply connected, and the equality in the above
statement a) holds, we can study their structure in detail, and we will
obtain Theorem 3.4.

This article consists of three sections. In 51, we prove Proposition 1.1,
and Proposition 1.2. In 282, we will study non-Galois totally ramified
triple coverings of abelian varieties, and prove Theorem 2.4. In the last
section, we will studyv non-Galois triple coverings of algebraic surfaces with
p(z) =1, and prove some statements.

Notations and conventions.

In this article, the ground field is always the complex number field, C.

For a finite normal non-Galois triple covering p: X —— Y, varieties
D(X/Y)and X always mean " the discriminant variety” and "the minimal

splitting variety, respectively, and morphisms p,, B, and B, always
mean the morphisms satisfying the first diagram in & 0.

A(X/Y) - the branch locus of a triple covering p: X ——> Y
C(X) : the rational function field of a variety X.

Let ¢ be an element of C(X). we denote its zero divisor and polar divisor
by (§), and (¢)_respectively.

Let D be a component of the branch locus of a triple covering p : X ———
Y. We call D is a totally branched divisor if for any p D, p~!(p) consists of

one point.
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For a line bundle I, over a smooth variety X, we call I, is numerically
effective { ze/ for short ) if LC2>0 for and irreducible cuuve on C.

For a line bundle L over a smooth variety X, we call 1. is big if x(D, X)
=dim X .

Let D, D, be divisorson X. D, ~ D, means linear!l equivalence for two
divisors, and D, = D, means algebraic equivalence for two divisors.

NS(S) : Neron-Severi group of a surface S.

p(S) : Picard number of a surface S .
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S1. Triple coverings and double coverings

l.et Y be asmooth projective variety. [n this section, we will consider
somthing like an "inverse” of the natural correspondence rom non-Galois
triple coverings of Y Lo double coverings of Y. For the first, we will
construct a finite normal non-Galois triple covering of Y from a smooth
double covering of Y.

Propositions 1. 1. Let {:7 ——> Y be asmooth finite double covering
of Y. Let D, be areduced effective divisor, and D,, D, be effective
divisors. We denote the involution induced by the covering transformation
by o,and o*D, is the transformed divisor of D, by o¢. Assume that

(i) D, n 0*D, has  codimension at least 2,
(it) D, + 3D, is linearly equivalent to ¢'D; + 3D;

Then, there exists a non-Galois triple covering of Y whose discriminant
variety is 7, and f(D1) is just the totally branched divisor of the
non-Galois triple covering.

Proof. From the above assumptions, there exists a rational function
¢ ¢ C(Z) which satisfies :

((I))U - l)l + 31)2 ,

(¢), - o*D, + 3D, .
Let g, g, and g; be defining equations of D, D, and D respectively.
Then,
00%0 = (g, 8;3)/(07g,8;3) (078, 078,3)/(g,07833)
= ((,0"8,)/(g50"g ;)7

Note that there are two possibilities :

(i) D, + 6*D, is linearly equivalent to D, + "D, ,

(i) D, + 0*D, is not linearly equivalent to D‘-5 +.0"D; .
Now, we will define a cyclic cubic extension K of C(7) for each case as
follows :

Case (i) K = C(Z)(E),
& - 0 .

Case (ii) K = C(Z)¢E),
= 07,
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where ¢~ = a9, a = ((g,0"g,)/(g,0%g;)) (= po”).

Claim. Let K be the field defined as above. Then, for both case (i) and
(ii), K is a Galois extension of C(Y), and its Galois group is (¢ ; (third

symme tric group).

Proof of Claim. Case (i) : Since o*¢p = y3/¢ . y € C(Y), our claim is clear.
Case (ii) : Since ¢*¢” = ac*d = a2/¢p=a’/¢ and a € C(Y), our claim is clear.

Let 7 be the K - normalization of Y. Then, by the above claim, 7" isa
Galois covering of Y whaose Galois group is G 5 for each case. let o be a
hirational involution on 72" induced by an element of the Galois group. By
Proposition 1. 3, |71, it is an automorphism. Let X be the quotient variety
of 77 bv ¢ Then, it is clear that X is a non-Galois triple covering of Y
whose discriminant variely is 7.

V. E D

Remark. |. Let D be the totally branch divisor of the triple covering
defined in the above proposition. Then, B,"D (= £*D) is contained in Dy +
o"D,.

2. Since there are three involutions in ¢ 5, there are three non-Galois

triple coverings of Y corresponding to each involution. But, thev are all
isomorphic to each other.

Proposition 1.2. Let p: X ——> Y be aflinite normal non-Galoeis triple
covering. Assume that the discriminant variety D(X/Y) is smooth. Then
there exist three effectiive divisors D, D,, D; which satisfy the conditions
as follows -

(i) D, is reduced and the intersection of D; and ¢"D, has codimension

at least 2, where o denotes the involution on D(X/Y),

(ii) D, + 3D, is linearly equivalent to ¢*D, + 3D ,

(iii) D, + 0*D, is just the branch divisor of f,.

Remark. Let D be the totally branch divisor of p. Then, p,"D =D, +
oD, .

Proof. Since X 15 a non-Galois triple covering over Y, we mav assume
that C(X) is a cubic extension of C(Y) as follows :
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C(X) = C(Y)(0),
where 0 satisfies a cubic equation

A3+ 3a¥v26=0, a b CY).
Under the above notation, DIX/Y) is the C(Y)({)-normalization of Y, where
¢ satisfies a quadratic equation :

X2 = g3+ p2
Let K be the minimal splitting field of C(X). Then, by the Cardano's
formla, we have :

e

{;3

C(DIX/Y)NE),
-pror g

Put ¢=-B," £+ ,and we denote its zero divisor and polar divisor by
(9),, (§)_ respectively, and ils decomposition into their irreducible
components as follows :
(o - T (Hl = TvD  where 1 v » 0
0~ &5 l‘Ll i , . Jeo T \Il J ,\\’ ere l'l'l "VJ 2L
i j

In the above notation, we rewrite ; and v;as follows :

= R+, vi=vi+ 3V, wherep,vj=1lor2Zand p5, v > 0.

Then we can write (¢), and (¢)_ as follows :

Tt ' (0] S T " (0)
(Pio= E piby + 3% pib;
i i
(o1 T vp™ L 3T g
P,'m: & Vij + 5_.5, v ]'Dj ,
j j

where I and I denote thatl the sums are taken [or non-zero g7, p';, v
and v’ Lel D;(®) be an irreducible component of (), for which p'; is not
equal Lo zero. Since ¢ 6*¢ - 27, ¢'D,(0) = D,(O) and there are Lwo
possibilities :

Case (1) ¢'D;(0) is one of the irreducible components of (¢),
pof DO =1, and p'; of a'D,(0) = 2,

or
jof DO = 2 and p of 0'D(0) = 1.
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Since o2 = id, we may assume thal poof DO = and p ol o' Do) = 2
Case (2) a'D,(0) does not appear in the irreducible components ot (),

In this case, ¢'D;(0) must appear in the irreducble components of ()

and ;= vy

For any Dj(m‘l for which v'j i1s not equal to zero, we have the same results as

above. Hence, we can rewrite (¢), and (¢p) as lolows:

. - J(0)Y oL (0) I w0
(<P)0 = E 1 iDEO‘) + & (D; '+ 20°D ) v 3 5 Rl
1'=0,0"D; "z @)o w-1,6'D; e () Y
™ f honl v(i\)) . (\“-] - - - ‘-:~?»]
(¢). = o 5 w0 . = (0 20D 3 B v,
p1<0,0° DVt B vi-1,0'D,"c (). V-0

Now, we will define three reduced divisors Dy, sz, and l)3 as follows

(0 Jlee)
D=2 0% E 0 oy z o',
pr -1 }LIQEE.G'Di(O)(Z(;b]D v‘,«l,o‘Dﬁm)c (@)
0 ) . (0
Dy:= = DE - = O'DEL) voE NG ’ :
pi'-Z,G‘DIO)(Z( P o -1 ,O‘D:U)d ¢lo pi=0
Dz = = D(oo] . - 'Dm) L ‘”.D(m]
3= Fan 5 o o &S00V i '
\’"]10

v,'-—l,o‘D,(m)C(gb Jo p',~2,0‘D:mc{(¢)o

It is clear that divisors Dy, D,, D, satisfy the statement (1), (ii} in

Proposition 1. 2, so we get the desired divisors on D(X/Y).
Q. E.D.
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Corollary 1. 3. Let X be afinile normal non-Galois triple covering ol a
smooth projective variety Y , and B be one of the irreducible components
of totally branched divisors on Y. Assume that D(X/Y) is smooth. Then,
the divisor B,*B is a divisor on D(X/Y) which consists of two irreducible

components which are isomorphic to each other.

Proof. Assume that B,"B isirreducible. Then, it is clear that  'B =
o'(B,*B). However, by the assumption, B,'B is an irreducible component
ol the branch divisor of B, . This contradicts to Proposition 1. 2, (i).
Therefore, P,'B consists of two irreducible components, and they are

isomorphic to each other.
Q. L. D.
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2. Totally ramilied triple coverings ol abelian varicties.

In [7], we have definend " a totally ramified triple covering” as
follows :

Deflinition 2.1. Let p: X > Y be anormal fintte triple covering
over a smooth projective variety Y. We say that p is totally ramilfied if
for all irrcducible components of ramilication divisors, ils ramilication
index is equal to 3.

Remark 2.2. Note that if p iscyclic, then p is totally ramilied.

It is easy to show that if Y is simply connecled, then p is always
cyclic. (CI. Proposition 3.1, {7 In particular, any totally ramified triple
coverings of P are cyclic. In the rest of this section, we will study
non-Galois totally ramificd triple coverings over abelian varieties. First ol
all, we will give an example of non-Galois totally ramified triple coverings.
It is an easy one but essential.

Example 2.3. Let E= C/(1,1), Im(1)>0 be an elliptic curve, and
¢ be an isomorphism of E such that
. E — E

AV [\

Z v 74
where 1 is a two torsion pomt of E.
Let p. qbe points on E such that q=o(p). Then, since 2Zp is linearly
equivalent to 2q, there exists a rational function ¢ satisfying

(¢) = 2p - 2q.
Moreover, it is clear that
a'dg=1/9.

Let C be the C(E)&)-normalization of E, where &3 = ¢, and E be the
guotient curve of E by o. Then, it is easy to show that € is a Galois
covering over E  whose Galois group is Gs ( the third symmetric group).
Let ¢ be an element of order 2, and C be the gquotient curve ol C by o
Then, p: C—> E is a non-Galois totally ramified triple covering over
E, and its brach locus 1s one point.

Figure 1

Now we will state our theorem.
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Theorem 2.4. Let p: X ——> A be a smooth, {inite, non-Galois
totally ramified triple covering over an abelian variety A. Then, there
cxists an clliptic curve E and a non-Galois totally ramified triple covering
p . C ——> E such that the following diagram commutes :

(diagram 3 )

£ ¢ pisinduced by p .

To prove Theorem 2.4, we need a lemma.

Lemma 2.6. Let p: X > A be as above. Then, B] is unramified.
(Hence, DIX/A) is also an abelian varietiv.) Moreover, B '(AMX/A)) =D+
Tw'D, where 11 is a two torsion point of D(X/A) and Ty is the translation

mduced by 1.

Proof. Under the assumptions, o : X —— > X s unramified in
codimesion [. This fact implies that B, is also unramified in codimension
1. So, by the purity of the branch locus (see Zariski [9], or Fischer [2]), B,
is unramified. Hence, by theorem of Serre-Lang (see Mumford [§], p167),
D(X/A) has a structure of abelian variety such that B, isisogeny. Since
there 1s a one to one correspondence between [inite subgroups and
isogeneis (see Mumford [S], p72), there is the discrete subgroup K such
that

D(X/AVK = A.
Therefore, we may assume that K= «<n>, 21n=10. By Corollary 1. 3,
B’ (A(X/A)) has aform such as D+ o', where o denotes the involution on
D(X/A), hence, we have

B, (DIX/A)) =D+ Ty'D.

Q. E. D

To prove our theorem, we quote the following fact.

Fact 27. Let D be an eflective divisor on an abelian variety A. Then,
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there exists an abelian variely A, a morphism with a connected libre g

A ——> A, and an ample divisor D, on A, such that D=q'D,
For a proof, see Mumford [ST, p88.

Proof of Theorem 2.4. Since X is smooth, and a is unramified in
codimension 1, a is unramified. Hence, X is also smooth. and
B, (A(X/A)Y is a smooth divisor. By the results in 81, p,'(A(X/A)) is can

not be irreducible. For this divisor, we have the next claim :

Claim 2.8. There exist an eliptiic curve L, and morphism g: A — > [,
and a divisor & on E such that:
DIX/7A) = ' (8).
Hence, all irreducible components are abelian subvarieties, and Lthey do
not inetersect each other.

Proof of Claim 2.8. By Fact 2.7, there exists an abelian variely A a

morphism g, : DIX/A)
divisor D, on A, such that ¢,*(D;) = B, "(ALX/A)). Assume thal dim A,
> 1. Then, since D, is ample, D, is connected, so B ' (AX/A)) is also
connected.  Since B, *(A(X/A)) is smooth, B, "(A(X/A)) must be

irreducible. This is contradiction. Therefore, dim Al = 1. Morecover, an

> A, with a connected libre, and an ample

arbitrary irreducible component of §, HA(X/A)Y Qs transformed to another
different irreducible component by the involution on DIX/A), so, A(X/A)
has the same form such as B,*(A(X/A)), and our claim holds.

Q. E. D

Now, we will continue a proof of Theorem 2.4. 1t is sufficient to show
that the following statement.
The diagram :

(diagram 4 )
ts commutes, where C is a Galois covering of the elliptic curve I whose

Galois group is isomorphic to@3 (the third symmelric group), and q, a;. Yy
have connected fibres.
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Step 1 : The diagram

(diagram &)

commultes, and g, g, have connecled fibres.
This statement follows the proof of claim 2.8.

Step 2 : There exists a Galois covering of the elliptic curve E whose
Galois group is isomorphic to Gy, and the diagram :

(diagram & )

commules, and ¢, has a connected fibre.

Let g, : X - C be the stein factorization of the morphism (gyoB,)
X —— . We will show that € has desired properties. TFor the first,
we prove the following claim

Claim 2.9. Let vy be a general point on E. Then (q,» B,) 'y} consists

of three irreducible components.

Proof of Claim 2.9. By the results of &1, we have
C(X) = CIIMX/A)) (L),
& =0,
() = (D, + 3D,) - (@'Dy + .3[)3),
where Dy, D,, 1’)3 are elfective divisors, and [}, is reduced and consists of
just branch divisors. Put
L=1D,-Ds5.

It is sulficient to show that
L lqi'(y)
is trivial. Since 3L~c¢'D, - D, and all components of ¢'D, and D, :are
the branch divisors of J,,
3L qitty)
is trivial. On the other hand,
o'¢p § = a’, for some aeC(A).
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Therefore,

O'DZ + 1)2 - (0.1)3 + D}] = (a)n - (d]mN U
So we have :

o'D, ~0'Dy ~ (D, - D)~ L,
By Lemma 2.6, we have ao'D, - Tn'DZ, a'l; - Tn‘ s, hence by Theorem of
the square (see Mumford [ |, p39),

20'D, ~T,,,'D, + D, ~ 2D,

20'D; ~ T, "Dy + Dy ~ 2D
By these equivalences, we have :

- 2],1 ~ 2(0‘ ].)2 - O'I)j)
~ 21, .

N+ 3

sSince
3qui'(y) ~ O
is trivial, we have
0 ~ 4Ll qilty) ~ Ligi'tn
as desired.

By Claim 2.9, C ——> E is acovering of E of degree 6. To show that the
covering is a Galois covering as desired Lype, notice thal since g, has a

connected libre, C{C’) is the algebraic closure of C(E) in C(X').

By Step ! and Step 2, we obtain Theorem 2.4.
Q. E D

Remark 2.10. Let p:X ——> A be acydlic triple covering of an
abelian variety A. Assume that X is smooth and the branch divisor of p
is Lthe same form as i Claim 2.8. Under these conditions, it seems that the
analogous statement such as Theorem 2.4 holds, that is X is induced by a
cyclic triple covering of an elliptic curve E. But this is false. We will give
an example :

Let E, E, bean elliptic curves, and put A =E; x E,. Let § (resp.§,) be
principal divisors on E,; (resp. E,) such that
dy=pprpy p3 - 3pg,  where p; are all distinct four points,
b, = 30y - 30, wherer, =q; + 1,11 a 3-torsoin point.
Let ¢ be anelement of C(A) satisfying
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(9) = p,* (8,) + p,*(8)),
where p; denotes the projection A =E, xE, —— L.
Let p: X-——>A be acyclic triple covering of A such that
C(X) = CLANE), &5 =¢.
Then, X salisfies the conditions as above, but it is not induced by a cyclic
triple covering of E,.

—369—



3. A non-Galois triple covering of an algebraic surface with p{S) = |

LLet &£ be an algebraic surface with p(2) = . In this section, we will
study a finite normal non-Galois triple covering S of ¥ whose branch
focus congists of two smooth curves. Let C be a smooth curve on . Then
we have the following theorem :

Theorem 3.1. Let (¥, C) be as above, D be a smooth curve on ¥, and
p:S——> 2 be afinite normal triple covering of £ which satisfies :

(i) the branch locus A{S/%) = C+ D,

(ii) for any x € C, p 1(x) consists of two points,

(iii) for any v e D, pl(y) consists of one point.
Assume that Cz2nl where /is a generator of NS(x)
Then, we have :

a) Dzm/ m=2n,

b) for each x¢Cn D, p'(x) isa singular point of As
depends on x .

| type, where k

To prove Theorem 3.1, we need the following lemma :

Lemma 3.2. Let C, D be the curves in Theorem 3.1. Let p be a point
in CnD. Then, by taking a suitable local coordinate system (%, v), we
can represent local equations of C and D as follows :

p =1(0,0),
C:. v=0,
D: f(x,y)=vyv +ax?®+- =0, keN, a%0.

Proof. By taking a suitable local coordinate system, we mayv assume that
p=(0,0) |
C:v=0,
D: f(x,v)=0.
Since D is smooth, (3f/3x (0,0}, 2f/2av(0,0))  (0,0). Assume that

/3% (0,0) af/2v (0,0)

$0
0 !

Then, we can rewrite f(x,v) such as:
f(x,v) = x £ (xy) + £,(y), £(0,0) 40, ,(0)=0.

By using the local coordinate system (x,y), B, : D(S/Z) ——> ¥ is
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represented as B, : (x, z) ~——> (x, ¥) = (x, z2). Hence, by using the local
coordinate system (x, z), the local equation of ,*D (we denote it by {7) is
as follows :

F7(x.z) = x ' (x, 72) + £,(72),
where , and f, are as above.
Therefore, p,*D is smooth and p is a branch pointof B,*D - -—> D.
lTence, (,*D is irreducible around B]"l(p) . and this contradicts to the
result in Corollarv 1.3, So, f(x, v) satisfies 2f/9x(0,0) = 0, and we can
write f(x,y) as:

flx, v) =y g (x.v)+g,(x), g,(0.0) %0,

g,(x) = xMg,(x), g,(0)+ 0, h>0.
So, f(x,y)/g,(x,y) is expanded as:

fix, y)/g(x, y) -y +alx, v)xh+- | a(0,0) ¢ 0.
If h is odd, then by using the same local coordinate svstem (x, z) as
above :

f(x, z2)/g,(x, z2) = 22 + a(x, z%) x"+ |
But this expansion means that p,*D is irreducible around p, 1(p}, and this
contradicts to Corollary 1. 3. Hence, h must be even, and we have the
desired result.

Proof of Theorem 3. 1. a) Put B,*D =D +0c*D, where o is the

involution of D(S/X). Since D is smooth, D nd*D ¢ (,*C) and by

FLemma 3.3, we can derive equalities : e
D, oDy =D, (B Cleg =0"D (BClpy -

Hence, we have p,"C (D1 - O*Dl) =0, and the llodge index theorem, we

have D,;2< D, ¢*D. Put D X m/ Then, by the above equalities, we have :
DB, C)gyq = "D (B,¥C)py = N /2.

Therefore, we have :
2m? /2 = (B,*D)?

(D, + 0*D,)?

< 4D, o'D,

4D (B *C) g = 4nm /2.

Il

I

il

Finally, we have the desired inequalty :
m < 2n.
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b) Let p beapointin C D. By taking suitable local cooridinate
systems U: (x,y)and B, 1:(U):(x,z) asinlLemma 3. 2, we may assume
that

v = ((), ()],
C.y =0,
Dy o+ x?k= 0,

and by using this local coordinate, p, isrepresented as:

B, (x,z) - (x,¥)=(x, 7.2).
So, we have :

(B," oy - 2=0,

B, oz - T xk

o', 7 - Jo1 xk
Let S be the minimal splitting surface of S . By Proposition 1. 2,

D, -o'D, E€3NS(D(S/2)).
Hence, over B! (U, S is obtained as the normalization of a hvpersurface
defined by an equation :

w3 —(z+ -1 x)z -1 xK)2=0. (See 4], Proposition 1. 1.)
To obtain a minimal resolution of the singularity p, -1 (p), consider a
k-times succession of blowing-ups n: V ——> I (U} such that the

strict transformations of (B,*C) D, and ¢'D; ( we dnote them by R, 61,

red’
and o*D |, respectively) satisfy :

Ro DA oD =6 in V.
(Figure 2)

Then, we can construct a minimal resolution of p -1(p) as cyclic triple
covering of V branched along D, + 6*D,, and its configration of the
exceptional curves is as follows :

(Figure3 )

To obtain a minimal resolution of the singularity p-'(p), we must consider
the action of an involution induced by o. We denote the indcuced
involution by o”. Then, it is easy to show that ¢~ has isolated fixed
points as follows :

(Figure 4)
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T'heretore, we have a minimal resolution of P !(p), and its configulation of
the exceptional curves is as follows :

(Figure 5)

Since all exceptional curves are (-2)- curves, we know that pl{p) is an
A,y - singularity, and this 1s our statement.
Q. E. D

Example 3. 3. Let £=P2 and C be a smooth plane curve of degree 2n.
We will construct an example of a non-Galois triple covering S satisfying
the conditions in Theorem 3. 1. Let W = P{Opz2 ® Op2(n /) ) be a
P!'-bundle over P2, where / denotes a line. We denote the tautological
line bundle by 1.. Then, the double covering D(S/%) can be regarded as a

member of 21.. Since L is generated by global sections, L‘ pisss) 18 also
generated by global sections. Moreover, by the Kawamata-Viehweg

vanishing theorem [3 ], we have h%(W, 0O(-L)) = 0. Hence, the restriction
map YW, O(L}) ——— > HUD(S/z), Q('les,g)) is surjective. This means
that any member ot L 4,5y s the restriction of a member of L. On the
other hand, we can regard P2 as a member of L, so, p,"(C). ., = P

D(S/Z) = L. D(S/%). Therefore, for ageﬁera]_ member D, of Llw&;/z)’ both
T)Dl and o*D, intersect p,*(C)
involution o on W, that is multiplication by -1 on the fibre, if D, =

P

™ ¥ _ :k."l -~ S h H —
DI\D[-S/Z), D,el, 0'D, =0 D1\ bissz)- Hence, o*Dy is a member of

req transeversaly. Since o is induced by an

Llpis/g) - and we have Dy - o*D,. Therefore, by Proposition 1.1, we can
obtain the desired non-Galois triple covering S of P2 In the above
construction, D, and o¢*D; intersect transversaly. So, it follows that all
singularities of § are A, - singularities by the proof of Theorem 3. 1. We
can calculate some numerical invariants of the minimal resolution 8™ of S,
By similar calculation as Example 4.3, |, they are as follows :

c,2(5) = 12n2 - 36n + 27, c,(S) = 18n? - 18n + 9,

p(S)=1/2(5n%2 -9n) + 2, q(S) =0 ,KgZp*((2n-3) /), P=ep

ft : the resolution.

In Example 3. 3, we have constructed an example of a non-Galois triple

covering satis{ying the conditions in Theorem 3. 1. It is very special one,
but, if S is simply connected and the equality m = 2Zn holds, this example
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is essential because of the following theorem holds.

Theorem 3. 4. Let (&, C) be the pair as in Theorem 3. |. Assume that
(i) = is simply connected,
(ii) n / is generated by global sections,
(iii) D= 2n /.
Then, any non-Galois triple covering S of = satisfying the conditions in
Theorem 3. 1 is obtained by a similar method in Example 3. 4.

Proof. Let W = P(O;® On /), q: W —> ¥ be the projection, and 1.

be the tautological line bundle of W. Nole that [ is free from base points
and fixed components. Let D(S/X) be the discriminant surface of p S
———> 2. Then, as in Example 3. 3, we can regard DIS/3) as a member of
2L, . Since D is the totally branched divisor, p P oconsists of two
irreducible components D, and ¢"D,. To prove Theorem 3 4, it is
sufficient to show the following claim :

Claim 3. 5. Both D; and ¢"D; are linearly equivalent to L| ¢«
Moreover, there exists a member of [. (we denote it by I‘)I) such that
Dl\ ois/s) = Do 0D/ = 0D, where ¢ is an involution on W which

induces o on D(S/).

Proof of Claim 3. 5. By the assumption (iii), we have
D2=(¢*D,)? =a*D,. D, - B COhed- Dy = (B1¥Clgy- 07D
Hence, by the algebraic index theorem, gD, is algebraically equivalent to
D,. On the other hand, by the assumptions (i) and (ii), D(S/Z) is also
simply connected(see, Catanese [1], Proposition 1. 8). Therefore, o*Dy is
linearly equivalent to D;. Next, we will prove that D, is linearly
equivalent to L \D(S/Z). For the first, notice that :
2D, - B"D =qg*D D(S/2) = g*D. 2L = 49n g* /. L.
By the Hirsch formula, L? = ng* /. L. Therefore, on D(S/3), we have :
L \D(S/i) : (Dl B lejS/z)).

=2L. L. (q* /-L)=2L. (ZL. g*(n /) - L. g*(n /) = O .
Hence, by the algebraic index theorem, and the assumption (i), D, is

linearly equivalent to L IU(S/z) . Now, we will prove the rest. Since L is

nef and big line bundle, h1(W, 0Oyw(-L)) = 0 by the Kawamata-Viehweg
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vanishing theorem. Therefore, there is a divisor D, on W with
Dy {psssy) = Dy Since there exists an involutions ¢ on W which induces o

on D(S/T), we have the desired result.
Q. L. D.
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§ 0. Introduction

Jt is usually difficult to see something good on the relation
between the properties of a projective manifold and the geometric
features of its projective embeddings by observing their defining
equations. However, if we restrict ourselves to the case of arith-
metically normal embeddings, we may find some subtle relations
through the defining equations. Moreover, based on the results of
fU-2] and [U-3], we can also study those equations regarding as
(obstructed) rational sections of the conormal bundle. Thus, 1in
this article, we intend to provide an approach to the theory of
defining equations for arithmetically normal embeddings or more
generally of rational sections of vector bundles.

’

To be more precise, we settle that "equations’ means
"a system of projective equations (S.P.E.)”, namely, a system of
minimal generators of the largest {under containment relation)
homogeneous ideal defined by the embedding (see [U-2]). Then, one of
the questions which first cross our mind is whether or not S.P.E.’s

(or rational sections of the vector bundle) have own partial struc-

tures which reflect the geometric properties in some way, and our
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main interest 1s 1n this question.

Our answer to this question is fairly affirmative. In fact,
S.P.E.’s (or rational sections of vector bundles) have own partial
structures, and 1n some cases, it is possible to verify that those
partial structures reflect geometric features. To obtain a partial
structure of an S.P.E.(resp. of rational sections of a vector
bundle), we use Lefschetz operator acting on vector bundle valued
cohomology groups for measuring "the order of penetration” (cf.
(2.1) Definition) of each element of the S.P.E.(resp. of each
rational sections of the vector bundle), and decompose the S.P.E.
{resp. the set of rational sections of the vector bundle) into
several parts. We also examine the orders of penetration of the
projective equations (namely, elements of S.P.E.’s) in several
simple cases. And we raise several problems which will give missing
links between the order of penetration and its geometric property.

Throughout this paper, we use notation and convention employed
in [U-2] and [U-3], our base field is the complex number field C ,
and X denotes always a non-singular projective variety, otherwise

mentioned explicitly.

X In the next version, we shall add some new sections which treat

several examples relating to middle penetration order.
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§1. Observations

In this section, we shall collect several well-known examples
and make remarks on them in connection with defining equations.

Those examples will give us an insight which support the validity of

the new concept introduced in the next section.

(1.1) Example. Let X 'be a complete intersection (C.I1.) defined

by homogeneous polynomials ;, ---  F, of type (my ,--- ,my ) 1in
PN(C )=P. and j;:X=-= P Dbe a natural closed immersion. Assume
that dim X = 3. Then Pic X =% j;*¥0p(l).  Hence every
arithmetically normal embedding 1s composed of a Veronesean

embedding & , for P and the embedding  j,.

(1.2) Remark. Let us consider to get some information on some
holomorphic invariants of X in (1.1)Example by choosing a suitable
embedding of X and constructing a free resolution of the
homogeneous coordinate ring of the embedding. Then there must be

no objection to choosing the embedding j,; since we automatically
get a good minimal free resolution, namely Koszul resolution.

Hence, we may say that projective equations of j; (X) is better

than projective equations of &, - j; (X) (m= 2).

(1.3) Example. Let j;i: X< PN(C ) =W(1) be a given closed

immersion, m a sufficiently large positive integer, and Jm =
O, - j; a composed closed immersion, where & ,:W{(l)esP N(m> ()

=W(m) (N{m): = y.+nCy — 1) denotes an m-th Veronesean embedding of
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W(1). Then every projective equation of - ju (X) is of degree 2

except linear eguations(cf. [M-11).

(1.4) Remark. Serre’s vanishing theorem tells us that a sufficient-

ly large twisting of a coherent sheaf by an ample line bundle makes
its higher cohomologies vanish. Since in some cases, the higher
cohomologies contain obstructions or delicate information for
geometric problems on X. we might say that the line bundle
j1*¥Ow¢1 (1) brings us more abundant geometric information than
Ju¥Ow(ny (1), or that projective equations of j,(X) are rougher

than those of j; (X) for a close study of precise structures of X.

(1.5) Example. (Mumford [M-11) Let j: X== IPN(C ) =P be a

closed immersion of a projective manifold X. Then, as a closed

subscheme of P, j(X) is defined by the equations whose degree are
equal to the degree of J(X). Nevertheless, we do not know whether
or not the degree of projective equations is bounded by the degree

of ~ j(X).

(1.6) Remark. Even if j(X) has a projective equation F whose
degree is greater than the degree of  j(X), we may cay that the

eguation F - does not have deep relation with the intrinsic

properties of X.

(1.7) Examples.(cf. (3.2) Lemma |[U-2]) Let j:X== PN(C )} =P be

an arithmetically normal embedding, S a hypersurface defined by a

homogeneous polynomial I, and W a closed subvariety of P which
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satisfies j(X)} = SN W (transversal). Then, the set-theoretic

union of {F} and any S.P.E. of W forms an S.P.E. of X.

(1.8) Remark. Let us denote an S.P.E. of W Dby {G; --- ,Gyx}. Then
we may say that an S.P.E. {F,G;.,-- .Gy} of j(X) 1is divided into
two parts ({F} and {G;, ---.,G¢}, and that {G,;,---,Gx} gives a
"partial structure” of the S.P.E. {F,G{,--- ,Gy} which reflects a
decomposition of the embedding j such as jJiXe—a W == P.

Through the examples above, we fancy that there are "useful”
equations and “useless” equations. We also guss that an S.P.E. has
a "partial structure” as we described in (1.8) Remark. To clarify

]

the meaning of "partial structure’”, we give a definision as follows.

(1.9) Definition. Let j: Xe> PPVY¥(C ) =P a closed immersion of a

projective maniflod X, ® an S.P.E. of j(X), and M a sub

set of . We say that MR is a partial structure of 20 if

Me is an S.P.E. of a closed subvariety W of P which is non-

singular along j(X).

(1.10) Remark. Under the circumstances of (1.9)Definition, if M*

is another S.P.E. of W. Then there exists an S.P.E. 22 * of j(X)

such that M{* is a partial structure of o *
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§2.The Order of Penetration

In [U-3], we obtained several results through the action of
Lefschetz operator on the cohomologies with coefficients in a vector
bundle. Now we provide a scale for measuring the “usefulness” of a
given equation or of a given section of a vector bundle by using
this operator for examining their capacity to penetrate the barrier

of the cohomologies.

{(2.1) Definition. Let X be a complex projective manifold, E a

holomorphic vector bundle on X, he A1 (X) a hyperplane class, and
w ¢ HI (X, ©21%x) the Hodge-Kahler class corresponding to the class
h. Suppose that a global section ¢ € " (X,E) is given. Take the

LLefschtz operator L (cf. [U-3]) defined by the class ® .

(i) For a non-negative integer p, if the cohomology class L?(co )
= 0o ®w? € HP (X, 2 Px(E)) is not zero and the class LP*1i (g ) =
c®w™t € HPY1 (X, P"1x(E)) 1is zero, then we say that the order

of penetration (or penetration order ) of the section o with

respect to the hyperplane class h 1is ©p, which 1s denoted by

pent (o sh )= p.

Whenever we consider an equation associated with an embedding j:X
==> PN(C ) =P, we take the hyperplane class induced by the

embedding j as the class h.

(ii) For an equation Fe HO(P,I;(x, (m)) of j(X), 1if the penetra-
tion order of the section [F]e¢ HY(X,NY x, p{(m)) is p, we say that

the penetration order of the equation F is p, which is denoted by
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pent (F:;j(X))=pent(F) =p, where NY x_,p and |F] denote the

conormal bundle of j(X) in P and the class of the equation F by

the canonical map: HO (P, I; (x, (m)) — H (X, N Y x_ p(m)),respectively.

(2.2) Remark. By the definiton, obviously: 0 = pent(c ;s h)

liA
=

= dim X.

In the sequel, we seek for geometric explanations of this
concept “order of penetration”. The first easy result is given as..

follows.

(2.3) Proposition. Let j:X=> PN(C ) =P be an embedding of a

projective manifold X. Assume that j(X) is a complete inter-
section defined by homogeneous equations F;, - ,F; whose degrees
are m;, my,--- my, respectively. Then,

pent( F,)=n ( n=dim X, a=1,--- ,r).

Proof. Let us put o = [Fale HO(X,NY x p(mg}). Since NY x, p =
P Ox(-mp)ey, the section o corresponds to e,. Then

N Y x,p(ma) = Ox(mag-my)e;P: - b Oxe, - D Okaa—mr)er. Hence,
L" (6) =w e, € H' (X, " "x(NY x, p(ma))= H" (X, Q2"x)ea & ( DH"(X,
Q" "y (my-mp))ey). Thus L" (o ) #+= 0 because w " is a volume

form of X wup to multiplication by a non-zero constant. Il
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The next proposition, which is only a translation of our old
result, will show one of the fundamental roles of the concept “order

of penetration” in our study of equations.

(2.4) Proposition. Let j: X <= IPN(C ) =P be an arithmeti-

cally normal embedding of a projective manifold X. Take a section
ce I (X, NY x,p(m)). Suppose that pent(s ;s j*H ) = 1, where
H e A'(P) denotes the unique hyperplane .class of PN(C ) =DP.
Then there exists a projective equation F of X 1in degee m (cf.

[U-2]) such that L(o ) =L([F]).

Proof. See (2.2) Corollary of [U-3]. I

As for a section of a vector bundle with the highest penetra-

tion order, we have the following result.

(2.5) Proposition. Let X ~be a projective manifold, E a holomor-

phic vector bundle on X, and o Hodge-Kahler class corresponding
to a hyperplane class h. Take a section ¢ of E. The penetra-
tion order of the section ¢ with respect to the hyperplane class
h 1is equal to n = dim X, if and only if the following exact

sequence splits.

Sa E .. E/ o Ox [ 0
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Proof. It is easy to prove the 7if"” part by applying the same
method in the proof of (2.3)Proposition. We prove the converse.
Tensoring Q "y to the sequence (2.5.1) and taking its cohomology
groups, we have ra map H (o ): H" (X, 2 "x) — H (X, Q"% (E)).
Since H"(X,Q2"¢x) = C - @ ", the assumption of c®w®™ =0 implies
the injectivity of the map H* (o ) = o . Considering their Serre
duals, we obtain that the map H"(o )Y = ¢ :H° (X, E¥Y ) — H®(X,0x)
is surjective. Hence there exists a section 7 € HY(X , EYV ) such
that ¢ {7z ) = 1, or equivalently T is a splitting map of the

sequence (2.5.1). i

To give the next result, we introduce several invariants
associated to a triplet (X,B,E) where X, D, and E denote a
complex projective variety, an ample divisor (or line bundle) on X,

and a holomorphic vector bundle on X, respectively.

(2.6)Definition. Let (X,D,E) be a triplet as above. Taking the

L.Lefschetz operator L associated to the class cl(D) ¢ A!(X), we
define invariants A (psDLE) (p=1,--- ,n=dim X ) with respect to

the triplet (X,D,E) by:;

A (p;D,E):= dim Im[LP: HO(X,E(*D)) — HP(X,.Q P4 (E(xD)))].

For also an embedding j:X = P N(C ) =P of the projective mani-

fold X, we put (X,D,E) to be (X,j*0p(1), N¥Y x,p) and similarly

define invariants A (p3;j) (p= 1, .n) with respect to the embedding

j  by: AApij):= A (p: j*Op (1), NY x,p).
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From (2.5)Proposition, using the assumption of arithmetic
normality of the embedding j, we can obtain a criterion for j(X)
to be a complete intersection in terms of the penetration order of

the equations.

(2.7) Theorem. Let j: X== PN(C ) =P be an arithmetically normal

embedding of a projective manifold X of dimension n. Then the

following four conditions are equivalent.

(i) j(X) is a complete intersection.

(ii) The penetration order of every projective equation (cf. (2.8)

Remark) of j(X) is equal to n.

{iii)The equality A (nsj) =r:= N—n holds.

(iv)The inequality: A (n;j) =2 r holds.

Proof. Obviously (iii) implies (iv). Now we suppose (i) and prove

(ii). Take an arbitrary projective equation G of j(X). Then

there is an S.P.E. of j(X) which contains the equation G. Since
the number of elements of S.P.E. is determined only by j{(X), the
S.P.E. containing G also consists of r elements G;=G,Gy, --- ,Gr,
which give a splitting N Y yx,p = P Ox(-my,){Gy]. Then (2.3)Proposi-
tion brings (ii), because H"(X,Q"x( N Y 4y p(*})))= & H" (X,

Q" (*¥Y)[Gy,]. This argument also shows that (i) implies (iii). Next

we assume (ii) and see (iv) holding. Take an S.P.E. {F,, --- ,Fyx} of
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j(X). Then obviously k= r. Now we suppose that L*([F, 1),

3

L ([Fx]) are linearly dependent in the vector space H" (X, "y (

N Y 4, p(*¥))), for example,
a1 L" ([Fy ¢y 1) + azL® ([Fi (2 1)+ -+ asll" ([Fycuy 1) =0
in @ H" (X, "¢ (NY x, p(m))).
Then we may assume that deg(Fi (i1, )=deg(Fi (3, )=+ =deg(F:(u,)=nm

because every Fi(ay is homogeneous and the map L" preserves
their degrees. Putting G —a;Fi¢1y + asFy¢ay+ -+ auFiuy. we
obtain a projective equation G with L"(G)= 0, since we can easily

construct an S.P.E. of j(X) which contains the equation G from

the S.P.E. {F,, --- ,Fx}. Thus the condition (ii) implies that

A (p5j) =k(=r), namely the condition (iv). To finish our proof,

we have only to show that (iv) implies (i). By (2.4)Proposition,
there exist homogeneous polynomials F;,--- F, of degree m;, --- ,m,,
respectively such that L ([F{]) --- L™ ([F, 1) are linearly independent
in HM(X, Q%x( NY x p(*))). Using (2.5)Proposition successively,
N Y 3y, p = Ox(-m)[F;]1®---DBOx(-m;)[F,]. Then the connecteddness

of the zero locus of F;=--=F,=0 shows the condition (i)
holding. |

(2.8) Remark. In (2.7)Theorem, the word “every’” never means that

every elements of an S.P.E. as we saw in the proof.

—390—



By expressing (2.7)theorem in other words, we obtain an

inequality for general arithmetically normal embeddings.

(2.8) Corollary. Let j: X <= P N(C ) =P be an arithmetically
normal embedding of a projective manifold X of dimension n. Then
the inequality A {nsj) = r := N-n always holds. Moreover the
equality holds if and only if j(x) is a complete intersection.
(2.9) Remark. (i) For a triplet (X,D,E) as in (2.6)Definition, we

can easlily show the following inequality by the similar argument in

the proof of (2.7)Theorem.

(2.9.1) A (n:;D,E) =rank E (the equality holds if and only if

E splits as DIEz= D 0x{(maD))

(ii) If (4.1)Problem of [U-3] is affirmative, then we have the

following claim.

Claim Let j: X == P N(C ) =P be an arithmetically normal
embedding of a projective manifold X. Then, there exist a closed
subvariety W and hypersurfaces S;, - .S, such that Jj(X) =

WN S,N--NS8; (transversal) if and only if A (n:j) = t.

With relation to the (2.9) Remark (ii), we give an easy fact on

linear equations.
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(2.10) Proposition. Let j: X< P N(C ) =P be an embedding of a

projective manifold X of dimension n, and ¢ € H? (X,NY x_ p (1))
a non-zero section. Then there is a (linear) projective equation F

€ HO (P,I; (x, (1)) such that [F]= . Moreover,

pent( o ;j*0p (1)) = pent(F) = n.

Proof. Regarding the section ¢ as that of HS(X, Q!'pifx (1)), we

consider the exact sequence:

(2.10.1) 0—H (X, 'plx(1))— 6§ HO (X,0x)ea — HO (X,05(1)),
ag *°° B E

which is induced from the Fuler sequence. Since the map Z;E

sends the non-zero element a (o ) = é% kaea to 0 = é% kKaZa,

a = a-= :

where z,,--- ,Zy denots the images of homogeneous coordinates Z,,
-,Zy of P. Hence we obtain a linear equation F = 3 k,Z,. It 1is
easy to see that [F] = ¢ and F 1is actually a projective
equation. Now let us consider the hyperplane H defined by the

equation F =0 and a point vy outside of H. Putting W to be

the projective cone of j(X) with the vertex vy, we see that j(X)

= WN H, and therefore NY x,p = Ox(~-1)IF]® NY y.plx. Thus we
have pent(F) =n as we saw in (2.5)Proposition. I
(2.11) Remark. In the case m= 2, for a given section ¢ € H° (X,

N V¥ x,p(m)), the above argument can not be applied to proved the

existence of a projective equation corresponding to the section o .
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§3. Veronesean embeddings of P "(C )

In (1.4)Remark, we regarded projective equations of an m-th
Veronesean embedding @®, : X =P(n)=P*(C ) == PN(C ) =P(N)=P
(m= 2) as typical examples of "useless” equations. Hence we shall
study those examples precisely. To distinguish Op(n) (1) from
Op (n> (1) Ox, here we denote Op(ny (m), Op(ny, (M)® Ox and Op¢yy (m)
by Op(mH), Ox(mH) and 0O(m) respectively. To study the pene-

tration order of each projective equation of O, (X), we need some

easy preparations which simplify our calculation of HP (X,
QPy(NY x p(*))). The following proposition is often used in
several papers in some special versions. For later use and conve-

nience of the readers, we give also a proof.

(3.1) Proposition. Let Op: X=P "(C) == PN(C ) =P be an

m-th Veronesean embedding of X (m=2). Put (Tg:---:T,) and

(Zy:+-- :Zy) to be homogeneous coordinates of X and P respectively.
Then, ®, 1is expressed by & ,: X3 (Tg:-- :Ty)—> (Zo: - 1Zy)=

(Mg :--- My )e P, where M;’s denote all monomials of Ty, ---,Thy in

degree m. We have an exact commutative diagram:

qa N p
0 —->Qlplx — @D O(-m)[Zal > O0x — 0
a=20
(3.1.1) canonical |l Jg 1 Jy | X m
n
0 — 1y — @ O(-1)[Ty]l — Ox — 0 ,
(l, b=2¢ pl
where |[Z.,]’s and [T, ]'s denote free basis corresponding to the
free basis {Z¢,- ;Zny} of HO(P, Op(1)) and {Ty, - ,Ta} of

HO (X, 0O(1)) respectively, and J; sends [|[Z;] to

> (8 Ma/ 8 To)I[Tu 1.
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Proof. On the first n monomials, we may assume that
(312) Mg:Tgm, M1:T1m, ety Mn:Tnm.

First we shall see the commutativity of the right hand side of the

diagram (3.1.1). After tensoring O(m), we chase [Z.].
m - p(fZal) = m M,
p’ - Ji([Zal) = P (X (dMa/ O To)[Tel)=3 (dMa/ @ Tu)Ty
= m M,
Thus we obtain m - p = p’ - J,

Next we shall check the left hand side of the diagram (3.1.1).
Since we have a global homomorphisms, we may check locally the
commutativity. For a=0;,1,---,n, we put+ U, to be an open set

D:(Za) of P. By the assumption (3.1.2), we have

X < U,

a=0
Thus we have only to chase { d{(Zv/Z2) }, which is a free basis of
( 21p]|x)]lUs (a=0,1,--- ,n} corresponding to that of Q !, |U,. Set
My, to be Te® €02 . T (e(0)+ ---+e(n)y=m). Then,

al d(Zv/Za))= (1/Ma)[Zpv] — (My/Ma?)}[Z, ]

Ji(a(d(Zy/Za))) = (1/Ma){e(0) (Mp/To)[To) + -+ ela)(My/Ta)lTal

o e(n) Mu /To ) [Ta 1= m(My /Ma2)Ta™ 177, |
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= (My/Ma ) {

On the other hand,

a’Jo (d(Zy/%24))= a’df

==

k=0, kXxa

K %\‘a

e (k) (My/Ma) {
My /M) [
k=20

Thus we obtain q’

By the proposition above,

>

(To /Ta)e 0 oo G

e(k) (My/Ma) (Ta/Tx)

e(k)(Mb/Ma)(Ta/Tk){

we obtain the

(1/Te ) Tx 1—

(e(k)/Te)[Tel —  m

diagram.
(3.1.3) 0
X m
OX —=
N Jioa
0 - NY x,p — & O(-m)[Za]—
” a=20 b=0
0 — NY x,p — = Qe lx =
0

Thus we have an useful exact sequence of the conormal

m-th Veronesean embedding as follows.
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(1/Ta)1Tal }
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(3.2) Proposition. For an m-th Veronesean embedding & ,: X=

Pr(C) -PN(C ) =P, there exists an exact sequence:

=

(3.2.1) 0— NY XxX/p O(_m)[za]i> D OV("I)[TD]"')U,
a=20 Jl b=20

where the map J; is given as in (3.1) Proposition.

To calculate the cohomologies of the conormal bundle correspond-

ing to ®,, we also need the following proposition.

(3.3) Proposition. For an m-th Veronesean embedding & ,, if

k =2 m+tl | then we have an exact sequence:

(3.3.1) 0—HO(NY x,p(k)) 4*%3H0(0(k—m))[za]4>6; HO (O (k-1))[Tp] — 0.

a=10 Jlbzo
Proof. Since ® (X)) is arithmetically normal, we have only to
show the surjectivity of the map J; in the case k=m+1. For a
given monomial B of Tg,--- ,Ts in degree m, the map J, sends

the element:

n

k=0

- > Tol( dB/3 Tu)Tkl }

k=290

of @H°(0(1))[Z,] to the element B[T,]1 of D HO (O(m) ) [Ts 1. |

By using (3.2) Proposition and. (3.3) Proposition, we get a list

of the cohomologies of the conormal bundle of (O
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(3.4) Corollary. Let & ,: X=P *(C ) == PN(C ) =P be an m-th

A

Veronesean embedding. Then, for integers Kk and e (0=e = nj,

the cohomology groups H® (N Y~ y.p(k)) satisfy the following
properties.
(3.4.1} 2 e £ n— 1 — He (X, NY x,p(k)) =0,

ks m = HO (X, NY x, p(k)) =0

e=0 } N+ 1
k m+ 1 — 0—> HO (N b X/p(k)) — P HO (O(k—m))

v

n-+ 1

> @ HY(O(k-1))—> 0 (exact),

N+ 1
0— H"(N Y x,p(k)) — & H"(O(k-m))
(3.4.3) dim X =2 =
- 1
> P H* (0(k-1)) — O (exact),

®
|
=
— —
=]
+

(3.4.4) If dim X = 2,

i

e=1
k=< 0 — H! (N ¥ x,p(k)) =0,
j 1£ k2 m— 1 =——> HI(N ~ x, p(k})) = %;1 HO (O(k-1)),
N k= n e HU(N Y xop(m)) = HO(Q iy(m)),
] kz m+ 1 s HI (N Y~ x.p(k})) = 0.

(3.4.5) 1f dimX =1,

e=-n=1
k< 0 —= the same as in (3.4.3),
n-+ 1
1<k £ m— 1 ==> 0— D HO (O(k-1))}-—->H'(NY x_ p(k})
= N+ 1
— D H! (O(k-m))— 0 (exact),
k= m ==> the same as in (3.4.4).
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Proof. The exact sequence (3.2.1) immediately shows: {(3.4.2) in the

case kZ<m — 1 ; {(3.4.4) in the cases k =0 or 1=k £ m— 1 ;
(3.4.1); (3.4.3). On the other hand, (3.3) Proposition brings us
(3.4.2) in the case k= mi 1 ; (3.4.4) in the case k= m+ 1.
As for the remainder k = m of (3.4.2), we use (2.10) Proposition
and two facts: (i) j*¥Op (H)=~ O(m) 5 (ii) the image @ ,{(X) 1is not
contained by any hyperplane of P. The fact (ii) above also gives

that H° (X, Qlplx(m))=H0(X, Q'!'p|x® j*0p(H))= 0 as we saw in the
proof of (2.10) Proposition. Moreover, considering the long

cohomology exact sequence (2.10.1) and two facts: surjectivity of

the map B & ;5 HU(X,0x) =0, we see also that H' (X, & 'p |y (m))
= 0. To show that (3.4.4) in the case k= m, we have only to
apply the facts HO(X,Q!p|x(m))= H (X, Q'plx(m))=0 to the

long cohomology exact sequence induced from the familiar exact

sequence: 0 — NY x,p = Q 1p|x— QL 1x— 0. The remainder (3.4.

)

(@]

can be treated by the almost similar arguments above and is easy to

see. ”

By this corollary, the following well-knowm fact is also easy to

prove.

(3.5) Corollary. Let O ap: X=PI(C ) < P11 (C ) =P be an

m-th Veronescan embedding of a rational non-singular curve.

Then NY X/p = O(—(m+2)) &b - D O(_(m+2))

Proof Using det NY x_,p = O(-m(m+2)) (cf.(3.2.1)), rank NY . p

=m, and H°{NY x,p (m+1))=0 it is easy to prove. I
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Here we recall the definition of "k-regular” and its fundamental

properties which are precisely explained in §14 of the text [M-2].

(3.6) Definition and Proposition. Let M be a coherent sheaf on

the projective space. P "(C ). We say that the sheaf M is
k-regular if H*(P "{(C ), M(k-e))=0 for all e > 0. Moreover if

the sheaf M 1is k-regular, it enjoys the following properties.

(3.6.1) The sheaf M(k) is generated by its global sections.
(3.6.2) The map HY (M(k)) ® H°(O(1))— H® (M(k+1)) is surjective.

(3.6.3) The sheaf M 1is also (k+l)-regular.

Now we give a result on "k-regularity” of NY x,p for an m-th

Veronesean embedding of X=P "(C ).

(3.7) Corollary. Let ®,z: X=P *"(C) == PN{(C ) =P be an m-th

Veronesean embedding.

(3.7.1) m = 3 == He (N Y x_p(2m-1-¢e)) =0 (e> 0),
namely NY x,p 1is (2m-1)-regular.

(3.7.2) m = 2 =>  H¢(N ¥ x_ p(2m-e)) =20 (e>0),
namely NY x,p is Z2m-regular.

Proof. It 1is easy to prove by careful checking on the list in (3.4)

Corollary. I

Thus we obtain the following result.
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(3.8) Corollary. Let ®,: X=P *(C') == PN(C ) =P be an m-th

Veronesean ecmbedding.

(3.8.1) m=3 == , H°(0(1)) @H(NY x,p(k)) — HO(N ¥ 5 p(k+1))
is surjective, if k =2 2m-1.

(3.8.2) m= 2

HO (0(1))® HO(N Y x, p(k)) - HO(N Y x_ p(k+l))
—> J is surjective, if K =2 2m.
E H? (NY X/P(zm_l))zo-

Proof. Almost all will be deduced from (3.6.2), (3.6.3), and (3.7)

Corollary. We have only to show that H° (NY x_ p(2m-1))=0 in the

case of m= 2. Let us recall (3.3)Proposition. Since 2m-1= m+ 1

in this case, we have the exact sequence (3.3.1) for k = 2m— 1 = 3.

Then we can get the result through a computation of dim H (X,

N Y x,p(3))
Now we
giving our
associated

we see the

(3.9)

Theorem.

by using the fact: N = ,,,C,

have finished our preparations and
results on the penetration orders
to an m-th Veronesecan embedding of

case m= 3.

Let ® 4 X=P "(C )

Veronesean

every projective equation of

Proof.

Let us consider

embedding. If m= 3, then the pe

D m(X) is zero

an exact sequences
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(3.9.1)

n
0 > QIx®N Y x, p(2m) > B NY x. p(2m-1)[Ty ] —» NY x, p(2m) — 0,

b=0
which is obtained by tensoring NY x,p(2m) to the Euler seqguence
of X. Taking the cohomologies of (3.9.1), we have:
(3.9.2)
ol 5 0

HY (N Y x, p(2m-1))—> HO(N Y x_ p(2H))— H! (2 'x (NY x, p(2H))).

On the other hand, by comparing the diagram (3.1.3) with (1.1.2) in
[U-3], we find that the sheaf 1 in (1.1.2) of {U-3] coincides

n
with @ O(-1)[Ty,] in our case. By (1.2) Lemma of [U-3], we see
b=20

~

that the map ) coinsides with Lefschetz operator L up to
multiplying by a non-zero constant. Since m =3, (3.8.1) implies
the surjectivity of the map B, that is to say, the map L=

is zero. As is well-known, every projective equation of @& , (X)

is gquadratic, we obtain the result above. I

Next we treat the remainder case m = 2, which is a little

different from the case m= 3.

(3.10) Theoremn. Let®d ,: X=P "(C) == PN(C ) =P be a second

Veronesean embedding. Then,
(i) for an arbitrary projective equation F of & , (X}, pent(F)=1,

(ii) HO (P, I(2H))— HO(X, NY x,p(2H)) is surjective.

Proof. Let us recall the sequence (3.9.2). As we saw in (3.8)

Corollary, HN°( NY y,.p{(2m-1))= 0. Then the map g8 is zero, which

means the (first) Lefschetz operation L =96 is injective.
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Since also in this case, every projective equation of & , (X) is
quadratic, we have L(IF]) # 0 for an arbitrary projective

equation F of d ,(X). To show that L2([IF]1)= 0, we have only

to show that H2 (X,Q 24 (NY x,p(2H))) = 0. Let us consider an exact
sequence
{(3.10.1)

N+ 1 n+1

0— NY X/ P ®Q‘2X(2H)7’)EB Q?'X(2)v*’® QZX(B) — 0,

which is obtained by tensoring £ ?yx(2H) to the sequence (3.2.1)
in the case m = 2 . Taking their cohomologies, we see that

H2 (X, © %4 (NY X/p(ZH))) = 0. For the remainder (ii1), we recall
that the map L: H°(N Y x, p(2H))— H!' (2 'y (NY x_ p(2H))) 1is
injective. Since ® , is an arithmetically normal embedding, we
can use {(2.4) Proposition to show that for any section ¢ ¢ HO0 (X,
NY x,p(2H)), there is a projective equation Fe HO(P,Ix(2H)) such

that L([F])= L(oc ). Then the injectivity of L gives [F]= o . |

Here we give an easy corollary for this theorem.

(3.11) Corollary. Let ®,: X=P "(C’) = P Y¥(C ) =P be a second

Veronesean embedding. Then, H!' (P, 1?4 (¥H))= 0.

Proof. We have only to prove that each map H? (P, T(tH)) — HO (X,
NY x,p{2t)) is surjective for all t¢ X . For t= 2, we use (3.8.2)

(3.10)Theorem and arithmetic normality of d,. For t =1, (3.7.2)

gives the surjectivity. I

As we saw in the above, there exists a difference between the
case m =2 and the case m= 3. Then one guestion arises. in our
mind: What kind of geometric phenomena -cause this difference?

—402—



In other words, first we want to find geometric phenomena which
concur with the difference, and next to choose suitable ones for
explaining the difference. At the present stage, we ‘know only

two kinds of phenomena which concur with the difference. The first

one is as follows(cf. (3.4)Corollary in [U-3]).

(3.12) Proposition. Let ®,: X=P**(C ) <= PVN(C ) = be an
m-th Veronesean embedding. Then,

(1) m == 2 = Hi (P, I24x(*xH))= 0,

(1i) m =3 => HY (P, I24(*xH))=+ 0.

Proof. The claim (i) was already proved in (3.11) Corollary. We
have only to show that HY (P, I2x(2H))=+ 0 for all -m= 3. By the
sequence : O~ 124y —> Iy — NY x.,p — 0, we get an exact seqguence:

(3.12.1) HO (P, Ix(2H)) — HU(X, NY x, p(2m)) — HI (P, I?2x(2H)) — 0.

Ilence,
(3.12.2) dim HO(P,I2(2H))=

(1/2)(n+nCa)? — (1/2) (h+wCn) — (szl)(n+2m—162m)-

It is enough to see that the right hand side of the inequality

{3.12.2) is positive for all m=3 and n = 1. Now we set
R{m,n): = (1/2)(n+mcn)2 - (1/2)(n+mcn)* (2m *1)(n+2m---162m),
P(m,n): = (m—rncm)(zmcm) - (chm)*4n(n+2m»~1cm~1)-

Then, a direct computation shows us that

R(m,n)= (1/2)(m+ncm)(2111C111)71{P(msn) + (Zn/m)(n+2mflcm71)}-
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Since (2n/m)(p+2m-1Cn-1) >0, we may show that P(m,n)=0 for

all m=3 and n = 1. If m= 3, then P(3,n) = (4/3)Y(n®— n)-+
2{(n?—n)=0 for n=1. For m= 4, we shall prove it by showing
that each coefficient Sy (k=0,1,--- ,m) of the polynomial:

P(m,T)= (m!)ﬁl (ZmCm)(T’f" m)(T+ m -~ 1) (T"l 1)
— 4 ((m=-1)t)" ' T(TH+ 2m— 1)--- {(T4+ m + 1) — (2mCn)

= 1 SpT"+ Sp T 14 - + Sy

is non-negative. For kK =0,
Sp = (1/m?) (2uCn)m!? — (4mCn) = 0.
Next for k satisfying: m=k =1,

Se= (1/m') (2uCn)( 2 aucir au(m-x>)

— (4/(m-1)1) - ( X (m + byciy) (mt bwin-x>y) ),

where the (m-k)-tuple of integers {@uc1y . ABu(m-x) ) and {bwci)y,
- bwim-k>) run over the ranges M= Ay (m-xy > - > Bu(iy =1 and
m-1 Zby(m-xy > - >bw¢1y =1 -respectively. Hence, we shall see

that m! S= 0. Putting p= m-k, our problem is to show that

Qe (m) = (2nCu)( 2 auciHr=8ucpy) — 4Am ( 2 (m+ by¢sy ) (M4 bywcpy) )
=0,
for m=24, m=2 ay(py > - > auc1y =1, m-1 =Zby(py > - >Dbwc1y =1,
m-1 =2p = 0. Moreover, we may assume p= |, because
Qo (m) = (2aCun) dm = A{m+l) — 4m =0



Qr(m)= (2aCn)(m % bwcirybwip-1> + 2 byciry = byey)

— 4mY (m+ by 1,y ) (m+ by (py ).

Hence we may show that

p

(chm) { (m/(m-p)) = bw(l)"'é e bwepy T bwiry o Dbwir }

e=1

—4dm(m+ by (1)) (mt-by(p,) =20

for m= 4, m-1 =2p =1, m-1 =2by(py; > >by¢1, = 1. Thus, it

is sufficient to prove that

Fo(zy, ,2p): = (2aCn) { (m/(m-p)) >  z{ & -—-2zp + 2zZy == Zp }

e=1

— Am(m + z;) - (m+ zp) =0

for any (z;.--- .,zp)€¢ { (21, -~ ,Zp)€ RP?| 2z;= 1, , Zy+122Zx+ 1,
-, Zp=2Zp-1+ 1 }. Now we use induction on p.
For p =1, (dF:/ 82z1) = 2mCh —4dm =0 and F;(1) > 0. Thus we

have Fi(zy) >0 for all =z;=1.

For p = 2,

( (?Fp/ aZa)

P
= (2nCn) { (m/(m—p))2¥ Z a-- é zp + 2z a Zp )
e=1(e a)d
—4(z;+m)--a - (zp+ m)
P
= (2nCpn) { (m/(m-p+l)) =— Zy -~ a4 --é& --- 2 + zy - & ---2p}

e=1(eka)

—A4(z;+ m)---& - { Zzp4 m)
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- F‘P*l(zls a sZP) 20
Thus we have only to show that Fe(l1,2,---,p) =0 For p=m — 1,
Fn_:(1,2, -« ,m-1) = 2m(2m~1)--- (m+1) ( >, (1/e) — 2 )=0 Then we
e =1
may assume that m-1=Zp = 2. Since (m+pCn) = (1/2)" P {,uaChn), we
obtain:
p,

Fp(l; e L,p) = m(p!) (2nCu){ (1/(m-p) =2 (1/e) -+ 1/m — 4(1/2)ym-»®}

e =1
Thus it is enough to see that

P
Gy (m) : = (1/(m-p)) = (1/e} + 1/m — 4(1/2)"* =0
e=1

for m-22p = 2. 1f m-4=zp = 2, then
Gp(m) = (1/(m-p))(3/2) — (1/2)"*"2 = 1/ — (1/2)%°2=0,
where g= m-p = 4. Thus our problem reduces to see that G, (m)= 0
for p=m-3 or p=m-2. If p=m-3, then G,_-3(4) > 0 and
Gp+1-s(mtl) — Gu-5(m) > 0O (Vm = 4), which implies Gpn-3(m)>0
for m =4. 1f p =m-4, then Gs-,(4) =0 and Gpniiq-—4 (m+1)y-—
Gn-4(m) >0 (Vm =4). Thus we obtain Gp-,(m) =0 for m = 4

as required. Il

(3.13) Remark Through this proposition, we may say that a gap

appearing between ® , (X) and its ambient space P=P N¥(C ) for
m = 3 is wider than that for m=2. In the former case,® , (X) has

only projective equations with penetration order zero. On the
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other hand, in the latter case & ,(X) has projective equations

with penetration order one. Hence our concept ’'penetration order’

is compatible with our intuition descibed in (1.4) Remark.

The next theorem also backs up our intuition and the validity

’

of the concept "penetration order”.

(3.14) Theorem. Let j;: Y > P *(C) =X be a closed immersion

of a projective manifold Y. For a sufficiently large - m, consider
an m-th Veronesean embedding ®n,: X=P "(C ) P > () =W(m).

Then,

(3.14.1) penetration order of every projective equation (except

linear equations) for dnii(Y) 1is zero,

(3.14.2) H!(W(m),In2(*))y # 0, where I, denotes the sheaf of

ideals which defines ® ,j;(Y) in W(m).

Proof. First we consider the claim (3.14.1). As we saw in (1.3)

Example, every projective equation of D nir (Y) is quadratic for
m » 0. This fact can be proved by a slight generalization of the

argument appeared in [M-1]. Moreover the same argument shows

also simultaneously that all quadratic projective equations of
® aj; (¥Y) are induced by those of & ,(X) for m» 0. Hence it is

sufficient to show the following easy lemma.

(3.195) Lemma. Let X and Y be closed submanifols of [P ¥(C ) =

P which satisfies: Y ¢ X. Assume that both X and Y have an

equation I of degree= k as thelr own projective equations. Then,

(3.15.1) pent (F:X) = pent(F:Y).
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Proof of (3.15) Lemma. Let us consider a commutative diagram:

HO (P,Ix(k)) > F —— [F1y e H° (X,NY x_p (K))
!
(3.15.2) l [Flx [y ¢ HO (Y,NY wply (K))
!
HO(P.Ty (k) > F — =  [Fly ¢ HO(Y,NY v p(K)).

Put w € H1 (X, © !x) to be the Hodge-Kahler class of X associated
to the inclusion. Then the Hodge-Kahler class of Y associated to
its inclusion coincides with the restriction class o [y¢ H! (Y,
Q'y) of the class w . Hence we have a commutative diagram on the

actions of Lefschetz operators Ly and Ly:

(3.15.3)
Lx
HP (X, 225 (NY x(k))) > dx 2> dx ®we H*1(X, Q2714 (NY x(k)))
! 1
HP (Y, Qv (NY y(k))) 2 by by @w [ye HPI(Y, Q21 (NY y(k))).
Ly

Here we set p=—

|

pent (F:X). Then LyP*"1([Flx) = 0. Hence by using
the commutative diagrams (3.15.2) and (3.15.3) it is easy to see

that Ly?*"1([Fly) = 0, namely pent(F;Y)< p = pent(F;X). Il

Now let us go back to our proof of (3.14) Theorem. We have to show
the remainder (3.14.2). First, put s(m): =n(m)+ 1 — h®(Oy (m)).
Since D pjiY = W(m) is arithmetically normal for m>» 0, we
may put h° (I, (Hn)) = s(m), where Oy (m, (Hy) denotes the

hyperplane bundle of W(m). "Then we get an inequality:
(3.15.4) ho (In2(2Hp)) = s(m)(s(m)+ 1)/2.

Let us compare the sequence (3.2.1) tensored by Ox(2m) with that

tensored by Oy (2m). Then (3.3) Proposition gives us an exact
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commutative diagram:

(3.15.5)
n{m+1 Jl n+1
0— HO (NY x, w(m> (2Ha)) — @ H® (Ox (m))— & HY(0x(2m-1)) — 0
! nom> +1 } n+v1 4
0— H' (NY x, w(m) |y (2Hn))— @ H? (Oy (m) ) — @ H°(Oy(2m-1)),
} Jily }
0 0

which brings us the sujectivity of the map J;|y and an equality:

(3.15.6) h°(NY x, wm> vy (2Hg))= ( n(m)+ 1 ) h®(Oy(m))

- (n+ 1) ho(Oy (2m-1))

LLet us consider an exact sequence induced by that of conormal

bundles:

(3.15.7) 0 = HO(NY x|y (2m))— HO (NY y(2m))—> HO (NY vy x(2m))

- HU(NY x|y (2m))= 0,

where NY X - NY X/W.(m) and NY Yy = NY Y/W(m) - Then the

sequence (3.15.7) and the equality (3.15.6) gives an equality:

(3.15.8) h (N Y vy wmy (2Ha ) )= h° (. NY v, x (2m))

+ (n(m)+ 1)h® (Oy (m)) — (n+ 1)h° (Oy (2m-1)) .

On the other hand an exact sequence:

(3.15.9) 0 - HO (In? (2Hp ))—> HO (In (2Hn)) — HO(NY v,y (m) (2Hn))

— H! (I, (2Hn)) — O
shows that

(3.15.10) h'(Ia?(2Hn)) = h®(NY vy, y(m, (2m)) — hO (In(2Hn))

-+ ho (Imz (2Hm ))
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= h®(N Y~ v 4> (2m)) — ho (OW(m)(ZHm)) + ho (OY‘(zmv))+ h (In? (2Hp) ) .

Then we gather up the equalities (3.15.8), (3.15.10), and the

inequality (3.15.4) and compute as follows.

h! (In? (2Hn))= ho (NY v, x(2m))-+ (n(m)+1)h° (Oy (m)) — (n+1)h°(Oy (2m-1))

— h% (0w (my (2H)) + h0(Oy (2m))+ (1/2)s(m) (s(m)+1)

= hO(N Y v, x(2m))— (n+1)h% (Oy (2m-1)) + h°(Oy (2m))

—= (1/2)h° (Oy (m) )+ (1/2)h% (Oy (m))?,

using that the sheaf N Y y does not depend on m,

= (1/2)h° (Ox (m))?+ (lower term) >0 I

(3.16) Remark. In generatl ® nii (Y) 1s contained by a linear
space L of W{m). Nevertheless, the claims {(1.14.1) and (1.14.2)

are also affirmative after replacing W(m) by L.

Now let us return to the original case @ ,:X =P "(C ) = =
PY¥(C) =P. The second phenomenon which shows us the difference
between the case m = 2 and m = 3 is given in the sequel.

First we see the following example which treats the case of m= 2.

(3.17) Example. Let @ ,:X =P "(C ) > [Tg:- :Tp]—=> [Tg2:TyTyre- ¢

ToTn: - :TaTp:-- :Ta?] = [Zoo:Z01: -+ iZgnt == Zapi = Zpynl € PN(C)

= P be a second Veronesean embedding. Then, for every projective

equation F of ® ,(X), there exists a line Y in X such that
® ,(Y) is a complete intersection on the hypersurface {F = 0}.
Since a "typical” projective equation is given by ZavZca — ZacZuva

{(a,b,c,d are distinct index), we may assume that n=3 and F =

Zglzzg“‘" Zggzlg. Then we put = the image of P 1(@ ) 2 [UU:UI] —
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[Ug:U; :Ug+U; :Ug-U; ] =1[Te:T;:Ty:T3] € X =P 3(C ). Then D, (Y)
is defined by the equations: F =0, Zga— Zoo —Zo1 = Zog3z — Zgo -+
Zor =241 —Zor — Ly =ZLig —Zlor tZiy =Zog — Loy — 20o1— 724y =
Zios — Zoo + 72411 =Zzz — Zagg + 22y,— 2,1, = 0, which means @ ,(Y)

is a complete intersection on {F = 0}.

On the other hand, for the case m= 3, we have the following
result, which also shows the utility.value of the concept “'penetra-

tion order’.

(3.18) Theorem. Let & ,: X=P "(C ) <= PN(C) =P be an m-th

Veronesean embedding and F a projective equation of D (X).
Assume that m= 3. Then there does not exist a submanifold 'Y of
positive dimension in X such that ® ,(Y) is a complete inter-

section on the hypersurface {F= 0}.

Proof. Let us assume that there is a submanifold Y of positive
dimension in X which satisfies=: ® n(Y) is a complete inter-
section on the hypersurface {F= 0}. Then the equation F 1is a
projective eguation of ® n(Y). Moreover, by (2.7) Theorem,
pent(F; & L,(Y)) =dim Y > 0. On the other hand, (3.9) Theorem.and
(3.15) Lemma show that pent(F: © ,(Y)) £ pent(F:® (X)) =0,

which gives a contradiction. [l

(3.19) Remark. Through (3.17) Example and (2.7) Theorem, we may

suppose that the penetration order of a projective equation 1is
affected by the existence of a special subvariety (for example, in
(3.17) Example above, a special subvariety is obtained by choosing
a suitable line Y in X with respect to the given projective

equation.
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§4 Elementary Properties of penetration order

Stimulated by the obsevations in (3.19) Remark, we start to
study. the relation between the penetration order of a given section
of a holomorphic vector bundle on a projective manifold and its sub-
manifolds. First we give a definition as follows.

(4.1) Definition Let X be a projective manifold, Y a sub-

variety(resp. manifold) of X, 'E a holomorphic vector bundle on

X and o a global section of E. Consider an exact sequence:

c
(4.1.1) 0 > 0Oy — E »E/6 O0x— 0.

Then, we say that Y is a splitting subvariety(resp. manifold) of

(E, o) if the restriction of the sequence (4.1.1.) to Y 1is also

exact and splits.

Then, we immediately obtain the following result.

(4.2) Proposition. Let’ X be a projective manifold, E a

holomorphic vector bundle on X , ¢ a global section of E. Take
a hyperplane class h ¢ ‘Al'(X) and the Hodge-Kahler class w x
corresponding to the class h. Assume that there exists a splitting

submanifold Y of (E, ¢ ) whose dimension is p. Then,

%
T

pent{(oc , h)

Proof. Since E|ly = Ovyo ®[(E/o Ox) ® Oy]l, we have a diagram;

pr
HP (X, QFPx(E))> HP(Y,QPy(Ely))— HP(Y,QPy)
N\ w w
Lp(d):O'(X)(A)PX = Gly®0}py = (A)Pyio,

13

where pr’ denotes the projection to the direct summand. Thus we
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get LP(o ) # 0, namely pent(s :h) =p. I

We also have an easy result which is proved by the similar

argument of (3.15) Lemma.

(4.3) Lemma. Let X be a projective manifold, 7Z a submanifold of

X ., E a holomorphic vector bundle on X and c a global section

of E. Then,

pent(o h) = pent(c |z: hlz)

{4.4) Remark. We can often easily modify the claims and their

prooves on penetration order of a projective equation into those of
a secion. To avoid confusions, we must however distinguish them.
For example, there 1is no implication between (3.15) Lemma and (4.3)

Lemma because NY x,ply #= NY vy, p.

On the other hand, we can give a lower bound for the behavior
of penetration order with respct to restrictions in the following

special case.

(4.5) Proposition. Let X be a projective manifold, h € A'(X) a

hyperplane class, E a holomorphic vector bundle on X, and c
a global section of E. Take a smooth irreducible ample divisor
D of X whose fundamental class 7 p € H2(X, € ) satisfies the
condition: wyx € Q7nnp, where w g denotes the Hodge-Kahler class

associated to the class h. Then,

pent{(o , h)— 1t =< pent{c |p, hlp).
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Proof. Putting p = pent(c sh), let us recall an exact sequence:
0—QPy—>QPx{log D) > QP 'y~ 0,
which induces a diagram:

&
- HP (DL, Py (Elp) )= HP (X, Q Px (E))—> HP (X, E® Q Py (logh)) — -

restriction T @) ////////////GZ; b = Um @ yx-

HP "1 (X, QP 15 (E))—

By the assumption, m LyP (o ) # 0, which means & (Lp? ! (o |[p))=

5 (o6 lp® wp)+ 0. Hence we have Ly*"'( o |p) = 0. I

-Moreover we have one more interesting fact on the behavior of

penetration order with respect to restrictions on divisors.

{4.6) Proposition. Let X, E, ¢, wx h be as above. Assume that

pent (o ; h)< (1/2) dim X. Then there exists a smooth ample

irreducible divisor D such that
pent (¢ 3 h)=pent (o |p shilp).
Proof. It 1is easy to prove by applying Serre vanishing theorem to

several cases. Hence we omit the precise explanation.

Through the result of (4.2) Proposition, a simple gquestion comes

to our mind.

(4.7) Question. Let X, E, 6, wx h be as above. Assume that

pent (o , h)=p. Then does there exists a splitting subvariety of

dimension p ?
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Our answer to this guestion is negative.

(4.8) Example. Put X; to be P 2(C ). Take a nonsingular cubic
curve Yy and generaric 10 points p;, - ,Pig on Yy. Then set
X to be the blowing up at 10 points pi-- ,Pi1g of Xy, Y to be
the strict transformation of Yy, E to be the line bundle Oy (Y)
associated to the divisor Y, and o to be the section which
defines Y. Then there exists a hyperplane class h such that
pent( ¢ : h)= 1. On the other hand if there exists a splitting
curve C, then C can never meet Y. However, this is a

contradiction, since such a curve does not exist by the reason of

intersection calculus.

(4.9) Remark. In the example above, there exists an algebraic
l~-cycle Z which is not numerically equivalent to zero and
Y - ¢ = 0.

The following example shows us that penetration order is also
a considerably good tool for finding partial structures of a systen

of projective equations.

(4.10) Example. Let W <P NMN(C) =P be the image of an m-th

Veronesean embedding of Pri(C) (nz2), S a non-singular

hypersurface of P which meets W transversely. Put X to be
WV N S. Then X is arithmetically normal and has an S.P.E. {F,
Gy, ---,Gx}, where {G;,--- ,Gx} is an S.P.E. of W and {F} is an

S.P.E.of &S. Then,



Hence, using penetration order, we can find a partial structure

{Gy,-- ,Gx}., which is an S.P.E. of W, in the S.P.E. of X.

§5. Problems

From the arguments of this article, we shall raise several

problems which will be our working problems.

(5.1) Problem. Let F be a projective equation of j(X) for a

closed immersion j: X=-= P N(C ) of a projective manifold X.
Assume that degF> deg j(X). Then prove that pent(F)= 0 or
that such a projective equation F does not exist(cf.[G-L-P],

[S-V1).

(5.2) Problem. Let j:X=—= IPN(C ) a closed immersionof a projective

manifold X. Suppose that the penetration order of every projective

equation of J(X) 1is zero. Then H'(P, I%2; x,(*}))})=+ 0 ?

{(5.3) Problem. Let j:X=— PN{(C ) =P a close immersion of a

projective manifold. Assume that HI(P,I12%2; x,(*))=+ 0. Then does
there exist a projective equation of j{X) whose penetration order

is zero 7

(5.4) Problem. Besides Lefschetz operator, seek other tools which

can be used in precise studying of partial structures.
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(5.5) Problem. Let X be a projective manifold, E a holomorphic

vector bundle of rank r on X, h a hyperplane class in A! (X},
and ¢ a global section of ‘E with pent(oc sh) =p >0. Then
find a necessary and sufficient condition on the section o] for

the existence of a splitting subvariety of dimension p.

(5.6) Problem. Let X, E,o , and h  be as in (5.5) Problem above.

Assume that the zero locus {o)g of the section ¢ is of pure
codimension r. Then, does there exist an algebraic p-cycle Z
such that the cycle Z is not numerically equivalent to zero and

& - (6 )y 1is numerically equivalent to zero (cf.[U-4]).
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Mixed Torelli problem for Todorov surfaces

SAMPEI USUI

Introduction

There is an approach to Torelli problem by using degenerate loci. Namikawa,
and Friedman succeeded to prove the generic Torelli theorem for curves [Nam] and
the Torelli theorem for algebraic K3 surfaces [F'2] respectively in this direction.

In case of Todorov surfaces X, since the period map corresponding X to the
Hodge structure on H?(X) has positive dimensional fibers ([T1], [T2], [U1], [U2],
[U3]) it is necessary to consider the mixed period map which corresponds X to the
mixed Hodge structure on H*(X — ), where C is the unique canonical curve of X
([U4], [SSU]). On the other hand, we can observe that Todorov surfaces are connected
by “tame” degenerations and smooth deformations. It is the purose of the present
paper to try to solve mixcd Torelli problem for Todorov surfaces by using the “tame”
degenrations. At present we have formulated the problem inductively and obtained
some results but we have not yet arrived a final destination.

We give examples of “tame” degenrations of double covers of surfaces as
Table 0 on the last page of this article. Degenerations of type (/1) in Table 0 are
observed for Todorov surfaces and surfaces with ¢ = 2p, —3, type(I2) are obvserved
for Kunev surfaces, and ([I;) are observed for surfaces on the Noether line ([UG],
[UT]). Recently these phenomena are observed more widely ([K], [AK1], [AK2], [A1],
[A2]). So our present trial can be seen as a miniature of a more ambitious attempt,
namely, to attack (mixed) Torelli problem for surfaces of general type via degenerate

loci.

Typeset by ApS-TEX
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§1 is a Hodge theoretic prelininary. We recall, after [SZ], the constructions of
(filtered) cohomological mixed Hodge complexes whose hypercohomologies yield the
terms in a mixed version of the Clemens-Schmid sequence. We distinguish filtrations
corresponding to the openness of the varieties in question and to their singularity
and see their relationships. We prove partial results on the exactness of the mixed
Clemens-Schmid sequence.

§2 contains an observation that the moduli spaces of Todorov surfaces are
connected by “tame” degeneration, i.e., type (/1) in Table 0. We use the results in

In §3, we recall the moduli spaces of Todorov surfaces constructed in [M]
and the formulation of a mixed period map in [U4]. We give a candidate of a global
monodromy.

In §4, we prove the splitting of the local monodromy over Z by using the
result in §1 and extend the mixed period map over the “tame” degenerations.

§5 contains a useful result in the induction step of our framework. We also
prove partially the infinitesimal mixed Torelli theorem for the extended mixed period

map.

§1. Mixed version of Clemens-Schmid sequence.

(1.1) Let

(1.1.1) Fi(X,Y) — A

be a semi-stable degeneration of pairs, i.e., X is a submanifold of PY x A, the
restriction of the projection f: X — A is a flat morphism over a disc A whose fiber

X; = f71(t) over t € A is smooth for ¢ # 0 and Xj is a reduced divisor with normal
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crossings, Y is a reduced divisor of X flat with respect to f, and Xp + ) is of simple

normal crossings. For any 1-parameter degeneration of pairs, we can reduce to this
case (cf. [KKMS,II], [SSU,L.9]).

We use the following notation:

Xe=f71(t) (ted), Ye=YnX,

X*I:X—XO, y*::y_Yb7
(o] (8] (o}
X=X-), X* = XN,
(1.1.2) ~
A* = A — {0}, A* — A*  universal cover u — exp(27riu),
Xoo = X% X a0 A7, Yoo = V" xas A%,

[o]

Xoo 1= Xoo — Yoo

We consider a diagram

(1.1.3) i

X — A

~, 0

= f

X

Since (1.1.1) is locally C'°-trivial over A*, R"f*Qi) is a local system and the Gysin

filtration G induced from the canonical filtration 7 (see [D2,11.(1.4.6)]) of RK*Q%

o

(i-e., the Leray filtration for f : ./% v by o N A*) consists of local subsystems. We
denote by
(1.1.4) V,G, V), V= R"f*Q;(* ®q Oa-

the associated filtered vector bundle with the Gauss-Manin connection.
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Since f1Op« — (2, is a resolution and £ in (1.1.3) is Stein, R&k}_l O px
X+ /A
is represented by ETQ;Y*/A* hence by Q;Y,/A,(log y*) [D2,11.(3.3.1),(3.14.1)], which

together with the canonical filtration 7 and with the weight filration W ()*) are

filtered quasi-isomorphic [D2,I1.(3.1.8)]. Therefore

(1.1.5) V,G) ~ (R”f*ﬂ;wm.(log V), W(y*)).

By the same reasoning, an exact sequence

(1.1.6) 0— R@j—lﬁlA.[—u — RE*}—IQA. S RO Op — 0

is represented by

0— F712Y. @10, 2y pe(log Y9)[-1] —

(1.1.7)
2y-(log ") = Dy 0. (log V') — 0,

hence we see that the Gauss-Manin connection V of V is induced as the connecting
homomorphism of the hypercohomology sequence of (1.1.7) [KO].

The following lemma can be found in [D1,I1.(5.2),(7.11)], [St,(2.16)] and [SZ,
(5.3)].

Lemma (1.1.8).  V:= R"f.(2y) \(log(V+ X)) is the canonical extension
of (V,G, V), ie., the following hold:

(i) V is a vector bundle on A with V |qe=V .

(ii) G onV extends uniquely to a filtration of Y by subbundles, also denoted
by G.
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(iii) V extends to a connection of V with logarithmic pole at 0 € A with

Resy (V) nilpotent.

Idea of Proof. (1) and (ii) follow from a fundamental observation: For

Xoo N & Xo and u = log(t/2me),

Pt
. - | - .
(1.1.9) Q_Y/A(Iog(y%- Xp)) ® Ox, (QI_S i 12y (log (Y + Xo))[y]

g]-g ik 2% (log Yoo,

where

(1.1.10) Py (Z w]'u]) := (image of wyp).

(1i1) follows from an exact sequence

0 — 7124 (log 0) ®f-10, 2y a(log(Y + Xo))[—1] —

2y (log(Y + Xo)) — 12/ (log(Y + Xo)) — 0,

(1.1.11)

which is an extension of (1.1.7), and a direct computation of the residue. For details,

see the above references.

(1.2)  We recall the construction of the mixed version of the Steenbrink
complex A" in [SZ,85] (see also [Nav,§14], [I52]). In the situation and the notation in

(1.1), we consider a diagram

(1.2.1) )
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By the Eilenberg-Zilber theorem [Sp,p.232], we see
KA (Xs) ;?; LA (X) ®q ke A (Xoo)

[SZ,(5.20)], where A(Z) is the complex of sheaves of germs of singular Q-cochains
on a topological space Z. Since A'(Z) is a fine resolution of Qz, we see by the above

result, that

2 S| o n (Vv = A an
(1.2.2) I'(x):= LA (X), I'Xeo) =1 kA (Xoo) d

['(Xo0) = 5(I'(X) ®q I'(Xoo))

are representatives of i_lRé*Q({), i RE,Qx_ and i—leiQ;{m respectively.

r (;( o) 18 of course a candidate of the Q-structure but the monodromy log-
arithm logT' can not be lifted on this complex. In order to rescue this situation, we
need a rather complicated construction of A'Q in the following way.

The automorphism (z,u) — (z,u — 1) on X 1= X* xav A* induces an

automorphism T' of I'(X). Define

B (Xoo) = | Ker(T — 1)™ C I'(Xo0),
(1.2.3) m20
B = B(Xe) i= I'(X) ®q B (Xeo) C I'(Xoo).

Then these inclusions are quasi-isomorphisms [SZ,(5.9)] (more precisely, see [Nav,

§14]), and
(1.2.4) §:=logT : B(Xe) — B(Xu)

is well-defind by construction.
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Let

be the mapping cone, i.e.,

p(BY :=B? @ BPl  d(z,y) = (dz,(1 ® 8)z — dy)
We define a morphism of complexes
(1.2.5) 05 p(B)Y — p(BY[1] by 0(z,y) = (0,).

Let
T;(K' QL) =(rK)Y® L, T;'(I(' QL) :=K @ (1 L),

be the partial canonical filtrations for a tensor product of complexes K and L', where

7 1s the canonical filtration.
e}

A double complex Ay = A‘Q(X o) Is defined as

(p(B)[t)la+1] ifp>—1and¢>0,

Ad =

Q :
0 otherwise,

(1.2.6)
d : A]éq — Af-;'l’q is induced from (—1)q+1dp(3)., and

d - A’éq — AE‘HI is induced from 0.

The Q-structure of the mized version of the Steenbrink complex is the associated

single complex:

(1.2.7) Ag =s(4g), d=(1)1d+d"=—dypy +0 on AY

—425—



It can be seen that the map B" «— Ay defined by B? > z (0,z) € A]é’() is a

quasi-isomorphism [SZ,(5.13)].

Let 6 and v be endomorphisms of the complex A'Q defined by

L2 §: A — A 8(z,9) = (1@ 8z, (1@ 6)y), and
1.2.8
v: Ag’ — Aa"l’Q+l projection.

These are homotopic [SZ,(5.14)]. In fact, it is easy to verify that the map given by
1,q— ,q—1
h: Ag’r =1, Aaq h(z,y) := (y,0)

satisfies v — & = dh + hd. Moreover the endomorphisms 1 ® § of B and & of A, are
compatible with B~ — A'Q. Hence v on Ag induces log T on the hypercohomology,
which is the significance of the complex Ay,

Let W(X,) be the partial weight filtration of the complex 2y (log(Y + Xo)),
ie., W, (X0) 2% (log(V+ X)) = £2% (log(Y+ Xo)) A 2% *(log V). We define a double

(o]
complex A5 = AG(Xoo) by

W { (23 (log(Y + X0))/We(Xo))g+1]  ifp,g >0,
C =

0 otherwise,
(1.2.9)
d: AN — Apc+1’q is induced from (—1)7"!(exterior differential), and
d": A — A%’q+1 is induced from 4A,
where
(1.2.10) 0 := f*dlogt/2m, ¢ : a parameter of the disc A.
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The C-structure of the mized version of the Steenbrink complexr is the associated

single complex:
(1.2.11)
Ac = s (Ag), d:=(-1)4d' + d" = —(exterior differential) + 0 A on A}

Let v be an endomorphism of the complex A defined by
(1.2.12) v: AY — Azé_l’qﬂ projection.

In order to see the relation between the Q-structure and the C-structure, we

set

B'(Xg) := i 12y (log Xo)[u], where u = logt/2xi, and
(1.2.13)

B =B (Xo) i= 2y(log Y) ®c B'(Xoo)
and construct a complex

(1.2.14) A from B
in the same way as the construction of AQ from B". We define an endomorphism
(1.2.15) § of B(Xw) by 6 (Zwﬂy/]’!) ==Y w7 (G - 1)

and denote the induced ones by

1®6 on E’,
(1.2.16) ~ B B
§oon A, o,0) = (18 )z, (1 0 9)y).
We denote also by
(1.2.17) v on Ag :the one induced from the projection Z%q — Z%_l’q+l.
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Then we have compatible quasi-isomorphisms:

§ on Ag®C
T1Q1S [SZ,(5.13)]
§ on B ®C
11QIS [SZ,(5.18)]
1@6 on B
11 QIS [SZ,(5.13)]
(1.2.18) & on Ag
I [SZ,(5.14)]
v on Ag
Py L1 QIS [SZ,(5.18)]
v on Ag
(—1)0A T1 QIS [SZ,(5.5)], [St,(4.16)]

2y a(log(Y + Xo)) ® Ox,,

where ; above is induced from a morphism of double complexes defined by
(1.2.19) by AV ADL o, (Z zul /3!, Eyjuj/j!) = zg + du A yp.

Taking hypercohomology, (1.2.18) induces a compatible isomorphism (cf. [St,(4.22)]):

logT  on H™Xe,C)
(1.2.20) P L1

—2miReso(V)  on  V(0) = H™(Xo, 2y 2 (log(Y + Xo)) ® Ox,),

where V is the Gauss-Manin connection in (1.1.8). In this sense, we hereafter denote

(1.2.21) N :=1logT = —2miResy(V).
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Remark (1.2.22).  [St,(4.24)] explains how the isomorphism % in (1.2.20)
depends on the choice of the parameter ¢ of A (cf. also [Nav,(14.18)]). This can be
also explained in the following way (superfluous 7).

Let {e1,...,er } be a multi-valued flat frame of V in (1.1.5). Modifying
€; = exp(—ulog T')e;

we get an invariant frame {€j, ..., } which extends over A and induces a basis of
the central fiber V(0) of the canonical extension [D1,I1.§5], also denoted by the same
symbols. Let My and M7y be the matrices such that

(Vey,...,Ve,) = (é,...,e) My, and

(Ter,...,Tes) = (e1,---,er)Myp
Then

Pi(ej) =€ for all j,

and under this identification we have (cf. [D1,I1.(1.17),(5.6)])
log My = —2niReso(Mv). B

We define filtrations of A by
(rip(B))lg + 1] — Ag,
G;A? := image
Wi(¥) 92 (log(Y + Xo))lg + 1] — Ag,
(Tvaqe1p(B))g +1] — Aé,

L; AT = image{
Wisag4+1(X0) 2y (log(¥V + Xo))lq + 1] — AZ,

(1.2.23)
(Ti2q412(B) ) +1] — AQ,

Wi AT = image{
Wi pag41(Y + Xo) 2y (log(Y + Xo))lg + 1] — A&,

FPAG = (DAL

p'zp

—429—



A convolution (or amalgam) F' x F" of two filtrations F and F" is defined

by
(F' s F") o= Y FInF, [SZ,(1.4)].
i+3=k
Lemma (1.2.24). (i) (A,GxL)— (A, W) is a filtered quasi-isomor-
phism.

(i) G on A satisfies
L (- G oA = A Oy
vG; € Gy, gri A ors A (Yoo )[~1],

and induces the Gysin filtration on the hypercohomology, where 570(;) is the normal-
ization of the i-ple locus of Y.

(iii) (A, L)®C }?Q;I/S (Ag, L) and L on Agq induces the N-filtration on
the hypercohomology, i.e., NL; C Lj_2 and N7 . grf ’—‘?grfj on H"(XO,A'Q) =
H"( X, Q).

Proof.  Set 2 := 23 (log(Y + Xo)). Then

= (32 (WD) + Wa(X0)) N (Wiszga (Xo) + Wq(X0))/ Wy(Xo) ) 211]
iti=k

= (3 (WD) N Wyl(Xo) + Wyaga (X0)/ Wa(X0) ) 211]
it+i=k

~(Wapze1 (D + Xo) + Wy (X0)/ Wy(X0))2[1] = Wi AL,

Similazly we have (G * L)y Ag C WiAg. These together with [D2,11.(3.1.8)] yield a

commutative diagram:

. — 9, _ —_— .
(A, G+ L)®C rols (Ag, 7 * 7"'[-2¢ —1]) FEI‘)S (Ag,G + L)
! |
. —_ . ¢ —
(AQJW) ® C FOQIS (AC7T[ 24 1]) FQ]S' (A07{/V)
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From this we get the assertion for the Q-structure. This proves (i).

The first assertion of (ii) is immediate by definition. As for the second,

g AG = (((rf + 7))/ (vl + 7))p(B))lg +1]
~ ((ri/(rizy + 7 07 ))p(B) ) + 1]
~ (gr] p(B) [y p(B))lg +1]
ors (44 Q50 =11 @ (B (Xeo)) /7 )la +1]

= a4 Qg5 [~1] ® AG(Xoo) cg:z;’ Ag(?og))[_z'].

Similarly we have the second assertion for the C-structure. The last assertion follows

from these. This proves (ii).

The first assertion of (iii) is easy by construction. We prove the second

assertion.

APY pq __ N p—l,g+1 _ 7. p—1,q+1

[

Hence NLj C Lj_3 on H"(X,Q). Next we observe that
(AQ,G) (ﬁ (REt*Qi’z7T)7 where £, : Xy — Xy (t € AY)

and that the latter is a part of the functorial cohomological mixed Hodge complex for
)c;'oo (see [D2,111.(8.1)]) hence the spectral sequence of (RFR&*Q)} ,7) degenerates

in £y = E.,. We also observe that under

g A" (Xoo) 3 A7(VL)

I} i oy
Ligr¥ A (Xoo) corresponds to T/VJA'_”‘(YO(;)) and the dj of the above spectral se-

quence are morphisms of mixed Hodge structures (actually, Gysin maps), so L = W
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on E is strict for dy [D2,11.(2.3.5.iii)]. It follows that taking cohomology and gr
commute [D2,11.(1.1.11.11)]. By [St,(5.9)] (see (A.1) below),

NY Lqu—>g1 qu

Hence

i Lp—tntt ~ [ —2,m+2
N] . g1] EZ —r gl'__jEz .

That is

NI gt ngH"( Xoo, Q) = gr ,ngH"( (00, Q).

This implies

N glLH"(Xm,Q)ﬁgl 11"( {00y Q)-

[El] generalized the notion of cohomological mixed Hodge complex (CMHC,
for short) in [D2,I11.(8.1)] to:

Definition (1.2.25). (M,G) = (Mq,G,W),(Mg,G,W,F),a) is a G-
filtered CM HC on a topological space Z if it satisfies the following conditions:

(i) Misa QCMHCon Z. a: (MyGW)®C ~ (MG, W) is a
bifiltered quasi-isomorphism.

(ii) g1¥M is a Q-CMHC on Z for each .

(i) DecW and gr€ commute on M" = RI'My,.

(iv)  The spectral sequence of (M, () degenerates in Ey = Fo.

Recall that the Hodge filtration F' on V in (1.1.5) is the one induced from

the stupid filtration
FPQy(log V') = Y 2. (log V)

p'zp

The following lemma can be found in [SZ,85,(6.9),(3.13),Appendix].
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Lemma (1.2.26). ((Aq,G,W),(Ag,G, W, F),a) is a G-filtered CMHC
on Xy, whose hypercohomology yields a limit of the variation of mixed Hodge struc-
ture arising from } : 3(' * — A* that is, the following hold:

(i) W on Ag induces the G-relative N-filtration on the hypercohomology,
e, NWi C Wiy and N7 : gl a0 =5 g7 xS on H™(Xo, Ag) = H™(X ooy Q).

(i) F on V extends to a filtration of V in (1.1.8) such that FPgrSV is

locally free and FPV(0) = FPH™ (X, Ag) for each ¢ and p.

Proof. By (1.2.24.1) and [Z,11.(A.1)], we have

W 4 G_ L4
gry Ac ~ @ gry gry Ac
i+j=k

Res

5D D et

i+j=k g>max{0,—k)
where Y ﬂ)?éjl) is the normalization of (i-ple in Y, j'-ple in Xjy)-locus of Y+ X and
a: Y0 Xéjl) — Xp is the projection (cf. [SZ,(5.22)]). The above isomorphism is
compatible with F' and we have a similar decomposition for the Q-structure. (1.2.25.1)

follows. By (1.2.24.1), [Z,I1.(A.1)] and [SZ,(1.5)], we have

ngVA' ~ @ griGngLA' ~ @grzvgr?A'.

i+j=k :
This is compatible with F. (1.2.25.i1) follows. (1.2.25.iii) also follows by [SZ,(6.8)].
(1.2.25.iv) is already shown in the proof of (1.2.24.iii). This proves the first half of

the assertion.

The proof of (i) in the second assertion is analoguous to that of (1.2.24.iii)

and we omit it.
As for (i), set £2(t) := Q"l,/A(log(y + X0)) ® Ox, (t € A). We first note
that, for 8 := f*dlogt/2m,

ON: (Q00),F) 75 (g, ) (cf. [S6,(416)).
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This implies FPY(0) = FPH™( Xy, Ag). As we have seen in the proof of (1.2.24.iii),
I on the Eq of the spectral sequence of (RI'Rly Q;( ,7) is strict for d;. hence grp

commutes with taking cohomology, and we can compute as
grper{ V(1) = grlerd H™(RI0(t))
= g By " Y(RI(L), @) = gl BT (RIQ(t), Dec Q)
= grip H" (RIgr2s 9 () = H"(RI'gr,grsC (1))
= H"(X:, grperis O 2(1)).
From this, we see that dim grfgr&V(t) is upper semi-continuous in ¢ € A. On the

other hand, dim ngGIN/(t) is constant. Hence gl‘%gr? V is locally free by the continuity

theorem.

(1.3) In thesituation of (1.1), we recall a construction of a CMHC K whose
hypercohomology gives the functorial mixed Hodge structure on the cohomology of
Xy (ct. [D2,IIL(8.1.12)]).

Let K¢, be a double complex defined by

o}

I{&q . { IP(X) ®Q a*Qj}[gq-H) if b, q = 07

0 otherwise,

d: K§ — KB s (_1)q+1d1.(({,), and

d": K&q — {8q+1 is the Mayer-Vietoris map 1 ®. (Z(—l)ztﬁ") .

~ (&)
where a : X(gq+1) — Xp is the projection and I'(X) is the complex in (1.2.2). The

Q-structure is defined as the associated single complex

(1.3.2) Kq, d:=(-1)"d'+d" = _dr(;"c) +1® (Z(—l)"ég‘) on K¢/

]
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Let K& be a double complex: defined by

a2 (log(Y N X)) it pg >0,
Kgq = 0

0 otherwise,

d: Kl — (é“’q is (—1)7"!(exterior differential), and

d" - K% — Kéq—H is the Mayer-Vietoris map Z(—l)i(ﬁk.
7
The C-structure is defined as the associated single complex
(1.3.3) K¢, d:=(-1)4d' 4 d" = —(exterior differntial) + Z(—l)i(Sf on K

We define filtrations of Kq and K¢ by

'rz-'KQ over Q ,
G; K = {

Wi(V)Ks  over C,

L; K" = @ K1 over Q as well as over C ,
q=>—1
(1.3.4)
! q
Thaell Qo
WK1 = { e
I’Vk+q(y)]X,g,

FPEG = (D KE .
p'2p

Lemma (1.3.5). (i) (K ,G*1L)— (K',W) is a filtered quasi-isomor-
phism.

(i) (Kq,G)®C rols (K¢, G) and G on K satisfies

vG; C Gy, g K o a K (Y N Xo)[—i],

—435—



hence induces the Gysin filtration on the hypercohomology.

(iii) (Kg,L)®C F%IJS (K, L) and L on K¢ satisfies

g1fKQ ;—I:;) a+Q~—+n 7],
Xo

hence induces the Mayer-Vietoris filtration on the hypercohomology.

(iv) K = ((Kq,W),(Lg W, F),a) is a CMHC over Q on X, whose
hypercohomology yields the functorial mixed Hodge structure on H ().;’ 0, Q).

(v)  If the spectral sequence of RI'KK" by the filtration G (resp. L) degen-
erates in By = E, then K with G (resp. L) is a G-filtered (resp. L-filtered) CMHC
over Q.

(vi) Kg = Ker{v : Ao — Ag} and the filtrations G, L, W and F' on both

terms coincide respectively.

Proof.  (i): (G# D)9 = 3 i i (GiNL)K T = Gy g1 = WK1,

The first assertion of (ii) follows immediately by definition. As for the second,

. w . o~
g K& = g} Van2gun (log( n X3™))

[—i] = a, KZ(YO 0 X)),

~ a*‘(zy(i)nf(()qﬂ)

Similarly, we get the assertion for the Q-structure. The third assertion follows from
these.

The first assertion of (iii) follows immediately by definition.

ngI-’KC = K[
= 4y Qs (log(Y N XT7M)) = 0,Q ]
Qs X(()—J+1) og 0 a;ga* Xg—1+1)] -

Similarly, we get the assertion for the Q-structure. The third assertion follows from

these.
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(iv) is found in [D2,II1.(8.1.12)]. (v) is easy to verify by using (i) and
[SZ,(6.8)]. (vi) is immediate by construction. g
We now recall a construction of a Q-CMHC C" whose hypercohomology

gives the functorial mixed Hodge structure on the cohomology of (X, X*) (cf. [GNPP,

IV.5]).
We are working on a diagram:
o ; o
X — X
(1.3.6) l l ,
7 7
X » X« X[)

As in (1.2.2), the complexes

(A '—i_l ‘(A : * .:i—l' < V* an
(1.3.7) (X)) =i 6A(X),  I(X7) = 5,4(x) d

I(X*) = s(I'(X) ®q I'(X")).

o]
are representatives of i 1R, Q o i 'Rj,Qy+ and i“lR(ﬁj)*Qi} respectively. The

<

complexes Cgy and Cg and their filtrations are defined as
[ @ over Q,
- { (23(105(Y + X0)/ 2 (log )] over C,
(HI(X*)1] = G

G;C" = image{
Wi()125 (log(Y + Xo))[1] — Cg,

(]+1 ( *))[1] - CQ)

W;1(X0) 2y (log(YV + Xo))[1] — Cg,

(1.3.8) L = image{

(e (X)) = Cy,

WiC' = image{
Wip1(Y + Xo)f2y (log(Y + Xo))[1] — Cg,

FPC& = image of FPT1(0%.(log(Y + Xo))[1] — Cq.
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Lemma (1.3.9). (i) (C,G=*L)— (C",W) is a filtered quasi-isomor-
phism.
(i) (Cu.G)®C FAQ—;S (Cs, G) and G on C satisfies

vG; C Gy, gsc ﬁ (YD, YO 0 x*)[—i),

hence induces the Gysin filtration on the hypercohomology.

(iii) (Cu,L)®C FES (Ce», L) and L on Cg satisfies

grfCq 7 wQeumnl=il,
hence induces the Mayer-Vietoris filtration on the hypercohomology.

(iv) C = ((Cq,W),(Ce, W, F),a) is a CMHC over Q on Xo, whose
hypercohomology yields the functorial mixed Hodge structure on H'(X, X*; Q).

(v) If the spectral sequence of RI'C" by the filtration G (resp. L) degen-
erates in Fly = By, then C with G (resp. L) is a G-filtered (resp. L-filtered) CMHC
over Q.

(vi) Cg = Coker{v : A — Ag} and the filtrations G, L, W and F' on

both terms coincide respectively.

Proof. (i), (i) and (iii) are proved analoguously as (1.2.24.1), (1.2.24.ii)
and (1.3.5.iii) respectively hence we omit it. (iv) is found in [GNPP,IV.5]. In fact, by
the Kunneth formula and the residue formula,

W ——
gr, Cq o015 b & Q50 [—Hl-

er) Cc — P 4 C 0500 [kl

These show that gr'¥ C" is a CHC hence C" is a CMHC. (v) is easy to verify by using

(i) and [SZ,(6.8)]. (vi) is immediate by construction.
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(1.4) In the situation of (1.1), we shall construct a mixed version of the
Clemens-Schmid sequence after [SZ,11.§7].
Let

(1.4.1) viA S A

be the mixed version of the Steenbrink complex and the lifting of the monodromy

logarithm in (1.2). From (1.4.1), we have an exact sequence

v

0 — Ker(v) — 4 y A » Coker(v) —— 0
R /
(1.4.2) Im(v)
/ N
0 0

Taking the hypercohomology, we have two long sequences (for n odd or even)
o 1] [o] o] o o )
(1.4.3)  — H™(X,X*) = H*(Xo) — H"(Xeo) 5 H*(Xoo) — O™ 2(X, X*) —

over Q by (1.2.25), (1.3.5.iv) and (1.3.9.iv). This is a mixed version of the Clemens-
Schmid sequence.

The following is the Poincaré duality (for the proof, see [Sp]).

Lemma (1.4.4). H™(X,X%Z) ~ Hogpon(X0,Y0;Z) where d+1 =
dim X.

Proposition (1.4.5). In the situation of (1.1), we have, for the cohomol-

ogy with coeflicients in Q, the folowing:
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(i) (1.4.3) is a sequence of mixed Hodge structures over Q.

(i1)  The filtrations G as well as L on each term of (1.4.3) are compatible
respectively.

(iii) If Y is smooth (possibly reducible), then (1.4.3) is a sequence of G-
filtered mixed Hodge structures over Q.

(iv) IfY is smooth (possibly reducible), the Gysin map H(Yoo) — H?*(Xoo)
is injective and Hyq—1(Xo) = 0, where d = dim Xy, then the following parts of (1.4.3)

are exact:

1,0 1,0 N TN 3,9 ©.
H (Xo) » H (X)) — H (X&) = H (X, X").
o 0 [} 0 (¢}

N o
HY(X o) = HA* (X, X*) = H*(Xp) = H* (X o) — H*(X o).

Proof . (i), (ii) and (iii) follow from (1.2.25), (1.3.5) and (1.3.9).
In order to prove (iv), we first note that taking gr® on each term of (1.4.2)
yield the following commutative diagram consisting of the Clemens-Schmid sequences

as horizontal lines and the Thom-Gysin sequences as vertical lines:

(1.4.6)

Hn—l(y’y*) N Hn_l()/(]) — I_In—l(y*oo) N Hn—l(Yoo) — H"+1(y,y*)

7~ N~ 4 »’\

o] o (o] [o] o] o o
HY(X,XY) — HY(Xp) — H*(Xeo) — H™(Xeo) — H™2(X,X*)

4 ~

H"(X,X*) — H"(Xy) — H"(Xo) — H"(Xo) — H™M2(X,4%)

4 n ~ T

Hn—Z(y’ y*) — Hn—2(§/b) — Hn—.?(yoo) — Hn—2(YOO) N H”(y, y*)

‘We shall prove the exactness of the second sequence in (iv) by chasing the diagram

(1.4.6). As for the first sequence, the proof is similar and easier and we omit it.
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o]

At the first term H%(X o), the exactness follows from
0 o 0 [} o o o
H'(Xoo) = H'(Xoo),  HY(X,X*) S HYX,X)

by (1.4.4) and from the exactness at H%(X) in the usual Clemens-Schmid sequence
[Cll. In the same way, the exactness at Hz((%',/%*) follows from H*(X,X*) =
Hz(./%, .?ok'*), the assumption of the injectivity of H®(Yeo) — H?*(Xoo), H'(Yy) =
H®(Ys) and from the exactness at H?(X, X*) in the usual Clemens-Schmid sequence.
Similarly the exactness at H? (}o{ o) follows from the injectivity of H'(Yy) — H'(Ya)
in the usual Clemens-Schmid sequence, H%(Yy) = H°(Y,,) and from the exactness
at H 2(Xg) in the usual Clemens-Schmid sequence. As for the exactness at the first
Hz(i’oo), notice that H*(Y,Y*) — H*(X,X*) is injective, because {H*(X, X*) —
Hg(;(-’ .3,’*)} is isomorphic to {Hyg_1(Xo) — Haq-1(Xo,Yp)} by (1.4.4) and the latter
is an isomorphism. Now the desired exactness follows similarly from the exactness of

the usual Clemens-Schmid sequence, H*(X, X*) o~ Hay_1(Xg) = 0 by (1.4.4) and the

assumption, and from the above remark.

It is not yet known in general wether (1.4.3) is exact or not. Proposition
(1.4.5.iv) is only a partial result but it is sufficient enough for our later use in the

present paper.

Problem (1.4.7).  Prove the exactness of (1.4.3).
Appendix to §1.

(A.1) As[E2,]I.(3.18)] has pointed out, there is a part which is not clear in

the proof of [St,(5.9)], i.e., “This implies that £ € Pq_T(EN/(T‘H), Q)(—r).” [ibid,p.254
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T11]. We explain the point more precisely. In the notation there, we have

BT =g Oy @ HT (Y U)) @ o (YY) g

(-1)0Vd; | NG s 0N 1/
EI,q—T _ Hq—r(i}(r—l—l)) ® Hq—r——Z(i‘}(r-i—?»)) @ ...

where the 0 and the v are the Mayer-Vietoris maps and the Gysin maps respectively

and we omit the coefficients of the cohomologies as well as the Tate twists. Let

€= (&)izo € Z(ET™YT) ¢ @ oAy (r+20)

120

be a primitive element such that 7"¢ € B(E]T ") as in the situation in question.

Then, by the above diagram, there exists

n = (ni)iz—1 € EI-I’qu = @ HQ_T—Z_%(?(H"H%)) such that

1>—1
v = (‘1)7_161177 = (0ni—1 — 77:)i>o0-

In particular, {g = 7" &y = On—1—m0 € Pq—r(?(””l)), but it is not known wether 6y_4
is primitive or not, hence we can not conclude dn_1 = 0 (¢ is assumed as v"§ = On_
there !) by the argument using the polarization on Pq—T(EN/(T‘H)).

However, we can rescue the claim (A.1.1) below (cf. [ibid,p.254,70]) along

the line of the original proof by using the polarization () on the whole

o~
r

v L .
(E;T’Q_H)prim -~ (E;,q—r)prim _ EB P{I—T—uz(y('r—l-l-i—.’lz)).

120

[ibid,(5.9)] now follows from (A.1.1).
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Claim (A.1.1). £=0.

Proof.  We keep the notation in [ibid,§5]. Identifying by ¥" above, we have

&i=0ni1—ni (0= 0).

Since § and « are adjoint, we can compute as

Q6 =Y Q&)

120

:52/; _Lg—q/\Cfi/\.fi
<0 Vr+1421)

ey /N Ly AC(Oniy —ym) A&

—c LU ACyii A i—/ Ln_q/\Ci/\Q,)
Z (/%TMM 0 -1 76 Y(r+2+42i) 0 g €
=e X [ T ACHA A~ 06i) =0,

where £ = (—=1)(¢===D)/2 We used (0&i_1 — 7&)is1 = (—1)"H'dié = 0 in the

last equality. Hence, by the positive definiteness of ), we get the assertion. E

(A.2) In [Cl], the Clemens-Schmid sequnces are constructed by combining
“Wang sequences” and the local cohomology sequences. The mixed versions can be

also constructed in this manner.

Lemma (A.2.1). In the situation and the notation in (1.1)-(1.3), we

have a commutative diagram

o o R
0 — A'Q(Xoo)[——l] — p(A'Q(,XOO),I/) — AQ(XOO) — 0
QIS]\Z QIS |1 QISTI

[}

0 — B(Xa)=1] — p(B(Xe)8) — B(Xeo) — 0

wl

o o & o
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whose horizontal lines are exact. The hypercohomology of each horizontal sequence

yield a “Wang sequence” in the category of mixed Hodge structures.

The proof is standard and easy by the construction hence we omit it.

In the notation in (1.1.3), (1.2.2) and (1.3.7), we set

F(A%) =i (0,4 (X),
(A.2.2) T(X,X%) = Ker{I'(X) — [(¥*)}  and
I'(X,X%) = Coker{I'(X) — I'(X*)}—1].
Lemma (A.2.3). In the situation and the notation in (1.1)-(1.3) and
(A.2.2), we have a commutative diagram

o

0 — Ko — p(Ag(X),v) —  Cpl-1] — 0
QIST} or1s 1 QISTI

0 s I(X) — (XY — FX,AY[] — 0

H Q1s 1
0 — I'(X, X% — I'(X) — I'(x*) — 0
where the top horizontal sequence is QIS exact and the other horizontal sequences

are exact. In particular,

_ o o o o
[(X, X*) S I (X, X)) == Oy -2].
(X,X)afg (XaY)EJB’CQ[ ]

The hypercohomology of each horizontal sequence yields a local cohomology sequence

in the category of mixed Hodge structures.

Proof. We shall show that the top horizontal sequence is QIS exact in the
midle term. The other assertions are standard and easy to see by the construction

and we omit their prooves.
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Let (z,y) € A™ ® A" such that d(z,y) = (daz, vz — day) = 0 and that
there exists 7 € C™ ! with § = —dg7 in C". Then, since y + dan = 0, there exists
¢ € A" ! satisfying y + dan = v€. Hence

(z,y) —d(€,n) = (z — da&,y + dan — v€) = (z — d4§,0) and
v(iz —dal) =ve —davé =ve —da(y +dan) = ve —day = 0.
Therefore x — d ¢ € K™. 1

Combining the mixed versions of the “Wang sequences” in (A.2.1) and the lo-

cal cohommology sequnces in (A.2.3) as in [Cl], we get mixed versions of the Clemens-

Schmid sequences.
§2. General degenerations of Todorov surfaces.

In this section, we recall and modify the results in [M] (cf. also [T2]) for our

later use.

(2.1) We recall first some facts in the code theory. Let Fy := Z/2Z. A
binary linear code (V C Fg) on a finite set [ is a vector subspace V of the Fg-vector
space FZ of all maps from [ to Fy. The distance of o € FLis §{i € I | (i) = 1}.
A binary code (V C Fi) is equidistant if all non-zero elements of V have the same
distance; this common distance is called the distance of the code. Let (V C F%) be.
a binary linear code. The linear subcode associated to a subset J C [ is defined as
({p eV o) =0ifi ¢ J} C F).

In the case that the set I itself has a structure of Fa-vector space of dimension

4, we define a binary linear code
D := ({affine linear function on I'} C F1).

Assigning a pair of integers (k,@)(C) := (47, dim V) to a linear subcode C = (V C Fj)

of D, we get
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Lemma (2.1.1). There is an order preserving bijection

{linear subcode of D}/ (isom. as abstract codes)

!

{(k,a) €22 0K a<5,2 — 24 < k< a+ 11},
where we endow these sets orders defined respectively by

C' € C <= (' is isomorphic to a linear subcode of C

(K',d) < (k,a) <= d' < a and o — o <k — k.

The proof is found in [M,(1.2)]. The assertion about the orders are implicit

there, but a careful reading of that proof leads to this assertion.

(2.2) We recall here the definition of Todorov surfaces and K3 surfaces of

Todorov type and their relationships.

Definition (2.2.1). A canonical surface X is called a Todorov surface
if x(Ox) = 2 and X has an involution o such that X /o is a K3 surface only with
rational double points. A pair of integers (£, ) := (c3(X), logy §(2-torsion of Pic(X)))

is called the type of X, where X is the smooth minimal model of X .

[M,§5] shows that the values of ({,a) are as in the table (2.3.3) below.
Let (Y, E) be a pair of a smooth minimal K3 surface Y and a disjoint union
E =Y%"cq Ei of (-2)-curves on Y. By using the cup product pairing on H*(Y,Z) and

the reduction modulo 2, we have a homomorphism of modules:

6 (primitive span of Y _Z[E;] in H2(Y, Z)) — Hom (Z Z[E;], F2> ~ F1.

(Imé C F¥) is called the binary linear code of (Y, E).
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Definition (2.2.2).  Let (¢, a) be one of the 11 values for Todorov surfaces
in the table (2.3.3) below. A K3 surface of Todorov type (£, a) is a triple (Y, L, E)
consisting of a K3 surface Y only with rational double points, an ample line bundle
L onY and a disjoint union F = > icr Li of (-2)-curves contained in the exceptional
locus of the minimal resolution p : Y — Y, such that u*L @ Oy (E) is 2-divisible in
Pic(Y) and that L - L = 2{ and dim Im§ = « for the associated code. E is called the

distinguished (-2)-curves.

Let X be a Todorov surface of type (£, @) and consider the following diagram:

>
=)

(2.2.3)

B —

= e—
=
< 3

where Y := X/o, C is the canonical curve of X, B := «(C), p is the minimal

resolution, and X=X Xy Y.

Lemma (2.2.4). In the above notation, let u* B+ E be the branch locus

of the double cover #. Then there is a bijection:
{X | Todorov surface of type (£, «)}/isom.
!
{(Y,B,E) | (Y,Op(B), E) is a K3 surfaces of Todorov type
(¢, ) and B satisfies Condition (2.2.5) below}/isom.
Condition (2.2.5). On the smooth minimal model Y, B = u*B is

reduced and has at most simple singularities and BN E = {.

The proof of (2.2.4) is found in [M,§4,85]. We call a data (Y, B, E) in (2.2.4)
a Todorov triple.

For a K3 surface (Y, L, E) of Todorov type (£, @), it is known that {1 = £+8,
where B = . By (see [M,(5.2.ii)]).
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(2.3) Finaly, we summarize the main result in [M] about the moduli spaces

of Todorov surfaces together with an observation of their general degenerations.

Definition (2.3.1). A numerical K3 surface is a smooth minimal surface

with p, =1, ¢ =0 and ¢4 = 0 (cf. [U5]).

Proposition (2.3.2). The values of type ({,a) of Todorov surfaces are
as in the table (2.3.3) below. For each of these values of (£,«), there exists the
moduli space of Todorov surfaces of type ({,«) which is irreducible. The general
degenerations of Todorov surfaces are those of type (1) in Table 0 on the last page,
and except the case (2,1) — (0,1), they go down one step in the direction | or — freely
under the controle of the associated binary linear code. In case of (2,1) — (0,1),they

go down two steps.

(2.3.3) (6, a) =

[ o N o
[N} @ >

4,1) (3,1) (2,1) : (0,1)
3,0) (2,0) (1,0) : (0,0) (—1,0)

The left hand side of the vertical dots in the table (2.3.3) correspond to
Todorov surfaces.

(0,1) corresponds to numerical I{3 surfaces with two double fibers.

(0,0) corresponds to numerical I3 surfaces with one double fiber.

(-1,0) corresponds to I3 surfaces blown up one point.

Proof.  The first half of the proposition is proved in [M] by using the code-

theory, a suitable version of Nikulin’s embedding theorem, and the Torelli theorem
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and the surjectivity of the period map for K3 surfaces of Todorov type. We prove

here the assertion about the degenerations which is implicit there.

There are sixteen (-2)-curves £ = . [ on a smooth minimal Kummer
surface Y = Km (A) which correspond to the 2-torsion points of the abelian surface
A. They form a 4-dimensional Fa-vector space and it is known that the binary
linear code of (Y, E) is D in (1.1). This is the key point of the relationship of the
abstract code theory and the geometry from which it is deduced that the binary code
associated to any K3 surface of Todorov type is isomorphic to a linear subcode of D

(see [M,(2.1)]).

Let (Y, L, E) be a general K3 surface of Todorov type (¢, @), i.e., the smooth
minimal model Y of ¥ has the Picard number k +1 =£49. Let C = (V C Fl) be
the associated binary linear subcode. In case (£, ) # (8,5),(2,1)or(1,0), L is very
ample on Y and Y has only & = £+ 8 ordinary double points which correspond to £
[M,(7.7)]. By (2.1.1),if ({—1,¢'), o/ = aora—1, appears in the table (2.3.3), there is
a distinguished (-2)-curve, say Ey, such that the linear subcode of C associated to the
subset I —{1} C I has invariants (£4-8 —1,a'). Take a general member B; € |L|and a
general member By € |L| subjected that By passes through the ordinary double point
on Y corresponding to Fj. Let A be a small disc in the parameter space of the pencil
generated by By and By whose center 0 € A corresponds to By. Denote by BCcYxA
the total space of the family {B;};ca and by B CY x A the proper transform of B,
which is the total space of the family {B;}iea on Y. We can perform a semi-stable
reduction of the family of pairs of the double cover of Y branched along Bi+E (t € A)
and their ramification loci in the following way: (i) Set & := E; x A (2 € I). Let
a:Y — Y x A be the blowing-up along B N &;. Denote by Wy the exceptional
divisor. (ii) Take the double cover f : X — Y branched along the proper transform

a1 (B + Y &). (iil) Since the a™1&; are the total space of families of (-1)-curves on
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the fibers X — A, we can contract them to obtain v : X — X . Set By = v(aB)™1B
and Wy := y871Wy. Figure 1 at the end of this paper is the central fiber on each

step. We thus obtain a family of pairs
(2.3.4) f:(X,By) — A.

It is easy to see that this is a semi-stable degeneration of pairs of smooth minimal
models of Todorov surfaces of type (¢,a) and their smooth canonical curves whose
central fiber X is as the stage (a) in Figure 1 consisting of P? and a smooth minimal
model of a Todorov surface of type (£ —1,d) (for details, cf. [U6,(1.3)]).

In case ({,a) = (8,5), Y is a Kummer surface which can be represented as
quartic surface with 16 ordinary double points in P3? by [20], where © is the theta
divisor of the associated abelian surface, L = Oy (2) and E corresponds to the above
16 ordinary double points. Hence we can go on in the same way as before.

In case (£, ) = (2,1), it can be seen that the linear system |L| is hyperelliptic
and gives a finite double cover Y — Z C P? over a quadric cone Z whose branch
locus is a union of two smooth quardric sections @; (2 = 1,2) meeting transversally
(cf. [CD], [M,(5.4)]). The 8 +2 ordinary double points on Y come from Q1 N Q2 and
from the vertex of Z counted once and twice respectively. Hence we can find a desired
degenerate branch locus By € |L| as a pull-baclk of a suitable hyperplane section Hy of
Z C P3. The remaining steps of the construction are the same as before and we get a
family of pairs like (2.3.4). We remark here that the central fiber Xy of the resulting
semi-stable degeneration of pairs consists of two P2 and the main component whose
type drops as (2,1) — (0,1) in the table (2.3.3) if and only if the hyperplane section
Hy contains the vertex of Z.

In case (£,a) = (1,0), the linear system |L| is hyperelliptic and gives. a finite

double cover Y — P? branched along a union of two smooth cubics C; (1 = 1,2)
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meeting transversally (cf. [Ca], [M,(5.4)]), and we can go on as in the previous case

(for details, see [U5], [U6]).
§3. Moduli and mixed period map.

In this section, we shall formulate a mixed period map for smooth pairs of
Todorov surfaces and their canonical curves. For that purpese, (2.2.4) allows us to

use Todorov triples instead of Todorov surfaces.

(3.1) Let (Y;, L;, E;) be a reference K3 surface of Todorov type (¢, ),
B, € |L,| a reference smooth curve, and (Y;, By, F,) a reference Todorov triple (see

(2.2)). Let g : Y, — Y, be the minimal resolution and B, := u*B,. We denote by
(3.1.1) (4] = A(Y;, B,, E;)
the Thom-Gysin exact sequence
HXY,,Z) — HXY,,Z) — H“Bn,Z) — 0
| | |

AY A A3

together with the cup product pairings on Ay and on Az and with the fundamental

classes

b:=[B], e;:=[Ly5] € Ay  (e€1),

where B, = 3.1 Frs, Yy =Y, — (B, + E;) and {e; | i € I} is considered as an

unordered set. We also denote by
[AY] = A(YI‘7LT7ET)

the partial data consisting of Ay, the cup product pairing on it and the fundamental
classes b, {e; | 1€ [}, and by
[4s] = A(By)

the data Az equiped with the cup product pairing on it.
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(3.2) Let (A, G, F}) be the reference mixed Hodge structure defined by the

complex structure on Y,, where
A := A/torsion,
(3.2.1) G:=(G1=0C Gy =Im{Ay — A} C G3 = A) weight filtration,

Fri=(F'=A@CHF! 5 F?> F}=0) Hodge filtration.

Set
(3.2.2) Ap:={rA €Ay |A-b=X-e,=0 (iel)}
Then
gr$ A = GoA < Ay with finite cokernel,
grf A S As.
Denote
(3.2.3) f? == dim F?, = dimgrzGFrp.

Since Y; is a smooth minimal K3 surface and Bj; is isomorphic to the canonical curve

C, of the Todorov surface of type (£, a) corresponding to (Y;, B, E,), we can compute

as

f§=1, le =rank Ay -1 =12 -/,

fi = genus B, = genus C; = (2(Cr)* +2)/2 = £ +1,
(3.2.4)

fh=2f=2+1),

P=f+=t+2 [fl=f+f=0+14
Let

Fi = Flag(4; ® C; f}, /1),
(3.2.5)

F={F € Flag(A® C; f', f*) | et{ F € Fi for all i}.
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and let
(3.2.6) gr: F — Fa X F, Fos (gif F, gif' F).

The classifying spaces D; and D of Hodge filtrations on A4; and on A are

defined respectively by

D3 : the one of the two connected components of
{(FeR|F' - (FP+F)=0,w-0>0 (0#weF}
(3.2.7) which contains the reference Hodge filtration grg Fy,
Dy:={FecF|F F =0, V=lw-©o>0 (0#£weF%)}

D :=gr (D2 x D3) C F,

(cf. [Sa,Appendix.§6,I1.87], [U4], [SSU,1.2]).

(3.3) Let (Y, L, E) be any K3 surface of Todorov type (¢,@) and B € |L|

any smooth curve.

Definition (3.3.1). A [A, D)-marking of a Todorov triple (Y, B, E) is an
isomorphism of data

n= (77Y7ﬁ7773) : A(ng,E) — [A]

o]
sending the Hodge filtration on H*(Y,C) into D.

A [Ay, Do]-marking of a K3 surface (Y, L, E) of Todorov type is an isomor-
phism of data
ny : AY,L,E) = [Ay]

sending the Hodge filtration on H*(Y,C) into Ds.
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A [A3]-marking of a curve (B) is an isometry
n3 : A(B) = [43).

Notice that a [Ay, D»2]-marking introduced above coincides with a “special
marking” in [M,§7].

We denote by Aut[A, D], Aut[Ay, D2] and Aut[Az] the groups of automor-
phisms of the data [A], [Ay] and [A3] respectively which preserve, in the first two

cases, the component D and Dj respectively.

Lemma (3.3.2). The natural map
Aut[A, D] — Aut[Ay, D3] x Aut[As]

18 surjective.

Proof. Since Ag is Z-free, there exists a Z-submodule A C A such that
A =TIm{Ay — A} @ A;. Notice also that an automorphism of the data [A] preserves
D if and only if its restriction on the data [Ay] preserves Dz. The lemma follows

{from these observations

For a K3 surface (Y, L, E) of Todorov type, let  : ¥ — Y be the minimal
resolution. Let W (Y) be the group of isometries of the latice H2(Y, Z) generated by
the reflections & + z + (z - d)d (x € H*(Y,Z)) where d runs over the fundamental
classes of all the exceptional (-2)-curves of . We denote by W(Y, E) the subgroup
of W(Y) consisting of those elements which preserve the unordered set {[F;] |1 € I}
of the fundamental classes of the distinguished (-2)-curves If = 3. _; E;. Notice that
w € W(Y,E) acts on the set of [Ay, Da]-markings by wy + @yw™'. We call an

element of the set

{[Ay, D2]-marking of ()7, L, E)}/VV(Y, E)
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a marking of the K3 surface (Y, L, E) of Todorov type or of a Todorov triple (Y, B, F)
(B € |L])-

(3.4) [M,(7.5)] constructs the coarse moduli space of Todorov surfaces in
the following way.

By the Torelli theorem and the surjectivity of the period map for K3 surfaces
of Todorov type (£, @), the local universal families are glued together to make up a

universal family

g: (527*678785\))) - D2
of marked K3 surfaces of Todorov type ({,a). Let V = V(g4) be the Zariski open
subset of the projective bundle P(g«L) over Dy consisting of marked Todorov triples

(Y,B,E,y), ie., B € |L] satisfies Condition (2.2.5). Let

f:(j,B,S,gay) —V

be the universal family of the marked Todorov triples of type (¢, @). Then the action
of v € Aut[Ay, D2] on Dy lifts onto P(g«L) by the Torelli theorem for K3 surfaces
of Todorov type. In fact, if ¥(Y, L, E,py) = (Y', L', E', §}), there exists uniquely
w € W(V,E) and an isomorphism 7 : (¥, L, E) = (¥, ', E') such that (5~1)* =
() Iypyw : AV, L, E) 5 A(Y', L', 1"). Now define the action of v € Aut[Ay, Ds]
on P(g,L) by

7(5}’ B) E7 SEY) = (YI?%IB? El? SBIY)

This action on P(g«L) is properly discontinuous since so is that on Dy. The quotients
V/Aut[Ay, Ds] and Dg/Aut|{Ay, D3] are the required coarse moduli spaces.of Todorov

surfces of type (£, ) and of K3 surfaces of Todorov type (¢, «) respectively.
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(8.5) We recall here a formulation of a mixed period map for Todorov

surfaces with smooth canonical curves.

Let
(3.5.1) U=Upa) CViga) C P(g.L)

be the Zariski open subset consisting of those marked Todorov triples (Y, B, E, py)

which satisfy the following Condition (3.5.2).

Condition (3.5.2). On the minimal resolution p:Y — Y, B:= p*B is

smooth and BN E = {.

We define a mixed period map

@ : U/ Aut[Ay, D3] — D/Aut[A, D],
(3.5.3) o .
(Y, B, E) := p(Hodge filtration on H*(Y, C)),
0
where ¢ is any [A, D]-marking and Y =Y — (B + E). We see that Aut[4, D] acts
on D properly discontinuously (cf. [U4,II]) and that, with the aid of the universal

family over U, @ is holomorphic.
§4. Extension of mixed period map

In this section, we shall prove that the local monodromy on H 2(iofoo,Z),
arround a “tame” degeneration of Todorov triples in (2.3.2) splits and we shall extend
the mixed period map @ in (3.5.3) to @ over these degenerations. We shall also show
how the data ®(0) induces the mixed Hodge structure on H*(V — (B + E + D)y, Z),
where V is the main component of the central fiber Xog = V + W of a “tame”
degeneration and ‘D = V N W the double locus. We continue to work on the-stage

(b) of Figure 1 at the end of this paper. We use the notation in §2.
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(4.1) We recall first a general result on the splitting of a nilpotent endo-

morphism on a vector space over a field. Let

V : a finite dimensional vector space over a field,
(G : an increasing filtration of V,

N : a nilpotent endomorphism of V which is compatible with G

The following lemma is found in [SZ,(2.11),(2.16)].

Lemma (4.1.1). In the above notation, if lengthG < 2, i.e., for some
i, G; = 0 and G;49 = V, then the following are equivalent to each other:

(1) G * L yields the G-relative N-filtration, where L is the N-filtraion.

(it)  The G-relative N-filtration exists.

(iii) G is strict for N7 for all non-negative integers j.

(iv) G has an N-stable splitting.

We can show implications (i) = (ii) = (ili) = (iv) = (i). The asssumption
length G' < 2 is necessary for the step (ii) = (iil). For details, see the above reference.
(4.1.1) is a remarkable fact but it is not sufficient enough for our use. We

need an investigation of a local monodromy over Z.

(4.2) Let
(4.2.1) U= L?(g,a) C P(g« L)
be a partial compactification of f in (3.5.1) added those triples (Y, B, F) which satisfy

the following Condition (4.2.2).
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Condition (4.2.2). The Picard number of the minimal resolution Y of
Y is £4+9 and B is an irreducible, reduced curve with one node. We devide the cases:
(i) B passes through one of the double points on Y.

(ii) B is apart from all the double points on Y

Then, by the same argument as (3.4), the quotient
(4.2.3) U/ Aut[Ay, Do)

is the coarse moduli space of the triples in question. The central fiber Yo = VU W
of a semi-stable reduction of the degenration of types (4.2.2.1) and (4.2.2.it) are given

in Fugures 1 and 2 at the end of this paper respectively.
(4.3) Let
(4.3.1) f:(,B+&) — A

be a semi-stable degeneration of type (4.2.2.i) on the stage (b) in Figure 1. By (A.2),
we can consider the Thom-Gysin-Clemens-Schmid diagram (1.4.6) over Z with exact
columns. In order to adjust that diagram for our use, we set

o]

Ga(Voo) i= HA(Y oo, Z),

Go(Y o0) := Im{H*(Yeo, Z) — C?g(iofoo)},

~ [¢]

v
G3(§,0) = Coker{]—]‘q(j)i, )O)*; Z) — H*(Yy,Z)},
Y

Go(Yo) := Im{H*(Y,,Z) — Ga(Yy)},

(4.3.2)

[¢]

G3(V) = Coker{HX(D, V5 Z) — H*(Yy,Z) — HA(V,Z)},
Go(V) == Im{H*(V, Z) — Cis(V)},
Ga(W) = HA(W, Z),

Ga(W) == Tm{H2(W, Z) — Ga(W)} = Ga(W),
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where we use the notation as (1.1.2) applied for (4.3.1) as well as the notation on
the stage (b) in Figure 1. Since H'(By, Z) (resp. H(Boo,Z), H(By,Z)) is Z-free,

~ O -~ ©
the Thom-Gysin exact sequence implies that the torsion of G;(Yy) (resp. Gi(Y ),

~ o

Gi(V)) for 1 =2, 3 coincide. We denote

o . ©

Gi(Y o) := Gi(Y o)/ (torsion)

o]

(4.3.3) Gi(iofo) := G;(Yy)/(torsion)

(&) ~ o

Gi(V) := G4(V)/(torsion)
In the notation (4.3.3), the Thom-Gysin-Clemens-Schmid diagram becomes

0 0 0

[ I I

Np
0 — HI(BO,Z) — Hl(Boo,Z) — Hl(Boo,Z)

n

o o N o

(4.3.4) 0 — Ga(Yo) — G3(Ye) — Gs3(Yoo

4

[¢] o

0
0 — G2Yy) — Gi(Ve) — Ga(Y)

0 0 0
We notice that all the columns of the diagram (4.3.4) are exact by (A.2) and the
construction. The top row is the case of curves and the exactness is well-known. The
bottom row is exact by construction. Hence we see, by chasing the diagram, that the

midle row is also exact.

Lemma (4.3.5).  For type (4.2.2.i), there exists a Z-basis {e1, . .., €myaq}
o}
of G3(Y &) satisfying the following conditions.
[¢]
(i) {e1,.--,em} is a Z-basis of G2(Y o) and {em+1,- - -, €m+429 } is a lifting

of a symplectic Z-basis of H'(Bg, 7).
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—2em+1 fr=m+g+1,
(ii) N(e;) =

0 otherwise.

Proof. Let {e1,- .., emyaq} bea Z-basis of Gg(Yoo) satisfying the condition
(i). Then, by the Picard-Lefschetz formula on H'(Boo,Z) (cf. [SGA,XV.3.4]) and

the (4.1.1.ii),
~2emy1+2 i t=m+4+g+1,
N(ei) = {

0 otherwise,

o]
for some = € G2(Y o). Hence it is enough to show

o

Claim. ImN in G3(Y ) is not primitive.

o

By this claim, z is 2-divisible and, replacing em+1 by emt1 +2/2 € G3(Y o0),
we get the desired basis.

We now prove the above claim. Since the restriction map H YW,2) —
H?*(D,Z) is surjective and the fundamental class of By is sent to the 2-divisible
element [Bp] of H*(D,Z), where Bp := Bw N D =: {p,q}, the Mayer-Vietoris se-

quence implies an exact sequence

~ [e] —~ o

(4.3.6) 0 = Ga(Yo) 5 Ga(V) @ Ga(W) — HX(D,Z)/Z[Bp] — 0.

Since éz(ﬁ/) and H%(D,Z)/Z[Bp) are isomorphic through the above map, (4.3.6)

splits hence we have, in particular,
(torsion of Imr) & éz(ﬁ/) = (torsion of @2({})) ® Go(W).

It is easy to compute, by the Thom-Gysin sequence and the Mayer-Vietoris sequence,

the following:

(¢}

H\(V,Z) = H\(W,Z)=0.  HX(W,Z): 2-torsion.

H3(Y,Z) = 0.
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By the Clemens-Schmid-Thom-Gysin diagram, we see
HYY,Y%2) 5 B3, ),
s0, by chasing the diagram, we have
Im{H2(P, V' Z) — HX(Y0,2)} C Im{H*(Yo, Z) — H(Ys,Z)}.

Notice also that

estriction
Im{H%(By,2) ® H(Bw,Z) ——5 HBp,Z)} = Z(p+ q),
residue

Im{H(D,Z) =2 HY(Bp,Z)} = Z(p — q).

Hence, by the above results, the Mayer-Vietoris-Thom-Gysin diagram is arranged as

(4.3.7)
0
~
Zp+Zq 0 0
Z(p+q)+Z(p—q)
0 —  ZE s H\(By,Z) —  HYBv,Z) — 0

0 — HY(D,Z)

I [

— ég()ofg) — 6’3(‘0/) &) ég(ﬁ/) — 0

I

0 — ég(Y()) — ég(V)@éz(W) —s H—ZEI?—I’)%) — 0

[

0

I

0

We see, from (4.3.7) together with the remarks after (4.3.2) and (4.3.6), that

the image H!(D,Z) in G3(YY) is 2-divisible. Put

~ o ) [ [¢]
HY(D) : primitive span of image of H'(D,Z) in G3(Y).
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Then we have
0 - L pgiByZ) o HY(By,Z) — 0

(4.3.8) T T T
0 — Hl(lo?) — grgG(Yb) — grf(v) — 0

~. ©
From (4.3.4), (1.4.5.i) and the primitivity of H1(D), we have a commutative

diagram

0 — ImN — KN — gbG(Ye)s — 0
(4.3.9) la T !
0 — HY(D) — G3(Yo) — G3(V) — 0

We see, from (4.3.4), that

- Ker N/Gy(Y o) =5 Ker N,
ws10) /G2 (Veo) 5 Kex N

(In N + Go(Y o0))/Ga(Y o) = Im N

by the induced maps. Taking gr§ of (4.3.9), we have, by (4.3.10) and (4.3.8), a
commutative exact diagram

0 - ImNp — KerNg — gl (Be,Z) — 0

(4.3.11) | ap T 1
0 — % — HYBy,2) — HY(By,Z) — 0

Since Im Np in Ker Np is 2-divisible and H'(By,Z) is Z-free, ap in (4.3.11) is not

isomorphic hence not so is « in (4.3.9). This proves our claim.

Remark (4.3.12) The same assertion as Lemma (4.3.5) holds also for the
type (4.2.2.ii) on the stage (b) in Figure 2 at the end of this article. The proof is

similar, but now terms CNJZ({}) @ éi(ﬁ/) (i = 3,2) etc. are replaced by
Ca(VUW) = (HX(V,2) & H* (W, 2))/Z([Ds] ~ D ]),

Go(V UW) = Im{HA(V, Z) @ HX (W, Z) — C1(V UW)} ete.,
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0 [o] o (&)
where [D‘c/] and [Dﬁ/ | are the fundamental classes of D C V and D C W respectively.
The splitting of (4.3.6) in the present case is given by the image of H?*(W,Z) in
Go(V UW). We omit the details.

(4.4) Let

(4.4.1) {€1,-- -, emt2g}

be a Z-basis of A in (3.2.1) satisfying the condition (4.3.5.i) and let N be an endo-

morphism of A defined by

—em+1 He=m4g+1,
(4.4.2) N(e;) = {

0 otherwise.
Since N splits, we can construct easily a partial compactification of the classifying
space D/Aut{A, D] in (3.5.3) added only the boudary component of codimension 1
associated to N by the method of troidal compactifications for locally symmetric
Siegel spaces (cf. [AMRT], [CCK]). As a set, this is defined by
DJAGA D] = (D/Aut|A, D)) U (exp(CN)D/ exp(CN))/Normg(N),

A where  Normg(N) := {y € Aut[4, D] | y !Ny = N}.
The analytic structure is defined through the following construction of D/Aut[A, D].

Let D, ~ A x (U x AF71) x AY be a small open subset of D, where A

is the unit disc, U is the upper half plane and the decomposion is the one into

Dy x D3 x (extension data) (see (3.2.7)). Construct

Dy ~ AN x (U x A1) o AV
le
D¢/ exp(ZN) ~ AN x (A* x AP x AV
(4.4.4) N
D/ exp(ZN) o~ AN x AP x AY
|

D,/ exp(ZN)/Normz(N)
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where € := 1 x (exp2#i( ) x 1) x 1. Patching up by

(D./ exp(ZN))/Normgz(N) — D/Aut[A, D]
(4.4.5) N
Dc/ exp(ZN)/NormZ(N),
we obtain D/Aut[A, D]. As in the case of locally symmetric Siegel spaces, this has a

structure of V-manifold (= orbifold).

Proposition (4.4.6). The mixed period map @ in (3.5.3) extends holo-
morphically to
@ : U/ Aut[Ay, D3] — D/Aut[A, D]

which sends a boudary point to its nilpotent orbit, where the source is (4.2.3) and

the target (4.4.3).

Proof. By construction (4.2.1), the boundary ¢/ — ¥/ is a smooth divisor

on Y. Localizing the situation at a boundary point, We may assume
U=A"*x (A x A cU = AU x At

with local coordinates t = (¢1,#'), where ¢; = 0 is the boundary and ¢’ the other

coordinates. Take a point 7 € I/ and fix an isomorphism of the data in (3.1.1)

7 : A(Yoo, Boo, Eew) = A(Yr, By, Er).

By definition (or by (3.3.2)), for any Z-basis {e1(c0),...,em+24(c0)} of G3(Yy) and
the monodromy logarithm N, satisfying the condition (4.3.5) (see also (4.3.12)),

there exists a [A, D]-marking in (3.3.1)
n= (77Y, ﬁ7 773) : A(Yra BT7ET) = [A] such that

nmei(oo) =e;  (m+1<1i<m+2g).
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Hence we have Noo = (nm) ™} (2N)(y) for the types (i) and (ii) in (4.2:2) on the stage
(b). For each fixed t', let F'(co,t') be the limit Hodge filtration as ¢; — 0. We define

®(0,%") := exp(CN)(n7 F(00,t))/ exp(CN) mod Normg(N).

In order to see that & is holomorphic, we observe its period matrix. We
first examine the type (4.2.2.1). By (4.3.5.i1), gr}¥’ and the extension data of the
period matrix are invariant under the action of the local monodromy 7o, := exp Neo.
grgV of the period matrix is the only part which is affected by Too. To see this part
more precisely, let {e1(t),...,emt24(t)} be a horizontal frame of the local system
{A(t) := sz}t’ Z)/(torsion) };cy which coincides with n™{eq,...,emy24} at t = 7.
em+g+1(t) 1s multi-valued. Let {wi(¢),...,ws+1(t) }seu be a frame of the Hodge filter
F? satisfying w14i(t) = emtgi(t) mod Z;’:ﬁg Ce;(t) (1 €7 < g). Then the period

matrix for 2 is of the form

(wi(t); - wet1(t))

A(t) B(t)
= (el(t), ey Eml (t), -3 Cmtg4l (t), ey 6m+2g(t)) 0 Z(t)
0 1,

The (1,1)-part z11(¢) of Z(t) is the only part which is multi-valued. By

(4.3.5.11), we can compute as
z11(t) = 2(log t1)/2me + s(t),

where s(¢) extends holomorphically over I/, which is equivalent to the existence of the

limit Hodge filter Fz(oo,-t'). Hence, by (4.4.4) and (4.4.5), we have
¢ : U — D.exp(ZN) — D/Aut[A, D]
M M n
— D¢/exp(ZN) — D/Aut[4, D]

A
N
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where the (1,1)-part of Z(¢) on the midle stage becomes
(4.4.7) exp(2miz11 (1)) = 5 exp(2mis(t)).

This shows that @ is holomorphic for the type (4.2.2.i).
As for the type (4.2.2.ii), a similar argument works and instead of (4.4.7) we

get
(4.4.8) exp(2miz11(t)) = t1 exp(2mis(t))

because of the (2 : 1) base extension in the semi-stable reduction of pairs in Figure 2

on the last page.

§5. Inheritance of induction hypothesis and infinitesimal mixed

Torelli theorem

(5.1) The following result is useful for our inductive approach of the mixed

Torelli problem by using the degeneration of the type (4.2.2.1).

Proposition (5.1.1). In the notation of (4.3), we see for the family
(4.3.1) the following:

() G3(Yo) =S Ker{N : Ga(Yeoo) — Ga(Yeo)}.

(1) The Gysin filtrations G are isomorphic under (i).

(iii)  The Mayer-Vietoris filtration I and the N-filtration I are isomorphic
under (i).

(iv)  Before the shiftings [2], Wo O (G # L)o with index 2 on G3(Y o) and
W =G+ on Gs(Yeo).
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(v) (i) is an isomorphism of mixed Hodge structures with weight filtrations

(G * L)[2] on both terms.

Proof. (i) and (ii) follow immediately from (4.3.4). Since ég(ﬂo/) =
H2(W,Z) is a 2-torsion and N satisfies (4.3.5.ii), (4.3.9) implies a commutative exact
diagram

0 - ImN — KaN — glGi(Ye) — 0
(5.1.2) T T T

0 - HUD,Z) — Gi(Vo) — Gy(V)@G(W) — o
This shows (iii).

As for the first part of (iv), we see in the same way as (1.3.2), (1.3.4) and
(1.3.5.1) that a complex K over Z and its filtrations G, L and W are defined and
that they satisfy W = G + L on Ky. The spectral sequence of hypercohomology of

(K5, W) degenerates in Ey = Eg, [D2,1I]. We compute the £3:

BTN = A (Yo, gl Ky = @@ BT (518" 7T z)
it+y=k
Eyt = Byt = HY(D,Z) =0

E2—-2,4 _ El——2,4 — 0.

Hence, before shifting [2], we have
W_1 =0 C Wy = Ker{H*(Yo,Z) — HY(By,Z)} ¢ Wy = HX(Y, 2),

where « is the composite of the Mayer-Vietoris map and the residue map. On the

other hand, since

G_y=0C Gy =Im{H*(Y;,Z) - H*(Y(,2)} C Gy = H* (Y, Z),

[o} 5,0 0
L o=0C L_i=Im{HYD,Z) — H*(Yo,Z)} C Lo = H* (Y, %),
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we have
(GxL)_1=0C (G*L)g=Go+L_y C(Gx*L) =H*Y,,2Z)

before the shiftings. By the part of the original Mayer-Vietoris-Thom-Gysin diagram
like (4.3.7), we see

(G * L)g C Wy with index 2 on H*(Yy,Z)

hence so is that on G3(Y).
The second part of (iv) follows from (4.3.5) and the argument of the proof
of the step (iv) = (i) in (4.1.1) which is valid also over Z (cf. [SZ,(2.11)]). (v) is a

consequence of (i)—(iv) and (1.3.5).

(5.2) We have the following partial result at present for the infinitesimal

mixed period map.

Proposition (5.2.1). The infinitesimal mixed Torelli theorem holds for
the extension ¢ of the mixed period map in (4.4.6) at interior points € U and at
boundary points € U — U of the type (4.2.2.i) in the tangential directions of the

boundary.

Proof. Let (Y,B + E) be a pair of the smooth minimal model and its

branch locus of (Y, B+ E) € U. By taking the dual, we see that
H(Ty (—log(B + E))) — Hom(H' (12} (log(B + E))), H*(Oy))

is injective. This proves the first half of our assertion.
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For a degeneration of pairs of the type (4.2.2.i), the locally trivial (= equi-
singular) small deformations of the pair on the stage (a) in Figure 1 on the last page
within the limits of these pairs corresponds exactly to those on the stage (b), i.e.,
there are no problems of ordinary double points nor the Todorov involution. On the
stage (a), they are determined by the deformations of the pair of the main component
and the union of its branch locus and the double curve. The latter are determined

by the deformations of (V,(B 4+ E + D)y) on the stage (b). As before,
HY(Ty(—log(B + E + D)y)) — Hom(H*(2{,(log(B + E + D)v)), H*(Oy))

is injective. This implies the second half of our assertion, because, for a boundary

(¢}

_ — (o] o
point tg € U, ®(tg) induces the Hodge filtration on G3(V) ® C = H*(V,C)/C[D] by
(5.1.2) and the difference of

H*(V,C)/C[D] — HY(V — D,C) = HX(V — (B + E + D)y, C)
affects their gr¥ only for p = 2. g
Problem (5.2.2).  Solve infinitesimal mixed Torelli problem for &.
Problem (5.2.3). Solve local mixed Torelli problem for ®.
Problem (5.2.4). Solve generic mixed Torelli problem for ®.

Remark (5.3.5). (i) In cases ({,a) = (1,0) and (2,1), the generic
mixed Torelli theorem is verified for geometric monodromy in an elementary way
([L], [SSU, 11.2]).

(it) The number of moduli of Todorov surfaces is 12 for every ({,a). On
the other hand, a hypersurface of (U/Aut[Ay, Da])(¢—1,a), @ = @ or @ — 1, is glued
as the boundary locus of the degenerations of the type (4.2.2.1). Hence the induction

step will not proceed naively.

—469—



References

[AMRT] Ash, A., Mumford, D., Rapoport, M. and Tai, Y. S., “Smooth compact-
ification of locally symmetric varieties,” Math. Sci. Press, 1975.

[A1] Ashikaga, T., Some remarks on the construction of regular algebraic surfaces
of general type, preprint received 19 V ’89.

[A2] Ashikaga, T., manuscript, received 19 V ’89.

[AK1] Ashikaga, T. and Konno, K., Algebraic surfaces of general type with ¢3 = 3pg
— 7, preprint received 30 VIII ’88.

[AK2] Ashikaga, T. and Konno, K., Feamples of degeneration of Castelnuovo sur-
faces, preprint received 30 VIII °88.

[CCK] Carlson, J. A., Cattani, E. H. and Kaplan, A. G., Mized Hodge structures
and compactification of Siegel’s space, in “Géométrie Algébrique, Angérs 1979,”
ed. A. Beauville, Sijthoff and Noordhoff International Publishers, 1980, pp.
77-105.

[Ca] Catanese, F., Surfaces with K* = py, = 1 and their period mapping, in “Proc.
C.S.M.A.G., Copenhagen 1978,” Lect. Notes Math. No. 732, Springer Verlag,
pp. 1-29.

[CD] Catanese, F. and Debarre, O., Surfaces with K* = 2,p, = 1,q = 0, preprint.

[Cl] Clemens, C. H., Degeneration of Kéhler manifolds, Duke Math. J. 44-2 (1977),
215-290.

[D1] Deligne, P., “Equations différentielles a points singuliers réguliers,” Lect.
Notes Math. No. 163, Springer Verlag.

[D2] Deligne, P., Théorie de Hodge II; III, Publ. Math. THES 40 (1971), 5-57;, 44
(1974), 5-77.

[E1] El Zein, F., Dégénérescence diagonale I; II, C. R. Acad. scient. Paris 296

(1983), 51-54;199-202.

—470—



[E2] El Zein, F., Théorie de Hodge des cycles évanescents, Ann. sci. Ecole Norm.
Sup. 4-19 (1986), 107-184.

[F1] Iriedman, R., A degeneration of family of quintic surfaces with trivial mon-
odromy, Duke Math. J. 50 (1983), 203-214.

[F'2] Friedman, R., A new proof of global Tovelli theorem for K3 surfaces, Ann.
Math. 120 (1980), 237-269.

[GNPP] Guillén, F., Navarro Aznar, V., Pascual-Gainza, P. and Puerta, F., “Hy-
perrésolutions cubiques et descente cohomologique,” Lect. Notes Math. No.
1335, Springer Verlag.

[KO] Katz, N. and Oda, T., On the differentiation of De Rham cohomology classes
with respect to parameters, J. Math. Kyoto Univ. 8 (1968), 199-213.

[KKMS] Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., “Toroidal
embeddings I,” Lect. Notes Math. No. 339, Springer Verlag.

[K] Konno, K., series of manuscripts, received 16 VIII ’88 - 27 II ’89.

[L] Letizia, M., Intersections of a plane curve with a moving line and a generic
global Torelli-type theorem for Kunev surfaces, Amer. J. Math. 106-5 (1984),
1135-1146.

[M] Morrison, D., On the moduli of Todorov surfaces, in “Algebraic Geometry and
Commutative Algebra in hornor of M. Nagata,” Kinokuniya C. Ltd., 1988, pp.
313-356.

[Nam] Namikawa, Y., On the canonical holomorphic map from the moduli space of
stable curves to Igusa monoidal transform, Nagoya Math. J. 52 (1973), 197-259.

[Nav] Navarro Aznar, V., Sur la théorie de Hodge-Deligne, Invent. Math. 90
(1987), 11-76.

[SSU] Saito, M.-H., Shimizu, Y. and Usui, S., Variation of mized Hodge struc-
ture and Torelli problem, in “Algebraic Geometry, Sendai 1985,” ed. T. Oda,

—471—



Kinokuniya C. Ltd., 1987, pp. 649-693.

[Sa] Satake, L., “Algebraic structures of symmetric domains,” Publ. math. Soc.
Japan 14, Iwanami Shoten P. and Princeton Univ. P., 1980.

[SGA] Deligne, P. and Katz, N., Groupe de monodromie en géométrie algébrique,,
in “SGATIL” Lect. Notes Math. No. 340, Springer Verlag.

[Sp] Spanier, E. H., “Algebraic topology,” MacGraw-Hill, 1966.

[St] Steenbrink, J., Limits of Hodge structures, Invent. Math. 31 (1976), 229-257.

[SZ] Steenbrink, J. and Zucker, S. Variation of mized Hodge structure, I, Invent.
Math. 80 (1985), 489-542.

[T1] Todorov, A. N., Surface of general type with py, =1 and (K,K) =1: I, Ann
sci. Ticole Norm. Sup. 4-13 (1980), 1-12.

[T2] Todorov, A. N., A construction of surfaces with p; =1, =0 and 2 < ¢f <9,
Invent. Math. 63 (1981), 287-304.

[U1] Usui, S., Effect of automorphisms on variation of Hodge structure, J. Math.
Kyoto Univ. 21-4 (1981), 645-672.

[U2] Usui, S., Period map of surfaces with p, = ¢ = 1 and K ample, Mem. Fac.
Sci. Kochi Univ. (Math.) 3 (1981), 37-73.

[U3] Usui, S., Period map of surfaces with p, = 1, ¢} = 2 and m = Z/2Z;
Addendum to this article, Mem. Fac. Sci. Kochi Univ. (Math.) 5 (1984),
15-26;103-104.

[U4] Usui, S. Variation of mized Hodge structure arizing from family of logarithmic
deformations; Id II: Classifying space, Ann: sci. Tcole Norm. Sup. 4-16 (1983),
91-107; Duke Math. J. 51-4 (1984), 851-875.

[U5] Usui, S., Type I degeneration of Kunev surfaces, to appear in Astérisque,
Colloque Théorie de Hodge, Luminy 1987.

[U6] Usui, S., Examples of semi-stable degenerations of pairs of Kunev surfaces and

—472—



their canonical curves, in “Proc. Algebraic Geometry Seminar, Singapore 1987,”
ed. M. Nagata and T. A. Pen, World Scientific Publ. Co. Pte. Ltd., 1988, pp.
115-139.

[U7] Usui, S., manuscripts, unpublished.

[Z] Zucker, S., Variation of mized Hodge structure, II, Invent. Math. 80 (1985),

943-565.

Department of Mathematics
College of General Education
Osaka University

Toyonaka, Osaka, 560, Japan

—473—



Table O

degener- | central fiber of semi-stable dege- | change of local
ation of neration of pairs: (Pg.g,¢}) | monod-
branch (Xg, Y0), Xog=V + W of V romy on
locus H* (X o)
(1)
passing (0,0,-1) 1
an 1so-
lated
branch
point
A
genus drops by 1
(no base extension)
(I2) v W:rational
. ! !
assin 0,+1,-1 I
p D g T (0,+1,-1)
* p— '&LL()
Cep) oy
(/"'
section of fibration on V,
Eg on V
(base extension of 2:1 once)
v W:rational
(I11) ¥
having B ; (~1,0,~1) 11
ordinary —
quadruple N
point I .eu‘l(.
—
_—
Lo-1)2
L. A
/

part of singular fiber of fib-
ration by curves of genus 2

on V, EsonV

(base extension of 2:1 once)

—474—



Todorov

level:

K3

level:

Todorov

level:

K3

level:

Figure 1

(a) z

+ ese +

« ( '44

12:1 1211 l?:l
(b) W py
2
D
Voo /
N 2
( -2 -2
{ >// o [} « ‘7 2|2 - |"'I
™~ 14, B Vo
7S
B, E, B, E,
Figure 2
(a)
i::: C - -
O< + eev 4+ « —‘7‘2 I"‘|’
lz:l lz:l 12:1
(b) W o= Pt
D
v
o o « -1 ¢ [%"Il
= ) W o
VAR
By, B, E,

—475—




Classification of Logarithmic Enrigques Surfaces

De-Qi Zhang
Department of Mathematics, Osaka University

Toyonaka, Osaka 560, Japan

Contents

Introduction
81. Preliminaries
§2. Canonical coverings of logarithmic Enriques surfaces
§3. The case where the bi-canonical divisor is trivial
§4. The case where the canonical covering is an abelian surface
85. The case where the canonical covering is a K3-surface
§6. The case where the canonical covering is singular

References

Introduction
This is an expository survey on the article [14] which

will be published elsewhere.

Normal projective surfaces with only quotient singularities
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appear in studies 0of threefolds and semi-stable degenerations

of surfaces (cf. Kawamata [5], Miyanishi [6], Tsunoda [111). We
have been interested in such singular surfaces with logarithmic
Kodaira dimension -« (cf. Miyanishi-Tsunoda [8]1, Zhang [12,131).
In the present paper, we shall study the case of logarithmic
Kodaira dimension O.

Let V be a normal projective rational surface with only

quotient singularities but with no rational double singular points.

Let KV be the canonical divisor of V as a Weil divisor. We
call V a logarithmic Enriques surface if Hl(V,OV) = 0 and
KV is a trivial Cartier divisor for some positive integer N.

The smallest one of such integers N is called the index of

KV and denoted by Index(Kv) or simply by 1. Since IKV is
trivial, there is a Z/IZ-covering mn: U » V, which is unique up to
isomorphisms and etale outside Sing V. Then ﬁ, called the canonical
covering of V, is a Gorenstein surface, and the minimal resolution

of singularities of U 1is an abelian surface or a K3 surface.

Let f: V- V be a minimal resolution of singularities of V
and set D:= f '(Sing V). We often confuse V deliberately with
(V,D> or (V,D,{).

81 is a preparation and contains a proof of an inequality
(cf. Proposition 1.5) which plays an important role in the whole
theory,; in particular, if 1 2 3 then c¢:= #(Sing V) < (D’KV) <
c-1-(Kg), and if I 2 4 then ¢ < -3(K3). In §2, it is proved
that if a positive integer p is a factor of I then U/(Z/pZ)

is a logarithmic Enriques surface, as well. We also prove that

I £ 66; this result is originally due to S. Tsunoda. Moreover,
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I <19 if 1 is a prime number. 88 3 - 5 are devoted to the
proofs of the following three theorems:

Theorem 3.1. Let V or synonymously (V,D) be a logarithmic
Enriques surface with Index(Kv) = 2. Then there is a logarithmic
Enriques surface W or (W,B) with Index(Kw)=2 and #(Sing W) = 1
such that V 1is obtained from W by blowing up all singular points
of B (i.e., intersection points of irreducible components of B)
and then blowing down several (-1)-curves on the blown-Up surface.

Moreover, #(Sing U) = #(Sing V) < #{irreducible component of D}
< 10. The case with #(Sing V) = 10 occurs and, in this case,

there i3 a (-2)-rod of Dynkin type A19 on U.

Theorem 4.1. Let (V,D), or synonymously <(V,D), be a log
Enriques surface whose canonical covering U is an abelian surface.
Then 1 (= Index(KV)) = 3 or 5. More precisely, we have:

(1) Suppose 1 = 3. Then pU) = p(V) = 4 and D consists of
nine isolated (-3)-curves. Hemce U 1is a singiular abelian surface.
(2) Suppose 1 = 5. Then pU) = p(V) = 2, and D consists of
five connected componenis each of which consists of one (-2)-curve

and one (-3)-curve.

Theorem 5.1. Let (V,D) be a logarithmic Enriques surface such
that 1 (= Index(Kv)) 18 a prime number and Lhe canonical covering
U is a K3-surface. Then 1 # 2, 13. Moreover, the singularity

type of V is explicitly given. In particutar, (D,K,) = c—l—(K@).

v
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In 8§86, we consider the remaining case where the canonical

covering U of V is singular. Possible types of singularities

of V and U are given when I:= Index(Kv) =3 or b. As a
corollary, we see that if there is a singularity of Dynkin type

Ek (k = 6, 7 or 8) on U then 1 = 5, 25, 7, 11, 13, 17 or 19. It
remains to consider possible combinations of singularities on V. We

obtain the following theorem (cf. Proposition 6.2 and Lemma 6.3):

Theorem 6.1. Let (V,D) be a logarithmic Emnriques surface such
that 1 is an odd prime number and Sing U = ¢. Then c:= #(Sing V)
< Min{16,23-1}, #(Sing U) < (24-1)/2 and -1 < p(V)-c < 4, where
p(V) is the Picard number of V. Moreover, if c¢ = 16 or p(V)-c
= 4, then 1 =5 or 3, respectively and Sing V 1is precisely

deseribed in Proposition 6.2; particularly,; (D,Ky) = c—l—(K%).

We found an example of logarithmic Enriques surface (V,D)

with (¢,1) = (15,3). Moreover, there is a (-2)-fork ‘I of Dynkin

type D19 on the minimal resolution U of the canonical covering U
of (V,D). By contracting o' on U we get the canonical covering
U’ of a new log Enriques surface (V',D'). In particular, U is a

K3-surface with p(U) = 20. Such a K3-surface is probably new. Note

that U can not be a quartic surface of P3 (cf. Kato-Naruki [41).

Terminology. We refer to [8; 881.1-1.51 or [9; 821 for the
definitions of (admissible rational) rods, twigs and forks, and the
definition of B# for a reduced effective divisor B. A (-n)-curve

on a nonsingular projective surface is a nonsingular rational curve
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of self-intersection number -n. A (=2)-rod (resp. fork) is a rod

(resp. fork) whose irreducible components are all (~-2)-curves.

Notation. Let V be a nonsingular projective surface and let

D, D and

K(V):
K(X):
p(V):
hi(V,D):
#(D):

f b:

f'D:

§1.

D2 be divisors on V.
Canonical divisor of V,
Kodaira dimension of V,
Logarithmic Kodaira dimension of a non-complete surface X,
Picard number of V,
= dim H' (V,D),
The number of all irreducible components of Supp(D),
Total transform of D,
Proper transform of D,
D1 and D2 are linearly equivalent,
D1 and D2 are numerically equivalent,

Euler number of D,

Hirzebruch surface of degree n.

Preliminaries

We work over the complex number field €. Let V be a normal

projective algebraic surface defined over € and let f: V o V

be a minimal resolution of Sing(V). Denote by D +the reduced

effective divisor whose support is f_l(Sing V). Then there is

a R-divisor

¥ such that f*(Kv) = KV+D# and 0 < D' < D.
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Definition 1.1. V is said to be a lLog (= logarithmice)
Enriques surface if the following three conditions are satisfied:
(1> V has only quotient singularities and Sing(V) # ¢.
(2) NK§ is a trivial Cartier divisor for some positive integer N,
which is equivalent to saying that ND# is an integral divisor.

(3) q(V):= dim chv,ov) = 0.

(1) implies that Supp(D-D") = Supp D (cf. [8; §1.5 and §2.51).
Let A be a connected component of D. Then A 1is an admissible
rational rod or an admissible rational fork, which are defined in
[9; 821 (cf. Brieskorn [2; Satz 2.111). £(A) is a rational double
singular point if and only if A 1is a (-2)-rod or a (-2)-fork. Ve
can define the direct image f*F for each divisor F on V as
in the case where {f 1is a morphism between nonsingular surfaces.
Then the property of linear equivalence "~" between divisors on V
is preserved under f*. By [8; Lemma 2.4]1, there exists a positive

integer P such that for each Weil divisor F on V, PF 1is linearly

equivalent to a Cartier divisor. Let Fl and F2 be two Weil

divisor on V, we define the intersection number of Fl and Fz
FOF ye= (1/P2 * PR * PR

by (FI’FZ)’_ (1/P<)(f (PFI),f (PF2)).

We often identify V with (V,D,f) or (V,D).

Proposition 1.2, Let «(V,D) be a log Enriques surface. Then
K(V) < K(V-D) = 0. Moreover, if (V) = 0, then V has only
rational double singular points and either V is a K3-surface or V

is an Enriques surface.
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Proof. By virtue of [8; Lemma 1.10]1, we have hO(V,n(D+KV))
= hO(V,n(D#+Kv)) = 1, for each positive integer n satisfying

n(D#+KV) ~ £¥(nK<) ~ 0. Therefore, kK(V-D) = 0.

v
Suppose that k(V) = 0. Then there exists a positive integer
N such that ND# is an integral divisor and NKV is linearly
equivalent to an effective divisor A. Since 0 = N(D#+Kv) ~ ND#+A,
we have D# = A = 0. D# = 0 means that D consists of (-2)-rods

and (-2)-forks (cf. [8; §1.5]). Namely, V  has only rational double
singular points. Note that V is a minimal surface, for NKV ~ 0.
By the c¢lassification theory of nonsingular surfaces and by the

hypotheses that &k(V) = 0 and q(V) = q(V) = 0, we see that

v is a K3 surface or an Enriques surface. Q.E.D.

Let «(V,D) be a log Enriques surface. Denote by D the
reduced divisor Supp D#. Then D-D consists of exactly those
connected components of D which are contracted to rational double
singular points on V. Therefore, (V,ﬁ) is also a log Enriques
surface.

In view of Proposition 1.2 and the above argument, we assume,

untill the end of the present article, the following two conditions:

(1) k((V) = -=», hence V is a rational surface,

Supp(D) # ¢.

(2) Supp(D#)
Definition 1.3. Let V be a log Enriques surface. We denote
by IndeX(Kv) or simply by I, the smallest positive integer such

that IKV is a Cartier divisor.
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Actually, IKV ~ 0 which is proved in the following lemma.

Lemma 1.4. (1) (K%) < -1, I = 2, IKV ~ 0 and I(D#+Kv) ~ 0.

(2> Let N be a positive integer. Then hO(V,—NKv) # 0 if and

only if 1 is a divisor of N.

Proof. (1) Since KV = —D#, Supp D# = Supp D # ¢ and D

has negative definite intersection matrix, we have (K%) < -1.

1£ I = 1, then v is Gorenstein. Hence Kv = f*KV and D# =0

because V has only rational singularities. This contradicts

the assumptions that Sing(V) # ¢ and Supp D# = Supp D. Hence

I > 2. Note that I(D#+Kv) = 0. Hence I(D#+KV) ~ 0 and

IKV ~ 0 by the additional assumption that V is rational. In
particular, hO(V,-IKv) Zz 0.

(2) Suppose that hO(V,—NKV)¢O. Then —NKv is linearly equivalent

to an effective divisor A. Note that ND#-A ~ N(D#+Kv)

D# has negative definite intersection matrix, we have ND# = A.

0. Since

Hence ND# is an integral divisor. So, NKV is a Cartier divisor.

Then, N 1is divisible by I by the definition of 1. Q.E.D.

The inequality(**) in the following proposition is very

helpful in proving Theorems 5.1 and 6.1.
Proposition 1.5. Let «(V,D) be a log Enriques surface and let

¢ be the number of connected components of D. Left p and q be

integers satisfying 1 £ q < p £ 1-1 (I:= Index(Kv)). Then we have:
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2¢(p-q)“+(p-p*) (K
(p-q)(p+q-1)

(k) c < (D,Kv) < , and

(%) (D,KV) < ¢-1-(K;») if 1 = 3.

v

If 1 =4 then ¢ < —3(K§). If ¢ =1 then 1 = 2. (The case

¢ =1 has been treated im [10; Proposition 2.213).

Proof. Let p, @ be the same as in the statement. We claim

0. Indeed,

first that h%(V,(p-@)D+pK,) = h”{V,-(p-@)D-(p-1)K,)
suppose that hO(V,—(p—q)D—(p—l)Kv) # 0. Then hQ(V,—(p-l)Kv) = 0.

Hence I is a divisor of (p-1) and I < p-1 by Lemma 1.4. This

contradicts the assumption p < [-1.

Next, we claim that hO(V,(p—q)D+pKv) = 0. Suppose, on the
contrary, that h°(V,(p-a)D+pK,) # 0. Then hO(V,[pD#]+pKV) =
hO(V,pD+pKv) #Z 0 (c¢f. [8; Lemma 1.101). Here, [pD#] is the maximal
effective integral divisor such that pD#—[pD#] is effective.

Let A be an effective divisor such that [pD#]+pKV ~ A. Then

p(DF+K,) ~ a+d*-1pp*1).  Since D+K, = 0, we have A =0 and
pD# = [pD#] which is an integral divisor. Hence |1 is a factor
of p and I < p. This contradicts the assumption p £ I-1.
n
Write D = X Di where Di's are irreducible components of D.
i=1
Note that D consists of rational trees. Hence we have z (Di’D')
i<j
= e -9 = - 2
= n-c. Therefore, 2pa(D) 2 (D,D+Kv) ? (Di) + ? (Di’KV) +
2 = (Di’D’) = Z (Zpa(Di)—2) + 2{(n~-¢c) = -2¢. Hence, pa(D) = 1-c.

i< ] i

Applying the Riemann-Roch theorem, we obtain:
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0 = -h'(V, (p-a)D+pK,) = %{[(p—q)D+pKV][(p—q)D+(p—1)KV]}+1.
Hence we have:

0 > [(p—q)D+pKv][(p-Q)D+(p—1)Kv]
= <p—q)2(D2>+(2p—1)(p—q)(D,Kv)+(p2—p)(K3)
= (p—q)2[—2c—(D,KV)]+(2p—1)(p—q)(D,Kv)+(p2—p)(K3)

= —2c(p—q)2+(p~q>(p+q—1)(D,KV)+(p2—p)(K§).

Thence follows the second half of the inequality (). Setting p = 2
and q = 1, we obtain the inequality (%),
Since Supp D# = Supp D, each connected component Ai of D

contains an irreducible component Di with (D%) < -3. Hence

(A.,K.,) = (D.,K,) -2-(D?) > 1. Therefore, (D,K,) = c.
i A i \Y i \Y

Suppose I =2 4. Setting p =3 and gq = 2 in the inequality
(%), we obtain ¢ < (2c—6(K§))/4, i.e., ¢ < —3(K3).

Consider the case c=1. Suppose I23. Then (D,Kp) < —(K%) by

the inequality(x%*). Hence (D—D#,Kv) = (D+K

V’
— . # # _ #
= 0. Since D-D° = 0, we have (D-D ,KV) = 0. Hence D-D, whose

support coincides with Supp D, consists of (-2)-curves. Hence D# =

0, Supp D = Supp D# = ¢ and Sing V = ¢. This is a contradiction.

#
KV) < 0 because D +KV

Q.E.D.

§2. Canonical coverings of logarithmic Enriques surfaces

Let V (or synonymously «(V,D,f)) be a log Enriques surface.
Denote by V° the smooth part v - (Sing V) = v - D. By the relation

O(ID#) = O(—Kv)®I (I:= IndeX(Kv)) and a nonzero global section of
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O(ID#), we can define a Z/17-covering 7 - v such that ) s

~

normal and the restriction n® of 7 to U%:= A7l voy is finite

and etale. Actually, ﬁ is connected and ﬁ—l(D) is contractible

to quotient singular points on a normal projective surface U

(cf. [13; Cor. 5.21). Let m: U-> V be the finite morphism induced
by 7. Note that n® is induced by the relation I(-K,c) ~ 0 and U
is the normalization of V in the function field C(U®). Note that

Kyo ~ MO (Kyo+ (1-1) (~Kyg)) ~ 2m®*K o ~ 2Kyo and K o ~ 0. Hence

UO
Kﬁ ~ (0 and there are only rational double singular points on U.

Let g: U - U be a minimal resolution of singularities of U. Then

KU ~ 0. Hence U 1is ah abelian surface or a K3-surface. Note that

U =U when U is an abelian surface.

Definition 2.1. The surface U (resp. the map n: U - V) defined

above is called the canonical covering (resp. the canonical map) of V.

Assume I = pq with p < I and g < I. Set ﬁl = U/ (Z/pl>

where Z/pZ is considered as a subgroup of Z/IZ which acts on

U. Then V = U/(Z/1Z) = ﬁl/(Z/qZ) where the action of Z/4dZ

e

(Z/1Z>/(Z/pZ> on ﬁl is induced by the action of Z/1Z on U.

The we have the following lemma whose proof is easy and omitted.

lLemma 2.2. Let J be a positive integer. Then JKﬁ i8 a
1

Cartier divisor if and only if p is a divisor of J. Moreover,

U1 is a rational log Eariques surface with Index(Kﬁ ) = p.
: 1
If U 4is nomsingular them 2 is mot a divisor of 1.
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In view of the above lemma, we assume that 1 (= Index(Kv))
is a prime number in order to obtain the information about ﬁ, e.g.,

the singularity type of U. Possible divisors of I are given in

the following lemma. The idea of the proof is found in [10; p.1081].

Lemma 2.3. Let V be a log Enriques surface. Then @(I) <
bz(U) - p(U) < 21, where (1) 1is the Euler function and b, (W) is
the second Betti number. Hence each prime divisor of 1 1is mnot
greater than 19. Moreover, 2 <1 < 66. Finally, if 1 is not

a prime number then 211, 3|1 or 5]|I.

set vY =V - Sing ¥ and U° = i v®. Then m: u° - v s

etale. Hence e(UO) - 1ev?)  and the following lemma holds.

Lemma 2.4. Let V be a Log Enriques surface. Let 1:= Index(Kv)
and let c¢ and ¢ be the numbers of all comnected components of
Sing V and n l(sing V), respectively. We use the notations wn:

U >V and g: U= U as set at the beginning of 82. Then we have:
e(U) + p(U) - p(UY - € = T(pV) - ¢ + 2),

where eU) is the EFuler number.
Suppose further that ¢ = ¢ (this hypothesis is satisfied if

1 is a prime number) and that U is a K3-surface. Then we have:

c < 21 + plh- pU) £ 21 and 1 < p(V) - ¢ + 2 < 23/1.
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Lemma 2.5. Let V be a log Enriques surface. Suppose that

U is nomnsingular and 1. (= Index(Kv)) i8S a prime number. Then for

each singular point y of V, n_l(y) consists of a single smooth

point, and OV,y = (E[[X,Y]]/CI’q with a eyelic subgroup CI,q of
GL(2,0C), where 1<q<I-2 and g.c.d.(q,I) = 1. The action of CI,q
is given by: gX = £X and gY = £%Y, where g is a generator of
CI,q and £ is a primitive 1-th root of the unity.

Proof. This follows from the smoothness of U and the
assumption that y is not a rational double singular point. Q.E.D.

The proof of Theorem 3.1 is omitted.

Proof of Theorem 4.1. By Lemma 2.2, 1 is not divisible by 2.

We have o@(I) < bz(ﬁ) - p(U) =6 - p(U) £ 5 by Lemma 2.3. Hence I

= 3 or 5, and we have p(U) <2 if I =5 and pU) < 4 if 1 = 3.

Then Theorem 4.1 can be proved by using Lemmas 2.4 and 2.5.

Employ the notations as set at the beginning of 82. We are

going to prove Theorem 5.1. Let V be such a log Enriques surface

that the canonical covering U 1is a K3-surface and the index 1 of

KV is a prime number. Since U 1is nonsingular, we can apply Lemma

2.5. Let ml, e, ma be integers such that the following three

conditions are satisfied:

(2) the singularity ((EQ/CI n ,0) is not isomorphic to the
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singularity (EQ/CI n ,0) if i # j,
T

(3) for each 1<k<I-2, the singularity (C?/C 0) is

I1,k’
isomorphic to a singularity (CQ/CI n ,0) for some m:.l with mi < k.
.t

(ml,m ma) is uniquely determined and easily

2’ ...)
found (cf. [2; Satz 2.111). Let ni be the number of all

singular points of V which have the same singularity as

(([:2/CI n ,0). By our assumption that V has no rational double
'

singular points, we have X n, =c (= #(Sing V)). A precise

n_) is given in the following theorem:

description of (nl,nz, T, a

Theorem 5.1. We use the above notations. Let V, or syronymously
(V,D), be a log Enriques surface. Suppose that the canonical covering

U is a K3-surface and the index I of K= is a prime number. Then pV)

\Y
c-2+(24~-¢c)/1, and one of the following cases oceurs, where I n, = c:

(1Y (c,1) = (3,3). Then (ml, I ma) = (1), ¢ = n; = 3
and p(V) = 11. Hence D consists of three isolated (-3)-curves.
(2) {(c,I) = (4,58). Then (ml, e, ma) = (1,2), (nl,nz)

(1,3 and p((V) = 13.

(3) (e, D)

(3,7). Then (ml, ey ma) (1,2,3),

(nl,nz,nB) = (0,1,2) and pvV) = 12,

(4 (c,I) = (2,11). Then (ml’ Tty ma) = (1,2,3,5,7),
(nl, Tty n5) = (0,0,0,1,1) and pV) = 11.
(b) (e,1) = (13,11). Then (ml, AN ma) = (1,2,3,5,7),
(n n.) = (3,4,0,0,6), (4,1,1,0,7), (4,2,0,1,6) or (5,0,0,2,6)

and p(V) = 47, 48, 49 or 51, respectively.
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(6> (c,I) = (7,17). Then (ml, T, ma)=(1,2,3,4,5,8,10,11) and
(nl, tt n8) = (1,0,1,1,0,0,2,2), (1,0,0,1,1,0,3,1>, (0,2,1,0,0,0,3,1),
(0,2,0,0,1,0,4,0), (1,1,1,0,0,0,0,4>, (1,1,0,0,1,0,1,3),
(1,0,1,0,0,1,4,0), (2,0,0,0,0,2,1,2>, (1,2,0,0,0,1,0,3),
(1,1,0,2,0,0,0,3>», (1,1,0,1,0,1,2,1>», (1,0,0,3,0,0,2,1),
0,3,0,1,0,0,1,2>», (0,3,0,0,0,1,3,0) or (0,2,0,2,0,0,3,0).

(7) (e,I) = (5,19). Then (m ma) = (1,2,3,4,6,7,8,9,14),

R
(nl, ey, ng) =(1,0,0,0,0,1,0,1,2>, (1,0,0,0,2,0,0,0,2),
(0,1,1,0,0,1,0,0,2) or (0,2,0,0,1,0,0,0,2) and p(V) = 29, 29, 24
or 26, reépeetively.

In particular, D,Ky) = c-1-(K).

Conversely, if V is a log Enriques surface of which the
singularity type belongs to one of the above cases, then the
canonical covering U 1is a K3-surface.

Finally, for each prime number 1 with 3 <1 £ 19 and 1 = 13,

there is a log Enriques surface V such that 1 is the indez of KV

and the canonical covering U of V 1is a K3-surface

Proof. At first, we show the converse part. Let V be a
log Enriques surface of which the singularity type belongs to one
of the cases of Theorem 5.1. Every singular point x of V has
the same singularity as (CQ/GX,O) with a cyclic subgroup GX of
GL(2,C) of order 1. Since the canonical covering 7t: U - V has
degree I and is an etale cyclic covering outside Sing V, we see
that U is nonsingular. Then U is a K3-surface in view of

Theorem 4.1. Now we shall prove a main part of Theorem b.1.

By Lemma 2.4, we obtain the first assertion and that ¢ < 21.
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In particular, 1|(24-c). By Lemma 2.2, we have 1 > 3. Hence
3 L1 £19 by Lemma 2.3. We treat only the case 1 = 3. The

other cases can be treated similarly. We use also Proposition 1.5.

Assume I = 3. Then (ml, s, ma) = (1) and D consists
of ¢ isolated (-3)-curves Di (1<i<c). Note that D# = %D and
(K%) = (0%)2 = -¢/3. Hence we have ¢/3 + 10 = p(V) = p(V) +
#(D) = ¢ - 2 + (24-¢)/3 + ¢. This implies ¢ =3 and p(V) = 11.

The final part can be proved by constructing concretly
examples. Q.E.D.

Theorem 6.1 is a consequence of the following Proposition 6.2
and Lemma 6.3. We need some preparation.

Let (V,D) be a log Enriques surface such that I is an odd

_ 6
prime number and Sing U = 1§1miAi for some integers m. = 0 (1<i<6).

The second condition means, by definition, that Sing U consists of

mi singularities {Xij} (lSjSmi) of DynKkin type Ai for each 1<£i<6.

Let mO be the number of all singularities {yoj} of V such that

n_l(yoj) is a smooth point of U. Then the singularities vy. .:

Xoj.z ij

. . o . . 2
H(Xij) (0<i<6) exhaust Sing V and are isomorphic to (C /CI(1+1),ki’

for some 1 < ki < I(i+1)-2 with g.c.d.(I(i+1),ki) = 1. We have

§)
also z m, = #(Sing U) and m, = C.

fer)

i=1 i=0 *

In the case I = 5, let nl, ey, n10 be respectively the

numbers of all singularities {yaj} of V such that (a,ka) =
(0,1>, 0,2y, (1,1), (1,3>, (2,2), (2,11), (3,3), (3,113, (4,4)>,

(4,9>. Then mi = (0£i£4).

Dy i+17Moj40

—491—

0)



In the case 1 = 7, let nl, ey, n9 be the numbers of all

singularities {yaj} of V such that (a,ka) = (0,1), (0,2, (0,3),

(1,1>», 1,3y, (1,9, (2,2), (2,5), (2,8), respectively. Then m, =

n81+1+n3i+2+n31+3 (0<£iL£2).

In general, if 1I1=3 then Sing U= Z mA. + 2 &.D. for some

i1 ! ji=4
integers m.20 and &.20. Set m.:= ¢ - #(Sing U) = ¢ - T m. - X &..
! ] 0 i1 * J

The bounds for ¢ and p(V)-¢ are given below.

Proposition 6.2. Let «(V,D) be a log Enriques surface such
that 1 is an odd prime wnumber and Sing U # ¢. Then we have 2 <
¢ £ Min {16,23-1y and c¢-1 < p(V) < c+4. More precisely, we have:
(1) Suppose 1 = 3. Them ¢ < 15 and p(V) < c+4. Moreover, if

29, Sing U = 6A and (mO,ml) = (9,6).

c=15, then pW(V) = 14, p(V)

1
— 3 ——
If pWV)Y = c+4, then ifomi + 84 = ¢, Sing U = D4, A3, A2 or Al’
(mo,'~-,m3,84) = (1,0,0,0,1>, (2,0,0,1,0), (3,0,1,0,0) or (4,1,0,0,0)

and p(V) = 11, 12, 13 or 14, respectively.

(2) Suppose 1 =5. Then ¢ < 16 and p(V) < c+2. Moreover, if

¢ = 16, them p(V) = 15, p(V) = 40, Sing U = 3A (my,m;) = (13,3)

1!
_ 2
and (nl,---,n4) = (4,9,3,0). If pWN) = c+2, then m.oo= ¢,
i=0
Sing U = A2 or Al’ (mo,ml,mz) = (1,0,1) or (2,1,0), (nl,---,ns) =

(0,1,0,0,0,1) or (0,2,0,1,0,0) and p(¥) = 11 or 12, respectively.
(3) Suppose 1 = 7. Then ¢ < 15 and p(V) < c+l. Moreover, if

¢ = 15, then p(V) = 14, Sing U = 2A,, (my,m ) = (13,2), (n )

1'7 e
= (0,11,2,2,0,0), (1,8,4,2,0,0), (2,5,6,2,0,0) or (3,2,8,2,0,0) and
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p(V) = 44, 45, 46 or 47, respectively. If p(V) = c+1, then ¢ = 2,

p(V)=11, Sing U = A (mo,ml) = (1,1) and (nl,"',n ) (0,0,1,0,0,1>.

1’ 6
(4) Suppose 1 = 11. Then p(V) = c-1.
In particiular, we have 24-KI < c+pU)-p(U) = 24-1(p(V)-c+2) <
24-1, where k = 6 (resp. 4, 3 or 1) if 1 =3 (resp. 1 =5, I = 7
or I 2 11) (ef. Lemma 2.4). MHoreover, (D,K,) = c—l—(K%) when the

upper bound of ¢ or p{V)-c in (1), (2> and (3) is attained.

Proof. Since I >2 3 'we have ¢ 2 2 by Proposition 1.5. We
use the result 1 < p(V)-c+2 = (24+p(U)-p(Ud-c)/1 < 21/1 < 7 in
Lemma 2.4. In particular, we obtain the assertion(4), and c¢-1 <
p(V) < c+5 and ¢ = 24+p(D)-p(UI-1(p(V)-c+2) < 23-1 < 20. Moreover,

if p(V) = ¢+5 then 1 =3 and 24+pUd-pUd-c = 21, whence ¢ = 2

and Sing U = A In proving the assertion(l), we will show that this

-
case does not occurs. Therefore, in order to prove Proposition 6.2,
we have only to consider the case where I = 3, 5 or 7 and show the

assertions (1), (2) and (3). (1), (2) and (3) can be proved similarly

as in the proof of Theorem 5.1. We omit the proof. Q.E.D.

Lemma 6.3. Let V be a log Enriques surface. Then

#(Sing U) < Min {10, (24-p)/2} Ffor every prime divisor p of 1.

Proof. It suffices to consider the case where Sing U # ¢. In
this case, if g: U - U is a minimal desingularization then U is
a K3-surface. In view of Lemma 2.2, we may assume that I = p which

is a prime number. For each x € Sing ﬂ, we have n(x) € Sing v

and 7 Mm(x) = x. Hence, #(Sing U) < c. Note that pUW-p(0) is
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the number of all irreducible components of exceptional divisors

of g, which is apparently not less than #({(Sing Uy. So, we have
#(Sing U) < Min {c, p(UW-pU)} < [e+pUD-p(UX1/2 = [24-T(p(V)-c+2)1/2
< (24-1)/2 by Lemma 2.4. This, together with Theorem 3.1, implies

Lemma 6.3. Q.E.D.
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