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The purpose of these notes is to explain how one can use 

Hida's theory of ordinary Hecke algebra and of Congruence 

Module in order to obtain some information on(some part of)the 

Iwasawa module of the anticyclotomic -extension of an 
P 

imaginary quadratic field. 

To be a little more precise, let K be a number field, p a 

rational prime number. We denote by S the set of primes in K 
P 

above p , and take S to be any subset of S . Consider any 
P 

Z -extension Kw/K and denote by M: the maximal abelian 
P 

p-extension of Km unramified outside S. Set X: = Gal (M:/K_). 

Choose a topological generator of Gal(Xm/K). By this, we 

determine an isomorphism between the completed group algebra 

Z CCGal(K_/K)ll and the so-called Iwasawa algebra A = Zpl[T1l. 
P 

I t  is easy to prove by using class-field theory that the 

S .  A-module Xw is finitely generated (the action of Gal(K_/K) on 

S Xw is given as usual by conjugation); for this fact as well as 

many basic facts in Iwasawa's theory, see, besides Iwasawa's 

papers, C31, I 1 7 1  and C361. 

Now ,suppose further that X: is a torsion A-module (this 



happens when S is small in S , hut for S=S itself, this 
P P 

is not true). Then we can speak of the characteristic power 

S series of Xm . The knowledge of this series provides some deep 

insight in the arithmetic of Km/K; thus i t  is very important to 

determine this series explicitly. Let us give a celebrated 

example of such a determination. Consider a totally real field 

F and let K be the field generated over F by a primitive 

pth-roo t of unity 5 . We write A for the Galois group of K/F. 
P 

The ~eichmiil ler character w:A -+  IF^ generates the dual group of 
P 

A. We call i t  the basic cyc!otomic character. Now , we look 

at the cyclotomic Z -extension , whose nth layer Kn is defined 
P 

to be F ( 5  n + e  > , where 5 denotes a primitive (prIth root of 
P P 

unity and e is the largest integer such that S E K, whence 
pe 

n [Kn:KI=p . We choose S to be the empty set 4 ,  then i t  is easy 

to check that X! is A-torsion. We may canonically lift o to zX 
P 

.We still denote i t  by w but we understand that i t  takes values 

in the ring of characteristic 0 .  Furthermore , for each 
P 

i $ integer i m0d.p-1, we consider the w -part of Xm for the 

6 i action of A, denoted by Xm(o 1. When F=Q, the Vandiver 

conjecture predicts that for all even such i's the 

i corresponding component Xm(w > is trivial, and Herbrand theorem 

shows that for i ~ l  m0d.p-1, the corresponding component is also 

trivial (see C171 chap.3 and C361 56-31; we therefore restrict 

ourselves to odd i's , $1 m0d.p-1. Let fi(T>EA be the 

d i characteristic power series of Xm(w )for such its. 

On the other hand , Kubota and Leopoldt (C141,in the 



case F=Q) and Del igne-Ribet ( 1 2 5 1 ,  C291 ,for an arbitrary totally 

real field F, see aiso Th.4.4 of C81) have constructed for 

each such integer i mod-p-l(i.e.odd and Z1 m0d.p-1) a power 

series g.(T)EA interpolating the special values of the zeta 
1 

1-i 
function of F, twisted by the character w ; namely: 

s 1-i gi((l+p) -I)= L (-s,o 1 , for all s in 2 
P P ' 

where the p-adic L function L satisfies for all integer k such 
P 

that kzi m0d.p-1 : 

Now , the theorem of Mazur-Wiles C2ll(for F=Q) and of Wiles 

(for any totally real F, now in print in Inv. Math.) asserts 

that, up to a unit in A, the power series fi(T) and gi(T) 

coincide. 

In this text , we want to deal with the following 

situation of the imaginary case which is parallel to the 

totally real case. 

Let M be an imaginary quadratic field, p a rational prime 

number which splits in M, say (p)=p.pP, where p is the complex 

conjugation in M. Our ground field for the Iwasawa theory is 

now K = M ( p )  which is the ~ingklassenkorper of the order of 

conductor p in M. We still write A far the Galois group of 

K/M. For simplicity, let us suppose in this introduction that 

the class number of M is one. Then, we have a basic 

anticyclotomic character K: A -+ which generates the dual 
P 

group of A (see § 4  for its definition). We consider, instead 

of the cyclotomic 2 -extension of K, the anticyclotomic one, 
P 

n+l 
whose nth layer is defined to be K = M(p , the Ring - n 
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n+l. klassenkorper of the order of conductor p in M. The 

Z -extension K_/K is called anticyclotomic because Km is Galois 
P 

over Q but the action of p on Gal(K_/K) by conjugation is by 

- 1 inversion :a -+a ,instead of being trivial (as i t  is in the 

cyclotomic case). We take the set of primes in K above p as 

subset S of S - i t  means that we take only half of S . In 
P ' P 

this case, one can show tcf . § 4 )  that X: is torsion over the 

Iwasawa algebra A (identified as previously to the completed 

group algebra of Gal(Km/K)). Recall that the number of units 

in M is 2e. Here, usually e=l. But there are two exceptional 

cases; i.e. e=2 when M= Q(J-1) and e=3 when M=Q(J-3). We 

consider any integer i mod-p-1 such that eiZ0,l m0d.p-1 and we 

S S i look at the ri-part of X_ , say X_(K 1 ,  for the action of A. 

Let f.(T) be its characteristic power series in A .  
1 

Now, Hida's theory ClOl allows us to define a Congruence 

Module attached to M and i (as will be explained in 51 and 2) 

which is a A-module much easier to handle; namely , i t  is 

isomorphic to h/(H.) for some suitable element H.(T) in A .  
1 1 

Now , our aim is to show the link between the Iwasawa module 

S i X_(K 1 and the Congruence Module ; this link implies in 

particular that Hi(Tl divides (twisted) fi(T) in A . This is 

the main theorem in these notes (th.4.3 below). Note that i t  is 

conjectured that H . ( T )  coincides with the specialisation to the 
1 

anticyclotomic variable of the Katz-Yager p-adic L function of 

i two variables corresponding to the branch K (in the Yager's 

terminology, i t  corresponds to the pair (i,-ill. 

Therefore, according to the Main Conjecture of Iwasawa-Coates 



(presented in C31), i t  is believed that those three power 

series coincide, up to a unit in A .  We hope to prove partial 

results in this direction in a subsequent paper. 

Let us add that the idea of comparing the values at T=O of 

H.(T) and (twisted) fi(T) was already present in C91 which is 
1 

the origin of our work. 
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1 .Hida's theory of ordinary Hecke algebra 

and the Congruence Module 

The reference for the unproved theorems of this 

paragraph is mainly ClOl where Hida first developed his 

" control theory " of the ordinary Hecke algebra and also 1391 

for the modified version using a finite normal extension of the 

Iwasawa algebra as base ring instead of A .  

Let N be an integer > O  and p be a fixed odd prime which 

doesn't divide N . We will be concerned chiefly with the 

following congruence subgroups : 

mod .Npr) 

where r is any positive integer. 

For each integer k>O , let sk(T1(Npr)) be the @-vector space of 

parabolic modular forms of weight k for the congruence subgroup 

T~(NP'). By taking the Fourier expansion of those forms we 

obtain a c-linear embedding : 

So, in particular, we can set for any subring A of C: 



Furthermore, for any integer a prime to Np, let ua E SL2(E) 

r 
be any matrix congruent to mod.Np . I t  acts on 

s ~ ( T ~ ( N ~ ~ ) )  by the action of weight k (cf.C321 chapter 3 ,§4) 

This gives a representation, called diamond of weight k : 

< >k 
: ( z / N ~ ~ z ) ~  -+ Aut(S (C) , whose kernel is {*1). 

k ,  r 

This map can also be viewed as the identification of ( z / N~~z)~ 
with r0(~pr)/r1(~pr) acting in weight k. 

Then, one can recall the definition of Hecke operators as 

endomorphisms of S . For any n>O , we set : 
k,r 

We denote for each subring A of @ by h (A) the A-subalgebra 
k,r 

of End(S (a:)) generated by all the T(n)'s. I t  is well known 
k ,  r 

that the pairing 

is perfect (see for instance C321 Theo.3.45). 

We want to use all those notions and results for S (A), A 
k, r 

being any ring in place of C. For this, we first check the 

compatibility for the extension of scalars. 

Lemma 1.1: Suppose that k>l. For any subring A of a: , the 

canonical homomorphisms: 

'k,r t Z ) @  A -+ Sk,r(A) and hk,rtZ)@ A -+ h (A) 
k , r  

are isomorphisms. 

Proof: We abbreviate h (A) (resp.S (A)) by h(A) (resp.S(A)). 
k,r k,r 

Recall that according to Theorem 8.4 and Prop.8.6 of C321 , 



there exists a lattice L in Sic> stable under biz). We 

therefore have a faithful representation htZ) -+ End z(L). Let 

K be the dimension of S(c). If we fix a basis of L over 2 , we 

get a matricial representation : 

Set Rtn)=(oi (n)). . and let us introduce the series 
9 J l , J  

OD 

f = 1 w .(n).q n 
i,j n>O i , ~  

By the definition of R ,  we see that f.  S Besides, the 
l l J  

f. .'s generate S(c). To check this , take any f in S(C). I t  
1 9 3  

defines a linear form hf:htZ)-+ C. As @ is divisible, we can 
* 

define hf: MZKtd) -+ C such that z f o f 2  = h 
f' 

Let A .  .:M*12K(Z) -+ Z , (a 1 F-+ a 
a,B 

be the canonical linear 
1 , ~  i,j 

forms on MgKtZ). We can write - 
= 2 c. A for some complex numbers c ' s. 'f i,j i,j i,j i,j 

Thus, for each n>O, we have : 

a(n,f) =.I. c. a. .(n) ,and finally , f=.C. c. f. 
1 , ~  l,j 1 , ~  1 , ~  i,j i,j' 

Besides, i t  is obvious that the map ~(218 c -+ S(c) is 

injective, so i t  is bijective. 

Now, let us show that s(Z) is free of rank K over Z. We deduce 

from (1) that h ( 2 )  is a finite free Z-algebra. Let 

(T(ni)) i=l,. . ,s a subset of {T(n)ln>O which generates the 

module z>oZ.T(n) over Z.Then : 

St21 = {f€s(@) ; for i = l ,  . . . ,  s ,atni,f)€Z1 
so that we have a linear injection with torsion-free cokernel: 

From this, we first see that s(Z) is free (obviously of rank 



K). Secondly, if A is any subring of C ,  if we denote by yA the 

extension of scalars of q to A, we see by flatness of the 

cokernel of q that : 

so that S(z)@ A 2 S(A). 

Now, for each subring A of c, consider the obvious A-algebra 
morphi sm : 

( 2 )  h(Z)@ A -+ h(A) 

By the perfectness of the pairing (1.11, we know that dim h(C) 

equals K. Then, to prove that the rank of h(z) is K, we notice 

that the natural morphism: 

(3) h(lR)@ c -+ h(C) 

is an isomorphism . In fact, the antilinear automorphism 

K:f(z) I+ f(-2 ) of s(C) acts by conjugation on h(c), so, if 

T1 and T2 are elements of h(R) such that Tl+iT2 = 0 , we have 
K (Tl+iT2) = T -iT2 = 0 , hence TI= T = 0 .  But, on the other 

1 2 

hand, we have S(C) = L@ R , hence EndR (S(C)) = (Endz L ) @  lR ; 

this yields the injectivity of h(z)@ R -+ h(R), i.e. the rank 

of h(R) is K. We conclude now to the injectivity of ( 2 )  for 

A=C because of the remark (3) above, and finally for every 

subring A of C. Q.E.D. 

Now, we can extend the notations for any ring A : 

S(A)= S (A) = Skgr 
k,r 

(El@ A , h(A)= hkYr(A) = hk,rtZ)@ A . 
If we handled with rO(~pr) instead of rl(~pr , i t  would be 

obvious that the analogous Hecke algebra h(z) leaves stable the 

analogous S(z), hence, that we could define a natural 



representation h(A) -+ End S(A). But in the case of rl(~pr), A 

the difficulty comes from the diamonds automorphisms (which 

don't exist for r O ) .  Still, i t  is true that our h(Z) leaves 

S(Z) stable but the proof of this fact requires Xatz's theory 

of p-adic modular forms. I t  can be found in C101, §I. We will 

take this for granted in the following. I t  allows us to look at 

h(A) as a subalgebra of EndAS(A) when A has no torsion as 

abelian group . Call this hypothesis (flat.). 

Lemma 1.2: Assuming (flat.) ,the A-linear pairing : 

h(A)x S(A) -+ A , (T,f) c" a(1,flT) 

is perfect. 

Proof:We can suppose A=Z. Since we proved that S(Z) is free of 

rank r=dimC StC), the result is obvious.by perfectness of (1.1). 

Remark : In order to check that s(Z) is stable under h(z), 

we may check i t  locally . This is very easy for all prime 

numbers outside y(M) (where ~=~p'is the level of rl(M)). Just 

extend the scalars to Z 15 I (q is a fixed prime number 
(9) M 

outside (#(MI, and sM is a primitive M throat of unity). We can 

now use the idempotents of the group algebra Z LCM] c (Z/MZ)~I 
((2) 

to decompose the action of the diamonds on S(Q(gM)) according 

to eigenspaces so that the stability of S(d(q) CSMI under the 

diamonds is obvious. But, to deal with the primes dividing 

v(M) , no elementary mean is known to me. 

After those preliminaries, we may introduce p-adic 

modular forms in Hida's version. The previous notations remain 

in use. For any couple (k,r), k>O, r20 , we consider the - 
inclusion given by q-expansion : 



S (Z) -+ Z[[qll 
k,r 

and tensor i t  by or . I t  is easy to check that for any 
P P 

fixed r20, the following map is still injective: - 

[it is enough to check i t  for Q or even @ instead of (Ll . So, 
P 

k if 2 fk= 0 , we have also 2 j(y,z) fk = 0 for all y in 
k>O 

TI (NP'), where j ( 
(a bl 
tc d/ 

,z)= (cz+dl. Then we use the cocycle 

formula j (yyt,z)=j(y',z) j(y,Ytz) to conclude the proof as 

Artin's lemma of independance of characters (or cocycles)l. 

Then, one defines : 

Note that if O<r<rt, we have obvious inclusions S C S - , r l  . . - - . ,r 
Besides, there is a natural topology on [[qll given by the 

P 

n 
norm I 2 ~ , q  I p  = sup I X  I . ~ e t  5 be the closure of 

n20 n20 n P . ,r 
- - 

S in CCqll. Then, by using Katz'theory of p-adic modular . ,r P 

forms, Hida shows : 

Theorem 1.3: For each rt)r20 , the inclusion S - - ,r '.,rt is 

an equality. Furthermore ,if we denote by S the common value 

of these modules , the cokernel of the inclusion . ,r - 
S --, Z [[qll 

P 

is a torsion free Z -module. 
P 

Proof: See C101,§1. The last assertion is Katz's p-adic 

q-expansion principle. I t  can be deduced (cf.Cl5l)from the 

irreducibility of the modular scheme (proved in C261 ) .  

Corollary 1.4 : For each r20, - each k>O, S (zp) c 2 . 
k,r 



After defining the space of p-adic modular forms , we 

define the big Hecke algebra which acts on it. Take r20 , and - 
remark that End,(S = EndZ ( 5 ) .  First , i t  is also a 

S. .,r 
P P 

consequence of Katz's theory that, defining for any integer n 

an operator T(n1 on (Q > by: ( 2 fk) lT(n) = 1 fkiT(n), 
k>O k>O 

the submodule S is stable for T(n). I t  is obvious that for . ,r 
this action is compatible with the inclusion S c . ,r 

S so, if we introduce the closed subalgebra h of End S . ,r" r .,r 

generated by the T(n)'s, i t  is clear that i t  doesn't depend on 

r. We denote i t  by h and we call i t  the big Hecke algebra. For 

the details concerning the use of Katz's theory to define h, 

see $1 of C101 and C151. 

Let us now define the ordinary part of Hecke algebras. 

Let T ( p )  be the pth Hecke operator acting on 5 .  We have 

T(p)Eh. By looking at its definition, i t  is not difficult to 

see that h is a profinite Z -algebra. From this, it -  results 
P 

that h can be decomposed as a product of two algebras : 

where h Ord (ordinary part) is the biggest quotient tor sub-) 

S.S. algebra on which T ( p )  is invertible, and h (supersingul ar 

part) the biggest quotient (or sub-) algebra on which T(p) is 

topologically nilpotent. In fact, we can write h =&a hi where 

h i  
is an artinian -algebra, so we can use the structure 

P 

theorem for artinian rings: 

hi is a product of local Artin rings 

we take : hi Ord = product of those local components in which 



T(p) is invertible. 

- product of those local components in which h S - S - -  
T(p) belongs to the maximal ideal (i .e. is nilpotent). 

This decomposition is compatible with the transition morphisms 

and gives (1.4) at the limit. 

Let e be the unit element of hord. We call e the ordinary 

idempotent of h. Similarly, we get decomposition of all Hecke 

(Z as product of h Ord and h S.S. algebras hkYr= hk,r . Because 
P k,r k,r 

of corollary 1.4, we have an obvious surjective morphism: 

I t  is clear that the idempotent e is mapped to the analogous 

idempotent e of h . We define : 
k,r k,r 

Furthermore, by taking the inverse limit on r of the maps 

(1.5), we get a surjective homomorphism of -algebras : 
P 

This morphism is an isomorphism if and only if 
U Sk,r(Ep) r>O 

is dense in z. A difficult theorem by Shimura and Ohta asserts 

that this is true, but we can avoid to use i t  if we concentrate 

ourselves on the ordinary parts (cf. C111 th.l.1). 

Theorem 1.5: For each k)2 - , the natural morphism of -algebras 
P 

(1.5) hard -4 ~ i m  h 
ord -- 

r k,r 

is an isomorphism. 

ord. 
This allows us to define a supplementary structure on h . 

fix k)2 and look at the diamond of weight k. - 
< . >  - ( z / N ~ ~ z ) ~  -4 h k 

(the image falls in the Hecke 
k,r 



2-  
algebra because we can write <a> = (Tt 1 

k e 2 /ek-l , C being 
r any prime such that L= a mod.Np , L f p 1 .  

Take the inverse limit of these compatible maps and take the 

ordinary part on the right. We get a homomorphism (whose 

kernel is 21 1 :  <.  >k : Z -+ hord , where Z = p g  (Z/N~'Z)~. 
r 

We have the decompositions : Z = (H/NZ)~X Z; "(Z/NZ)~X p x l- 
P- 1 

,where l-= l+pz is identified by this isomorphism to {z€Z;zzl 
P 

mod. Np 1 and p is the group of (p-llSt roots of unity in zX 
P-1 P 

We choose u=l+Np as topological generator of {zfZ;z=l mod.Np). 

Finally, to avoid the choice of a weight k ,  we introduce the 

diamonds of weight 0 : for z = ( z N , z p ) € Z = ( ~ / ~ ~ ) X ~ ~ ~  , we set 

(1.6) < z > ~ =  2 ! < z > ~  
P 

Then, the map <. > O  : Z -+ hord gives a structure of Z [[ZII- 
P 

module on hord. Via the inclusion p -+ Z , we have an action 
P-1 

of the group p ord, of order prime to p on the Z -algebra h , 
P-1 P 

ord 
hence we may decompose i t  in eigenspaces h (a), a € 

tZ/(p-l)Z (dual of 

a hord(a) = { T € ~ O ~ ~ ; < S > ~ . T =  5 .T for all 5 in p P-1 I 

ord We consider h, h , hord(a) (a€tz/(p-l) .z) as algebras over 

the Iwasawa algebra A = z [ [ T I 1  via: 
P 

Remark: In order to deal with modular forms with coefficients 

in an arbitrary finite extension of Q , say L, i t  is useful and 
P 

easy to reformulate all the previous considerations with a 

base ring OL instead of Z (OL being the ring of integers in L) 
P 

so, we have S(OL) = 5 @OL , h(OL) = h@OL, hk,,(OL)= hk,,@OL 

- 16 - 



a n d  s o  o n ;  a l l  t h e  t h e o r e m s  o f  t h i s  p a r a g r a p h  h o l d  mutat3 

nutandCs i n  t h i s  c o n t e x t .  I n  p a r t i c u l a r ,  h ( Q  b e c o m e s  a L 

A=-module ;  h = O L [ [ T l l .  We w i l l  n o t  make t h e  o b v i o u s  L 

t r a n s l a t i o n s  t o  t h i s  s i t u a t i o n  b u t  t a k e  i t  f o r  g r a n t e d  i n  t h e  

n e x t  p a r a g r a p h .  F o r  d e t a i l s ,  see  [ I 0 1  5 3 .  

We a r e  now a b l e  t o  s e t  t h e  f i r s t  i m p o r t a n t  r e s u l t  o f  H i d a ' s  

t h e o r y  ( p r o o f : C l O l  T h . 3 . 1 ) .  

o r d  . Theorem 1 . 6 :  h  is a f i n i t e  f r e e  A-module.  

Commentary :  I n  some s e n s e ,  i t  means  t h a t  d i a m o n d s  

a u t o m o r p h i s m s  c o n t r o l  a l l  t h e  o r d i n a r y  H e c k e  a l g e b r a .  T h i s  i s  

t h e  r e a s o n  why t h i s  p a r t  o f  t h e  H e c k e  a l g e b r a  c a n  b e  p r e c i s e l y  

s t u d i e d .  B u t  i t  i s  c o n j e c t u r e d  t h a t  t h e  w h o l e  H e c k e  a l g e b r a  i s  

f i n i t e  o v e r  t h e  Iwasawa  a l g e b r a  o f  f o u r  v a r i a b l e s ,  s o ,  t h e  

o r d i n a r y  p a r t  i s  a v e r y  small p a r t  o t  t n e  w h o l e .  

I n  a d d i t i o n  t o  t h e o r e m  1 . 6 ,  t h e r e  a r e  c o n t r o l  t h e o r e m s  f o r  t h e  

i s o m o r p h i s m  ( 1 . 5 ) .  P e r h a p s ,  w e  s h o u l d  r a t h e r  say t h a t  w e  h a v e  

a n  Iwasawa  t h e o r y  f o r  t h i s  i s o m o r p h i s m ,  s i n c e  t h e y  w i l l  a l l o w  

u s  t o  r e c o v e r  t h e  p r o j e c t i v e  system f r o m  t h e  d a t u m  o f  t h e  l i m i t  

, as q u o t i e n t  b y  I w a s a w a  p o l y n o m i a l s .  

r-1 
F o r  r > O ,  k > 1 9  s e t  o ( T I  = ( l + T I P  - u  k . p r - '  

( t w i s t e d  
k 9 r  

I w a s a w a  p o l y n o m i a l s ) .  N o t e  t h a t  S c S [ o  ( T I ] ,  b y  w h i c h w e  
k , r  k , r  

mean t h e  p a r t  o f  S k i l l e d  by o ( T I .  H e n c e ,  w e  h a v e  a n a t u r a l  
k , r  

morph i s m  : 

T h e o r e m  1 . 7 :  I f  k > l ,  r>09  t h e  map ( 1 . 7 )  i s  a n  i s o m o r p h i s m .  

Remark:  I f  k = l ,  t h i s  i s  h i g h l y  f a l s e  a n d  t h i s  p h e n o m e n a  g i v e s  



rise to a new kind of Galois representations recently studied 

by Mazur and Wiles (cf.[221, last paragraph). 

In fact, there is a more precise control theorem for each 

character: 

r-1 
For any r>O, let Tr= rP . We can decompose o (TI in 

k , r  

product of linear factors in O [ T I  where O is the ring of 
K K 

integers of a finite extension K/P containing (pr-'Ith roots 
P 

of unity : 

k For E any character of T/Tr, set P ( T I  =l+T- ~(u1.u , then 
k,E 

- largest OK-submodule of sYrd(OK) on which r acts 
Set { via E. d,r 

Ord = 0 -subalgebra of End S (OK) generated by the 
hk*E ~?n)'s. k,r 

we see immediately that S Ord c(S@B~) CP ( T I ] ;  so that we have 
k,E k,E 

a natural 8 -algebra morphism : K 

(1.81 ord 
k,E 

Theorem 1.8: I f  r>O, k>l, the map (1.8) is an isomorphism. 

Remark : In fact, i t  is easy to check that theorem 1.7 and 1.8 

are equivalent. 

The next topic dealt with in Hida's theory is the concept of 

primitive component of the Hecke algebra. Let 2 be the field 

of fractions of A .  The E-algebra hord@2 is finite dimensional; 

hence i t  can be decomposed into a product of local 2-algebras. 

Let X be one of these components : 

Set hl = Im(prl: hord -+ X )  , h2 = Im(prZ : hord -+ $1 .  



By theorem 1.5, we see that the map (1.9) induces an injection 

Let k>l, r>O; extend the scalars to K 2 f l  r-l ,and set : 
P 

F k , ~  =((hl@O K 1 /Pk,E.(hl@OK1)@ K . 
Because of theorem 1.8, this K-algebra is a direct factor 

algebra of h Ord @ K. 
k,E 

The control of primitivity is contained in the following 

theorem : 

Theorem 1.9: l).The following conditions are equivalent : 

(i1 There exists a couple (kg, EO) , k>l , Ker E03 T r '  such 

that each character of K-algebras from F to a (a fixed 
k,Eo P 

algebraic closure of 1 induces an eigenform in S 
P 

Ord . ap 
k,Eo 

whose level in Atkin-Lehner-Miyake sense is a multiple of N. 

( i i l  For each couple (k,E1, k>l, r>O, Ker E 3 Tr , all 

eigenforms attached to characters : F k , ~  
- have level 

P 

divisible by N. 

?.When these conditions are fulfilled, X is a field and each 

algebra F 
k 9 E  

is semi-simple. 

We say then that the component X is primitive. Each 

eigenform in S (K1 coming from some primitive F is called 
k,E k E 

ordinary primitive. 

Remark : One proves that if r>l, the ordinary-primitive 

eigenforms in S are exactly the ordinary and primitive ones 
k,r 

, however, when r=l, some ordinary-primitive forms are not 

primitive in the usual sense. To see an example, take any 

primitive form in the usual sense in Sk(T1(N)), such that 



a(p,f) is a p-adic unit in 0 for some embedding of 0 into 0 
P P 

,write a(p,fo)= a + f i  
P P '  

with la I =1 and If3 I <1, and define 
P P P P 

ftz) to be fotz)- f i  .fo(pz). Then i t  has level Np, is 
P 

ordinary-primitive but not primitive. 

Theorem 1.9 gives a criterion to prove that a component is 

primitive : i t  suffices to test i t  for one couple (ko,Eo). 

Finally , we come to the definition of the Congruence 

Module attached to a primitive component of hord. Consider 

such a component X and set CO(X) to be the cokernel of the map 

We call this module the Congruence Module of X. I t  results 

immediately from the definition that i t  is a finitely generated 

and torsion A-module.We may give another useful definition of 

it. Since I\ is a complete local noetherian ring , the finite 

I\-algebra h Ord splits into the product of its localizations at 

maximal ideals. Let R be the local component of h Ord through 

which the first projection prl: hord -+ h factorises. We 1 

still get a decomposition : 

then, by setting Ri = Im (prilR), we may still write: 

CO(X) = Coker ( R -+ Rlx R2 

This allows us to state a control theorem for the congruence 

module under some hypotheses: 

Let ( k , ~ )  as before and h Ord 8 K = F x A (this is allowed 
k,E k,E k,E 

by theorem 1.9 since X is primitive); set h = Im (hord -+ 
k ,  1 k,E 

Fk,E) and h - - Im (hk,E Ord -+ A k , ~  
) , then, we have: 

k,2 

(1.12) ord -+ h h k , ~  k ,  1 
x h  

k,2 



Define C 
k , E  

as the cokernel of the map (1.12) (cf. Doi-Ohta [51  

1 .  This is a finite length OK-module . 
Theorem 1.10 : Under the following hypothesis : 

(i) hl is integrally closed, 

( i i )  R is a Gorenstein ring, 

there exist natural isomorphisms : 

Commentary : To check the hypotheses, we can test the first 

one by reducing h modulo any fixed couple (kg, 
1 

EO1:  if the 

reduction is integrally closed, then so is hl itself. However, 

condition ( i i )  is much more difficult to check and its study 

uses algebro-geometric tools. We will explain, when i t  occurs, 

how to deal with this problem. 

Nevertheless, in the situation we will study, we can 

prove Gorenstein-ness of R but hl might not be integrally 

closed. This is not crucial because we don't use the control of 

the Congruence Module in this work; however, since this is the 

main result in L101, we will briefly explain how i t  may be 

generalized even if h is not integrally closed, provided R is 1 

Gorenstein. This is proved in a recent paper of Hida (cf.C391 

theo. 4.1, 4.3, 4.4). 

Let 1 be the integral closure of hl in X .  The new congruence 

module is defined by replacing the decomposition (1.11) by 

(1. llbis) R@X - Xxg'. 
More precisely, we write Xa2 X = XBX', for some semi-simple 

T 

X-algebra X', the first projection being the obvious 



multiplication map: x@y --+ x.y. We have 3 '  = X ' $  BBX. 

We have still an embedding of RBI into I R where Ri = 2 

I m p r :  RBI - ' I .  Note that RBI and I@[ are still local, and 

the first projection in (llbisI factorises into the characters 

RBI -+ IBI and m:IBI -+ I, the latter being the multiplication 

map. Let cl be the ideal in R,kernel of pr,: R --+ 8. I t  is - 
also an ideal in R = h and we see easily that CO(X)= R1/ c1 . 1 1  

We set 

(1.13) CO(X,II = Coker( RBI -4 I@ R;) 

Set El for the ideal in RBI which is the kernel of pr,: RBI --+ - 
3 ' .  I t  is likewise an ideal in 1 = I@{OI c I@ R; and similarly, 

we have CO(X,II = I/E1. Finally, set Cotm,I)= Coker(IB1 

--+I@I'I; where I' = Im(I@I --+ X'). 

In the context we will set in next paragraph, we have R = I, 
1 

and, following C401, in our particular case, we obtain in §8 

below the relation between those I-modules: 

Now, to state the control theorem of C (X,I) when R is 
0 

Gorenstein, we have to reduce modulo height one ideals in I 

instead of A ( or AL). We only consider primes P in I above 

Pk,E(T) in hL , for k>1, r>O, such that I/P = 0 ' that is of L , 
residual degree one over A For instance, if I = OLCCXII with L' 

d d d 
( ~ + T ) = ( ~ + x I ~  , we have P(XI= 1+X-E' ('Ju) .'JU , assuming of 

d 
course that P ~ u f ~  and E f  running over the set of prolongations 

d 
to (l+pZ 'Ip of the character E of (l+pZ I. Then, we have,, 

P P 

in analogy with Theo.l.8: The natural morphism 



hord8~/p. (hordw -+ h ord . 
k,E 

is an isomorphism for k>l, r>O. Then, 

by reducing m0d.P the inclusion RBI -+ I @  R' , we obtain: 
2 

(R@I>/P.(R@I>@ L - Lx B' 
k,E 

This defines a congruence module Cp which we want to 

interpolate for varying P. Then, theorem 1.10 reads: 

Theorem l.lobis: If R is Gorenstein, then there are canonical 

isomorphisms: 

where P igi prime of height one in I above P ( T I  for k>l,r>O. 
k,E 

Remark: Note that K1 is a reflexive I-module: so, if I is a 

regular (which will be our case) hence factorial, (Il will be a 

principal ideal. 

In the next paragraph, we will see an application of Hida's 

theory, starting from a number-theoretic situation. 



2.Component of h Ord of C.M. type attached to a ~rGssencharacter 

of an imaginary quadratic field. 

All the number fields in the following are supposed to 

be given together with (compatible) embedding into C; in 

particular , a denotes the field of algebraic numbers in C. Let 

M be an imaginary quadratic field of discriminant -D, ring of 

integers 0; the order of the group of units ox is written 2e, e 

being equal to 1 except for M=Q(J-~) (e=2) or M=Q(J-~) (e=3>. 

The class number is denoted by h (not necessarily equal to one 

as we suppposed in the introduction for simplicity). We give 

ourselves a Grossencharacter A of M of type ( v , O )  and conductor 

f .  I t  means that A is a homomorphism from the group of 

fractional ideals prime to f with values in 0, such that for 
X Y any ideal a=(a>, with a ~ 1  mod f ,  we have A(a)= a , and the 

ideal f is minimal so that this condition holds. We denote by 

Lo the field generated by the values of A. 

Let p be a prime number >3, in all the rest of this work, we 

P always assume that i t  splits in M : p0 = pp , p  denoting 

complex conjugation in M. We fix an embedding r of a in a 
P 

fixed algebraic closure a of which induces a continuous map 
P P 

on M for the p-adic topology. We denote by L the closure in a P 



of t (Lo). We fix as prime to p-level the integer N=D.Norm(f). 
P 

ord- We are going to define a primitive component of h - L 
hard " (Np ,QL1 associated to ( A , [  and deal with its congruence 

P 

module. We make for this purpose the assumption that p doesn't 

divide U. 

For any integer r>O, let Gr be the ray class group of conductor 

f .Pr. Set G_= Lim -- Gr the inverse limit of these groups for the 
r 

obvious transition maps. Let B(C_,QL) be the QL-module of 

continuous functions from Gm to QL viewed as a Banach module 

for the norm if l l =  Sup I f (g) l . The algebra BLCCGmlI acts on i t  
gEGm 

P 

by (linearization of1 translation maps: for [gl in Gm(inside 

QL[[G_1l1 and f in I(Gm,QL1, f![gl(g'1= f(ggtl. Furthermore, 

we have Mahler's theorem: 

Theorem 2.1: We have a perfect continuous pairing: 

( 2 . 1 )  < , > : I(G,,BL)x QLCCGmlI -4 BL 

such that <flCgl,g'> = <f,ggl>. 

Proof: We may decompose Gm as the direct product of a finite 

group Gt and a group W which is isomorphic to . Then, we 
P 

have: 

BL[[G_ll 2 BLICTIICGtl, B(Gm,BL) - Itdp,QL)@ F(Gt,OL), 

the tensor product being taken over Q and S(Gm,QL) being the L 
module of all the functions from G t  to QL. The classical 

Mahler's theorem asserts that the Hilbert polynomials 13 = 
x(x-1) . . .  (x-n+l) for n=O,l, . . .  form a normal basis of the n: 

Banach module g(z , 8  with the usual supremum norm llf l l =  
P L 



Sup If(x)l (cf.Cl71). So, we have a perfect duality: 
xfZ 

P 

d ( Z  ,BL)x BL[IT11 -+ BL 
P 

given by (f,o) -+ 2 ancn , for f = 2 an (X) , o = 2 c n ~ n  . 
n_>O - n_>O - n20 - 

The property < f  l (l+T),o> = <f, (l+T).o> is easy to see if we 

notice that fl (l+T)(x)=f(x+l) and ?:I) = ) (n~l) - 
We then define the total pairing by < 2 f [gtl, 2 og @ 6 > 

gtEGt gt gtEGt t gt 

in Gt. The required bilinearity and the perfectness follow 

then immediately from this definition. 

We call f2(Gm,0 the module of p-adic cusp forms for GL1,M L with 

coefficients in BL; similarly, we call BL[[Gmll the p-adic 

Hecke algebra for GL1/M . In the GL2lQ-case, we also have a 
perfect continuous pairing generalizing (1.11 : 

- 
(2.2) < , > :  S(BL)x hL -+ 0 , (f,T) -+ a(l,flT), L 

satisfying also the bilinearity <flT,T'>= <f,TTq> (cf. ClOl s 3 ) .  

We then consider the p-adic base change map: 

where I is the monoid of ideals in 8 (integers in M )  prime bo 

f p .  I t  is easy to verify that I embeds into Gw by the obvious 

map. Now, 8 is a continuous map of Banach 8 -modules. We L 

dualize i t  and because of the bilinearity conditions in (2.1) 

and (2.21, we obtain a morphism of BL-algebras: 
OD 

B * :  h(Np ,OL) -+ OL[CGWI I 



given, on Hecke operators T(e) with C rational prime, by: 

f [21+[2~1 if C is decomposed in M and (1,f p)=l 
Ttel -+ { 0 if C is inert in M 

Lie1 if C is ramified or splits but gPlfp. 

Now, we use the datum of A as homomorphism from I to ax . 
P 

We can extend i t  by p-adic continuity to GOD so that we get: 

This is an alternative definition of the p-adic avatar of a 

Grossencharacter of type ( A , )  constructed by Weil in [371. 

With this tool, we define a morphism 0 of O -algebras : 
L 

We have non-canonically Gw= Gtx W but inside W there is a 

canonical subgroup T of Gw : namely the inverse limit of the 
X p-Sylow in (0,' rlX c (b/fpr) viewed as subgroup of Gr , P 

r=1,2.. .Let pd=(W:rl. Choose a topological generator w of W 

d 
such that wP = u = 1+Np E T, the topological generator of r 

we fix once for all. This furnishes compatible isomorphisms 

BLCCWII= BLCIXII, BL[[T1l = BL[[T1l, and the inclusion induced 

d 
by r c W corresponding to (1+T) -+ (l+xlP . 
Now, for geGw= Gtx W, g = (gt,wf), let it(g)= i(gt), iO(g) = 

P 
d 

itw'~"~. The character i, sends u to u = ,fotw) . We set: 

-1 ~ ( g )  = it(g).iO(g) .[wtl. 

By this definition, i t  is obvious that 0 is surjective. 

r x Note also that OX = (O/p l naturally injects into Gw. 
P 

We finally note A - BLCCTII = A @ OL. L- I t  is obvious from ( 1 . 7 )  

OD 

that h(Np ,OL) is a AL-algebra (so is its ordinary part of 



course). For any integer k'>l, any r ) O ,  and any character E - 
r of r of conductor p , we set Pk,,E k ' (XI = l+T - &(u)u ,Cu = l+Npl. 

Theorem 2 . 2 :  The map X = qo8": h ( ~ p ~ , O ~ )  -+ OLCCWII= OLCCXII 

factorizes through the ordinary part of h Ord into a morphism 
if O(v< p-I 

of AL-algebras, which is surjectivek For any k f > l  

r and & any character of r of conductor, say, p , the reduction 

mod.Pk. ,&  (TI of X gives rise to characters : 
r 

hkf(rl(Np ),OL) -+ a associated with the series 
P 

Btit.Ao k'-l&'), . where & '  runs over the set of characters in W 

whose restriction to r equals 8. 

Proof : We have B*(T(~)) = [pP1 by ( 2 . 2 ) ;  so x factorizes 

through the ordinary part of h ( ~ p ~ , O ~ ) .  We are going to check 

the A -linearity of X and the formula for the reduction L 

mod.Pk, ,E (TI simultaneously. After some extension of scalars 

from L to a field X containing fi  r+d , we can apply theorem 1.9 
P 

in order to reduce x m0d.P (TI. We obtain a character xk,,&: 
k,E 

k ' 
hk.& 

(XI -+ KCXI/(l+T - ~tu)u I ; so we get characters Xkf,&.: 

hkf,&,(K) -+ K by reducing mod.(l+~-&'tw)i~tw)). I t  is clear 

that the series corresponding to such a character is 

..kt-1 G (Lt . A ~  . So the diamond of weight k' of a rational 

Consequently, the diamond of weight 0 of an element C=1 mod.Np 

log e. is sent to the element of O CCXII congruent to tl+T) p L 

mod. (l+X - i&w)~'(w)) for all k' and E': x(<C>~)= ( I + x ) ' o ~ ~ ~ =  

This implies the A -linearity. I t  now remains to check L 



the surjectivi t y .  We first prove surjectivi ty of X@Id where 
%L 

.!E. denotes the field of fractions of AL. 
L 

By duality, i t  is enough to prove that Ker(O%IdL) is finite 

dimensional as L-vector space. 

In fact, if this is true, the theory of duality between 

Banach spaces implies that coker<$@ldL)*is the dual o f  

Ker<O@IdL), so is finite dimensional and if we tensor by the 

field of fractions of hL , we get the surjectivity of 

$@Idg . So, take a continuous map f: G _-+ L such that 0(f)=0 . 
L 

Fact : If 0(f)=0 , f is constant in each coset of G_ mod.CJX 
P 

Proof : Consider the exact sequence 0 -+ ox--+ G -+ G -+ 0 ,  
P w f 

where G denotes the ray class group of 31 modulo f. Fix a com- f 
plete system of representatives of G , say S, in I ,  all f 

P elements of which being prime to pff . 
Set P={a€I; a=(a) arl mod-f, (a,pfP>=l). 

We will use Cehotarev's density theorem to deduce from the 

equality f (fZ)+f (fZP)=O for all rational prime C decomposed in M 

and prime to fp, that fta(a)) is constant for a fixed aES and 

- 1 (a) running in P f7 a I. Let M r (resp. 
f~ 

)be the ray 

P pr class field of M of conductor fpr (resp. f p 1. Let a be the 

automorphism of the compositum of those two fields whose 

restriction to M r is lata),M r/M> and to M 
f P f P 

is 
f PPPr 

(a,M / M I ;  i t  exists because the intersection of those 
f PPPr 

fields is M and as1 rnod.(fP,f). So, by Cebotarev's 
(fP,f) 

density theorem, there exists a prime ideal Y of degree one in 



M s u c h  t h a t  (L,M /MI= oIM a n d  ( Y , M  / M I =  olM s o  
f P r  f P f P P P r  f P ~ P r  

t h a t  Yra(cx) mod P P , EPza m0d.P t h u s ,  b y  l e t t i n g  r g r o w  
f pr  i p r  ' 

P t o  t h e  i n f i n i t y ,  w e  o b t a i n  f t a ( a ) )  = - f t a  1 .  

T h i s  p r o v e s  t h e  g e n e r i c  s u r j e c t i v i t y .  We now d e d u c e  f r o m  t h i s  

t h e  s u r j e c t i v i t y .  N o t e  t h a t  s i n c e  X ( < X > O ) =  S '+I b y  t h e  a b o v e  

c o m p u t a t i o n s ,  X f a c t o r i z e s  t h r o u g h  h o r d ( a )  w h e r e  a e v + l  m0d .p -1 ,  

v a n d  O * ( h o r d t v + l ) )  c O L C C G _ l l  t v ) =  {xEOLCCGmll;  C5l.x = I x ,  f o r  

a l l  S E D ~ - ~  c ox c Gm 1 .  So w e  o n l y  h a v e  t o  c h e c k  t h e  
P  

i n j e c t i v i t y  o f  B r e s t r i c t e d  t o  t h e  v - p a r t  o f  R(G,,OL), i . e .  t h e  

s e t  o f  f :  Gm -+ 8  s u c h  t h a t  f o r  a l l  5 i n  p 
L P-1 C Go,, 

f ( c g ) = g y f ( g ) .  By t h e  p r o o f  a b o v e ,  i f  B ( f ) = O ,  t h e n  8; ac t s  

t r i v i a l l y  o n  f ;  h e n c e  p c ox 
P  

a c t s  a l s o  t r i v i a l l y .  S i n c e  
P-1 

vSO m0d.p-1 ,  w e  see t h a t  f = O .  We c o n c l u d e  t h a t  0* a n d  X a re  

s u r j e c t i v e .  

C o r o l l a r y  2 . 4  : T h e  s u r j e c t i v e  c h a r a c t e r  x : -+ O L [  CXII 

d e f i n e s  a p r i m i t i v e  c o m p o n e n t  o f  h  d  
O r d  o f  d e g r e e  p  . L 

P r o o f  : By t h e  c r i t e r i o n  o f  p r i m i t i v i t y  o f  t h . 1 . 9 ,  we h a v e  o n l y  

t o  c h e c k  p r i m i t i v i t y  modu lo  some  P . T a k e  k o  t o  b e  v + l  a n d  
k o ' E o  

t o  b e  t r i v i a l .  T h e n  t h e  a l g e b r a  F v + l  
is L C X I / ( l + T - u  3 

k o ' E o  
w h i c h  i s  s e m i - s i m p l e  a n d  w h o s e  c h a r a c t e r s  c o r r e s p o n d  t o  t h e  

s e r i e s  0 ( ? & ' )  ( t h e  &"s a r e  t h e  c h a r a c t e r s  o f  p -power  o r d e r  o f  

G I ) .  By a w e l l - k n o w n  t h e o r e m  o f  H e c k e ,  t h e s e  a r e  

o r d i n a r y - p r i m i t i v e  c u s p  f o r m s  o f  w e i g h t  u + l .  T h e  d e g r e e  o f  t h e  

d  c o m p o n e n t  OLCCXII@Y i s  p . 
We d e n o t e  t h i s  c o m p o n e n t  b y  X ,  a n d  R w i l l  s t a n d  f o r  t h e  l o c a l  



component in h Ord through which x factorises. Hence, we are in 

the situation of theorem 1.9 (after replacing the ground ring 

Z by (!IL). This component X is called component of C.M. type 
P 

attached to (A,t 1 .  We consider also the AL- module of 
P 

congruence CO(X) attached to it. I t  can still be written R1/cl 

where R1= hl= OLCCXll by cor.Z.4. Note that cl is a reflexive 

AL-module (being the trace of h Ord on X I ,  so i t  is also free 

over BLCCXll i.e. principal: c l =  (H 
(A, lp) ( X )  1.  

In order to get further informations on R, we will assume same 

hypotheses about the ~rossencharacter X and the prime p 

(splitting in M at least, since the beginning of the paragraph). 

Hypotheses 2 .5  :The conductor f of X is prime to its conjugate 

fP, p doesn't divide 6Nq(N) and v+l<p-1. 

Thanks to those hypotheses, we prove in the next paragraph the 

Theorem 2.6 : 1.The component R is a Gorenstein ring. 

2.The new Congruence Module C ( X , I )  is controlled in the sense 
0 

bis of theorem 1.10 . 
So , the next topic is the study of some Gorenstein-ness 

criterions to prove theorem 2.6. under hypotheses 2 . 5 .  



3.Gorenstein-ness of the local component associated to X . 

First, recall general facts about Gorenstein rings. 

Definition 3.1 : Let R be any local noetherian ring with 

maximal ideal !Ill and residual field 8 ,  of Krull dimension d. 

We say that R is Gorenstein if i t  is Cohen-Macaulay and !Ill 

contains an irreducible ideal generated by a regular sequence 

of length d. Recall that an ideal is said irreducible if i t  

cannot be written as intersection of two strictly bigger ideals. 

Lemma 3.2 : R is Gorenstein iff : EX~~(R,R) = 0 if i < d ,  
if i=d . 

Proof : Let (xl, . . . ,  x 1 be a regular sequence in. !Ill generating 
d 

an irreducible ideal I. First, from the very existence of the 

regular sequence, we deduce that Exti(&,~)=0 for all i<d (cf. 

( 1 5 . B )  theorem 26 of C191). Now, R/I is local artinian (dim.0) 

We have Hom(R,R/I>=k because of the irreducibility hypothesis. 

But, by induction using the exact sequence 0 -+ R (i-I)-+ (i-1) 

-+ R(~)-+ 0 (multiplication by xi) for R(~)= R/txl,...,xi), we 

d d-1 0 get ~ x t  (A,R) = ~ x t  (A,R(')) =.  . .= ~ x t  (R,R = A. The 

converse is proved by reading the previous proof in the reverse 

direction. 

Proposition 3.3 : Let R be local noetherian and PER which 

doesn't divide zero. Then 

(i) R is Gorenstein of dimension d if and only if R / p R  is 

Gorenstein of dimension d-1. 

( i i )  If R is artinian with finite residual field, R is 



Gorenstein (of dimension 0) if and only if its Pontryagin dual 

is R-free of rank 1. 

( i i i )  If R is a finite free -algebra, R is Gorenstein if and 
P 

only if Hom(R,z 1 is R-free of rank 1. 
P 

Proof : (i) is clear by taking the long Ext-exact sequence 

( x P )  attached to 0 -+ R ---+ R -+ R/pR -+ 0 . 
* 

( i i )  : Let R be the Pontryagin dual of R ; R is Gorenstein of 

dimension 0 iff Hom(8,R) is of dimension 1 i.e. if the 

R-torsion in R, RCV1 is 8 ;  on the other hand, since 8 is 

finite, the trace map induces a 8-linear isomorphism between 8 

* 
and its Pontryagin dual; so, RCRI = A is equivalent to R /B.R 4 

* -8, and finally to R - R as R-module by Nakayama's lemma. 
(iii): By flatness of R over i!. p doesn't divide zero in R; 

P ' 
so, the l! -algebra R is Gorenstein of dimension 1 iff R/pR is 

P 

Gorenstein of dimension 0 ;  hence by (ii), iff Hom(R/pR,F ) - 
P 

R/pR. But, by Nakayama's lemma, this is equivalent to 

After these preliminaries, let us consider a local component 

Ord with maximal ideal fl. I t  is finite and flat over AL R O f h L  

so i t  has Krull dimension 2. So, if we introduce the twisted 

r-1 r-1 
Iwasawa polynomials w (TI = (1+~)' -u 2P , the sequence 

2, r 

(a (T),p) is regular and by setting R(r)= R/w .R, we 
2 ,  r 2,r 

deduce easily from proposition 3.3 the following 

Proposition 3.4 :The following assertions are equivalent: 

(i) R(1) is Gorenstein of dimension 1. 

(i i )  For any r)l, R(r) is Gorenstein of dimension 1. - 



( i i i )  R is Gorenstein of dimension 2. 

(iv) Hom(R,AL) is R-free of rank one. 

Proof : (i),(ii),(iii) are obviously equivalent from prop.3.5 

, i 1 .  Then, equivalence wi th (iv) comes from Hom (R(1) , O L ) =  
0 T 

HornZ (R(l),Z as R(1)-module (via: (f:R -4 )-4 
P P 1 L 

- 1 
Tr~/o(6~/~ .f>, where 6 L/Qp is the different of L/Q 1 .  

P P P 

Let Yl be the maximal ideal of the arbitrary local 

component R and R its residual field. The field is also the 

residual field of OL. We will recall a criterion for 

Gorenstein-ness of R proved by Mazur-Wiles(cf.[221 Prop.6.1) 

when N=l and in C341 $ 4  in the general case, with some 

hypo thesis however. 

Definition 3.5 : Let 6 : ~al(a/~) -+ GL(V) be a Galois 

representation on a finite dimensional A-vector space. We say 

that 6 is R-residual attached to R if 

(i) V is 2-dimensional over 8. 

(ii) 6 is unramified outside Np. 

( i i i )  The characteristic polynomial of Frob for eXNp is : e 

st 
Besides, if we let the group ,u of p-1 root of unity in 

P-1 
x ord k inside Z (cf.51 ofL'lOl) act on h (Np ,OL) via diamond of 

P 

weight 0 ,  we can decompose : 

h~'~= @ hFrd(a), a running in Z/(p-l)Z , the 

Pontryagin dual of p p-1 ' 

I t  is clear that the local component R is contained in some 

ord 
hL (a1 for a unique a in k/(p-lIZ. Then our generalisation of 



Mazur-Wiles criterion is: 

Proposition 3.6 : Suppose af1,2. 

If there exists an !Uf-residual representation attached to R 

which is irreducible, then R is Gorenstein. 

The proof involves another criterion of Gorenstein-ness of 

R due to Mazur(C1 Prop.15.1): 1 

Let J1(Np),g be the jacobian (Picard variety) of the modular 

curve X1(Np)/g (the g-model is chosen such that the infinity 

cusp is Q-rational). The Hecke algebra h2(T1(Np),l acts on 

i t  by pull-back of divisor classes by the Hecke correspondences 

(for their definition, see [211 chap.2 54 and L341). The Galois 

group Gal (&'Q) acts on J1(Np) (a) by "Picard action" (see [351 
§ 4  or 55 below). 

We can form the R(1)-module J1(R) by considering J ~ ( N ~ ~ )  [pI@O 
L 

which is an h2(rl(Np),BL)-module and then taking its R(1)-part. 

Let finally !Ufl be the maximal ideal of R(1). Then we have: 

Proposition 3.7: If J1(R)C!Ufll is 2-dimensional as k-vector 

space, then R(l)is Gorenstein (hence, so is R by proposition 3. 

Commentary:This criterion is valid without hypothesis about the 

component R. 

2 Proof :Suppose J1(R) [!Dill = & . Let Ta(J1(R)) = 1Lm - J1 (R) [pel. 

We first show that Ta(JI(R)) is free of rank 2 over R(1). We 

know that there exists perfect bilinear pairings (compatible 

when m varies): 



such that <xlt,y> = <x,ylt> for any t in h2(T1(Np),0L). 

However, be careful that they are not induced by the Weil 

pairing on J1(Np) but by its twist by the Weil involution of 

On the other hand, is clear that J1(R) is a p-divisible group 

, so that we have exact sequences: 

In particular: Ta(Jl(R))/I1.Ta(J1 (R)) - J1 (R) tpl/P1. J1 (R) [pl 

So, by applying duality theory to the pairing < , >m for m=l, 

we obtain: Ta(J1(R))/Pl.Ta(JI (R)) = Homo (J1 (R) [!JR1l ,BL@ p ) 
L P 

which is 2-dimensional over A .  Then by Nakayama's lemma, we 

have a surjective R(1)-linear map : ~ ( 1 ) ~  -+ Ta(.J1(R)) 

Let us prove that i t  is injective. To check this, i t  is enough 

to tensor i t  by L because R(1) is OL-free. But i t  is 

we1 1-known that 1 H ( x ~ ( N ~ )  , Q )  2 h2(T1(~p) , Q ) ~  as 

h2(rl(Np),Q)-module. So we get: L@ Ta(J1(R)) 1 

where e is the ordinary idempotent and eR is the unit element 

ord 
of the local component R(1) of h (rlNp),BL). So, our two 

modules have the same rank over OL hence the surjective map 

above is an isomorphism. Finally, by using the pairings < , > m  

, and ( * I ,  we see : 

as R(1)-modules, hence at the inverse limit, we obtain : 

Ta(J (R)) - Horn (Ta(J1(R)),OL). 1 0 T 

This provides us an R(1)-linear isomorphism: R(1)@ R(1) 



R(1)'@ R(1)' where R(l)'= HornO (B(lj,OL). Let then n .  be the 
L l 9 . i  

four R(1) -linear projections 1 '  - 1 .  One at least 

among those four maps is surjective, otherwise R(1)'@ R(l)'c 

R .(R(l) @ R(l))= Ta(J1(R)) which is absurd. Take such a map; 
1 

i t  is an isomorphism because of equality of O -ranks. Q.E.D. L 

Now, to the proof of proposition 3.6. Suppose we have an 

R-residual irreducible representation of ~al(a/Q) on V. 

We will prove that W is 2-dimensional. 

Lemma 3.8 :Let G be a group, V a 2-dimensional G-irreducible 

module, W a RG artinian module, such that for any a in G , 

the characteristic polynomial of oV annihilates a W ( oV , resp. 

o is the automorphism of V resp.W given by a). Then, all 
W 

quotients of a J.ordan-Holder sequence of W are isomorphic to V. 

That is W S . S .  
2  direct sum of n copies of V). 

Proof : Use the following standard trick: introduce W' the 

contragredient representation of W and W'(det p 1 its twist V 

by the determinant of p V :  G -+ GL(V). Then the characteristic 

polynomial Po (XI of o acting on M=W @ Wq(detpv1 is Po (XI dim W 

M V 

because if Po (XI = (X-a) (X-01, we have: Pa (XI = (x-aIa(x-4) b 

V w 
-1 a -1)b , Pa (XI = (X- a (X-4 b 

Po (XI = (x-B>~(x-~> . 
W' W' (det pV) 

Then, the characteristic polynomials of M and V (dim W) 

coincide; this implies, by Brauer-Nesbitt's theorem (C41 

) that the semi-simplification of M is isomorphic to V (dim W) 9 

so bis.s' is also isomorphic to some power of V .  

We apply this lemma to our situation: V is &~al(a/Q)- 



irreducible, dimAV = 2. The Eichler-Shimura relations 

show that for C a rational prime, CXNp, FrobC acting by 
3 

Picard action on W is killed by X-- T(C)X+C<C>, mod.W, which 
'- 

is the characteristic polynomial of Frobe on V. So, hypotheses 

of Lemma 3.8 are fulfilled, and we get W S.S. - v("). Let us 

prove that n = 1. We use a structure theorem for J (R) which 
1 

is probably always true, but is only proved by using 

hypothesis af1,2. The version used here is a special case of 

Theorem 4.4 of C341. We will come back to the more general 

version in $ 5  and explain shortly its proof. 

Theorem 3.9: If af1,2, there exists an R(1)-isomorphism : 

J1(R) 2 R(l)b T @ Hom(R(1) ,Fp) 
P 

where denotes the p-adic torus &I /z . 
P P P 

By using this result, we can write : 

We remark that R(l)/pR(l) and ~om(R(l)/p~(l),lF ) are artinian 
P 

indecomposable R(1)-modules (they cannot be written as direct 

sum of non-trivial R(1)-modu1es)CThis is obvious because the 

R(1)-endomorphism ring of both those modules is R(l)/pR(l) 

which is a local ring; hence, i t  cannot contain non-trivial 

idempotents i.e. projectorsl. 

But, since J1(Np) is defined over &I and so are all Hecke 

correspondences, the complex conjugation c acts on .J1(R)Cpl. 

+ 
We can henceforth decompose : J1(R)[pl = J1(R)Cpl B J1(~)Cp1- 

where J1(R) Cp15= (X E J1(R) [pl; cx = *x 1 .  

Now, by Krull-Schmidt-Azumaya's theorem (C41 1 ,  we have : 



where V' = Hom(V,Fp). 

We then take the !Il1-torsion : W +  = J1(R) C!lR1l 2 R(l)/pR(l) [Dl] 

and W- - Hom(B,F 1 - A (by the trace map). 
P 

Observe incidentally that according to Proposition 3.4, ( i i )  , 

R(l)is Gorenstein iff the Dl-torsion of R(l)/pR(l) is 

1-dimensional; but, without any supposition, we get 

Finally, we know that the complex conjugation can be 

approximated by Frobeniuses Frobe, I,=-1 mod.Np and from the 

definition of !lR-residuality, we obtain det p (c) = -1. So, 

+ 
since pf2, p(c) is not a scalar on V and V and V- are 

1-dimensional, so the number of + and - in W is n and is one 

for at least one of those signs : n = 1.Q.E.D. 

In the end of this paragraph, we are going to apply this 

criterion to prove theorem 2.6. 

Take the component R attached to the character X in (2.5). 

First, we recall that the integer a modulo p-1 corresponding 

to R is v+l which is neither 1 or 2 because of hypothesis 2.5. 

2 By reducing mod.P2(T)=1+T-u , we obtain characters : 

(3.5) h2(T1Np),BL) - + a p ,  corresponding to the forms 

O(it.i . & ' ) , & '  being any character of W/T . 
0 

The p-adic character it .iO : G_ -+ is the p-adic avatar of L 

the Grossencharacter of type (1,O) defined as follows :Since 

p>5, there is a Grossencharacter pO of M of type (1,O) of 

conductor p. I t  yields a p-adic character G O  on G_. We can 



twist i t  by a Dirichlet character E of GI to get it.i 
0 ' Then 

the Grossencharacter p = :.p0 fulfill the requirement. Then , 

if weset f = pE'ta).qNa, w e h a v e :  0tit.i0.~') = fEt(z). 
E' (a,fp)=l 

Let M(yEt) be the field generated by the values of pEt. 

Proposition 3.10 :The field M(y&') coincides with the field 

generated by the coefficients of f 
E" The exact conductor of 

pE' is fP for any E'; hence, 
f&' is primitive of conductor Np. 

Proof : Let K(fE,) be the field generated by the coefficients 

of fE,. We have obviously K(f c M(pE'). Furthermore M c 
E ' 
P K(fEt) because a(p,fEt) = pE'(P 1, which generates M. In fact, 

yEt(p) = 0, i.e. pE' is ramified at p .  The reason for that is 

that c OPE' is congruent to it.i modulo the maximal ideal of 
P 0 

ap , so i t  coincides with 5 -+ 5'+lon ( ~ / p ) ~  c G_; the 

inequality l<v+l<p-1 assumed in 2.5 implies that this character 

is non trivial. Let us then recall that the representation of 
h 

degree one on 0 of ~al(a/~) given by i f =  (pE') induces an 
P 

irreducible representation of degree two of ~al(a/Q) just 

P because 6'f L'OCPI (i'oL'pl(g) = G1(g 1 ) :  is ramified at p and 

6 ' o ~ p l  is not (in fact, this reasoning works also if we replace 

by and i by its reduction). Now, if a is an embedding of 
P P 

I(~E') over M which fixes K(fEt), the representations of 
h 

Gal induced from M to @ by a (c') and 0 ( ( ~ ' ~ 1  have the 
P P 

same characteristic polynomial so, being simple, they are 

isomorphic. 
A 

We conclude i f =  (g'*) so b y =  p t a  and 0 fixes M(yEt). Hence, 



Finally, the conductor of p '  is divisible by f because on 

( ~ / f ) ~  c G_ , i '  = = i which, viewed as Dirichlet character t 

has conductor f .  

We may consequently apply the theorem 7.14 of [321 to define an 

abelian subvariety in J (Np):For any E' let Af be the abelian 1 
& ' 

subvariety defined over &.I with multiplication by M(y&') such 

that the Hecke correspondence T(n) acts on i t  by a(n,f 1 .  E ' 

Take A = 2 A c J1(Np). We have an embedding of 63 M(p&') into 
E' f ~ '  E ' 

the 0-algebra E of the GI-rational endomorphisms of A. On the 

other hand, the characters ( 3 . 6 )  supply us with a surjective 

morphism h2(T1(Np,L) -+ @ M(,u&')@L inducing a surjective 
E ' 

morphism from R(11 to some local order R(1,A) in @ I (M(pE'))L. 
P 

This latter algebra is direct factor in @ M(p&')@L c EmQL. We 

denote by !lll(A) the maximal ideal of R(l,A), image of !lll by the 

projection R(1) -+ R(1,A). We may consider 

a, 

V = (A[p I@ 6'L)[!l11(A)1 as a GQ-module and we prove: 

Lemma 3.11 : The ~ a l  (&'&.I)-module V =(ACP~I@B~) (A)] is 

isomorphic to the representation induced from the character 

Commentary :The residual fields of L , I (M(pE'1I.L , R(1,A) , 
P 

coincide with 8 .  Besides, i t  follows from this lemma that the 

module V is irreducible over G~I(@/Q) and is 2-dimensional over 

A .  



Proof : Set G = ( ~ C p ~ l @  OL); this is an OL- module and a 

p-divisible group. We denote by Ta G its Tate module. We know 

that Ta(G)BO L is free of rank 2 over E s Q  L [since TaCJ1(Np))@L 
L 

is free of rank 2 over h2(T1(Np),Q), and since G is obtained 

from J1(Np) Cpm1@BL by taking the idempotent coming from the 

splitting of ( 3 . 6 )  over LI. Now, let ZA be the restriction of 

the Hecke algebra over to A ; then, 2 BO is the product of A L 

R(1,A) and of other local components.Let us write its unit 1 as 

1= q+q', q being the unit in R(l,A), and set fil for the maximal 

ideal of KA@OL corresponding to the component R(l,A),i.e. a = 1 

B1(A)xTtf (gA@OL) ;we have q.G = GC!~~;I so that GI@;] is a 

p-divisible group. By definition, we have V = ~tfi~l. Let us 

prove that GC@ I is a 2-dimensional A-vector space. From the 1 

remarks above, i t  is first obvious that n.Ta(G)@L is free of 

rank 2 over R(l,A)@L = @ t (M(pE1)).L .Set L E I =  t (M(pEf)).L. 
E ' P P 

Then, for any character E' of the p-part of G1, we can consider 

the unit element q of L E I ;  SO that q = IlflEl and q E I . O E l ,  .- - E ' E 

bEf,E"*qEf (Kronecker symbol). For any E * ,  put G&,= q E f . ~  = 

.GI%;] and set BE, for the maximal ideal in L 
E' ' 

The 

following facts hold: 

1)The order generated over OL by the values of pE' is the 

maximal order O of LEI. 
L ~ '  

2 )  ~ t f i ~ l  = GE,CBEll and GEl is an 0 -divisible group so that 
L& ' 



GEICPEll is free of rank ? over A .  

For the assertion 1, remark that G_= W x Gt and it= it so L 
E ' 

= L(va1ues of &'I and 8 = 0 [values of &'I = O [values of ME'] 
LC' L L 

For the assertion 2, i t  suffices to notice that !lR (A) projects 
1 

onto BE, via the character R(1,A) -+ 0 given by B ( c c ' ) ;  this 
L€ ' 

yields the equality G C @ ~ I =  GET[? '1 and the last assertion E 

results from the exact sequence, valid for any 0, -divisible 

group g: 

We may apply i t  because since 0 is a discrete valuation ring 
=& ' 

, the lattice Ta(GE,) in the 2-dimensional vector space 

L l@Ta(GE,)is free of rank 2 over 0 , so G is 8 -divisible. 
E ' E ' L& ' 

Now, by an easy calculation, one checks that for any rational 

prime e, CXNp, the Frobenius automorphism acting on our 

2-dimensional representation V = , CP $ 1  (independent of the G~ E 

character E' as above by the foregoing) has characteristic 

L polynomial X -T(C)X+L<L>2 mod R1 which coincides with the 

characteristic polynomial of Frobe acting on the induced 

representation of i mod.8 , =  i rn0d.8~~: Gal(a/~) --+ kX of M to 
E 

. By the Brauer-Nesbitt theorem, i t  implies the isomorphism 

of these 2 representations taking into account the remark 

~ Z ~ O C ~ I  mod.9 as already mentioned. 

Corollary :The component R attached to X is Gorenstein. 

Proof:Apply criterion 3.6. This is allowed since our integer 



a m0d.p-1 is u+lZ1,2 m0d.p-1. 

In the next paragraph, we will explain precisely the 

number-theoretic situation we want to deal with and give the 

main result concerning i t .  



4.The anticyclotomic -extension and its Iwasawa Theory. 
P 

In this paragraph, the notations concerning the imaginary 

quadratic field M and the related datas are still in force. So 

are the hypotheses 2.5. In particular, p splits in M .  

Let 2 be the ray-class field of M of conductor p.Nf, K the 

Ringklassenkorper of M for the order z+p.Nf.O.We recall that 

there are two natural z -extensions associated with an 
P 

imaginary quadratic field, namely, the cyclotomic 2 -extension 
P 

M + / M ,  which is the union of the fields Qr.M tQr/Q being the 

p-part of Q(S r+l )/Q),r=1,2,.., and the anticyclotomic 
P 

z -extension Mi, which is the union of the p-part of the 
P 

Ringklassenkorpern of M for the order z+prt!O , r=1,2,. . . 
Furthermore, since we supposed that p is splitted in M into 

P P and p , there are two other natural z -extensions, namely 
P 

M i p )  tresp.~~p~)) the unique Z -extension unramif ied outsld? P 
P 

P (resp.p 1 .  One can easily see that the compositum of any two 

of those four 2 -extensions coincide with the unique 
P - - 

2'-extension %_of M. We put Em= K.M_ , %+= %.M: , %:= Z.M:, 
P 
- - 

K_= K.M_, SO that ?_/g is the lifting to of the z2-extension 
P 

-+ - -- - 
of M, K_/K is the cyclotomic Z -extension of 2 and K_/K, resp. 

P 

K:/K is the so-called anticyclotomic Z -extension of 2 
P 

resp.K. In fact, K: is the union of the Rinklassenkorpern of M 



r of conductor p .N f  for r=1,2, . . .  Now, let S be the set of 
P 

primes in K above p, and S the subset in S consisting of 
P 

primes above p .  So, we have S = SUS'. Consider the maximal 
P 

of KLunramified outside S. We note abelian p-extension Mm 

S S - Xm = Gal(Mm/Km). As in the introduction, we can consider this 

compact Z -module as a [w-11-module, where W-c ~al(K:/~)is a 
p 6 

S direct factor isomorphic to in G~~(K:/M), acting on Xm by 
P 

conjugation. If r-= ~ a l  (x~/K), we have (w-:T-)= pd as we can 

check, using p X G N q ( N ) .  So, OLC[~-1l = OL[[X1l=i. We will fix 

later a good choice for such an isomorphism, depending on the 

fixed group W we specified in $2. 

Next, by using the datum of i, we may define a character K 

of A=Gal(K/M) by: 

where i is viewed as Galois character thanks to the Artin 

reciprocity law 
fi 

(4.2) i: Gal(a/~) -+ Gal (M(~P~)/M) 1 Gm h-, ox L 
x Teichi Ox and 4 ----- L is the Teichmuller lifting. The first map is 

just the restriction of automorphisms to the union of class 

r fields of M of conductors f p  ,r=1,2,..., the isomorphism is 

given by Artin reciprocity. As in the previous paragraph, 

S 6 We are concerned with the O C Iw-I I-module x_(K)= tx~x:@O~; x = L 

6 x . Be careful that A doesn' t act itself on X: because 

its order may be divisible by p, but its non-p-part, say A',, 

does. The point is that we are only concerned with characters 

of A'. Incidentally, note that W- and A' are direct factors in 



~ a l  ( K ~ / M ) .  

Let us explain more concretely what is the K-part of X: under 

some simplifying hypotheses. So, suppose that the class number 

of M is one and take an integer i modulo p-1, e.iZO,l mod.p-1. 

(#OX = 2.e). Then the Ringklassengruppe R of the order 
P 

@(p)=Z+p.@ is inserted in the following exact sequence: 

where the first map is induced by the inclusions oXcO and ZcO 

reduced mod.p, and the second one sends ~ € 8 ,  prime to p, to the 

class of the ideal ct.0 1-7 0 . Besides, the Artin reciprocity 
P 

map yields a canonical ismorphism R A . Since p splits in M 
P 

, we have (@/pOIX= ffX x FX ,the inclusion FX c (0/p@lXbecoming 
P P P 

the diagonal map. Consider the character 

i t  factorises through R hence defines a character of A whose 
P ' 

lifting to zX we call the basic anticyclotomic character K 
P 0 

I t  is the analogous of the basic cyclotomic character w in the 

cyclotomic case. I t  establishes an isomorphism between A and 

x e (ff 1 (subgroup of e-th powers in ffX). On the other hand, if we 
P P 

make the assumption that i is even (just for simplicity), the 

datum of i m0d.p-1 provides us with a ~rassencharacter of 

Y type (Y,O) and conductor 1 given by x((a))= ct , v z e.i 

mod-p-1, v<p-1, so that the hypotheses 2.5 are fulfilled. The 

i character # defined above from x is nothing but K ~ ;  hence, we 

S - i are looking to X_(K;), the KO-part of the anticyclotomic 

S Iwasawa module Xm. 

In this setting, the analogy with the cyclotomic situation 



presented in the introduction is clear. 

Let us come back to the more general case, that is hypotheses 

2.5 only. Since the group A may have a p-part, but we are 

interested in characters factorising through the Teichmuller 

character of L,  i.e. of order prime to p; we introduce 

the non-p-part of A we denote by A'. We prove now an important 

proposition for our purposes. I t  is due to R. Greenberg and B. 

Perrin-Riou (cf.C251). 

S Proposition 4.1:The Z [IT-11-module Xm is finitely generated 
P 

and torsion (we use the catch-word A-finite to shorten this). 

In particular, for any E in Hom(A,kx), the (Teich.o<)-part of 

S Xw is OLC[r-11-finite. In other words, for all characters E' 

X S in Hom(A',OL), X_(Ef) is OL[[r-11-finite. 

S Proof: Let Mr resp. S S the analogous of Ma resp. Xw for the 'r 
r-1 

field K; , defined as the subfield of K: fixed by (r - ) ; let 

'r, s be the group of semilocal units above p (note that p is 

almost totally ramified in M ~ / M  , so that the number of places 

in K; above S is bounded in r). Let also Er be the group of 

global units in K;; then, global class field theory supplies us 

with the exact sequence : 

where for any abelian profinite group G, G(p) denotes its 

pro-p-Sylow, and Br is the closure of E diagonally embedded r 

into Ur,S. 

Now, since K; /M is abelian, Brumer's theorem applies, so that 
- 

Leopoldt's conjecture is true : rank Er = CK;:MI-I. Besides, 
P 



the Galois module Uy is isomorphic to C G ~ ~ ( K ~ / M ) I  and 
I , S  P P 

one deduces easily from Dirichlet's units theorem that E @Q is 
r P 

isomorphic to the augmentation representation of G~~(K;/M). 

Hence, ('r, s /g )@Q is isomorphic to the trivial Galois 
r P 

module . So, for any non trivial character < '  of A ' ,  we see 
P 

S that Xr(:')is finite for any r>0. But in any case, we see that 

the Zp-module X: is of rank at most one. 
- 

We fix arbitrarily a topological generator y  of T- so that we 

can identify CCT-11 with A (a better choice for y -  will be 
P 

specified later but we don't use i t  right now). Let us 

consider the classical lwasawa polynomials o (TI= (l+TIpl -1, r 

r>0, and mrsr, ( T I  = or(T)/or,(T), rlr'>O. - We recall the 

S S formula comparing X: /or.X_ and Xr. During the following of 

s the proof, we drop the cumbersome exponent S in X: and M _ .  

Put Gr= G~~(M_/K;); I - c Qr denotes the inertia subgroup at 
r,v - P some place v of M_ above S \S (i.e. above p ) .  Let c be the 

P 

smallest integer such that any place in K; above pP is totally 

ramified in K:. Then, for any r>c, - the restriction Sr -+ T' 
r 

- 
induces an isomorphism I - - Tr . From that, i t  follows that 

r,v 

Sr is semi-direct product of I - and X_. We denote by u- the 
r , v v 

element of I - corresponding to Y-. Let vl... 
* vs the primes c,v 

P in K: above p . Fix a prime; in Mm above v i=l, . . . ,  s; we i i ' 
- may write a- - u- a for some a. in Xm.  Remark that if we 

i 1 
v: v , 

-\r - 
take two primes vi and vj in Ma above the same prime 

v.€(vl, ..., vsl, the elements a and a; differ only by an 
1 i 



element in oc.Xa; in fact, there is xEX_ such that a- = xu-x - 1 

v ' v 
i i 

- 1 - 1 hence a- .a.= xo- x a! = a,.(ov ,x).at and the commutator 
1 1 v v v 1 i 

1 1 1 

(u;',x) belongs to o .Xa. Finally, consider the normal 
1 c 

subgroup Yr in Gr generated by the I - s . Then, i t  is easy 
',Vi 

to see that X identifies with 6r/(0r,6r).9r. Besides, modulo 
r 

(Gr,Gr)= o,.X,, we have 9 E I - .a r . (a2, .  . . ,as) because 
r,vl r,c 

P ~ - ~ -  P 
r-e 

O,., - 0 - . o  r,c .a. 1 , for all rlc. - Henceforth, we get Xr= 
v. v 

1 1 

X_/or.X_+w .(a2,...,as) which can be written, by putting Y_= 
r,c 

- *C-Xa3 + (a2,. . . ,as), Xr - Xa/wr,c.Y_. Let us notice that 

o .Y_/or.X_ is a Z -module of rank <pC. (s-1) for all rlc, 
r,c P - - 

because T- acts trivially on Y_/oc.X_ and o .Y_/or.Ym -+ c r,c 

Y_/wc.X_ has pseudo-null kernel (i.e. these two Z -modules have 
P 

the same Z -rank). From this, i t  results immediately that X_ 
P 

is finitely generated and more precisely, we have the exact 

sequence: 

0 --t 03 .Y,/or.X, -' X_/or.X_ -' Xr -+ 0 
r,c 

We get from this that the 2 -rank of X,/or.X, is bounded in r 
P 

(by the constant pc. ts-l)+l). So, we conclude that X_ is 

A-torsion. This implies of course the finiteness over A of L 

any of its <'-part. 

Remark : If we suppose that p doesn't divide the class-number 

of M, since pXNy(N), we see that p doesn't divide #A and all 

the primes v in the proof above ramify totally in K: ; this i 

simplifies the proof above because then Ym = X_ and Xr = 



S Corollary 4.2: X_(K) is a torsion BLC[~~ll-module. 

We now fix a good topological generator of W-: let z(pw) be 
a3 

the compositum of % and M(fp 1 ;  note that the restriction map 

gives an isomorphism on the p-parts of Gal(%(pw)/~) --+ 

~al(~(f~~)/?4) so that the group W fixed in 52 as direct factor 

isomorphic to Z in G _  I Gal (M(fprn)/~) can be lifted to 
P 

Gal(g(pm)/~>. Let w be the unique element in W such that 

d 
L ~ ( w ) ~  = u = 1 + N p  Then take wo to be the unique element in 

P - 1 112 the p-part of Gal(g,/~) such that wg = w and ~ ~ l g ( ~ ~ )  = w 0 

we set w-= - ; from now on, this w- will not be changed, W o ' ~  _ 
i t  fixes identifications 

B~[[W-II = BL[[Xll, 2 [[r-ll 2: Zp[CTII, and OL[[r-ll I AL. 
P 

Because of corollary 4.2, we may consider the characteristic 

power series f(X)= f 
s (XI E BL[[XIl attached to X_tr). On 

(A,[ 
P 

the other hand, recall that the Congruence Module is a torsion 

I-module (2: R1/cl, with R =I as noticed in 52). Hence i t  has a 1 

characteristic power series in I we denoted by H (XI in 52. tx,z 1 
P 

We abbreviate io(w) by Y. This is a pd-th root of u in L. 

The main result of these notes reads: 

Theorem 4.3 : The divisibility 
H(J.,t ) f(A,l (V-l(?+~)-l) 

P P 

holds in I, provided the hypotheses 2.5 are assumed. 

Remark: 1) Theo.4.3 is a slight improvement compared to theorem 

3. 3 in C351 because we don't suppose here that p doesn't 

divide the class number of M. This is important because of a 



possible vast generalisation of i t  replacing M by M ( 5  r) for 
P 

r=l, . . .  so that the p-class-number of those fields tends 
towards infinity in general. For more explanations about this 

possible general isation, look at the last paragraph of C131. 

3) From this theorem, i t  is easy to recover the Kummer's 

criterion given as corollary of theorem 0.1 of C91, provided 

one knows the weak interpolation theorem satisfied by the 

series H tx ,r  1 
(~)($10 of Clll when d=O, and C391, 5 4  in general 

P 

1 ,  for details about this, see $3 of C351. 

4 )  Some numerical examples for the theorem not to be empty 

arise from Maeda's table quoted in 58 of C71. 

5 )  In fact, this theorem is only a corollary of the existence 

S of a AL-linear surjective morphism from (a twist of) X_(K) to 

the module of differentials of the character X: R -+ OLCCXII. 

This module is defined in [I31 and compared to the congruence 

module, the conjecture being that the Fitting ideals over AL of 

those two modules are equal, provided R is Gorenstein. In 

fact, this is an important point in this work to prove one 

inclusion (the one we need of course). This is explained in 59 

below. Incidentally, i t  is interesting to notice that this 

inclusion of Fitting ideals doesn't require the Gorenstein-ness 

of R to be true. The other one must use i t  since there are 

some counter-example by H. Bass (mentioned in C131) to the 

equality for non-Gorenstein rings. 

The next topic, of course is to construct the map mentioned 

above from Iwasawa module to differential module. This 



i n v o l v e s  some r e s u l t s  on t h e  a r i t h m e t i c  o f  modula r  c u r v e s .  

I n  p a r t i c u l a r ,  i n  t h e  n e x t  p a r a g r a p h ,  we w i l l  e x p l a i n  a  l i t t l e  

more  t h e  r e s u l t  a l l u d e d  t o  i n  3 . 9 .  



5.The A-divisible group attached to the component R and the 

A-linear map from (twisted) ~ S t r )  

the module of differentials. 

r 
For any r>O, we consider the curve X1(Np defined as the 

projective and smooth model of the fixed part of the field of 

~~(~p')-modular functions for the action of ~ut(@) on the 

q-expansion at the infinity cusp. This is a geometrically 

connected curve. Let (p denote the canonical holomorphic map 

from the upper half plane b to the set of complex points of 

r 
X1(Np endowed with its natural analytic structure. Recall 

that the group t.?!/~p~~)~/{kl} acts faithfully on xl(~pr) by 

@-rational automorphisms. We denote by a -+ <a> this action 2 

("diamonds of weight 2", this is compatible with the 

terminology of 51 as we shall see). I t  is caracterised by the 

-1 r 
formula: for a prime to Np and oaE SL2tZ), o a -(a a) mod.Np , 

we have for all z in b 

<a>2(p(z) = q(aaz). 

For all prime number C, we also have the Hecke correspondence 

T ( C )  on XI (~~'1, rational over @, caracterised by: 



In a notation compatible with 51, we may still denote by 

h2,r (z) the z-algebra generated by the <a>, and the T(C)'s b 

acting by pull-back of divisor classes on the jacobian 

r r 
J1(Np )IQ of X1(Np This is easy to check, or see prop.7.1 

in [321. Note that on the tangent space S (T1(NPr)) of 2 
r J1(Np 1 ,  <a>2 acts by f --+ f l a 2 a '  

We now consider the p-divisible group J (Npr) of the 1 /Q 
jacobian. We endow i t  with the following action of G Q= 
~al(a/Q). Take the morphism : 

G~ 
- Gal tQ(ZNpr)/Q) (Z/NP'Z)~ --+ h (Zp) 

2,r 
denoted by a -+ <a> then, we set,for PEJ~(N~') [pWl ( a ) :  

2 ' 

a ~ = < a >  pa Pic 2 
CT where P -+ P is the usual action of GQ on algebraic points. 

Note: The importance of this twisted action has already 

appeared in 5 3  (proof of prop. 3.7) because since the Hecke 

correspondences act contravariantly, in order to get the usual 

Eichler-Shimura relations, we have to twist the Galois action. 

Now, i t  is clear that the BL-divisible group 

(5.1) BL@ J ~ ( N P ~ ) [ P ~ I ( ~ )  

is an h ( 6  1- and GQ- module, and these actions commute. Let 2,r L 

O R  
be the unit element of our local component ,R; thanks to th. 

1.8, we may apply this idempotent to the group (5.1). By this 

way, we get an R(r) - and GQ- module : 

As in Prop.3.4 , we put R(r) = R/w R, for all r>O. 
2,r 

r For r92r>0, - we have a 9-rational covering xl(Npr') --+ X1(Np 

coming from the inclusion r (Npr) c r (N~"). I t  provides a 1 1 



morphism with finite kernel J (NpL> -+ J (bIp1 compatible with 
1 1 

the actions of h, rtZp) and h 
2,r' t Z p ) .  We set: - 7 

for the transition maps deduced from the above. 

In C111, Hida proved the following theorem (theorem 3.1 of 

Theorem 5.1 : The R-linear morphisms Jr(R) -4 Jr,(R) are 

injective and 

J(R)[w, r l  = Jr(R) 
'- 9 

Next, we want to determine the structure of R-module of J(R). 

This is done in theorem 4.4 of C341, but we will here explain 

the idea. 

First, to deal with true algebro-geometric objects, we look at 

the component 8 of hord(Nprn,~ such that R = B@OL . To I3, we 
P 

may similarly attach Jr(B) which is contained in the J1(~pl) 

for all r>O. We still have c hord(a) (a=v+l) and R is 

Gorenstein because EBBL is. 

Fact 1: Because of a 2, there is an abelian subvariety Ar in 

J~ (Npr) containing J,(B) such that: 

( i )  Ar is defined over Q 

( i i )  Ar is stable under h (Z>, 2,r 

( i i i )  Ar has good reduction at p over Q ( 5  r). 
P 

The proof is detailed in $1 of C341; the formula for A is r 

where f runs in the set of primitive newforms of level C(f) 

divisible by p, with Nebentypus of conductor at p equal to the 



p-part of C(f), and t running in the set of divisors of N/(N,C). 

The map C t l  is deduced by Picard functoriality from the 

Q-rational covering xl(~pr) -+ X1(C(f)) coming from 

r 
I t 1  : J1(C(f)) -+ JI(Np ) ,  

From fact 1, we see that Jr(E) is also a direct factor in the 
00 

ordinary part of the p-divisible group A [p 1 r /Q ' 

Let Or be the ring of integers in Q ( 5  ) ,  we may consider the 
pr 

schematic closure of J ( R )  inside the ahelian scheme A r/B . We 
1 - 

thus obtain a p-divisible group over the complete discrete 

valuation ring 0 . Taking the connected-etale unscrewing of r 

A r / ~  , we obtain an exact sequence of p-divisible groups r 

and by applying to the p-divisible groups f2 r/or and ' r/Br the 

idempotent of End Ar corresponding to R(r), we define the 

connected component Crl6 of 5, (13),0 and its etale component 
r r 

E r / ~  thus constructing the following exact sequence : 
r 

(5.5) 0 -+ C r/br -+ Jr(Ei1/&, 
-+ E r/Br -+ 0 

r 

The crucial result about this exact sequence is 

Fact 2: For a # 1,2, the exact sequence of R-modules given by 

the geometric points of (5.5) splits for each r>O. Furthermore, 

the maps Jr(B) -+ Jrf(H) for rf>r>O induce Cr -+ C and Er-+ r' 

Er, and the splittings are compatible with these maps, so that 

we get: 



J(B) 2 C @ E as B-modules, where C = -- lig C r ' E = 1 i$ Er -- 
r r 

The point to verify this statement is to determine the Galois 

action on C and E. Indeed, the decomposition group of a over 
P 

Q ( 5  r) acts on Cr and Er but through a p-group; this doesn't 
P 

imply any splitting. Fortunately, the full inertia group I of 
P 

/ acts on Cr and Er by what is called the geometric action 
P P 

of inertia. The reason for that is simply that I acts on JrtX) 
P 

hence on C and Er by functoriali ty of connected and etale r 

component. Next, one has to determine this action. On the etale 

part, one finds i t  is trivial because the inclusion Arc J1(~pr) 

induces an isogeny from the ordinary part of the special fiber 

a, et a, 
of Ar[pm1 to jrCp I , where j is the jacabian of the curve C; r 

which is the normalisation of the irreducible component 

containing the infinity cusp in the minimal regular model 

r # r 
X1(Np I,o of X1(Np . For the details, see C341 83, and C211 

r r 
03 

chap.2, §8).The triviality of the action of I on Cr (hence on 
P 

a) 

jrI results then from the Q-rationality of the cusp m : 
I P 

acts 

only by permutation on the set of irreducible components of 

r # X1(Np I @ff so fixes cm . Then, we deduce that the action on 
P r 

the connected component Cr is given for any integer b prime to 

Np and any P in C by: 
r 

( 
Q(SN ")/Q ) .P = <b>2.b.P 

b Pic 

This is an easy corollary from the Cartier duality between Cr 

and Er coming itself from C211, chap.3 prop. 2 and 3 (see theo. 

3.1 of [341 for further explanations). 

From this rather delicate analysis, we conclude that ~al(a/Q 
P P 



acts through H = Gal (Q ( 5  _>/" on Er and Cr and the subgraup 
NP 2 

H of H fixing 
0 5P.J and the cyclotomic -extension of Q acts by 

P 
a- 1 1 on Er and by o on Cr. Now, we use that a f 1 to obtain the 

splitting of the sequence over R. The compatibility with the 

transition maps is easy to check. 

On the other hand, the control theorem 5.1 combined to the 

above theorem 5.2 supplies us with the control of the connected 

and etale parts of J(E): 

Fact 3: For all r>O, C C W ~ , ~ I  = C r  , Era I = Er . 
2,r 

But, as already mentioned in $ 3  (theo.3.91, a previous result 

by Hida ( C91 prop.3.1) gives the structure of C1 and El as 

Rl-modules: C1 = B(l)@ Tp , El = Hom(~(l),T~). The last tool we - 

need is the Pontryagin duality. For any R- and GQ- module A, we 

put on its Pontryagin dual A" the following structures of E- 
* * 

and GQ-modul e: for rEq, aEGQ, xEa, x €3 , 

* * JF * 
<x,r.x >=<r.x,x >,  <ax,ax >=<x,x >. 

We can then convert Fact 3 into: 

By applying this to w ~ , ~ ,  and by computing A-ranks, we obtain: 

Theorem 5.2: For all r>O, the connected-etale sequence (5.5) is 

splitted: Jr(R) = Cr B Er , and Cr = Etr)@ Tp , Er = 
* 

~om(E(r),T 1. and J(E) = C B E , C 2 HomA(B,A), E"- R . 
P - 

If we now remind ourselves of the link between E and R, we draw 

from theorem 5.2 the corollary: 

Corollary 5.3: There is an R-linear isomorphism 

J(R)'~= R B Homh (R,AL) 
L 



but, since we proved that R is Gorenstein, we may strengthen 

this into: 

J(R)* is free of rank two over R. 

This will be of course crucial for the following construction 

of our map from the Iwasawa module to the module of 

differentials. So let us proceed now to this construction. 

Notation 5.4: We denote by fl i=1,2 the idempotents in R@!2 i L 

corresponding to the decomposition 

where the first projection is given by X. 

We set R1 = Im (prl: R -+ X , R2 = Im (pr2: R -+ %) , 

2 = Ker(prl: R -+ X and c = Ker(pr2: R -+ 9). Now, by 1 
* 

theorem 5.2, J(R) is A=-free SO'J(R) is AL-divisible. This 

permits us to look at the following parts of J(R): 

Notation 5.5: We set A = fll.J(R) = J(R)tc21 and B = q2.J(R) = 

J(R)Ccll. Similarly, for all r>O, we set Ar = Jr(R)tc21 and 

Since Jr(R) is contained in J(R)(and equal to its o -torsion), 2, r 

these notations are meaningful. 

Proposition 5.6: We have R-linear isomorphisms: 

and similarly, for all r>O, 

In particular, the Pontryagin duals of A and B are A -torsion L 

free hence A and 5 are AL-divisible groups. 

Proof: This is an easy exercise in Pontryagin duality, starting 



with the R-Silinear pairing: 

We leave i t  to the reader. 

Cor~l~lary 5.7: We have the equality: 

and similarly for all r>O : Ar n Br = Ar[cll = Br[c21. 

Proof: Just check that the Pontryagin duals coincide by using 

the previous proposition. 

Some words about our strategy are now in order. The corollary 

5.7 is powerful because i t  expresses the equality of parts of 

radically different objects. We will see that the AL-divisible 

group A is of Complex Mu1 tiplication type whereas B has no 

complex multiplications (the precise statement is given below) 

This is henceforth a hint that by modifying a little BCc21, we 

will get an interesting Galois module, whose non-splitness will 

in fact give rise to the desired map. 

To put that clearly, we need some notations. 

Consider the character O: GM= ~al(o/M) -4 flX defined by as the L 
X Galois avatar of the character 9 :  Gm -+ AL ,i.e. the 

CD 

composition of the restriction GM -+ Gal(M(fp ) / M I  followed by 
OD 

the inverse reciprocity law Gal(M(fp )/MI - Gm and finally by 0 .  

Note that if PL is the maximal ideal of hL, O mod.WL = i mod.? 

B being the maximal ideal in BL. In particular, Qg@o[pl mod.WL 

because iZioCpl mod.9 (i is unramified at pP whereas ~ O C P I  is). 

Let Ibl(@) the R1-free module of rank one over which G acts via M 

B; let V =  lndM R ( @ I  the Gg-module induced from R1(@), i-e. Q 1 



V = O [G I@ R (a! ; finally, let V '  be the contragredient L ig OLIGyl 1 

representation. 

Proposition 5.8: (i) There is an isomorphism R - and Gg-linear: 1 

in particular, the GM-module A splits into the sum of two GM- 

modules A = X@Y ; GM acting on X via and on Y via @o[pl, and 

the Pontryagin dual of X and Y is isomorphic to C o ( j O  as 

R1-module. 

( i i )  The module B ' ~  contains no non-zero G -eigenvector. M 

Proof: (i) We first show that A*@X 2 Vf@X by equalizing the 

characteristic polynomials of the two representations. By 

r igusa'theorem 1141, J1(Np ) has glod reduction over at any 

prime CXNp, so A* is unramified at such primes. Let FrobC act 

* 
on A ; thanks to the definition of Galois action on the 

3 
jacobian, we see that is killed by X--T(C)X+X<C>2 

r C O  on J (Np )Cp ];we see that the image of this polynomial by the 
1 

character X ,  coincides with (X-q(Z)).(~-q(k!~)) if 1 splits in 
3 

g.gP in M and with Xu+ n((C)) if C is inert. By Cebotarev's 

density theorem, we obtain the equality of the characteristic 

polynomials. So, this proves A*@X = V'@X as GQ-modules. 

* 
Furthermore, since O$OoCpl mod.PL, we see that 4 is the sum of 

two submodules (necessarily free of rank one since R is 1 
* 

local): A = Ker(o-@(a))@ Ker(a-@o[pl(a)) for some a€GM such 

that @(u)S@oCpl (a) mod.!lRL ; after tensoring with X, they 

coincide with the stable lines of A*@x, hence they are stable 

by GM with the predicted action and they are interchanged by 



* 
the complex conjugation: A - V'. 
Now, let us prove (ii). 

Suppose,by absurdity, that X*EB'~ is a non zero G -eigenvector. M 

We may suppose further that x*4 o, 1.3" because 8* has no - 9 * 
A -torsion. Let xl be its reduction. The algebra F = L 

(RZ/o .R )@L is semi-simple because i t  is ordinary and the 2,l 2 

non-p-part of its Nebentypus is primitive, so i t  belongs to 

ordinary-primi tive components. Then, 87 = FBF, and B; 2 

Hom(Ta(B1),0 by an isomorphism a which is R-and GQ-linear. On L 
* * 

one hand, we may decompose B1@L as B eL,.(Bl@L) where eL, runs 

over the idempotents of F = TI L' , so that for one such 
:k , 

component, we must have eL, .xl F 0 ;  on the other hand, the 

image by ct of this element has a non-trivial kernel which is a 

Lf-line in the plane L'@Ta(B1). This would mean by the theorem 

4.5 of C281 that the modular form corresponding to the 

character h,(rl(Np),L) -+ L '  given by eL, could be written as 
* 

B(q) for some ~rossencharacter q of M. This is impossible: in 

fact, q should have type (1,O) and conductor f ' p  so that Nf'.p 

= Np, so i t  should differ from y  previously defined only by a 

Dirichlet character: q = < .y  and by reducing modulo 9 in the 

common field of values of those characters, we would find Zz1 

mod.9, i.e. < is a character of p-power order of the ray-class 

group modulo ff'p; by the hypothesis pXNg(N), E is a character 

of the class group,hence of G i.e. := E '  1 ' but c p = p ~ '  furnishes 

a component of R1, not of R2: contradiction. 

The next step is to form the R2-and GM-module 8''). 8/Y 

Let X be the image of X in 3''; We define Y by the short 



exact sequence: 

Lemma 5.9: (i) The sequence of R2-modules (5.62 is 

split. 

( i i )  The action of GM on X is given by O and on ~(l'by QoCpI. 

Proof: By dualizing the defining sequence of B('), we find its 

structure over R2: 

More precisely, by lifting the basis of BCc21* adapted to the 

* 
sum X @ Y'~, we obtain by dualizing (5.6) the sequence: 

where the maps are just the obvious inclusion of the second 

factor and the projection on the first factor. Since the 

projection of B to B is GM-linear by definition, we know 

that the action of GM on X is given by O. For Y we use 

* :ic 
Eichler-Shimura relations: for aEGy acting on B /c2.B , the 

matrix adapted to the decomposition (5.7) takes the form: 

a=(" -1" ) and is killed by the reciprocical polynomial of (a) 

X~-T(C)X+C<C>~ = (X-Qta) 1 .  (X-OoCpl(o) ) in R2/c2 (once chosen a 

prime L approximating o ... 1 .  Hence, az@oCpl(a) mod.c2. 

Now, we are able to define the map of our dreams: 

Fix arbitrarily a splitting over R, of the exact sequence (5.6) 
k 

Depending on this splitting, we have a map: 

(y(l),x(l) a: GM -+ Hom 1 ,  0 -+ pr 
R2 x (1)" a~icIy(l) 

Remark:This is the analogous of the coefficient in the upper 

right corner of the matricial representation defined by Hida in 



I t  is easy to deduce from lemma 5.10 that Horn (Y (l),x(l)) is 
R, 

R -isomorphic to c / c Y 2 .  I t  is the module of differentials 
2 2 " 

attached to X:R -+ R1 defined by Hida in §1 of C131. If R was 
1 

etale over AL (which is unfortunately not the case), this 

module would have a more intrinsic definition which explains 

better its appellation: 

The coincidence of these two definitions for R /A etale i s  
1 L 

seen by using the second fundamental sequence for Kahler 

differentials (cf.Cl91 chap.10 Theo.58): 
0 

In any case, we will see later ( $ 8 )  that, though this 

module of differential may not be isomorphic to C ( X I ,  i t  is 
0 

closely connected to it. 

In the next paragraph, we are going to study the properties 

that a enjoys. 



6. The properties of the map a. 

The first property of a is its cocycle-like behaviour: 

Lemma 6.1 : For all a, a' in GM , we have: 

(6.1) a(0.a') = a(a>.@o[pl(a') + @(a).a(a'>. 
- - 

Hence, i t  defines by restriction to G - = Gal(Q/Km) a group 
Km 

homomorphism we shall denote am in the following, from the 

Galois group of the maximal abelian p-extension of zw to the 

L module of differentials C1(X)= c7/c2 . Furthermore, i t  carries - 
the action by conjugation of Gal (E_/M) over ?? - to the action 

K'm 

via the "anticyclotomic" character @/@oCpl : 

(6.2) aw(ar) = @(r)/Qo[pl tr) .aw(a). 

+ 
In particular, in the decomposition ? = r x T-, the action of 

+ r on a(g ) is trivial, and the action of the chosen 
w 

- d 
generator w of W- is multiplication by iO(w) where W=~JUEW and 

u =l+Np. Moreover, the action of the non-p-part of Gal (%/MI by 

conjugation factorises through A' (the non-p-part of A= 

Gal(K/M) and is given by K defined in ( 4 . 1 ) .  
- 

Remark: The penultimate assertion explains why we chose w so. 

Note also that a is not exactly a 1-cocycle of GM but rather 

behaves exactly like the coefficient in the upper-right corner 

of the triangular matrix ) ; we could write this 

matrix if B t c  I was cofree over the ring R2/c2 but this is not 
2 

so. Maps satisfying (6.1) are called binding-functions and 

studied in [41 573.17. 



Proof: In fact, the proof is very easy just by looking at the 

definition of a and we skip it. 

The difficulty in studying am lies first in the 

ramification conditions assuring us i t  will factor through the 

maximal unramified outside S, p-abelian extension of K ~ .  

This will require algebra-geometric considerations. That's why 

we will rather deal with B than with R (recall that B is the 
ord local component of h (Np ,z 1 through which X factorises). 

P 

We may define cl and r2 , B1 and Bp, A and B , x, 3 (1) 

Y, in the same way as above, but they are true (ind-) - 

p-divisible groups, resp. (ind-)finite group schemes 

and the one we have to study are just a part of their scalar 

extension from Z to O L .  Hence i t  is enough to study those 
P 

underlined modules. However, to lighten the notations, we will 

omit this underline. 

Proposition 6.3: The map a is unramified outside p over . 
Remark: This means that i t  is unnecessary to restrict a to 

- to obtain the unramifiedness outside p : restriction to 
K'm 

G g is enough ; whereas for the unramif iedness above p P  this 

will be unavoidable. 

Proof: We see easily that 

with R2-and GM-linear transition maps. Now, Igusa's theorem 

r 
C141 shows that J1(Np I has good reduction over at any prime 

LXNp. So, the inertia I t  n GM acts trivially on Br and also on 



C) which is a p-divisible group M-isogenous to ,. r 

For X l N ,  we use essentially the hypotheses (f , f ')=land pXNq(N) 

which assure us that the 4!-part of the Nebentypus of the new 

forms occuring in the component R is primitive. Hence, a 

theorem of Langlands(Theo.7.1 and 7 . 4  of C181) shows that B 

(and ~ ( ~ ' 1  have good reduction at C over M(XN ) ;  N C  being the 
e 

L-part of N. Since this field is contained in %, we conclude 

that I ,  n G g acts trivially on B 
i, 

(I) and hence that a is 

unramified at 4! over g. 

Now, we will prove unramif iedness above S over z_. We need a 
lemma for that. 

Let v be a place of zm above p P .  To stick better to the 

situation, we will consider instead of ( 5  and its ring of 
pr 

integers Or as in ( 5 . 6 1 ,  the completion Qr of Er= M(prNf) at v 

and its ring of integers 0 (where as before Mta) stands for r 

the ray class field of M of conductor a). Since 0 is unramified r 

over Or, this is an innocent base change and in particular the 

abel ian scheme Arlo is only base change of A r/Dr (idem for the 
r 

schematic closure of Jr(R) over Dr and its connected-etale 
(1 1 unscrewing ( 5 . 6 ) ) .  We denote by Br , Br , Xr, Yr, x(') and r 

Y(') the w -torsion points of the corresponding previously r 2,r 

defined objects. We consider the schematic closure of all of 

them over Or. We hence have: 

and similarly: 



We omit the indexes Q when we mean we take the geometric r 

points of these sequences. We set X; and Y; for the schematic 

closures in B , [ c ~ I / ~ ~ o ~  Xr and Yr . Let finally D r,V resp. Dv 

be the decomposition group of v in G - resp. in G - . 
Kr Ka, 

j 
Lemma 6.4: We have Yr= C and Xr = Er so that X; is etale and r 
- 

Yr is connected. 

Proof: see lemma 4.10 in C351 where this result is deduced from 

From this lemma we may draw the proposition of 

unramification: 

Proposition 6.5:The sequence (6.4) of D -modules splits for 
r,v 

(1) (11 (1) any r>0. In fact, Br Cc21 = C r , Xr 2 E:~) , 

These splittings are compatible with the transition maps and by 

setting C - -7 
, we have a Dv- linear splitting: = lim C~ 

r 

furthermore, the restriction of n to C induces an 

(1) isomorphism of Dv-modules to Y . 
Recall that n is the projection from ~(l)[c~l to Y(') defined 

P Corollary 6.6: At the prime v above p in %_ not only am is 

unramified, but i t  is even totally split i.e. am(D ) = O .  v 

Proof: See Prop.4.11 in C351 where this is carefully proven. 

The corollary follows immediately. 

An important remark is in order at this stage: 



The generic fiber %,R of the connected component 31 B ~ C C ~ I  
r 

P descends canonically to the p-adic completion of M; in addition 

the inclusions C (1) r c c:') are also defined over this field, so 

that the splitting: 

is indeed stable under the decomposition group at pP over M, 

say D. [This is easy : B:~)[c~I is a G -module, so by universal M 

property of the connected component, there exists for all o in 

D a canonical isomorphism over Rr : c:') 2 ~ ( l ) ~  and descent r 

conditions are obviously satisfied.] 

This concludes the study of the ramification properties of a: 

Proposition 6.7: The group homomorphism am: 

factorises through the Galois group 3 of the maximal 

unrarnified outside S and totally splitted above sP , p-abelian 

extension of %_ . 
s In fact, let X_ be the Galois group of the maximal, unramified 

outside S, p-abel ian extension b f  K: (the anticyclotomic 

ZP 
-extension of K) and let K be the character of A=Gal(K/M) 

defined in (4.11, then am factorises naturally through the 

( 6 . 5 )  
S am@Ido : X,(K) -+ C1(X) 

L 
S Furthermore if we endow Xm(~) with the twisted structure of 

I-module given by (l+X)*x = T I  w x ,  then a_@Idg becomes 
0 L 

Proof: We only have to check that the natural restriction from 



9 to X: induces an isomofphism on the K-part of these groups. 

S S - S Let N ,  resp. M, such that G~~(B/K_)= 9 and Gal(M_/K_)=X_. 

As %,/I(: is unramified, and the residual field of z_ at vlpP 
has degree infinitely divisible by p, any p-extension of k 
unramified at v is in fact totally split , so we can drop the 

condition above pP and take care only of the unramifiedness 

S outside S. Thus, we get z_c N c M_ ; hence by restriction, we 

get an exact sequence: 

S i- x_ -+ 2 -+ r -+ 0 

+ 
Since A' acts trivially on i- , we obtain the surjectivity: 

S X_(K> -+ 6 ( ~ >  

Now, let icO be the rational character of A' deduced from K ( i t  

S is no longer of degree one). We prove that the icO-part M,(K~) 

S - (maximal subextension of M_/K_ with action of z CA'I on its 
P 

Galois group through e .ZpCAt1; eK = idempotent in z [A'] 
Ko 0 P 

corresponding to K ) is the composi tum of %, and the ro-part of 
0 

S + 4 .  This is obvious because the map Gal(M_tro)/~~) -+ r admits 

+ 
a section since the action of A' is trivial on . This implies 

S s that B(r0) is the fixed part by r+ of M,tr0), hence M,(ico) = - S 
K,.N(ro). This gives the isomorphism X,(ro) = %(KO) and a 

S fortiori X_(K> - %(#I. 
The proposition 6.7 sums up the basic properties of a,. The 

last thing to prove about i t  is its surjectivity, thus 

establishing an important connection between the Iwasawa module 

and the module of differentials. This is the purpose of the 

next paragraph. 



We will be rather sketchy since this is detailed in 55 of [351. 

We first define the Kummer-Wiles pairing attached the short 

exact sequence ( 4 . 6 ) :  - - 
< , >  : x: x Y(l) -+ x(l), <u,P>= 0.P - P 

(1) for any in B(~)[C~I lifting PEY . 
Let Z= { y€Y S ; <u,y>=O, Vu€Xw I ;  we see that Imtaw@Idg = 

L 

HomR (Y(~)/Z,X(~)) c HomR (Y") ,x(') 1. Hence, the surjectivi ty 
2 2 

is equivalent to the nullity of Z. By absurdity, we suppose 

that Z# 0. There exists an ideal a in R2 such that cZ2 c a c c 
2 

and the Pontryagin dual sequence of 

0 -+ z -+ Y (1) -+ y(l)/z -+ 0 

is o -+ o/c22-+ c /C -+ c / o  -+ o 2 2 2 

Thus,the hypothesis ZgO is equivalent to a # c 2 .  

Now, we use the remark following prop.6.7 and fix some prime w 

in a above pP; let D be th decomposition group at w in GM. 
W 

There is a R2- and Dw-stable decomposition: 

(1)- and the projection A of ( 4 . 6 )  induces an isomorphism: C - 
W 

Y('). Since pP is almost inert in K:, we see that the 

restriction G -+ G~I(K;/M) maps Dw onto a finite index M 

subgroup. By assuming (7.11, one constructs thanks to (7.2) an 

R and GM-submodule Z' in B(~)[c~I on which GM acts via +oCpI. 2 



,(2> Let Y' its inverse image in B. Define , = B[al/Y9. 

The Pontryagin duals of Y' and X ") are isomorphic to R2/o. So 

we get a Galois representation of G on B C ~ I *  : M 

which triangular and such that R(a)= with 

-1 and, with some work, one proves that a=@-' and 8=@oCpl . 

From the existence of this representation, by using 

Eichler-Shimura relations, one deduces that the projections of 

Hecke operators T(<)(for all prime 4 )  in R2 are congruent rn0d.a 

to : 

( 4(L)+n(~~) if XXNp and splits in M 
{ O if e is inert in M 

q(L> if CIN . 
This is an absurdity, because by the very definition of c2 , 

this implies that a c c Contradiction. 
2 - 

Hence we have proved the surjectivity. 

To conclude the proof of Theo.4.3, i t  remains to give the link 

between the characteristic power series of C O ( X )  and C1(X). 

This is the topic of the two next paragraphs. 



8. An exact sequence for Congruence Module and Module of 

Differentials. 

In this paragraph, we shortly recall the behaviour of 

the congruence module and the module of differentials with 

respect to the composition of characters ( under suitable 

hypotheses, which we will check in our case 1. The reference 

for that, and some applications to the interpolation of special 

values of L-function associated with cusp forms is C401. 

Let A be a complete local noetherian domain in 
w i t h  quotient f i e l d  F 

characteristic zero; R and S are finite and flat A-algebras, 

and we are given two surjective characters A: R -+ S and 

P: S -+ A; we set ~ = y o h .  We suppose that y, A, v (in this 

order) induce the following splittings: 

SeAF = F I  Y ,  RaAF = (S@F)8 Z, RBAF = FI X (of 

course, X = Y8Z 1. We denote by Sy,  RZ and RX the images of S, 

R and R in Y, Z and X respectively. 

Note that p, A, v endow respectively A, S, A with a structure 

of S, R, R-module. 

Then, the exact sequences we need are the following 

Theorem 8.1: There is a canonical sequence of A-modules: 

R (8.1) Torl(Kerp,A) -+ Cl(A,S)@ A -+ C1(v,A) -+ C1(~,A) -+ 0 .  s 
If Hom(S,A)- S and Hom(R,A) - R as R-modules, then there is 

also a short exact sequence for the congruence modules: 



( 8 . 2 1  0 -+ CO(y,A) -+ CO(v,A) -+ CO(A,S)@SA -+ 0. 

[This is th.6.6 of C4011. 

Proof: Since v = yoA, A induces a short exact sequence of 

R-modules: 

(8.3) 0 -+ Ker A -+ Ker v -+ Ker y -+ Coker A = 0 

Recall that: 

C1(p,A)=(Ker fi)BSA =(Ker y)BRA, 

C1(A9S)=(Xer A)@RS 

So, the exact sequence (8.1) comes out of (8.31 tensored with A 

over R. 

Now, we suppose the assumptions on S and R. We consider again 

the short exact sequence (8.3). 

We want to dualize i t  (i.e. apply functor HamA(-,A)). For that, 

we first remark that Xer v is A-free ( R 5 A splits) and 

similarly, thanks to the freeness of S over A, we see that 

Ker y and Ker A are free. Furthermore, because of the 

A-freeness of S and the existence of an R-linear isomorphism 

HomA(R,A) R, we see easily that Hom (KerA,A) - R and A Z 

HomA(Kerv,A) - R as R-modules. Similarly, S - HomA(S,A) X 

implies Hom (Kerp,A) S So, finally, we obtain an R-linear A Y 

exact sequence: 

We tensor i t  with A over R, using that: 

This yields: 

R Torl(RZ,A) -+ CO(fi,A) -+ C (v,A) -+ C (A,S)@~A -+ 0. 0 0 



R The vanishing of the Torl(R A) comes from the following remark. z ' 
We may present the R-module R by: 0 --, RnS -3 R -- RZ --+ 0, z 
where the intersection RnS is taken in S@R Now, RnS is z ' 
free of rank one over S because Hom (R,A) - R induces an 

A 

isomorphism HomA(RnS,A) - S and we may dualize again because 
RnS is A-free. 

Hence, we get the R-linear exact sequence: 

We tensor i t  with A over R to obtain: 

R R Torl(R,A) -+ Torl(RZ,Af -+ SBRA a+ R@ A -+ RZaRA -+ 0, 
R 

R we have Torl (R,A) = 0 and SeRA 1-- RBRA 2 A. Since RZBRA is 

nothing but CO(X,S)@SA, i t  is A-torsion, so that the scalar in 

A giving a is non-zero, that is, a is injective and 

Now, we apply this theorem to our situation. We 

take A =I, R = R@ I , S =I@ I, X = X@IdI , p = m (i.e. the 
A, A, 

multiplication 101 -+ I), v = pol. We have CO(X,S) = Co(X)@I 

and Cl(h,S) = C1(x)@I. Let us compute Co(m,i) and Cltm,I). 

d Lemma 8.2: Co(m,I) = Cl(m,I) = p I .  

d d d 
Proof: I@I = I [yl/(yP -(l+xlP 1 -- ~[zl/(z~ -1) as I algebras. 
because i+X is invertible in I= OLIIX1l. Moreover, the 

d 
rnorphism m: ICZI/(Z' -1) -+ I sends z to 1. Hence, we are in 

the situation of the group algebra of a cyclic group of order 

pd and we apply lemma 1.9 of 1131 to conclude. 

From the theorem 8.1, we get I-linear exact sequences: 



d and (9.2bis) 0 -- I/p i -- Cotv,I) -- Co(X) -+ 0 

We get from these exact sequences some informations about the 

characteristic power series in I of the modules occuring in 
bis them. From (8.2 , we deduce that the characteristic power 

d series Fv of CO(v,I) is p H 
(A,1 1 

(XI I: where H 
( A , 1  

(X) is a 
P P 

generator in I of  c - R n(I@{O}) as defined in 4.21. From I - 
(8.1bis), we deduce that the characteristic power series 6; of 

d C t v , I )  divides p xcchar. pow. ser.in I of C 1 ( X ) ) .  In the next 1 

paragraph, we will show that Fv divides F; . This will 

complete the proof of th.4.3 because i t  implies that H 
(A,l 

( X I  
P 

divides in I the characteristic power series in I of C1(X). 



9. A link between the Fitting ideals of Co and C1. 

We use the concept of Fitting ideal rather than chracteristic 

power series because i t  behaves better with respect to base 

change of ring . Recall its definition. 
L?t  R be a (noetherian) ring and M a R-module finitely 

presented and torsion. Take any presentation ( & , j ) :  

Ra E+ *b a+ M -+ 0 

The Fitting ideal of M is defined to be the ideal in R 

generated by the bxb minors of a matrix for E. I t  doesn't 

depend on the choice of the presentation. For its basic 

properties, see C241 chap.3 and the appendix in C211. Take R to 

be a P.I.D. ; then N = R/(dl)x.. .xR/(d,), and the Fitting ideal 

of M is (d l...d,). Take R to be RO[[TII, for some discrete 

valuation ring Ro; then M is pseudo-isomorphic to R/(dl)x ... 
..xR/(dm) for some well-defined d i  in R, and the Fitting ideal 

of #,  F(M),admits the principal ideal (d ..dm) for its 1 ' 

reflexive  envelop^ (it means that the characteristic power 

series of M generates the intersection of all the localisations 

of F(M1 at primes of height one). 

We take R -1 , the integral closure of hL in X.  I t  is 

isomorphic to BLCIX1l as we saw before. The modules we consider 

are Co(v,l) and Cltv,I) where v = mo(xBIdl): Re I -+ I as 
h~ 

defined in the previous paragraph. 



To conclude the proof of Theo.4.2, we only have to check that 

the Fitting ideal of C tv,l) is contained in the Fitting 1 

ideal F0 of Cotv,l); this will be checked locally at each prime 

of height one in I (enough because 9 is principal). The 
0 

general result yielding that inclusion is a$ follows : 

Let D a complete discrete valuation ring, of q ~ o t r i r ~ t  field X ,  

uniformizing parameter IT, residual field 8 .  Let 9? be finite and 

free algebra with a character v : iR -+ I, inducing a generic 

splitting: 

Let X1=v and X2 be the two projections, and cl= Ker X I 
2 R '  

C = 2 

Ker x1 I R .  Set as above Co = I/X,(C~), C1 = c2/c 2 ,  with Fitting 
k 2 

ideals respectively Fo and F1. 

Proposition 6.1:In the above situation, we have F l c  F 
0 

This result has been explained to me by M. Raynaud. 
;n I 

We apply i t  to the localisationrat some prime P of height one 

of I, say D = I p  which is a discrete valuation ring, and to 

the ring localisation at P of R Note that because 

I p  is a discrete valuation ring, Rp is free, and the datas of 

the proposition are furnished by localising at P the above 

datas. This gives for all such P the inclusion 9 
0 ,  p 

c 9 
1,P 

.Q.E.D. 

The proof is divided in two parts. First, we establish even the 

equality of those ideals in the case where 9? is a complete 

intersection algebra. Then, for a general '2, we construct a 

complete intersection algebra 9' finite and free over D with a 

character Y'; 9' -+D admitting a generic splitting, and a 



surjective morphism 9' -+ 2 commuting with X and X' inducing 

isomorphism on the Cfs. This is enough because the Fo's can 
1 

only decrease from 3' to 9. We only detail here the first part. 

The second can be found in C351 5 6 .  

Let d be the ring of polynomials in d variables over D. 

Definition 6.2:We say that a sequence (fl, ..., fd) of elements 

in d is relatively regular if for each i = l ,  ..., d, the D-algebra 
d i =  d/(fl, ... ,fi) is flat over D and fi doesn't divide zero in 

Definition 6.3 : We say that the algebra 2 is complete 

intersection over D if i t  admits a presentation 

where the ideal 9 can be generated by a relatively regular 

sequence. 

Suppose i t  is so. Take the second fundamental sequence for 

Kahler differentials ([I91 Th.-.58> for (8.3): 

-+ 0; 

thanks to the assumption, 9/y2 is free of rank d over W, 

and the first map is injective. The D-module C1 is isomorphic 

to R9/~BLJ D as noticed in 4 . We draw from that a free 
resolution of the finite length D-module C ' 1 ' 

Hence, F is principal, generated by ~ ( 6 )  where 6fg is the 1 

specialisation from PI to '24 of the jacobian det(afi/3x.). Let 61 
3 

=X1(6) and 62 = X2(6). Thanks to a remark of J. Tate explained 

in the appendix of C201, we know that HomD(?6!,D) is free over D 

and 6 is a different for L??. That is, there is a basis { A )  of 



Hom (9,D) such that Trg ID  
D = 1.6. Hence, to prove the equality 

of Fo and F1, i t  suffices to check: 

A1.D = { xlE D ; (xl,O)f 41. 

Since x provides an autoduality of 9', this amounts to show that 

x D iff for any ~ € 9 ,  l((xl,O).y)ED. We notice then that 1 

txl,O)= t ~ ~ / 6 ~ , 0 ) . 6 ,  so A(txl,O).y) = TrgID((xl/bl,O).y). Since 

T r w ~  induces the identity on the factor X of 2@X, the 

statement becomes obvious. 
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