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Introduction

These notes are from lectures given at Hokkaido University
while 1 was a Fellow of the Japan Society for the Promotion of
Science. It is a pleasure to thank the mathematics department at
Hokkaido University for its warm hospitality and the JSPS for its
generous support. In particular I want to thank Tatsuo Suwa and
Haruo Suzuki for helping with the preparation of these notes and
for making my visit to Sapporo so enjoyable.

The aim of the notes is to give a rough outline of the proof
of a Lefschetz Theorem for endomorphisms of a differential complex
on a compact foliated manifold. The differential operators of the
complex are required to differentiate only in leaf directions and
the restriction of the complex to any leaf is required to be
elliptic. The Theorem we prove is sufficiently general that
special cases of it give the Atiyah-Singer G Index Theorem (and so
also the Atiyah-Singer Index Theorem), the Atiyvah-Bott Lefschetz
Theorem and the Connes Index Thecrem.

The new results given here are joint work with Connor
Lazarov, which was partially supported by a National Science

Foundation grant.
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Chapter 1. Review of Classical Ihdex and Lefschetz Theorems

§1. The index of an elliptic complex

¥e denote by M a closed, compact, n dimensional Riemannian

manifold.
An elliptic complex (E,d) over M consists of:

a) a finite collection of smooth finite dimensional

E E

complex vector bundles E 10 v K

O)

b) a collection of smooth differential operators

d. : ¢™(E.) — Cc"(E.
i * i i+l

where Cm(Ei) denotes the smooth sections of Ei

c) the operators di are required to satisfy

and a technical condition called ellipticity (see

below).

We assume that the di are 1°' order differential operators.

X of M, d.

This means that on any coordinate chart U, Xl' e e s n )

is given by a matrix of 1St order linear differential operators.

To be more specific, suppose



are trivializations of Ei and Ei+1 over U. With respect to

these trivializations, diIU is given by a g X r matrix [AjQ]

of operators of the form

_ . is
Aig 7 3

(x) + a{g(x)a/ax1 + e 4+ ajg(x)a/ax
n n

where each a;g € Cm(U), the space of smooth complex functions on

U. Thus 1if s € Cm(Ei) and x € U, We may write ‘sl using the

U ’
trivialization above, as
s(x) = (SI(X)’ ..oy sr(x))
where each si € Cm(U) and we have
; ;
d.s(x) = (( A,s.,0(x), ..., ( A .s.,)(x)).
i Q=1 1279 =1 qQ™ 2

Ellipticity:
If x €M and £ € T*Mx , the fiber over x of the

cotangent bundle T*M of M, then the symbol of di at x, &

Ux,«E(di) : Ei,x - Ei+1,x

is a linear map from the fiber of Ei over x to the fiber of
Ei+1 over x. If di is represented in local coordinates by the

matrix [Ajg(X)] as above, then o .(d,) is represented by the

matrix [Ajg(x,E)] where
R B .. if
AJQ(X,E) = ay (X)E1 + toag (X)En

if £ = E dx. +# ++- + E dx_ . Note that the term a3 (x), the
1 1 n ' n 0

zero th order part of Ajg(x) does not appear in AJQ(X,E).

The complex (E,d) is elliptic provided that for each x € M



. k. : .
and non-zero &£ € T MX , the sequence

a (d.) d (d,) o (d )
0 — E x,5 0 x,8 17, .. x,& k-1" E 0
0,x : 1,x k,x
is exact.
We may restate this condition as follows: Let o : T*M — M

be the projection. Then we have a sequence of fiber bundle maps

a(d,.) 0(d.) ald, )
0 — n*EO — 95 n"‘E1 — 1, ... ki1, n”‘Ek — 0
where for any point (x,&) € T*M,
agd.) : n'E (= E. ) — n'E ( = E )
i’ i,(x,8) T UL x i+l, (xX,8) TOTi+l,x

is just U(X,E)(di)' The complex (E,d) is elliptic provided

that this sequence is exact off the zero section. If (E,d) is
elliptic, the above sequence defines an element o(E,d) E’KC(T*M)
called the symbol of (E,d). Here KC(T*M) is the K theory of

T M with compact supports (see [AS]).

Example: The de Rham complex

TEM = complexified cotangent bundle of M

Ei = AITEM the i th exterior power of TEM

Cm(Ei) = smooth complex i forms on M.

di is the usual exterior derivative.

*M — A1+1T*M where AE 1is
C'x C X

exterior multiplication by &

. _ . i
Note: UX,E(di) = AL : AT

Some factis about elliptic complexes




1. Define H'(E,d) = ker d,/image d; ,

Then dim H (E,d) ¢ o

This result uses compactness of M strongly.

Define
K i i
Index(E,d) = ) (-1) dim H (E,d).
i=0 ‘
This is a very important invariant. Special cases of (E,d)
yield the

i) Euler class X(M) of M (de Rham complex).
ii) Signature of M (Signature complex).
1ii) R genus (Spin complex).
The Atiyah-Singer Index Theorem tells how to compute this
invariant from topological information about M and (E,d).
In particular the theorem says that Index(E,d) may be computed
from the characteristic classes of the tangent bundle TM of M

and the characteristic classes of the virtual bundle d(E,d), the

symbol of (E,d). See [AS].

2. On each Ei choose an Hermitian inner product denoted ( , ).1

This induces an inner product < , >.1 on Cm(Ei) by the formula

{s S.Y>. = I (s, (x), s,(x)). dx.
i M 1 2 i

1’7 72

Using < , >i we define the adjoints

a¥ . c®wEmH)y - c®E )
i i i-1
by
(s d*s > = <d s S, >
1 Tiv27i-1 * i-171* 72714

where



00
s, € C (Ei—

0o
), s, € C (E.)
1 i

1 2

The Laplacian Ai : Cm(Ei) — Cm(Ei) is defined by

_ *
By = djqdy *dyyy 4y

We extend Ai to an operator of L2(Ei), the space of L2

sections of Ei’ as follows. An element u € L2(Ei) is in the
domain of Ai provided that it is the L2 limit of a sequence
u € Cm(Ei) such that Aiun also converges in L2(Ei)' We then
define

A.u = 1lim A, u
i . n

It is not difficult to show that Aiu , if defined, is well
defined. [If M were non compact, we would require that each un
have compact support]. Ai is an unbounded operator and its

domain is a proper subset of L2(Ei). Ai is a diagonalizable

operator. Any eigenvalue X of Ai must be real and non
negative since if Ais = As for non zero s, we have
% %
A-<s,s>. = {A.s,8>, = <({d. ,d. + d. d.)s,s>.
i i 1 i-171 i+1 71 i

_ % %
= <di—1dis’s>i + <di+1dis’s>i

= <d*s,d%s>.
i i i-

1 + <dis’dis>i+ > 0.

1

As <s,s>.1 > 0 the result follows. In particular there is a
sequence of real numbers
0 = A, < Ay, < XA, < ==+ lim A, = @
0 1 2 -

such that for each i=0,1, ..., kK there is a sequence of



finite dimensional subspaces of Cw(Ei). denoted
Ei(AO), Ei(Al), Ei(Ag),

so that for any s € Ei(Aj)

In addition

5 ®
L (Ei) = @

Ei(kj).
J

0

Thus each element in Lz(Ei) can be written as a (possibly

infinite) sum of eigenfunctions and we may think of Ai as the

infinite diagonal matrix

Other properties of A

i
1) s € E;(A) = ker A, if and only if d;s = 0 and a*s = o

The inclusion of Ei(ko) in Kker di induces an isomorphism

E. (\) % H(E,d).
i 0



The elements of"Ei(AO) are called harmoenic forms.

kK .
Index(E,d) = }. (-1) dim E, (A,).

We have

2) For each Aj > 0, i.e. j =1, 2, ... the sequence

d dy dy

0 — E (A,) — E (Xj) —_ s — Ek(kj) — 0

0 "] 1

is exact.

As a corollary, we have immediately
k 1
Yo(-1) dim-Ei(Aj) = 0

for all Aj > 0.
These results rely on the fact that M 1is compact.

reference for the above facts, see [W].

Example:
M = Sl, (E,d) = the de Rham complex
N O | @ PR |
E0 = A TCS C (EO) = C (87)
oAl ok 1 o ~ A% ol
E1 = A TES C (El) C (S87)

where Cm(Sl) denotes smooth € valued functions on

d: Cc™(E.) — CY(E.)
: 0 1

- of
df = 55 do

a¥*. ¢,y — %
: . (E,)

a¥gdo = - gg

For a general

S



Thus 4, : Cm(EO) —_ Cm(EO) is given by
At = - 3°£/30°
0
[1 4] 00
and Al : C (El) — C (El) is given by
a2
nygdd = - <£ ao.
D~
The sequence 0 = AO < Al < Az < ... is given by 0, 1, 4, 9,...
. .2 .
i.e. Aj = j and for i > 0,

EO(Aj) = C(cos jO, sin iB)

is a 2 dimensional complex vector space and EO(AO) = C the
constant functions.

For Aj > 0,

El(Aj) = C((cos jB)YdO, (sin jO)dB) and

El(AO) = £(do).

We now return to the general theory of Ai . The fact that
Ai is diagonal implies that for any function f : R — R, we may
define

£A) L2(Ei) — L2(Ei)

by : for each s € Ei(Aj) set f(Ai)s = f(Aj)s. i.e. the

"matrix" of f(Ai) is
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£fC0)

T£(0)
f(kl)

f(Al)

In general the domain of f(Ai) is not all of L2(Ei). Consider

say f(x) = x. Then f(Ai)'= Ai’ If £ 'is a bounded Borel
function on [O0,«), the Spectral Mapping Theorem says that f(Ai)
is a bounded linear operator on Lz(Ei), in particular the domain
f(Ai)'= L2(Ei)' Note also that if f(x) goes to zero rapidly
enough as x = ®, then the trace of f(Ai), thought of as the
usual trace applied to an infinite matrix (i.e. tr f(Ai)

= ) f(Aj) dim Ei(Aj)) will be a finite number. In this case, we

say f(Ai) is of trace class. See [RS].

We are interested in the family of functions

-tx

ft(X) = e t > 0.
Theorem (Seeley, [S]1)
~th; 2
For t > 0, e is a smoothing operator on L (Ei) and so

is of trace class.

Let ni : M >xXM-—=M be projection on the 'i th factor, i
—tAi
=1, 2. To say e is a smoothing operator means that there

is a smooth section ki(x,y) of the bundle Hom(ani, HTEi) over

M x M, so that for all s € L2(Ei),
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-tA, .
(e 'sHyx) = I ki(x,y)s(y)dy.
M

i . .
Note that kt(x,y) is a linear map from Ei,y to Ei,x
i ~ ~th,
kt(x,y) is called the Schwartz kernel of e
-tAi
The trace of e can be computed in two ways. Namely as

the trace of an infinite matrix 1i.e.

—t).
T dim E. O
1 J

,...
=
o
—
I

T al:]
o

-tA. .
and as tr. e - I [tr k' (x,x)1dx.
2 M t

Note that kl(x,x) . E, — |, so it has a well defined
t i,x i,x
trace.
—tAi —tAi
Proposition: trle = tr2e (we denote this number by
-th, '
tr e )
Proof. It is easy to see that ki(x,y) must be given as follows:
For each Aj choose on orthonormal basis ¢g, v=1,...,

dim E.(A.) of E.(A.). Then
1 ] 1 J

i ® A v v
ki (x,y) = L e Y ¢ (x)bL(y)T.
s J J
i=0 v
i . ;
Here kt(x,y) : Ei,y — Ei,x acts on w € Ei,y by

i - —th v v
ki (X,Y)w = Y e TV pYey), wr, b (x)1
=0 v d ! 1
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where ( )i is the inner product on Ei v The trace of
. ® —tAj v ' v
k,(x,x) is then given by ) e [ 0700, (x)) (1 and the
j=0 v ‘

result follows by integrating over M.
Example: In our example on S1 we may choose our basis of

L2(E0) to be 1 cos (jix), 1 sin (jix) j 21 and the

n 14
constant function -1 Then
Vo
] 2
0 _ 1 1 -ji7t . . .-
K. (X,y) = 7 + — Y} e [cos(ix)cos(jy) + s8in(jx)sin(jy)]
t 21 b | j=1
and
] 2 o 2
[ ir KWo(x,x0dx =1 + T2 4 P v e i taimE (0.
t . - 0 i
Sl ji=1 j=0
We now return to the general situation and we note that since
k 1
¥ (-1)" dim E, (X)) = Index (E,d),
. i 0
i=0
K i
¥ (-1) dim E,(0A,) = 0 - for j > 0,
- i 7]
i=0
—tAO
and e = 1 for all t, we have

Theorem: For all t > 0,

X L CtA
t ¥ -nle 1 dim E, (A
j=0 i=0

118

Index(E,d) = )1

J

K o Y
=YLy (-1)'e dim E (X
i=0 j=0

j)]

i ~ta,
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& 2. The Lefschetz fixed point formula.

Endomorphisms_of elliptic complexes.

A collection T = (T -» T,)  of C linear maps T,:

0’ i

Cm(Ei) - Cm(Ei) is an endomorphism of the complex (E,d)

provided

for all i.

The Ti then induce linear maps
™ . HY(E,d) — H'(E,d).

Since HI(E,d) is finite dimensional, we may form ¢tr T? and we

define the Lefschetz number L(T) of the endomorphism T by

S o(-1)! tr(T?).

0

L({T) =
i

I~

We will be interested in the so called "geometric

endomorphisms". To define these, let f: M— M be a smooth map
and for i=40,..., k, suppose that Ai: f*Ei — Ei is a smooth
bundle map. Then for each x € M, we have a linear map

A oxt BiLrao 7 Bk

from the fiber of Ei over f(x), which is the fiber of f*Ei

over x, to Ei x the fiber of Ei over X. For any s €

Cm(Ei), ve define T.s € C@(Ei) by

(T.s)(x) = A, _-s(f(x)).
i i,x
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We assume that the Ai are chosen so that the Ti define an

endomorphism of (E,d). We call such an endomorphism the
geometric endomorphism determined by f and A = (AO, R Ak)
Example:

(E,d) = the de Rham complex of M

f an arbitrary map.

Ai = i th exterior power of the adjoint, df*, of the

differential df of f, extended to Tg M

Ay = nary oAt M o — AT
Then T, is the familiar f): cw<AiTE M) — Cm(AiTE M) and
diofi = f?+1vdi. In this case, the Lefschetz number is denoted

Our aim is to relate the Lefschetz number of a geometiric
endomorphism to invariants defined on the fixed point set of f.
To do so we need f to be non-degenerate along its fixed point
set in the sense that at each fixed point p, dfp: TMp — TMp
has no eigenvectors with eigenvalue +1 in directians transverse
to the fixed point set. Such fixed points are called non-
degenerate. Note: f = Id, satisfies this condition! For the
sake of simplicity we will assume that at each fixed point p,

det (I - dfp) # 0. The fixed points are then‘iSOlated and since M

is compact they are finite in number. Denote them by {pl, ..oy

Pq}.

Atiyah-Bott Lefschetz Theorem ([AB]): Let f, (E,d) be as above

and T a geometric endomorphism defined by f and A = (A

Ak). Then
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K i
" (-1) " tr(A, )
X izo e 1o P
L(T) = ).
i=1  |det(I-df_ )|
p.
J
Example: (E,d) the de Rham complex, T = f*. At a non—degenerate

fixed point p we have

»

o~
MR

-Dltra. ) =
i,p

-V tratas™®) = det(i-df ).

i 0

Thus we have for any map f with non-degenerate fixed points (pl,

A pq),

L(f) = % sign det(I-df_ ).
i=1 P
Consider the special case where f is an element of the one
parameter group determined by a vector field X with simple
zeros (meaning X : M — TM is transverse to the zero section).
We assume that the fixed points of f are the same as the zeros
of X. As X has simple zeros, the fixed points of f ~are non-

degenerate and at a fixed point p, the degree it has as a zero of

X, degx(p) is just

degx(p) = gign det(I—dfp).

Now f is homotopic to the identity map of M so f*: HI(M;C) —

H!'(M,C) is the identity map. Thus

L(f) = Y(-1)) dim.H! (M,C)

C

which is the Euler number X(M) of M. Thus we have
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Theorem (Hopf): For a vector field X with simple zeros

X(M) = ¥ deg, (p).
X(p)=0

. To obtain the general Hopf theorem (i.e. to drop the requirement
that the zeros be simple) we need only observe that any vector
field with isolated zeros can be homotoped to one with simple

zeros without changing V deg, (p).
X(p)=0

We now give an example where f is not in the flow of any
vector field.

Let M be the surface of genus 2 and realize M as an
octagon with opposite edges identified. Let f be rotation of

by . Then f has 6 fixed points, namely

‘where f is
rotation about

the point 1.

I't is not difficult to calculate that at each fixed point P,
df = [_é _?], i.e. df = rotation by m, so sign det(I-df > = 1
and

y. sign det(I-df_ ) = 6.

p P

HO(M,C) = H2(M,@) = C and f 1is orientation preserving, so

both fg and f; are the identity (because they come from
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invertible maps on HQ(M,Z) = H2(M,Z) = Z ). We may think of

4

Hl(M;C) = C as being generated by the oriented loops ‘A, B, C,

where
Clearly f’i‘A = -A and similarly for B, C, D. Thus with
-1 0
. * -1
respect to the basis A, B, C, D, f1 = -1
0 -1
2 i *
so ). (-1) tr £/ =1 - (-4) + 1 = 6.
i=0
As L(f) = 6 and X(M) = -2, f can not be homotopic to any map

in the flow of a vector field as L(f) is a homotopy invariant.
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§ 3. Outline of the proof of the Lefschetz theorem

We outline a proof which does not rely in an essential way on
the compactness of M. This will allow us to generalize our
results to complexes and endomorphisms defined along the leaves of

a foliation of a compact manifold even though the leaves may be

non compact. A general reference for the material in this section
is [RS].
—tAi
We begin by redefining e . Let C be the curve in the

complex plane

/////J%//////
\;\\\\\\“-\\

|
N

and set
e—tAi ) 1 I e—tA o
2ni C (AI—Ai)
i.e.
-tA
i _ 1 -t o -1
(e s)(x) = 5= J' e [ 8.) s](x)dA

C

for s € Lz(Ei). Now the spectrum of A Spec Ai' consists of

i 9
those X for which Ml - Ai: domain Ai — L2(Ei) is not a

bijection onto L2(Ei) with bounded inverse. On any complete

mani fold, compact or not, Spec Ai is a subset of the non negative

reals. Thus for all X € C, (}\I—Ai)—1 is a bounded operator an

L (Ei)’ so e is defined.

Note that when M is compact, this agrées with our previous

definition.
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For if M is compact, Spec Ai = {0 = AO < Al < } Let
s € Ei(Aj). Then
-tA,
(e lsyx) = 51—— [ e M1 - A sToda
i Ja i
1 -tA _ -1
= o I e L= A Teslooda
C
(since (AI - Ai)s = (A - Aj)s)
1 e—tA
= s(x)-zHi I o PN
C J
=t
= g(x)-e ] by Cauchy's Theorem.
—tAi
Some facts about e
-tA.
1. e ! is a smoothing operator with Schwartz kernel

kl(x,y) a smooth section of Hom(n*E.,n*E.)
t 271 171
(ref [S1).

2. The Spectral Mapping Theorem tells us that

~tA,
Iim e - i in the strong operator topology.
kerA.
t—w i
Here n is projection onto the kernel of A.. The
kerAi i
Schwartz kernel of is always a Coo section of
kerAi
Hom(n*E H*E ) for M complete
PR R B P '
‘ —tAi
3. If M 1is compact, lim tr e = tr

b { .
Lo kerAi

Recall that an operator A on a Hilbert space H is
defined to be positive (written A > 0) provided that for all S

H,

€
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<As,s> > 0

where < , > is the inner product on H.

Proof of 3. By Spectral mapping theorem,

-tA -t A, -t.A
i 171d 271
e > 0, e > e for t1 < t2 and
-tA.
lim e o n
kerAi'
--tAi
From [S]1, we know e is smoothing and, since M is compact,
—tAi
of trace class. Because 0 < nkerAi < e s errAi is also of
trace class. Now trace has the property that if An < An+1 and
An trace class then
lim tr An = tr(lim An).
-Ai —nAi
Set An = e ~ e n =2, 3, ..., and apply the above to get
—Ai --nAi —Ai
tr e - 1lim tr e = tr e - ir “kerAi’
—nAi
so lim. tr e = tr NkerAi’
Counterexamples to: lim A_ =B => 1lim tr A = tr B.
n-ow : n—>eo n

Let Rm be the Hilbert space of square summable infinite
sequences. Let An(xl, X2,... ) = (0, ..., O, Xn’ 0, ... ).
Then An — 0 in the strong operator topology, but tr An = 1

for all n.
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Even if An — B in the norm topology, it is still not
necessarily true that tr An —» tr B as the following example

A (x X X L ) - ( X
n l' 2, 3’ n

Then An — 0 in the norm topology, but tr An = 1 for atl n.

4, Let Ti be as in the Theorenm. Then Tie is a

smoothing operator with kernel

T. .
i - i
kt (x,y) = Ai - kt(f(x),y).

If M 1is nat compact, we need a restriction on f to insure that

Ti 2 L 2 _L
kt (X,¥y)> maps L (Ei) to L (Ei)' We require f to be a

diffeomorphism of M of bounded dilation, i.e. there are

constants 0 < C, < C, <@ so that C, < [det dfxl < C, for all

Xx € M, and that M have bouhded geometry in the sense of Roe

[RI, (as ldet dfxl depends

T.
on the metric on M). ktl(x,y) is always smooth in x and vy.

h. Using 3. above we have
—tAi
lim tr T.e = tr T.-m
=300 i i kerAi
= tr( ST, oo ) = trd(ThH
= “kemi i "kera, i’l-

Proof of 5. Ti is a bounded operator. Assume Ti > 0. Then
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-tA, -tA.

tr T.e L Ctr T = tr(T, (e

i kerAi )

- errAi)

-tA,
_ 1/2 i 1/2
= tr(T;" " (e “kerAi)Ti )

r1/2

i is self adjoint as we are working on complex Hibert spaces.

—tA. —tA,
- 0, /2 1L /2 o.

Si e e I n .
nc kerAi i kerAi i

—tA.
So tr(T§/2(e L yTi/ 2,y

nkerAi i — tr 0 = 0 as t 2 o

(as in the proof of 3. above).

Thus

-tA,

1
tr Tie — tr TinkerAi'

Now for arbitrary Ti we observe that any bounded operator may be

written as

T, = &, - & * V-1 (8q-8,) Wwhere g,, &,, &g, 8, > 0.
Recall
—tAi Ti
tr T.e = I tr kK,  (x,x)dx
i M t :

_ i
= IMtr Ay i (G0 X dx.

6. As t = 0, if x # y, then ki(x,y) — 0 to infinite
order and this convergence is uniform in distance(x,y) provided we
have global bounds on the coefficients of the Ai’ T, £f and the

metrics, and their derivatives to a finite order. See [G]. This
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is intentionally vague. What we require is that the metrics and
operators be bounded in the sense of RoelR]. If M 1is compact
this follows. If M 1is a leaf of a foliation of a compact

manifold N and the metrics and operators come from global
objects on N, it also follows.

Thus if f(x) # x, we have

T

lim tr k' (x,3) = lim A, in(f(x),x) = 0.
>0 g0 10

Given € > 0, this convergence is uniform for all X with

distance(x,{f(x)) > €.

\

PICTURE e N

, , graph £

I/ . . s '
& support of ; , <. 7
T. 1' ! ST
K, (%, ¥) P

M X M
Ti
Thus lim tr kt (x,x) can be computed by integrating only
t~0

over a neighborhood of the fixed point set of f. This
integration can be done using only local information about

(E,d), £ and Ti‘ At a fixed point p, this integral equals

tr A,
1,p

det(l - df
[det( | p)l
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See [AB1, [G].

Because of 5 and 6 above, to complete the proof we need onIy

show:

X . -tA,
Theorem: :. (-1)1tr(Tine ') is independent of t.
i=0
Proof: Set
—tIAi _tZAl
@(Ai) = e - e = A.ld)l(Ai)d)z(Ai)n where
t t
- X - oox ty Yo
e ? -~ e 2 - 5 X - 3X
b, (x) = % , by (x) = e + e

Then wl(Ai), ¢2(Ai) are smoothing operators as are

*
d, T, ,d,¥,(A), and b, (A)d, Also note that tr(AB) =

i 1°
tr (BA) if A and B are smoothing as both are of trace class.

Now

-t A

K i 1°4 K i 274
Y (-1)'tr(T.e y - ¥ (-1h'tr(T.e )
. 1 = i
i=0 i=0
K i
= ¥ (-1 tr(T.9A. )
i=0 oot
k i
= i=0(—1) br (T, Ay (A, (B,))
k i *
= iEl(—1) br(T d, _qd by (A, (A1)
k-1 i *
+ g D tr(T.d, d b, (A Od, (A
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We now show that the first»sum is the negative of the second.

[ Eagtl=y

i * |
-1 e T dy i didy (A0, (A))
i *
-D)Ttrdd, T, d by (A 0D, (A )

i o
DM, (bd; (T di,00))

i 5
1) Ir (T, did, (A0, (A )d, )

K .
_ _ 1 *
= g D rdT, _jdod, b Ay b, (4, )

i=1 1 i 1
k-1
- 41l *
_igo( 1) tr(Tidi+1di¢1(Ai)¢2(Ai))

and done.
The second to the last equality follows from

Lemma: Suppose f is differentiable on (©. Then f(Ai)di_1 =

d, £ ).

Proof: d, A, _, i%-1

1
[
u
[
=
e}
oot
[e]
[47]
¢°]
L
n
i
[—

<
-+
=p
&
o+

(AIi— A) “d. = d, (AT, - A, )
where Ii is the identity on LZ(Ei).

Now

f(A.)d,
i"7i-

1 A
RETT [Cfcx)(xli A Td,_dA

_1_
TF I £(OAd,

(AIi -A, ) TdA
C

1
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1
Ay %1

I £O0 AT
C

1

-A.
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Chapter I1. The Lefschetz Theorem for Foliated Manifolds

§81. Statement of the theorem

Let M be a compact m dimensional manifold and F a
dimension n foliation on M. Then F 1is an n dimensional
subbundle of TM such that for any two sections X,Y € Cm(F),
[(X,Y1l € c”(F). The Frobenius Theorem says that for each x € M,

there is a neighborhood U of x and a diffeomorphism

n

¢$: R X RY — U n +q=m

so that for all =z € Rn X Rq,

n
d¢(TRz) F¢(z)'

Such a (U, is called a foliation chart. Given X € Rq, the

submanifold ¢(RnX{x}) is called a plaque, and is denoted Pg.

The submanifold &({03xR%) is denoted Pg and is called the

transverse submanifold of (Uu,4). The local picture on M 1is
thus
” L
E
RU
A leaf L. of F 1is a maximal integral (i.e. TLX = FX for
all x € L) submanifold. Thus dim L = n. The Frobenius Theorem

implies that through each point x in M, there passes a unique

leaf denoted LX
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Choose a smooth metric on M. This induces a smooth metric
on each L, and L is complete with respect to this metric. Two
different metrics on. M induce quasi-isometric metrics on the
leaf L.

Let {(Ui’¢i)} be a finite cover of M by foliation charts.

Ifi Ui ﬂ‘Uj # ¢ we define a local diffeomorphism fij from Rg
. ' i

(hereafter‘denoted»'R? ) to R?. fij is defined as faollows:
fij(x) =y,

if and only if P;, the plaque of x 1in Ui’ has non trivial

intersection with PJ. i.e. q
y R,
7
x
U
1 X j
PX Yy PY
U5
We may assume that the (Ui,¢i) are chosen so that fi. is

always well defined. In particular we avoid choices such as

RrY
B €1

U;




A transverse measure VvV assigns to any q dimensional
submanifold N which is transverse to F a Borel measure denoted
vN. We say. V- -is an invariant transverse measure if for all

covers by foliation charts {(Ui,¢i)} we have

ii(\) q) =V q
: R, R
1 J
Given an invariant {f{ransverse measure Vv and a function f

on M we define

I fdv
M

as follows:
Let {(Ui,¢i)} be a finite cover of M by foliation charts.
Choose a partition of unity (wi} subordinate to the cover.

Denote v q by Vi and for any plaque P;, denote the volume
R
1

form obtained from the metric on P; by dvoli(x). Then set

JMfdv = J f [ I wi-fdvoli(x)]dvi.

' 'RY p!
i X
i.e. first integrate wif over each plaque in Ui to get a

function on P?, then integrate this function over R? with
respect to the measure vi. It is not difficult to show that

J fdv 1is independent ofvthe choice of cover and partition of
M

unity.

Differential complexes on M elliptic along F
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A differential complex on M along F consists of
a) a- finite collection of smooth finite dimensional complex
vector bundles EO’ e ey Ek'
b) a collection of smooth differential operators
[+.+] [+ ]
d.: C (E,) — C (E.
i i i+

1?

with di+1°di = 0.

¢) each di differentiates only in leaf directions.

For the sake of simplicity we assume that each di is first
order. Then ¢) means the following. Let (U,$> Dbe a foliation
chart with coordinates (Xl’ oo Xn’ yl, . e ey yq), coming from
Rn X Rq. As U is contractible, E.| and E. .| are trivial,

i'u i+1'U
and di'U is given by a dim Ei+1x dim Ei matrix of first order

linear operators, denoted [Ajg]‘ To say that d, differentiates

only in leaf directions means that for any (x,y) € U,

_ iR i L. i
Ajg(x,y) = ag (x,y) + aj (x,y)a/ax1 + *oag (x,y)a/axn.

We require the aig to be smooth complex valued functions on
uU.
Example: Ei = AlF*B C, thus EiIL is the ith exterior power of

the complexified cotangent bundle of L for each leaf L.
di = exterior derivative along the leaves of F.
This is called the de Rham complex of F.
We now restrict our attention to a single leaf L of F.
Note that L need not be compact, although it must be complete.
Denote EiIL by E% and by C;(E%) the space of smoo th

sections of E% with compact support. The operator di induces



31

one, denoted also by di’

d.: c@ElhH — c%eE
it Cotty 0

L

1+1)

and on each leaf L we have the complex

d d d

1 ) — 0.

0 L
0 — CO(E X
We say that the complex (E,d) is elliptic along F provided
that for each leaf L, the above complex is elliptic. We assume
that (E,d) is elliptic along F.

L2 cohomology of (E.d)

Choose a smooth Hermitian metric on each bundle Ei over M.

. . L .
These induce a metric on each Ei and these metrics are also

unique up to quasi-isometry. Using the metrics we construct

a* « %@l ) — ¢®EY) just as we did before. We then
i 0 i+1 0 i

construct

Al s ¢l — ¢®EY)  and we extend A, to
i 0 i 0 i : i

.

A% . L2(E%) — L2(E%)

just as before.

efinition: The ith L2 cohomology of (E,d> along the leaf

o]

L, denoted Hi(E,d) is
Hi(E,d) = ker al.
L i

The ith L2 cohomology of (E,d) is denoted Hl(E,d) and
it assigns to each leaf L the ith cohomology of (E,d)  along

i
L, HL(E,d).
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reguired to be Borel measurable in L. [We are again intentionally
vague about this notion. In practice it means that the family
(S;) can be exhibited].

The random operators are added and composed in the obvious

way. The natural norm is [S|l = Ess supHSLH , defined to be the
L

smallest X > O such that ”SL” 5 < A holds almost everywhere.
L

By almost everywhere we mean almost everywhere on the space R = U
R?, where the R? come from a finite cover by foliation charts,
and the measure on R is the one induced by v. The random
gperators on Ei form a von Neumann algebra denoted wv(F’Ei)'
The measure VvV determines a semi finite normal trace on

wv(F,Ei); If 8§ = (SL) c WV(F'Ei) is an element such that

each SL is given by a smooth kernel kL(x,y), then

trv(S) = IMtr kL(X,X)dv.

For more details on the above constructions we refer to [C],

[M-S1.

Geometric _endomorphisms
Let f: M — M be a smooth map and assume that for each

leaf L. of F, f(L) C L. For each i, let

be a smooth bundle map. We assume that Ti: Cm(Ei) — Cm(Ei)

where (Tis)(x) = Ai Xs(f(x)) satisfy

Tidjoy = 44175
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The Ti then induce maps

o ®EhH - ®Er
i 0 i 0 i

satisfying

L -
Tid; g = d; 1T5
We call such a family T = (TO, ey Tk)' a geometric endomorphism
‘of (E,d> defined by f and A = (AO, . Ak)’ We want the T%

to extend to bounded linear maps

T% : L2(E?) — L2(E%).
For this to be true it is necessary to make some restriction on

f. The most convenient restriction is to require that f : M —

M be a diffeomorphism. This insures that

£* L2(E%) — L2(E%), (£¥s) (%) = §(£(x))
is a bounded linear map. As Ai x is globally bounded on M, we
then have that T% : L2(E%) — L2(E%) is a bounded
(independently of L) linear map for all L., so 'Ti = (T%)' is a

bounded element of wv(F,Ei).
We shall also need some restricitions on the fixed point set,
fix £, of f.

We require:

1) for each L, fix f N L is a union of submanifolds,

fix £f N L =U N?.



35

2)

3)

Note

We n

Je > 0

for each x € fix £f N L, dfx has no eigen vector (in
TLX) with eigen value +1 in directions transverse (in

L) to N% (x € N%).

Given € > 0, denote by nE(Ng) the set
{x € L| distanceL(x,N?) < g).

We assume that there is an €, > 0 such that for all

0
L, i, n8 (N%) is an embedded normal disc bundle in the
0
leaf L and that the n (N%) are disjoint. This
0

implies that for each L, the collection of submanifolds
{N%} is countable. This condition does not follow from

1) and 2).

that f = Id satisfies 1), 2), 3).
ow give a counterexample to show that we must assume

such that ne(N%) are disjoint.

Counterexample: M = T2 (represented as {(x,y) € RZI Ix| < 2,

Iyl < 2}

foliation

so that
i)
ii)
iii)
Let g(y)
i)

with opposite sides identified. Let F be the

spanned by 3/9x. Let f(x,y) be a ¢” function on T

f(x,y) = 1 if |Ix| > 3/2 or |yl > 3/2

f(x,y) = x> - y> if Ixl <1 and |yl <1

for fixed Yo # 0, x — f(x,yo) is transverse to
0. 1i.e. the graph of f(x,yo) is transverse to the
axis.

be a smooth function on T2 so that

g(yy =1 if |yl > 372

2

X
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ii) gdy)

1]
<o
AN

1]
\%

<

1
o

iii)  g(y)
Let X be the vector field on T2 given by
X(x,y) = g(y)f(x,y)a/93x.

Denote by ¢1(X,y) the time 1 flow of X, ¢1 defines a
foliation map. On any leaf Ly = {(x,y)] -2 < x <2}, if y =0,

¢1 has isolated non degenerate fixed points. ¢1|L = Id. Near
0

0,0) the fixed point set of y # 0 is (ty,y). Thus

L U
L
Lly

given € > 0,
ne((—8/4,e/4)) N nE((£/4,8/4)) = $.

Note: By combining the above example with the suspension of a

diffeomorphism of S1 which is contracting about O (S1 =

[-2,21/ ) we can construct an example of a 2 dim foliation on T3

which has some leaves of the form S1 X R and with fixed point

set of f on S1 xR of the form

N

B

i.e. disjoint N%, which are asymptotic to each other.

Lefschetz Number of a_Geometric Endomorphism

Recall that for each leaf L, n%' is the projection of

L2(E%) onto ker A%.
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Now set TF _ = s eTVon and let T¥ € W (F,E.) be the
i,L i i i i Y i
element T? = (T? L). Then T? is an element of trv class and

we define the Vv Lefschetz number of the geometric endomorphism

T = (TO, e ey Tk) to be
K i s
L, (T) =i§0(—1) tr (T,

Fixed Point Indices

Let f : M — M be as above with fixed point set fix f =
U N%. Suppose that for each L and j that we are given a

L,]
. L . L .
function aj defined on Nj. We define

I adv
N

as follows:
Let (Ui,¢i) be a finite cover of M by foliation charts

and {wi} a partition of unity subordinate to the cover. Then

f adv = } I [ y I w.aLdvol(NF)Jav..
N i ? . q L L o J !
R NJOWP_=¢ NP
i i Tx i x
Here dvol(N?) is the volume form on N? induced by the metric

on M. Note that for any given plaque Px' only a finite number

L . L
of Nj satisfy Nj M PX * ¢,

The Lefschetz Theorem: Let M, F, f, T, A and (E,d) be as

above. To each 'N? C fix f we may associate a function a%

which depends on f, A, the symbols of the Ai’ and the metrics

and their jets to a finite order only an N? so that



38

LV(T) = J adv.
N

Some Examples

1 (E,d) = the de Rham, signature, Dolbeault or spin complex of F.
iy If £ =1d, T = 1d, then a% is the usual local
integrand formula given by the Atiyah-Singer Index
Theorem. We thus recover the Connes Index Theorem for
foliated manifolds for these operators. If we take the
codimension O foliation of M which has one leaf
(namely M), we recover the Atiyah-Singer Index Theorem

for these operators.

ii) In general, i.e. f = Id, T = f*, a% is the usual local

integrand formula given by the Atiyah-Singer G Index

Theorem. In particular, for the de Rham compleXx
aL = G(NF) sign det(I-df )
J J n

where G(N%) is the usual local integrand for the Euler

class of N% and df, is the action of deL
restricted to the normal bundle of N% in L.

If we take the codimension O foliation, we recover
the Atiyah-Singer G Index Theorem and the Atiyah-Bott

Lefschetz Theorem for these operators.

2) £ N% congsists of a single point p then

koo

Y o(-1) tr Ay
JL . _i=0 P
i |det(I—de’p|



a9

where de P is the linear map on TLp. given by the restriction

of df
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§2. Computation of an example of Lv(f)

We now construct a foliated manifold M and a diffeomorphism

f of M preserving the foliation which has non zero Lefschetz

numbers for all the classical complexes. The manifold M 1is a

flat T2 bundlie over 24, the surface of genus 4. First we give
an algebraic construction of M and f, then we show how to

realize them geometrically.

Let T C SL2R be a subgroup generated by elements
S d 0
aj = 0 “w«f”, j= 0, ..., 7 where « = 0 d—l

rotation by =n/16. For proper choice of o, 24 = F\SLQR/SOZ.

We take for a fundamental domain of 24 a regular 16 gon D

centered at zero in the Poincaré disc (< SL2R/SOZ). The action of

J and O is

the generators we have chosen for I’ identifies opposite edges of
D by translation along the geodesic through the midpoints of the

respective edges. The elements aj satisfy one relation, namely

-1 -1 -1 a_la_la -1 m—la a_la = Id
Apky Gglg Gy &g Xglg &y X &,y Xalk, &gk g = .

We note that the SO2 bundle F\SLZR over 24 is a non trivial

double cover of the orthonormal frame bundle F\PSLZR of 84 and

so defines a spin structure on 24.

To determine a flat T2 bundle over 24, we need only define

a homomorphism h : n124 ~—> Diff T2. The bundle M =

(SLZIR/SOZ)XhT2 is obtained from (SLZIR/Soz)XT2 by identifying

(x,t) with (yx, h(y)t) for all v € 7 The natural

124'
foliation F on (SL2R/SOZ)XT2, whose leaves are (SLQR/SOZ)X{t),
then descends to a foliation F on M transverse to the fibers

of M.
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To this end we denote by A the elemént of Diff T2

determined by the affine map of Rz, (x,y) — (-x + e, -y + ¢e)

and by B the elémentvdetermined by (x,y) — (-X,-y). Here we
R ) .
set T° = Rz/zz. Then define h :rn124 — Diff T2 by
A i=0, 3, 4, 7
h(ex.) =
J B j =1, 2, 5, 6
Note that A2 = B2 = .Id, so h preserves the relation among the

aj and defines a homomorphism. Also note that [AB]n'= Id &
n =0 since AB is determined by the affine mép (x,y) —
(x+e, y+e). This implies that all the leaves of F are non-
compact.
The diffeomorphisms A and B preservé Lebesgue measure dt

2 . . .
on T~ . Thus dt determines an invariant transverse measure Vv

on F. Note that for any fiber T2 of M, v(T2) = 1.

A point in M will be denoted [gSO.,t] where g € SL,R,

2 P
9
and t € T°. Let 71 € 802 be rotation by =n/4. Define f : M
— M by
f([gSOz,t]) = [rgSOQ,t].
Lemma: f is well defined and preserves F.
Proof: I£f f is well defined, it obviously preserves F. To see

that f is well defined, note that the action of r on the

fundamental domain D 1is to rotate it about its center by wn/2

(not n/4). One then easily checks that raj = aj+4r or raj =
a314r for all j, where the addition of subscripts is mod 8. Now

for each aj we have



f([angO2. h(aj)t]) = [rangOE, h(aj)t]

+1 : _ ¥1
[aj+4rg802, h(aj)t] = [rgSOz, h(aj+4aj)t]
= [rgSOz, tl = f([gSOQ, t1)
since h(aji4aj) = Id for all j. As an arbitrary vy € I' can be

written as a product of the aj ‘we have that f is well defined.
In order to determine the fixed point set of f, we now give
a geometric construction of M and f. To construct M, we

identify points on the boundary of D X T2 in the follwing way.

Eﬁ ! The fundamental domain D.

The edge. E§ is identified to the edge E? by the action of the

isometry o ; of the Poincaré disc SL2R/SOZ.
9 .

We identify E} x T to B x T2 by (e, t) (ai(e)y hla)t),

Then M equals D % T2/ ~ . D x T2 is foliated by leaves of the

form D %X {t} and the above identifications respect this
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foliation, so it induces a foliation on M and this foliation is
just F. The map f : D X T2 — D X T2 given by rotation by
/2 on the D factor and the identity on the T factor induces

f on M.

We write (d, t) for a point in D X T2 and [d,t] for the
point it determines in M. It is clear that all the points

[ce,t], t € T2 are fixed by f and that the action of df on

TL[c,t] is rotation by n/2.
The only other possible fixed points are the points [v,t],
‘)
t € T°. These are in fact fixed since
Fv,t) = (v, t) = (v, hia tasa tadt) = (v, t)
’ ’ i 0O "7°6 75 ! :
It is also easy to see that the action of df on TL is

[v, ]
rotation by wn/2.

The metric we put on M 1is the one induced from D X T2 by
the Poincaré metric on D and the natural metric on T2. The
drientation we put on F is the one it receives from the natural
orientation on D.

The local fixed point indices and Lefschetz numbers Lv(f)

for T = df for the classical complexes are given below.

1. de Rham Complex

The local index at an isolated nondegenerate fixed point p
is sign of det(I—dfp) (LAB1, I1, & 3). As dfp is rotation by
n/2 det(I—dfp) = 2 for all fixed points and we have

L(f)=f1d\>=f 1dt+J' 1 dt = 2.
v N

T2 T2
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2 i % | %
Now L (f) =»§ (1) tr (f) where fi’L

eouler ipy s Ioropy
.-HL(L,R) - HL(L,R)
where L is a leaf of F. As L is a non compact éomplete

. O . _ 2 3 _ ) * - )!C
surface, we have HL(L,R) = HL(L,R) = 0. Thus trv(fo) = trv(f2)
= 0 and trv(fr) = ~2. This implies that for v almost all L,

Hi(L;R) # 0, i.e. for almost all L., there are non zero harmonic

L2 one forms on L.

2. Signature Comple

For each leaf L, flL is an isometry so we may consider the
action of f on the signature complex of F.

At each fixed point p,‘dfp : TLp > TL-p is an isometry of
the oriented 2 dim space TLp. Thus dfp is given by a
rotétion of TLp through a well defined (because of the
orientation) angle Bp. The fixed point index of f at p is
fhen

-i cot(6p/2)

(see [AB]l, II, Theorem 6.27). Thus in our case Bp = n/2 so the
fixed point index at each fixed point is -i and the Lefschetz

number for f is

Lv(f) = =-2i.

3. Dolbeault Complex

The surface 84 is a complex manifold and this complex

structure lifts to a complex structure on each leaf L of F.
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The map f covers a holomorphic map on 24, so f restricted to
any leaf is holomorphic. Denote by: Ap,q the bundle on M- over
F,

AP T - ApT*FQCAqT*F

* .
where T'F and T'F are respectively the holomorphic and

antiholomorphic cotangent bundles of F. A section of AP g
then a form of type p,a on each leaf L. Since f is a
holomorphic map of each leaf f* induces an endomorphism of the

p Dolbeault complex, p =0, 1

0o — c”waP'% 25 kPl - 0.

We denote the Lefschetz number in this case by Lv(fp). By
equation (4.8) of ([ABl, II, the local index at a nondegenerate

isolated fixed point p 1is given by

Y
trCA (dfp)

detC(I—dfp)

Here dfp : TLp — TLp maps the real tangent space of TLp
to itself. However, TLp alsc has a complex structure and dfp
preserves that structure. Thus we may think of dfp as a complex
linear map of the complex space TLp. The dfp in the above
formula is to be understood in this way.

Now df : TLp — TLp in our example, considered as a

p
complex linear map, is just multiplication by i. Thus for p =
0, the local indices are T%T and Lv(fo) = lfi = 1+i, while for
p =1 the local indices are i/(1-i) .and L (fl) = 21 = i-1.

\Y 1-1
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4. Spin Complex

The surface . 24 is a spin manifold so each leaf L is a
spin manifold. As we have noted above a spin structure on 24 is
given by

[\SL,R — T\PSL,R

where F\PSL2R is orthonormal frame bundle of 24. Thus we may

exhibit a spin structure on F by
SL.RX. T2 - PSL,Rx, T2
2 h 2 h
where PSLZRXhTz is the orthonormal frame bundle of the foliation

F. In this representation f : M — M 1is given by

f(L{gs80,, t1) = {rgSso

9 t]

2 ’
and df : PSL_RX 12 — PSL, Rx 12 s given by
2""h 2" "h
df ([tg, t1) = ([trg, t1)
and we indicate the class of & in PSL,R = SL,R/*1 by 2g.

~

It is clear that df has two liftings df to SLZRXhTZ, namely
d;([g, t1) = [rg, t1i

and
d;n([g, t1) = [r &, t]

where rJr is rotation by an .

i=Y
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The local fixed point index for f for the spin complex at
an isolated non degenerate fixed point p ‘'is given by ([ABl, II,
Theorem 8.35)

i
t 5 cosec(ep/2)

2

To resolve the ambiguity for the indices we must choose a lifting

where 0 is the angle of rotation (i.e. I > of df on TL_.
P P p

of df to a spin covering (see [G] Theorem 4.5.2 in this regard).
For the lifting df the local index is —i/JE and the Lefschetz
number L (f, df) is -2i/yJ2 . For the lifting df - the local

index is i/JE and the Lefschetz number Lv(f’ dfn) is Zi/JE .
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£3. Qutline of thekproof of the lLefschetz theorem

We first collect some facts about the Schwartz kernel of

-tA,
i
e

We assume that at each point x € M, we may choose local
coordinates so that with respect to these coordinates, the symbol

of Ai’ a(Ai), which has an expression as

o(Ai) = a2(x,8) + al(x,E) + ao(x,E)

i . : . . ‘ . .
where each a is ‘a square matrix and is of order i in &,

satisfies

9 n
a“(x,E) = Y gi.EiE.-I
i,=1 1 1
where (gij) is the induced metric on T*F. [Each entry of a1

n
is of the form +-1 } bkEk where bk(x) is a ¢” function and
k=1

each entry of aO is a COo functionl]. The classical operators

all satisfy this condition.

. —tA,
Let ki L(x,y) be the Schwartz kernel of e ' on L.

Then there is an asymptotic expansion as t — 0 of the form

i i -
kt,L(x,y) ~ Kt,L(X’y) =
ro 3k (k-n)/2 (i (x=y) -E/VT), i o151
). ). t J e bk .(X,E)_T:E:E_ d&
k=0 j=0 »J [4=52= 1,
jtk even 2
(See [G]).

Here |<E|2 = EgijEiEj and r 1is sufficiently large. Each
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b; j(x,E) is homogeneous of degree j in & and if we write

i _ - i o
bk,j(x,E) = ¥ _bk’j’a(x)a

then each b! (x) is given as a canonical polynomial in the

K,j,cx
al and their derivatives to a finite order. As these are all
globally bounded on ‘M, this implies that for fixed t, Ki L(x,yi

is bounded on M independently of  x,y and L.
To say ki L(x,y) ~ Ki L(x,y) means that given j, there is

cj so that for sufficiently large r,

i

_ gl J
lkt’L(x,y) Kt’L(x,y)l < Cjt .
cj depends continuously on a2, al, ao and so since these are

bounded on M, we have that the above inequality is independent of
i

X,y and L. Thus for small t, we have that kt L

-tA.
uni formly bounded on M and so trv(e 1) < o,

(x,y) is

We appeal to I[C] for the fact that k, . (x,y) is
transversely measurable,.

References for the above are [ABPl, [G] and (T1.

—(t+s)Ai —tAi ~sAi
Now as e = e e we have that for all t‘) 0,
—tAi
e is trv class. Alternately we have by the Spectiral
~tAi —sAi
Mapping Theorem that on each L, 0 < e < e if t > s.

This implies that for all x € L, 0 < tr ki LK, %) < tr k; L (X300

Thus we have

0 < I tr k! (x,x)dv < f tr k; (x,%x)dV
M

t,L M , L.



50

-tA.
and e ! is trv class for all t > 0.
1f |x-yl| > €, Ki L (x,¥) can be integrated by parts to
prove
x| Cete, iyt as t = 0.
c(e,j) 1is independent of x,y and L. As Ki L(x,y) vanishes
to infinite order off the diagonal, so does ki L (Y.
k ) —tAi
Proposition: ¥ (-1) tr (T.e ) is independent of t.
i=0
—tAi
As Ti is globally bounded on M and e is trv
-th, '
class, Tie is -trv class. The proof of this proposition is

essentially the same as in the compact case and is omitted.

-tA,

.y . . i, _ ‘ Lo *
Proposition: lim trv(Tie ) = trv(niTini) ( = trvTi)'
{0
Proof: As trv is a normal trace

(i.e. fnﬂf => trv(fn) 4 trv(f))‘

we may apply the argument used in the classical case to conclude

that
—tA.1
lim tr (T.e ) = tr (T.m.).
{0 1 \Y I -1 .
: ' —tAi
But o, is trv class (as 0 < . £ e for all t > 0) and
W, = n?. Thus
i i

_ 2, _
trv(Tini) = trv(TiHi) = trv(niTini)
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and done.

Alternate proof: For this we assume d 1is of Dirac type. All

the classical operators are of Dirac type. From [R]1, II, Lemma

1.2, we have that

i) for t > tO > 0, there is ¢ > 0 so that for all x,y € L,

i
Ikt,L

ii) On any compact subset of L X L, Kk

(x, )] < ¢
i

t,L(X’y) converges

.
uni formly to kLl(X,Y), the kernel of the projection onto

ker A, .
’ 1

Since Ti is uniformly bounded on M, i) and ii) are true

i 3 ,
t,L(f(X)’y) ( = Schwartz

-tA, b | "

i i
kernel of Tie ) and kL (x,y) replaced by Ai,ka

Schwartz kernel of Tini). Thus for any plagque P we have

. i
with kt,L(X’y) replaced by Ai,xk

Yax,y), ( =

. i
iig [Ptr(Ai,th,L(f(x).x))dx
n

= I tr(A. _k i(f(x),x))dx.
p i,x L

As I tr (A, kl (f(x),x))dx 1is bounded by a constant for all
p i, x t,L ,

plaques P of a fixed finite open cover by foliation charts, we

may apply the Bounded Convergence Theorem to the measure space R

-tA,
=URY, v=UpWVv, toobtain the result that 1lim tr (T.e ') =
i i AV |
t—>w
tr (T.w. ). But as before . is tr class and n? ="n. S0
v 1 1 1 \Y] 1 1

%
trv(Tini) = trv(niTiﬂi) = trv(Ti)'

To complete the proof of the Lefschetz Theorem, we now
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compute
—tAi
lim tr (T.e ).
>0 Vo
As Ti is uniformly bounded on M, the Schwartz kernel
‘ Ti' —tAi i
kt,L(X‘y) of Tie which is Ai’xkt’L(f(x);y) is asymptotic
as t 2> 0 (uniformly on_ _M!) to
i —
Ai,th,L(f(X)’y) =
(k-n)/2 (i () -y) -E/T i e“"g'2
X.t I e Aipxbk’j(f(x),Y)*T:EZE—T d&
k bl .] [ 2 ] .
i _ i _ i Ce i L
Set Ck,j = Ai.ka,j(f(x),y). Then Ck,j is: given by a canonical

polynomial in A, f, the al, the metrics, and their derivatives

to a finite order.

Let Bi(t) be the element of WV(F, Ei) whose Schwartz
T

kernel on each leaf 1., denoted KtlL(x,y), is

T.

i _ 1
Kt,L(X'y) = A K

i.x t,L(f(X)’y)‘

k .
Set B(t) = X (—l)lBi(t) and denote its Schwartz kernel by
i=0

‘ o ' ' -tA,
1 . .
Kt,L‘X'Y)' As t » 0, trv(Tie ) ;s asymptotlcbto trv(Bi¥t))

‘ . -tA,
SO (—l)ltrv(Tie 1), which is independent of t, is asymptotic

to

k
).
i=0
K i
igo(—l)'trv(Bi(t)) = trv(B(t)).
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. -tA. _ :
Thus to compute Z(—l)ltrv(Tie l) we need only compute

'trV(B(t)) and since this is independedt of t, only the zero th

. -tA.
order term in t can be non zero (and equals Z(—l)ltrV(Tie l)).

Recall that H 80.) 0 such that the embedded normal bundles

n (N%) are disjoint. If distanceL(f(x),x) > €, > 0, then

80 1
Ti }
tr Kt L(X,x) — 0 to infinite order in t wuniformly on M.
Thus the same is true of tr Kt L(x,x), S0 we may assume
tr(Kt L(x,x)) =0 on M- U ng(N?) where € [to be specified

’ L,j

later] satisfies 0 < g < 80.

We now wish to claim that given £ > 0, there is 51 > 0 so

that for all x € M - U ne(NE)’ distanceL(x,f(x)) > € In

L,]

general this is false. However if we assume that the fixed point

1

set of f in any coordinate chart U looks like (fix f N prlaque)
XRS, it is true. We shall assume this.

Denote by { tr B(t), the collection of functions
n ' ’
£

{ tr (K (x,x)), i.e. to each- NL we associate the
L t,L: i
ne(Nj)

function given by the integral over the fiber of nE(Ng) of the

function tr(Kt L(X,X)). Then { tr B(t) assigns to each N? a

n
£

function.

g
=
o
1e]
o
14)]
et
e
—
o
=

tr (B(t)) = J [][ tr B(t)]ldv.
V) k
N
Proof: Let {Ui} be a finite measurable partition of M, (i.e.

U Ui = M, Ui M Uj = ¢, 1 # j). Choose the Ui so-that
i
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1) there is an open connected set ‘wi with

2) U, C V, where V. is a foliation chart for F.
Given € > .0, set
Uf = {x € M| distanceL(X, Ui ML) < & for all leaves
L, x € L}.b‘

(thus Uf is a foliation & neighborhood of U ).

Choose & so that 0 < & < 50 and U? C Vi for all i.
Now for each i, choose an open cover Vi’ Vi EEEEE Vi r
’ 9 i
of M by foliation charts and let wi, wi 10 e wi r be a

partation of unity subordinate to the cover with

Denote by m : hg(N%) — N% the'projection and for each i, let

Xy be the characteristic function of - U;. Let X, be the
i

measurable function on M,

L
XU‘(n(x)) x € U ng(Nj)

1 Lyj

0 otherwis e.

Thus X, is the characteristic function of n5 L .
! N MU

[See picture belgﬁ, which gives the situation on.a single leaf LI.
N ‘ . ‘

1ﬁnL \ v;NL

U; AL
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Now tr (B(t)) = g tr (X, -B(t)). [If we compute tr (X, -B(t))

using the cover Vi, \' and the partition of unity wi,

i1’

1 on the support of xi-B(t), we have

e

¥

. ‘e since .
1’1s ’ lbl

trv(Xi~B(t)) = J [ J Xitr(Kt’L(x,x))dx]dvi.

P

In each plaque P, the situation is as pictured above (we assume
without loss of generality that there is only one N% with N? N

P # ¢&). Then

IPXitr(Kt’L(X,X))dX = [ tr(Kt’L(X,X))dX.

n
EINIanPnUi

But for any bundle n over base N,

Thus f Xitr(Kt'L(x,x))dx = j [f tr(Kt,L(x,x))]dn

NorPnU L TR o)
J i £ N}

p

= f . xi[f t{(Kt’L(X.x))]dn
NTOP n_(N,)
J € 1

and we have

1

tr (X, B(t)) J [I xi{fn tr(Kt’L(x.x))}dn]dvi

R (UN?)HP .

= [x.f tr(B(t))ldv
N 1

n
&

where the last equality follows immediately provided we compute

using Vi, Vi,l’ .. and wi’ wi,l’
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Summing over i gives the proposition.

Now to compute trv(B(t)) or rather f tr(B(t)).
n

£
Case 1. LCfix f, so Ng = L. Then
"f tr B(t) = tr K, . (x,%)]
n (L) t. L
E
and since f(x) = x for all x € L, tr Kt L(X,X)IL is given by
2

K . _ . —l&]

Loty (G [ tr ey - S dE.

i=0 9, ] A e §

. i . .. .
Since cQj is homogeneous of order j in £ and vanishes for

Q+j odd, c;j is of odd order in £ if 2 is odd. Thus the

integral is zero if Q is odd and so if n = dim L is odd, there
is no zero th order term and we set a% = 0 in this case. If n

is even, we set

' 2
K . . -lg]
L _v ,_4,1 iv . _e
ag __Z (-1) X.I tr e i Timaee dE
i=0 i [i—g——]!
and note that ag is given as a polynomial in A, f, the al, the

metrics, and their derivatives to a finite order.

Case 2. LN fix f = U N% # 1.

J
Lemma: f Ar(K, . (x,x)) ~ ¥ pGIPR-pY/241 0 ke dim NY = p,
Lemma I L 4 9, j j
he(N.) Q,1]
J i*+9 even

and where d; ; depends only on A, f the ,al, the metrics, and
their derivatives to finite order on N?. This asymptotic expansion

is independent of ' x and L, i.e."given q, and €&, there is



57

c(q,e) so that for all N?,

NG LS DV

q
Q. < ec(g,edt™.

lf ti(Kt'L(x,x))
ne(Nj)
To see this expand tr(Kt L(x,‘x)) ‘on ng(N%) in a Taylor
series (about the zero section N) in t and then integrate over

the fiber of nE(NE). See [G].

Thus in our calculation of I { tr(B(t))dv, we may replace
N

N
£
f tr (K (x,%Xx)) by a where a = (aL) and
N t,L J
£
. L ~ . . L . . .
i) aj = 0 if dim Nj = p is odd (for in this case the

asymptotic expansion has no zero th order term).

(-1)! ¥ d; . if dim N = p is even.
0 j+o=p 1

This completes the proof of the Theorem.

To identify the a% for the classical complexes, we appeal
to [G] or [ABP] where the calculation of these is made. As this
is a purely local problem, we may use the proofs in the compact

case without alternation. Details will appear elsewhere.



58

[AB]

[ABP]
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