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Introduction 

These notes are from lectures given at Hokkaido University 

while I was a Fellow of the Japan Society for the Promotion of 

Science. I t  is a pleasure to thank the mathematics department at 

Hokkaido University for its warm hospitality and the JSPS for its 

generous support. In particular I want to thank Tatsuo Suwa and 

Maruo Suzuki for helping with the preparation of these notes and 

for making my visit to Sapporo so enjoyable. 

The aim of the notes is to give a rough outline of the proof 

of a Lefschetz Theorem for endomorphisms of a differential complex 

on a compact foliated manifold. The differential operators of the 

complex are required to differentiate only in leaf directions and 

the restriction of the complex to any leaf is required to be 

elliptic. The Theorem we prove is sufficiently general that 

special cases of i t  give the Atiyah-Singer G Index Theorem (and so 

also the Atiyah-Singer Index Theorem), the Atiyah-Bott Lefschetz 

Theorem and the Connes Index Theorem. 

The new results given here are joint work with Connor 

Lazarov, which was partially supported by a National Science 

Foundation grant. 
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Chapter I. Review of Classical Index and Lefschetz Theorems 

9 1 .  The index of.= elliptic complex 

We denote by M a closed, compact, n dimensional Riemannian 

manifold. 

An el!.i_~.t_Lc cp_mp_!.e).! (E,d) over M consists of: 

a) a finite collection of smooth finite dimensional 

complex vector bundles Eo, El, ..., Ek . 

b) a collection of smooth differential operators 

where c ~ ( E ~ )  denotes the smooth sections of Ei . 

c) the operators d i  are required to satisfy 

and a technical condition called ellipticity (see 

below). 

We assume that the di are I s '  order differential operators. 

This means that on any coordinate chart U, x l ,  ..., x of M ,  d i  n 

is given by a matrix of lSt order linear differential operators. 

To be more specific, suppose 



are trivializations of Ei and Ei+l over U. With respect to 

these trivializations, dilU is given by a q x r matrix [hjP] 

of operators of the form 

where each aiP t crn(u), the space of smooth complex functions on 
01 

U. Thus if s t c ~ ( E ~ )  and x t U, we may write sIU , using the 

trivialization above, as 

where each s i  E crn(IJ) and we have 

Ellipticity: 

If x t M and E t T * M ~  , the fiber over x of the 

cotangent bundle T*M of M, then the symbol of d i  at x, E 

is a linear map from the fiber of Ei over x to the fiber of 

Ei+l over x. If di is represented in local coordinates by the 

matrix [AjP(x)] as above, then 'x,~(~i) is represented by the 

matrix [A (x,E)] where 
j 9 

if E = Eldx + * a -  

1 
+ Endxn . Note that the term aAP(x), the 

zero th order part of A. (x) does not appear in .I 9 AjP(x,E). 

The complex (E,d) is elliptic provided that for each x t M 



and non-zero E E T*Mx , the sequence 

is exact. 

We may restate this condition as follows: Let n : T*M ---+ M 

be the projection. Then we have a sequence of fiber bundle maps 

where for any point (x,E) E T"M, 

is just 
'(x,E) 

(ai). The complex (End) is elliptic provided 

that this sequence is exact off the zero section. If (E,d) is 

el 1 ipt ic. the above sequence defines an element U(E,d) E Kc(~*M) 

called the symbol of (E.d). Here Kc(T*M) is the K theory of 

T*M wi th compact supports (see [AS] 1. 

Example: The de Rham complex 

* T M = complexified cotangent bundle of M C 
i * Ei = A TCM the i th exterior power of TEM 

crn(E. = smooth complex i forms on M. 
1 

di is the usual exterior derivative. 

i * i+l * Note: d (di) = AE : A TCMx + AC T Mx 
x,E 

where AE is 

exterior multiplication by E . 

Some facts about elliptic complexes 



i 
1. Define H (E,d) = ker di/image di-l . 

Then dim H ~ ( E , ~ )  < OJ . 

This result uses compactness of M strongly. 

Define 

k 
Index(E,d) = 1 (-lIi dim H~(E,~). 

This is a very important invariant. Special cases of (E,d) 

yield the 

i) Euler class X(M) of M (de Rham complex). 

i i )  Signature of M (Signature complex). 
h 

i i i )  A genus (Spin complex). 

The Atiyah-Singer Index Theorem tells how to compute this 

invariant from topological information about M and (E,d). 

In particular the theorem says that Index(E,d) may be computed 

from the characteristic classes of the tangent bundle TM of M 

and the characteristic classes of the virtual bundle a(E,d), the 

symbol of (E,d). See [AS]. 

2. On each Ei choose an Hermitian inner product denoted ( . I i  . 
This induces an inner product < , > i  on c*(E~) by the formula 

<sl, s2>i (sl(x), s2(x)) i dx. 

Using < , > .  we define the adjoints 
1 

by 

where 



The Laplacian Ai : c ~ ( E ~ )  cm(Ei) is defined by 

We extend Ai 2 to an operator of L (Ei), the space of L2 

2 sections of E i 9  as follows. An element u E L (Ei) is in the 

domain of Ai provided that i t  is the L~ limit of a sequence 

u E cm(Ei) such that Aiun 2 also converges in L (Ei). We then n 

define 

A.u = lim Aiun . 
1 n-+m 

I t  is not difficult to show that A i u  , if defined, is well 

defined. [ ~ f  M were non compact, we would require that each u n 

have compact support]. Ai is an unbounded operator and its 

2 domain is a proper subset of L (Ei). Ai is a diagonalizable 

operator. Any eigenvalue X of A must be real and non 

negative since if A.s = As for non zero s, we have 
1 

- * * 
- <di-ldis,s> i + <di+ldis,s> i 

* * = <d.s,d.s> + < d . ~ , d ~ s > ~ + ~  - 
1 1 i-1 1 

> 0. 

As < s , s > ~  > 0 the result follows. In particular there is a 

sequence of real numbers 

such that for each i = 0, 1, ..., k there is a sequence of 



f ini te dimensional subspaces of c ~ ( E ~  1, denoted 

so that for any s E Ei(X.) 
J 

In addition 

2 Thus each element in L (Ei) can be written as a (possibly 

infinite) sum of eigenfunctions and we may think of A i  as the 

infinite diagonal matrix 

Other properties of 
*i * 

1) s E Ei(XO) = ker Ai if and only if d.s = 0 and d.s = 0 . 
1 1 

The inclusion of Ei(XO) in ker d i  induces an isomorphism 



The elements of Ei(AO) are called harmonic forms. We have 

k 
Index(E9d) = (-lIi dim Ei(XO). 

i=O 

2 )  For each A. > 0, i.e. j = 1 2 . the sequence 
J 

is exact. 

As a corollary, we have immediately 

k 
1 (-l)i dim E.(A.) = 0 
i=O 1 J  

for all A. > 0. 
J 

These results rely on the fact that M is compact. For a general 

reference for the above facts, see CWI. 

1 M = S , (E,d) = the de Rham complex 

1 where cm(sl) denotes smooth lC valued functions on S . 



a, 
Thus A, : C (E,) --+ c"(E,) is given by 

2 aor = - a r/ae 2 

and A, : c ~ ( E ~ )  --+Cm(E1) is given by 

The sequence 0 = A, < A < A < . is given by O *  l *  4 *  9, . . .  1 

EO(A.) = C(cos j0, sin j0) 
J 

is a 2 dimensional complex vector space and EO(AO) = C the 

constant functions. 

For A. > 0 ,  
J 

E,(A.) = C(tcos jB)dB, (sin jf3)de) 
J 

and 

E1(AO) = C(d0). 

We now return to the general theory of Ai . The fact that 

A i  is diagonal implies that for any function f : W --+ R, we may 

define 

by : for each s E Ei(A.) set f(Ai)s = f(A.1~. i.e. the 
J J 

"matrix" of f(Ai) is 



In general the domain of f(Ai) is not all of L~(E~). Consider 

say f(x) = x. Then f(Ai) = Ai. If f is a bounded Bore1 

function on CO,m), the Spectral Mapping Theorem says that f(Ai) 

2 is a bounded linear operator on L (Ei). in particular the domain 

2 ftAi) = L (Ei). Note also that if f(x) goes to zero rapidly 

enough as x + a), then the trace of f(Ai), thought of as the 

usual trace applied to an infinite matrix (i.e. tr f(Ai) 

= 1 f(Xj) dim Ei(X.)) will be a finite number. In this case. we 
J 

say f(Ai) is of trace class. See CRSI. 

We are interested in the family of functions 

Theorem (See1 ey, E.SU -. 

- tAi 
For t > O , e  is a smoothing operator on L ~ ( E ~ )  and so 

is of trace class. 

Let ni : M x M + M be projection on the i th factor, i 

- tAi 
= 1, 2. To say e is a smoothing operator means that there 

i * * is a smooth section kt(x.y) of the bundle Hom(n2Ei, nlEi) over 

2 M x M, so that for all s E L (Ei), 



i Note that kt(x,y) is a linear map from E to Ei,x i ,Y 
- tAi 

k:(x,y) is called the Schwartz kernel of e 

- tAi 
The trace of e can be computed in two ways. Namely as 

the trace of an infinite matrix i.e. 

- tAi -tXj 
trle = C e  dim Ei(Xj) 

j = O  

1 Note that kt(x,x) : E i ,x + Ei ,x so i t  has a well defined 

trace. 

-tAi -tAi . . 
Pr~~osl_t lon:  trle = tr2e (we denote this number by 

-tAi 
tr e 1 .  

i Proof. I t  is easy to see that kt(x,y) must be given as follows: - - .--. -. .. 

For each 
'.i 

choose on or thonormal basis by, v = 1. .... 
dim Ei (A. of Ei (A.1. Then 

J .I 

i Here kt(x,y) : E --) E i  acts on w E E. 
i ,Y , x 1 ,Y 

by 



w h e r e  ( , I i  i s  t h e  i n n e r  p r o d u c t  o n  E  T h e  t r a c e  o f  i  ,Y' 
m - t X j  

i  k t ( x . x )  i s  t h e n  g i v e n  b y  C e C ~ ( 4 ~ ( x ) , 0 ~ ( x ) ) ~ l  a n d  t h e  
j = o  v  J 

r e s u l t  f o l l o w s  b y  i n t e g r a t i n g  o v e r  M. 

Example ;  I n  o u r  e x a m p l e  on  S' we may c h o o s e  o u r  b a s i s  o f  

2 s i n  ( j x )  j 1 a n d  t h e  c o s  ( j x ) .  - L ( E o )  t o  b e  - 
J;; 6;; 

1  c o n s t a n t  f u n c t i o n  - . T h e n  
62rr 

a n d  

m 2 m 
0 

2 I t r  k t ( x B x ) d x  = 1 * 1 2 e  - J  t = ~ e  -' ' d i n  E O ( X . ) -  
j = 1  j = o  J 

s1 

We now r e t u r n  t o  t h e  g e n e r a l  s i t u a t i o n  a n d  we n o t e  t h a t  s i n c e  

k 
1 ( - 1 ) '  d i m  E i ( X O )  = I n d e x  ( E . d ) ,  

i = O  

k i  
( -1)  d i m  E i ( X  = 0 f o r  j > 0 .  

i = 0  

- tXo 
a n d  e  = 1  f o r a l l  t ,  w e h a v e  

T h e o r e m :  F o r  a l l  t > 0 ,  . - . . . - - . - .- . . - 

m k  - t X j  
I n d e x ( E . d )  = 1 [ 1 d i m  E i ( X j ) I  

j = O  i = O  



§ 2. TheLefsche_t_z-f ixed .poi n-t_ formula, 

Endomorphisms-of _el llpti c complexes 

A collection T = (To, . . . ,  Tk) of G linear maps Ti: 

crn(Ei) j crn(Ei) is an endomorphism of the complex (E.d) 

provided 

Od = d i O T i  Ti+l i 

f o r a l l  i. 

The T i  then induce linear maps 

* Since H i  (E,d) is finite dimensional. we may form tr T i  and we 

define the Lefschetz number L(T) of the endomorphism T by 

We will be interested in the so called "geometric 

endomorphisms". To define these, let f: M --+ M be a smooth map 

* 
and for i = O,..., k ,  suppose that Ai: f E i  + Ei is a smooth 

bundle map. Then for each x E M, we have a linear map 

from the fiber of Ei over f(x), which is the fiber of f * ~ .  
1 

over x, to E the fiber of Ei over x. For any s E 
i ,x 

a, 
C (Ei), we define T i s  E C ~ ( E ~ )  by 



We assume that the Ai are chosen so that the T i  define an 

endomorphism of (E,d). We call such an endomorphism the 

geometric endomorphism determined by f and A = (Ao. . . . .  Ak). 
Examp 1 e : 

(E,d) = the de Rham complex of M 

f an arbitrary map. 

* Ai = i th exterior power of the adjoint, df , of the 

differential df of f, extended to T: M 

Then T i  is the familiar f: i * a, i *  
: cm(A TC M) * C (A TC M) and 

* 
diof; = firl0di. In this case, the Lefschetz number is denoted 

L ( f  1 .  

Our aim is to relate the Lefschetz number of a geometric 

endomorphism to invariants defined on the fixed point set of f. 

To do so we need f to be non-degenerate along its fixed point 

set in the sense that at each fixed point p, df : TMp --t TM 
P P 

has no eigenvectors with eigenvalue 9 1  in directions transverse 

to the fixed point set. Such fixed points are called non- 

degenerate. Note: f = Id satisfies this condition! For the M 

sake of simplicity we will assume that at each fixed point p, 

det(1 - df # 0. The fixed points are then isolated and since M 
P 

is compact they are finite in number. Denote them by {pl, ..., 

Ati yah-:Bo t t Lefschetz Theorem-( LABU: Let f , (E,d) be as above - 

and T a geometric endomorphism defined by f and A = (A 
0' "" 

Ak). Then 



* Example: (E,d) the de Rham complex, T = f . At a non-degenerate 

fixed point p we have 

Thus we have for any map f with non-degenerate fixed points (p 1 ' 

9 
L(f) = 1; sign det(1-df 1.  

j=1 Pj 

Consider the special case where f is an element of the one 

parameter group determined by a vector field X with simple 

zeros (meaning X : M --+ TM is transverse to the zero section). 

We assume that the fixed points of f are the same as the zeros 

of X. As X has simple zeros, the fixed points of f are non- 

degenerate and at a fixed point p, the degree i t  has as a zero of 

X, degX(p) is just 

deg (p) = sign det(1-df 1 .  X P 

Now f is homotopic to the identity map of M so f*: H~(M,c) 4 

Hi (M,c) is the identity map. Thus 

which is the Euler number X(M) of M. Thus we have 



Theorem (Hopf); For a vector field X with simple zeros 

To obtain the general Hopf theorem (i.e. to drop the requirement 

that the zeros be simple) we need only observe that any vector 

field with isolated zeros can be homotoped to one with simple 

zeros without changing degX(p). 
X(p)=O 

We now give an example where f is not in the flow of any 

vector field. 

Let M be the surface of genus 2 and realize M as an 

octagon with opposite edges identified. Let f be rotation of M 

by n .  Then f has 6 fixed points, namely 

where f is 

rotation about 

the point 1. 

I t  is not difficult to calculate that at each fixed point p , 

dfP 
= [ 1 ,  i.e. dfp = rotation by n ,  so sign det(l-df = 1 

P 

and 

1 sign det(1-df 1 = 6. 
P P 

0 2 
H (M,C) = H (M,C) = C and f is orientation preserving, so 

both f: and f l  are the identity (because they come from 



0 2 
invertible maps on H . ( M , Z )  = H ( M , Z )  = Z 1. We may think of 

H ' ( M ; c )  ' c4 as being generated by the oriented loops A. 8 ,  C, 

where 

* 
Clearly f l A  = -A and similarly for B ,  C, D. Thus with 

respect to the basis A ,  B ,  C, D ,  

cl 

As L(f) = 6 and X(M) = -2, f  can not be homotopic to any map 

in the flow of a vector field as L ( f )  is a homotopy invariant. 



§ 3. Outline of the proof of the Lefschetz theorem 

We outline a proof which does not rely in an essential way on 

the compactness of M. This will allow us to generalize our 

results to complexes and endomorphisms defined along the leaves of 

a foliation of a compact manifold even though the leaves may be 

non compact. A general reference for the material in this section 

is CRSI. 

- tAi 
We begin by redefining e . Let C be the curve in the 

complex plane 

C 

and set 

2 for s E L (Ei). NOW the spectrum of A,, Spec A i ,  consists of 

those X for which XI - Ai: domain ai --+L~(E~) is_not_a 

bijection onto L ~ ( E ~  with bounded inverse. On any complete 

manifold, compact or not, Spec Ai is a subset of the non negative 

reals. Thus for all X E C, (XI-A~I-' is a bounded operator on 

Note that when M is compact, this agrees with our previous 

definition. 



For i f  M is compact, Spec Ai = {0 = Xo < X1 < . . .  } .  Let 

s E Ei(Xj). Then 

(since (XI - Ails = (A - X.)s) J 

-tXj 
= s(x1.e by Cauchy's Theorem. 

-tni 
Some facts about e 

- tAi 
1. e is a smoothing operator with Schwartz kernel 

i * * 
kt(x,y) a smooth section of Hom(n2Ei,n 1 E i 

(ref CSI 1 .  

2. The Spectral Mapping Theorem tells us that 

- tAi 
lim e = 71 in the strong operator topology. kerni 
t+W 

Here n is projection onto the kernel of Di. The kerni 

Schwartz kernel of nkerAi is always a CW section of 

* * 
Hom(npEi,n 1 1  E . )  for M complete. 

-tni 
3. If M is compact, lim tr e - 

t+W - tr *kerA.' 1 

Recall that an operator A on a Hilbert space H is 

defined to be positive (written A 2 0 )  provided that for all s E 



<Asps> 2 0 

where < , > is the inner product on H .  

Proof of 3. By Spectral mapping theorem, 

- tAi - t ,Ai - t  Ai 
> e 2 e 2 0, e .- for t l  < t 2  and 

-tAi 
lim e = 71 kerAi ' 

- tAi 
From CSI, we know e is smoothing and, since M is compact, 

- tAi 
of trace class. Because < e n 71 * ' 37ker~ - kerAi is also of 

i 

trace class. Now trace has the property that if An ' An+l and 

*n 
trace class then 

lim tr An = tr(1im An). 

-A, -nA 
- e i Set An = e n = 2, 3, ..., and apply the above to get 

- A  i -nAi -Ai tr e - lim tr e = t r  e - t r  'kerdia 

Counterexamples to: lim An = B = >  lirn tr An = tr B. 
n+m n+m 

Let IR be the Hilbert space of square summable infinite 

sequences. Let An(xlD x~,... 1 = ( 0 ,  ..., 0, xn, 0, . . .  1. 

Then An --+ 0 in the strong operator topology, but tr An = 1 

for all n. 



Even if An + B in the norm topology, i t  is still not 

necessarily true that tr An tr B as the following example 

shows. Set 

A (xl,x ,X 1 1 = ( - x  1 
n 2 3 ' " '  n 1' "" - x 0, . . .  n n' 

Then An 0 in the norm topology, but tr An = 1 for all n. 

- tni 
4. Let T i  be as in the Theorem. Then T i e  is a 

smoothing operator with kernel 

If M is not compact, we need a restriction on f to insure that 

1 
i 2 L k t  (x,Y) maps L (Ei) to L2(~;). We require f to be a 

diffeomorphism of M of bounded dilation, i.e. there are 

constants 0 < C1 < C2 < m so that C1 5 ldet dfxl L C p  for all 

x E M, and that M have bounded geometry in the sense of Roe 

CR1, (as ldet dfxl depends 

Ti  on the metric on MI. k t  (x,y) is always smooth in x and y. 

5. Using 3. above we have 

- ta; 
lim tr T i e  1 - - tr TiSnkerA 
t-'~ i 

Proof of 5. T i  is a bounded operator. Assume T i  2 0. Then 



T:/* is self adjoint as we are working on complex Hibert spaces. 

- tAi - tAi 
Since e - n kerAi 0, ~ " ~ ( e  i - n \ 0. kerAi i 

(as in the proof of 3. above). 

Thus 

Now for arbitrary T i  we observe that any bounded operator may be 

written as 

Recall 

6. AS t + 0. if x f y, then k:(x,y) 0 to infinite 

order and this convergence is uniform in distance(x,y) provided we 

have global bounds on the coefficients of the Ai, T, f and the 

metrics, and their derivatives to a finite order. See [ G I .  This 



is intentionally vague. What we require is that the metrics and 

operators be bounded in the sense of RoeCR1. If M is compact 

this follows. If M is a leaf of a foliation of a compact 

manifold N and the metrics and operators come from global 

objects on N, i t  also follows. 

Thus if f(x) # x, we have 

Ti  i lim tr k t  (x,x) = lim A k (f(x),x) = 0. 
t+O t+O i,x t 

Given E > 0, this convergence is uniform for all x with 

PICTURE 

E support of 

Ti 
k t  ( x , ~ )  

M X M  

Ti  Thus lim tr k t  (x,x) can be computed by integrating only 
t-'O 

over a neighborhood of the fixed point set of f. This 

integration can be done using only local information about 

(E,d), f and Ti. At a fixed point p, this integral equals 



See CAB], [GI. 

Because of 5 and 6 above, to complete the proof we need only 

show: 

k - tAi 
Theorem: 1: (-lIi tr(Ti oe is independent of t. 

i=O 

Pr_o.of: Set 

Then Ql(Ai), Q2(Ai) are smoothing operators as are 

* 
T d.Q (A,), and Q2(Ai)di-l. Also note that tr(AB) = di-l i-1 1 1 

tr(BA) if A and B are smoothing as both are of trace class. 

Now 
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Chapter 1 1 .  The Lefschetz Theorem for Foliated Manifolds 

9 1 .  Statement.-of-the-theorem 

Let M be a compact m dimensional manifold and F a 

dimension n foliation on M. Then F is an n dimensional 

subbundle of TM such that for any two sections X,Y E c~(F), 

C X , Y I  E cm(l?). The Frobenius Theorem says that for each x E M, 

there is a neighborhood U of x and a diffeomorphism 

so that for all z E iRn xIRq, 

Such a ( U , + )  is called a foliation chart. Given x E iRq, the 

U 
submanifold +(IRnx{x)) is called a plaque, and is denoted P x .  

The submanifold + ( { o I ~ R ~ )  is denoted R: and is called the 

transverse submanifold of U .  The local picture on M is 

thus 

- A leaf L of F is a maximal integral (i.e. TLx - Fx for 

all x E L) submanifold. Thus dim L = n. The Frobenius Theorem 

implies that through each point x in M, there passes a unique 

leaf denoted Lx. 



Choose a smooth metric on M. This induces a smooth metric 

on each L, and L is complete with respect to this metric. Two 

different metrics on M induce quasi-isometric metrics on the 

leaf L. 

Let {(Ui,+i)l be a finite cover of M by foliation charts. 

I f  U i  fl U. f + we define a local diffeomorphism 
J fij from R; 

i 

(hereafter denoted IRq to lRq j. fij is defined as follows: 

if and only if i Px,  the plaque of x in U i ,  has non trivial 

intersection with P:. i.e. q 
IRi  

We may assume that the (Ui9bi) are chosen so that fij is 

always well defined. In particular we avoid choices such as 



Traas_v_ersemeas ures 

A transverse measure v assigns to any q dimensional 

submanifold N which is transverse to F a Bore1 measure denoted 

vN.  We say v is an invariant transverse measure if for all 

covers by foliation charts {(Ui,+i)} we have 

Given an invariant transverse measure v and a function f 

on M we define 

as follows: 

Let {(Ui,bi)} be a finite cover of M by foliation charts. 

Choose a partition of unity subordinate to the cover. 

i Denote v by v i  and for any plaque Px ,  denote the volume 
lRq 

i 

form obtained from the metric on P: by dvolitx). Then set 

i.e. first integrate @.f over each plaque in Ui to get a 
1 

function on R:, then integrate this function over lRq with i 

respect to the measure 'i . I t  is not difficult to show that 

1, fdv is independent of the choice of cover and partition of 

unity. 

Differential complexes on M elli~ti.c-a!onl~--F - -  .- ... -- ~ 



A differential complex on M along F consists of : 

a) a finite collection of smooth finite dimensional complex 

vector bundles Eo, . . . ,  Ek. 
b) a collection of smooth differential operators 

with di+lodi = 0. 

c) each di differentiates only in leaf directions. 

For the sake of simplicity we assume that each di is first 

order. Then c) means the following. Let (U,+) be a foliation 

chart with coordinates (xl, ..., xn, yl, . . . '  yq), coming from 

IRn xIRq. As U is contractible. EiIU and Ei+l(U are trivial. 

and di 1 is given by a dim Ei+lx dim Ei matrix of first order 

linear operators, denoted [A. 1.  To say that di 
J 9 

differentiates 

only in leaf directions means that for any (x,y) E U, 

J to be smooth complex valued functions on We require the ak 

U. 

Exam~le: Ei = h i ~ * 8  C ,  thus Ei l L  is the i th exterior power of 

the complexified cotangent bundle of L for each leaf L. 

d. = exterior derivative along the leaves of F. 
1 

This is called the de Rham complex of F. 

We now restrict our attention to a single leaf L of F. 

Note that L need not be compact, although i t  must be complete. 

0 3  L 
Denote EilL by E! and by CO(Ei) the space of smooth 

sections of E? with compact support. The operator d i  induces 



one, denoted also by d i ,  

and on each leaf L we have the complex 

We say that the complex (E,d) is elliptic along F provided 

that for each leaf L, the above complex is elliptic. We assume 

that (E,d) is elliptic along F. 

Choose a smooth Hermitian metric on each bundle Ei .wer M. 

These induce a metric on each E? and these metrics are also 

unique up to quasi-isometry. Using the metrics we construct 

* 03 L 
just as w e d i d  before. We then di : CO(Ei+l) - CO(Ei) 

construct 

03 L 03 L A: : CO(Ei) + CO(Ei) and we extend Ai to 

just as before. 

2 Definition: The ith L cohomology of (E,d) along the leaf -. . . - -. 

L, denoted H;(E,~) is 

i L HL(E.d) = ker Ai. 

The i th L~ cohomology of (E,d) is denoted H~ (E,d) and 

i t  assigns to each leaf L the ith cohomology of (E,d) along 

i L, HL(E,d). 



required to be Bore1 measurable in L. [we are again intentionally 

vague about this notion. In practice i t  means that the family 

(SL) can be exhibited]. 

The random operators are added and composed in the obvious 

way. The natural norm is Ilsll, = Ess supll~ )I defined to be the 
L2 

smal lest X > 0 such that I/sLIIT ( X holds almost everywhere. 

By almost everywhere we mean almost everywhere on the space R = U 

R ? ~  where the R: come from a finite cover by foliation charts. 
1 

and the measure on R is the one induced by v. The random 

operators on Ei form a von Neumann algebra denoted Wv(F,Ei). 

The measure v determines a semi finite normal trace on 

WV(F,Ei). If S = (SL) t Wv(F,Ei) is an element such that 

each SL is given by a smooth kernel kLtx.y), then 

For more details on the above constructions we refer to CCI, 

CM-SI. 

Geometric.. endomorphi m 

Let f: M -+ M be a smooth map and assume that for each 

leaf L of F, f(L) C L. For each i, let 

be a smooth bundle map. We assume that Ti: cm(Ei) + c,(E~) 

where (Tis)tx) = Ai,xs(f(x)) satisfy 



The Ti then induce maps 

satisfying 

We call such a family T = (To, ..., Tk) a geometric endomorphism 

L of (End) defined by f and A = (Ao, ..., Ak). We want the Ti 

to extend to bounded linear maps 

For this to be true i t  is necessary to make some restriction on 

f. The most convenient restriction is to require that f : M --+ 

M be a diffeomorphism. This insures that 

is a bounded linear map. As A is globally bounded on M ,  we 
i ,x 

then have that T: : L~(E)) L~(E\) is a bounded 

L (independently of L) linear map for all L. so Ti = (Ti) is a 

bounded element of Wy(F,Ei). 

We shall also need some restricitions on the fixed point set, 

fix f, of f. 

We require: 

1) for each L, fix f n L is a union of submanifolds, 

L fix f n L = U N.. 
J 



2) for each x E fix f n L, dfx has no eigen vector (in 

TL with eigen value + 1  in directions transverse (in 
X 

L 3) Given E > 0, denote by nE(Nj) the set 

L {x E L I  di~tance~(x.N.1 < E ) .  
J 

We assume that there is an E~ > 0 such that for all 

L ,  .i8 nE (N)) is an embedded normal disc bundle in the 
0 

leaf L and that the nE (N:) are disjoint. This 
0 

implies that for each L, the collection of submanifolds 

{NL) is countable. This condition does not follow from 
J 

1) and 2). 

Note that f = Id satisfies 11, 21, 3). 

We now give a counterexample to show that we must assume : 

L 
3 E > 0 such that nE(N.) are disjoint. 

J 
2 

Counterexample: M = T~ (represented as { (x,y) E R I 1x1 I 2, 

(y( I 2) with opposite sides identified. Let F be the 

foliation spanned by a/ax. Let ftx,y) be a cm function on T~ 

so that 

i )  f(x,y) = 1 if 1x1 > 3/2 or (y( > 3/2 

i i )  f(x8y) = x2 - y2 if 1x1 < 1 and lyl < 1 

i i i )  for fixed yo 0, x -+ f(x,yo) is transverse to 

0. i.e. the graph of ftx,yo) is transverse to the x 

axis. 

Let R(Y) be a smooth function on T~ so that 



2  
i i )  g(y) = e l y  if ~ y (  < I  

i i i )  g(y) = 0 < = >  y = O .  

Let X be the vector field on T~ given by 

X(X,Y) = g(y)f(x,y)a/ax. 

Denote by Ql(x,y) the time 1 flow of X. Q1 defines a 

foliation map. On any leaf 
LY 

= {(x,y)l -2 ( x 5 2  ) ,  if y * 0, 
has isolated non degenerate fixed points. + I = Id. Near 

Lo 
(0,O) the fixed point set of b 1 , Y * 0 is (*Y,Y). Thus 

LY 

given E > 0, 

Note.: By combining the above example with the suspension of a 

diffeomorphism of s1 which is contracting about 0 (sl  = 

[ - 2 . 2 1 /  we can construct an example of a 2 dim foliation on T~ 

which has some leaves of the form s1 x K and with fixed point 

set of f on s1 x IR of the form 

L i.e. disjoint N1. N; which are asymptotic to each other. 

Lef schetz- Number of a-Geometric EndomoyphLsm 

Recall that for each leaf L ,  nk is the projection of 

L L ~ ( E ~ )  onto ker Ai. 



* * 
Now set  ti,^ = nLo~konL 1 i and let T i  E Wv(F,Ei) be the 

* - * 
e 1 emen t T i - (Ti,L 1 .  Then TT is an element of try class and 

we define the v Lefschetz number of the geometric endomorphism 

T = ( T o ,  ..., Tk) to be 

Fixed Point Indices 

Let f : M - M be as above with fixed point set fix f = 

L 
U Nj. Suppose that for each L and j that we are given a 

L, j 

function aL defined on 
.i N). We define 

as follows: 

Let (Ui9+i) be a finite cover of M by foliation charts 

and {ai) a partition of unity subordinate to the cover. Then 

L Here dvol(N.1 is the volume form on N) induced by the metric 
J 

on M. Note that for any given plaque Px ' only a finite number 

of N: satisfy N) n Px # 6. 

The Lefschetz Theorem: Let M, F,  f, T, A and (E,d) be as 

L above. To each N. C fix f we may associate a function a L 
J j 

which depends on f, A, the symbols of the A i ,  and the metrics 

and their jets to a finite order only on NL so that 
.i 



Some Examples 

1)  (E,d) = the de Rham, signature, Dolbeault or spin complex of F. 

i )  If f = Id, T = Id, then aL is the usual local 
j 

integrand formula given by the Atiyah-Singer Index 

Theorem. We thus recover the Connes Index Theorem for 

foliated manifolds for these operators. If we take the 

codimension 0 foliation of M which has one leaf 

(namely M I ,  we recover the Atiyah-Singer Index Theorem 

for these operators. 

* 
i i )  In general, i.e. f f Id, T = f , a4 is the usual local 

J 

integrand formula given by the Atiyah-Singer G Index 

Theorem. In particular, for the de Rham complex 

L aL = G(N.1 sign det(1-dfn) 
.i J 

L where G(Nj) is the usual local integrand for the Euler 

class of N! and dfn is the action of dflL 

restricted to the normal bundle of N'Y in L. 
J 

If we take the codimension 0 foliation, we recover 

the Atiyah-Singer G Index Theorem and the Atiyah-Bott 

Lefschetz Theorem for these operators. 

2 )  If N) consists of a single point p then 



where 
d f ~ , P  

is the linear map on 
TLP 

, given by the restriction 

o f  d f  . 
P 



82. Computation of an example of Lv(f) 
- - - - - - . . - - - - -- - . - - - - - - - 

We now construct a foliated manifold M and a diffeomorphism 

- f  of M preserving the foliation which has non zero Lefschetz 

numbers for all the classical complexes. The manifold M is a 

flat T~ bundle over C4, the surface of genus 4. First we give 

an algebraic construction of M and f, then we show how to 

realize them geometrically. 

Let T C SL R be a subgroup generated by elements 2 
0 

-.i .i a = 8  a 8 ,  
.i 

.i= 0. .... 7 where a = [ 1 and 8 is 

rotation by n/16. For proper choice of a C4 = T\SL2R/S02. 

We take for a fundamental domain of C4 a regular 16 gon D 

centered at zero in the Poincar6 disc (" SL2R/S02). The action of 

the generators we have chosen for r identifies opposite edges of 

D by translation along the geodesic through the midpoints of the 

respective edges. The elements a satisfy one relation, namely .i 

-1 -1 -1 - 1 - 1  -1 -1 -1 
aOal a2a3 a4a5 a6a7 a0 a1a2 a3a4 a5a6 a7 = Id. 

We note that the SO2 bundle T\SL2W over C4 is a non trivial 

double cover of the orthonormal frame bundle T\PSL2R of C q  and 

so defines a spin structure on C4' 

To determine a flat T~ bundle over Ed, we need only define 

2 a homomorphism h : nlCq + Diff T . The bundle M = 

( S L ~ R / S O ~ ) X ~ T ~  is obtained from ( s L ~ w / s o ~ ) ~ T ~  by identifying 

(x9t) with (yx, h(y)t) for all y E n1C4. The natural 
C1 2 foliation F on (SL2R/S02)xT . whose leaves are (SL2R/S02)x{t}, 

then descends to a foliation F on M transverse to the fibers 



To this end we denote by A the element of Diff T~ 

determined by the affine map of R2, (x,y) + (-x + e, -y + e) 

and by B the element determined by (x,y) + - , -  Here we 

2 2 set T~ = R /Z  . Then define h : n1E4 + Diff T~ by 

Note that = B~ = Id, so h preserves the relation among the 

a and defines a homomorphism. Also note that [AB]" = Id C--'. 
j 

n = 0 since AB is determined by the affine map (x,y) 4 

(x+e, y+e). This implies that all the leaves of F are non- 

compact . 
The diffeomorphisms A and B preserve Lebesgue measure dt 

2 on T . Thus dt determines an invariant transverse measure v 
2 on F. Note that for any fiber T~ of M, v(T ) = 1. 

A point in M will be denoted [gso2.t] where g t SL2R9 

and t t T ~ .  Let r t SO2 be rotation by n/4. Define f : M 

Lemma: f is well defined and preserves F. 

Proof: If f is well defined, i t  obviously preserves F. To see 

that f is well defined, note that the action of r on the 

fundamental domain D is to rotate i t  about its center by n/2 

(not n/4). One then easily checks that 
ra = aj+4r 

or ra = 
.i j 

- 1 
aj+4r for all j, where the addition of subscripts is mod 8. Now 

for each a we have 
j 



since h(a;:4aj) = Id for all j. As an arbitrary y E r can be 

written as a product of the a we have that f is well defined. 
j 

In order to determine the fixed point set of f ,  we now give 

a geometric construction of M and f. To construct M ,  we 

identify points on the boundary of D x T2 in the follwing way. 

ental domain 

The edge ~1 is identified to the edge ~2 by the action of the 
J .I 

isometry a. of the Poincark disc SL2R/SO2. 
J 

We identify Ef X T ~  to E2 x T 2  by (e.t) I (a.te), h(a It). 
J j J j 

2 
Then M equals D x T / . D x T2 i s  foliated by leaves of the 

form D x (t)  and the above identifications respect this 



foliation, so i t  induces a foliation on M and this foliation is - 
just F. The map f : D x T2 + D x T2 given by rotation by 

n/2 on the D factor and the identity on the T factor induces 

We write (d, t) for a point in D x T2 and Cd,tl for the 

point i t  determines in M. I t  is clear that all the points 

[c,tl, t E T~ are fixed by f and that the action of df on 

TL[c, t l  is rotation by n/2. 

The only other possible fixed points are the points Cv,tl, 

t E T ~ .  These are in fact fixed since 

I t  is also easy to see that the action of df on T L C V s t l  is 

rotation by n/2. 

The metric we put on M is the one induced from D x T2 by 

2 the Poincar6 metric on D and the natural metric on T . The 

orientation we put on F is the one i t  receives from the natural 

orientation on D. 

The local fixed point indices and Lefschetz numbers L v ( f )  

for T = df for the classical complexes are given below. 

The local index at an isolated nondegenerate fixed point p 

is sign of det(1-df ( C A B ] ,  1 1 ,  § 3 ) .  As df is rotation by 
P P 

n/2 det(1-dfp) = 2 for all fixed points and we have 



L * * 
NOW LV(f) = 1: (-lIitrv(fi) where f. : H~(L;R) i j H;(L;R) 

i=O 1 ,L 

where L is a leaf of F. As L is a non compact complete 

0 2 * 4~ 
surface, we have HL(L;R) = HL(L;R) = 0. Thus trv(fo) = trv(f2) 

* 
= 0 and tr (fl) = -2. This implies that for v almost all L, v 

1 HL(L;W) # 0, i.e. for almost all L, there are non zero harmonic 

L~ one forms on L. 

2 . _S ixnat-ure ... Complsx 

For each leaf L, flL is an isometry so we may consider the 

action of f on the signature complex of F. 

At each fixed point p, dfp : TLp --+ TLp is an isometry of 

the oriented 2 dim space TLp Thus dfp is given by a 

rotation of 
TLP 

through a well defined (because of the 

orientation) angle 0 . The fixed point index of f at p is 
P 

then 

- i  cot(@ /2) 
P 

(see CAB], 1 1 ,  Theorem 6.27). Thus in our case 
OP 

= n / 2  so the 

fixed point index at each fixed point is - i  and the Lefschetz 

number for f is 

L (f) = -2i. v 

3 . Do 1 beau LtCo m_pkx 

The surface C q  is a complex manifold and this complex 

structure lifts to a complex structure on each leaf L of F. 



The map f covers a holomorphic map on C q ,  so f restricted to 

any leaf is holomorphic. Denote by APpq the bundle on M over 

F *  

where T*F and T*F are respectively the holomorphic and 

antiholomorphic cotangent bundles of F. A section of nppq is 

then a form of type p,q on each leaf L. Since f is a 

holomorphic map of each leaf f* induces an endomorphism of the 

P Dolbeault complex, p = 0, 1 

We denote the Lefschetz number in this case by ~"(f~). By 

equation ( 4 . 8 )  of CAB], 11,  the local index at a nondegenerate 

isolated fixed point p is given by 

Here dfp . TLp + TLp maps the real tangent space of 
TLP 

to itself. However, TLp also has a complex structure and 
dfP 

preserves that structure. Thus we may think of dfp as a complex 

linear map of the complex space TLp. The dfp in the above 

formula is to be understood in this way. 

NOW dfp : TLp TLp in our example, considered as a 

complex linear map, is just multiplication by i. Thus for p = 

0, the local indices are l_i 0 2 - l + i ,  while for and Ly(f = - -  1-1 
1 2 i - i - 1 .  P = 1 the local indices are i/(l-i) and Lv(f 1 = - - 1-1 



4 . .S_P_-n C o  m p.1- e x 

The surface C 4  is a spin manifold so each leaf L is a 

spin manifold. As we have noted above a spin structure on C 4  is 

given by 

where T\PSL2R is orthonormal frame bundle of C4. Thus we may 

exhibit a spin structure on F by 

S L ~ R X ~ T ~  - P S L ~ R X ~ T  2 

where P S L ~ R X ~ T ~  is the orthonormal frame bundle of the foliation 

F. In this representation f : M --P M is given by 

f (CgSOZ9 tl) = CrgS02, t l  

and df : P S L ~ R X ~ T ~  P S L ~ I R ~ ~ T ~  is given by 

df(C*g, t l )  = (Cnrg, tl )  

and we indicate the class of g in PSL2R = SL~R/*I by kg .  

I t  is clear that df has two liftings df to S L ~ R ~ ~ T ~ ,  namely 

and 

5n 
where rn  is rotation by q . 



The local fixed point index for f for the spin complex at 

an isolated non degenerate fixed point p is given by (CAB] ,  1 1 ,  

Theorem 8.35) 

k cosec(0 /2) 
P 

n 
where 0 is the angle of rotation (i.e. - of df on TLp. 

P 2 P 

To resolve the ambiguity for the indices we must choose a lifting 

of df to a spin covering (see [ G I  Theorem 4.5.2 in this regard). 
.-" 

For the lifting df the local index is -i/fi and the Lefschetz 
,%, N 

number Lv(f, df) is -2i/fi . For the lifting df,, the local 
Lr 

index is i/fi and the Lefschetz number Lv(f, dfn) is 2i/fi . 



We first collect some facts about the Schwartz kernel of 

- tni 
e 

We assume that at each point x E M, we may choose local 

coordinates so that with respect to these coordinates, the symbol 

of A,, u(Ai), which has an expression as 

where each a' is a square matrix and is of order i in E v  

satisfies 

where (gi j )  is the induced metric on T*F. [Each entry of a 
1 

n 
is of the form &i 1 bkEk where bk(x) is a cm function and 

k= 1 

each entry of a O is a cm function]. The classical operators 

all satisfy this condition. 

i -tAi Let kt9L(x,~) be the Schwartz kernel of e on L. 

Then there is an asymptotic expansion as t 4 0 of the form 

r 3k 
t(k-n)/2 I .(i (x-Y)*E/&) e -El2 C 1 

k=O j=0 
j+k even 

(See [ G I ) .  

Here lE12 = EgijE.E and r is sufficiently large. Each 
1 .i 



bi, j (x,E) is homogeneous of degree j in and if we write 

i then each bk (x) is given as a canonical polynomial in the , J ? a  
i 

a and their derivatives to a finite order. As these are all 

i globally bounded on M, this implies that for fixed t ,  KtSL(x,y, 

is bounded on M independently of x,y and L. 

i i To say kt,Ltx,y) - Kt,Ltx,y) means that given j, there is 

c so that for sufficiently large r, 
j 

2 1 c depends continuously on a , a . ao and so since these are 
j 

bounded on M, we have that the above inequality is independent of 

i 
x , ~  and L. Thus for small t ,  we have that ktPL(x,y) is 

- tAi 
uniformly bounded on M and so trv(e > < m .  

i We appeal to [ C I  for the fact that ktPL(x.y) is 

transverse1 y measurable. 

References for the above are CABPI,  [GI and [ T I .  

- (  t+s,ni -tai - sn i  
Now as e = e e we have that for all t > 0, 

- tAi 
e is trv class. Alternately we have by the Spectral 

- tAi -sai 
Mapping Theorem that on each L, 0 ( e - < e if t 2 s. 

i This implies that for all x t L. 0 < tr k i  (x,x) tr ks,L(x,x). 
t , L  

Thus we have 



-tAi 
and e is trv class for all t > 0. 

1 
If ix-yl > s ,  KtSLtx.y) can be integrated by parts to 

prove 

i c(~.j) is independent of x,y and L. As KtsL(x,y) vanishes 

i to infinite order off the diagonal, so does ktVL(x,y). 

k - tAi i Proposition: ( - 1 )  trv(Tie is independent of t. 
i=O 

- tAi 
As Ti is globally bounded on M and e is trv 

- tAi 
class, Tie is trV class. The proof of this proposition is 

essentially the same as in the compact case and is omitted. 

-tAi * 
Proposifip~: lim trv(Tie ) = trVtniTimi) ( = trVTi). 

t+" 

Proof: As try is a normal trace 

we may apply the argument used in the classical case to conclude 

that 

lim trv(Tie ' 1  = trv(Tini). 
t+m 

-tAi 
But ni is try class (as 0 ( ni 5 e for all t > 0) and 

2 n i  = n.. Thus 
1 



and done. 

Alternate proof: For this we assume d is of Dirac type. All 

the classical operators are of Dirac type. From CRI, 1 1 ,  Lemma 

1.2, we have that 

i )  for t > to > 0, there is c > 0 so that for all x , ~  E L, 

i i On any compact subset of L x L, k i  (x,y) converges 
t,L 

uniformly to * i kL (x,Y), the kernel of the projection onto 

Since 
T i  is uniformly bounded on M, i) and i i )  are true 

1 with k t , L ( ~ , ~ )  replaced by A i S x  k i  t,L (f(x1.y) ( = Schwartz 

- tAi n i n 
kernel of T.e 1 and kL (x,y) replaced by i 

Ai ,XkL (x,~), ( = 
1 

Schwartz kernel of T.ni). Thus for any plaque P we have 
1 

k i  (ftx),x))dx is bounded by a constant for all AS iptr(~i, x t , L 

plaques P of a fixed finite open cover by foliation charts, we 

may apply the Bounded Convergence Theorem to the measure space R 

trv(Tini). But as before ni 2 is try class and n = n 
i i SO 

* 
trV(Tini) = tr v (niTini) = trv(Ti). 

To complete the proof of the Lefschetz Theorem, we now 



5 2  

compute 

- tAi 
lim trv(Tie 1 .  
t+O 

As Ti is uniformly bounded on M ,  the Schwartz kernel 

T. 
1 - tAi 

ktSl(x,y) of T i e  which is k i  (f(x)',y) is asymptotic Ai9x t , ~  

i Set c 1 - - 
k,j 

. (f (x) ,y). Then c1 A i  .xbk,j k g  j is given by a canonical 

i polynomial in A, f, the a , the metrics, and their derivatives 

to a finite order. 

Let Bi(t) be the element of WV(F. Ei) whose Schwartz 

kernel on each leaf L, denoted Kt ' i , L ( ~ 9 ~ )  9 i s  

k 
Set B t  = - l i ~ i t  and denote its Schwartz kernel by 

i =O 
-tai 

KtSL(x,y) As t + 0, trv(Tie is asymptotic to trv(Bi(t)) 

k - tAi 
so 1 (-lli trv(~ie 1 ,  which is independent of t ,  is asymptotic 

i=O 



i - tAi 
Thus to compute 6(-1) trv(Tie we need only compute 

trv(B(t)) and since this is independedt of t ,  only the zero th 

- tAi 
order term in t can be non zero (and equals c(-lIi tr"(~~e 1 ) .  

Recall that 2 cO > 0 such that the embedded normal bundles 

(NT;) are disjoint. If distanceL(f(x),x) > > 0, then 
,EO J 

1 i tr K t , L ( ~ , ~ )  0 to infinite order in t uniformly on M. 

Thus the same is true of tr K (x,x), so we may assume 
t,L 

tr(K tx,x)) = 0 on M - U Q&(N;) where E [to be specified 
t,L L, j 

later1 satisfies 0 < E < cO. 

We now wish to claim that given E > 0, there is E~ > 0 SO 

L that for all x E M - U nE(N.), distanceL(x,f(x)) > E 
1 ' 

In 
L ,  j J 

general this is false. However if we assume that the fixed point 

set of f in any coordinate chart U looks like (fix f n plaque) 

, i t  is true. We shall assume this. 
f 

Denote by 1-, tr B(t), the collection of functions 

E 

tr(Kt,L(x.x)), i.e. to each we associate the 
Nj 

J 
L function given by the integral over the fiber of nE(N.) of the 
.I 

function tr(K (x,x)). Then 
t,L 

f tr B(t) assigns to each N) a 

function. 

Proof: Let {Ui) be a finite measurable partition of Pi, (i.e. 

U Ui = M ,  Ui n U = &,  i # j). Choose the Ui SO that 
i .i 



1 )  there is an open connected set 
'i wi th 

Wi C u. C W i  
1 

- 
2 )  U. C V i  where 

1 
V i  is a foliation chart for F. 

Given r > 0, set 

U: = { x  t M I  distanceLtx9 Ui n L) ( E for all leaves 

L, x E L ) .  

(thus ~f is a foliation t neighborhood of Ui). 

Choose & so that 0 < a < E and U: C Vi for all i. 
0 

NOW for each i, choose an open cover V i ,  V. 
l , l t - - 9  

v i ,r 
i 

of M by foliation charts and let ai9 , - . . .  
'i . r .  be a 

1 

partation of unity subordinate to the cover with 

1 

Deno t e by r : nB(Nj) + N: the projection and for each i ,  let 

X be the characteristic function of Ui. Let Xi be the 
i 

measurable function on M, 

Thus Xi is 

1 
otherwis e. 

[See picture 

the characteristic function of 
qE 

J 1 

below, which g i v e s  the si .. 1 

tuation on a single leaf 



Now trv(B(t)) = 1 trv(Xi.B(t)). If we compute trv(X *B(t)) 
i i 

using the cover V ,  , ... and the partition of unity li, 

B i S l ,  ... , since Bi E 1 on the support of Xi.B(t), we have 

In each plaque P, the situation is as pictured above (we assume 

without loss of generality that there is only one N) with ~ ) n  
P # 4 ) .  Then 

But for any bundle n over base N, 

jnf = I N [ f  rl f l .  

Thus I Xi tr(K (x,x))dx = 
t,L [-f tr(K (x,x))]dn P L t,L ~ L n p n u  nE (N . 1 

J J 

and we have 

where the last equality follows immediately provided we compute 

using , , and Bi, Bi,l, . . .  



Summing over i gives the proposition. 
r 

Now to compute trV(B(t)) or rather f n  tr(B(t)). 
& 

L Case 1. L C fix f, so N o  = L. Then 

and since f(x) = x for all x t L, tr Kt,Ltx,x)lL is given by 

i Since c 9 j is homogeneous of order j in E and vanishes for 

R+j odd, c i 
Q j 

is of odd order in -E if R is odd. Thus the 

integral is zero if Q is odd and so if n = dim L is odd, there 

L is no zero th order term and we set a = 0 in this case. If n 
0 

is even. we set 

1 and note that aL is given as a polynomial in A ,  f, the a', the 
0 

metrics, and their derivatives to a finite order. 

Case 2. L fl fix f = U N~ # L. 
j 

J 

tr(Kt,L(x,x)) t (j+Q-~)/2~i a, j ' where dim N L = p ,  
Q, j j 

J j+R even 

i i and where 
d ~ ,  .i 

depends only on A ,  f the a , the metrics, and 

their derivatives to finite order on N:. This asymptotic expansion 

is independent of x and L, i.e. given q, and E ,  there is 



L c(~,E) SO that for all N. 
J ' 

To see this expand tr(Kt ,L(x.x)) on n&(~?) in a Taylor 
J 

series (about the zero section N) in t and then integrate over 

L the fiber of hE(N.). See [GI. 
J 

Thus in our calculation of [ 4 tr(B(t))dv, we may replace 

- 

L f- tr(K tx,x)) by a where a = (a.) and 
t,L J 

"& 

L aL 0 if dim N = p is odd (for in this case the i) 
j 

asymptotic expansion has no zero th order term). 

k 
i i )  aL = (-lli d i  if dim N = p is even. 

j i = o  j +Q=p Q, j 

This completes the proof of the Theorem. 

L To identify the a for the classical complexes, we appeal 
j 

to CGI or CABPI where the calculation of these is made. As this 

is a purely local problem, we may use the proofs in the compact 

case without alternation. Details will appear elsewhere. 
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