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Abstract

Let θ(x) denote Jacobi’s theta function. We show that the function
Fξ(x) = (θ′(0)θ(x+ξ))/(θ(x)θ(ξ)) satisfies functional equations, which
is a generalization of the harmonic relations for multiple zeta values.

1 Introduction

For any multi-index s = (s1, . . . , sm) (si ∈ N, sm ≥ 2), the multiple zeta
value ζ(s) is defined by

ζ(s) =
∑

0<k1<...<km

1

ks1
1 · · · ksm

m

.

We call the positive integer m the depth of ζ(s).
The harmonic relations (stuffle relations) for multiple zeta values arise

from the product of two series ([1],[2],[3]). For example,

ζ(u)ζ(v) = {ζ(u, v) + ζ(v, u)} + [ζ(uv)], (1)

ζ(u, v)ζ(w) = {ζ(u, v, w) + ζ(u, w, v) + ζ(w, u, v)} + [ζ(uw, v) + ζ(u, vw)],

where u, v, and w are integers such that u, v, w ≥ 2. We can divide the right
hand side in each of the above equations into two groups by the depth, which
is expressed by using { } and [ ]; The depth of every multiple zeta value in
{ } is equal to the sum of the depth of the multiple zeta values in the left
hand side, and that in [ ] is less than that in { }.
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The multiple zeta value ζ(s) has the following integral representation([4]
Sect.10):

ζ(s) =

∫ 1

0

dX
(1)
s1

X
(1)
s1

∫ X
(1)
s1

0

dX
(1)
s1−1

X
(1)
s1−1

· · ·
∫ X

(1)
2

0

dX
(1)
1

· · ·
∫ 1

0

dX
(m)
sm

X
(m)
sm

∫ X
(m)
sm

0

dX
(m)
sm−1

X
(m)
sm−1

· · ·
∫ X

(m)
2

0

dX
(m)
1

m∏
i=1

X
(i)
1 · · ·X(m)

1

1 − X
(i)
1 · · ·X(m)

1

. (2)

Therefore the equations (1) is equivalent to the following equations:

f(x)f(y) =
{
f(x + y)

(
f(x) + f(y)

)}
+

[
f(x + y)

]
, (3)

f(x1)f(x2)f(y) =
{
f(x1 + y)

(
f(x2 + y)f(y) + f(x2 + y)f(x2) + f(x1)f(x2)

)}
+

[
f(x1 + y)

(
f(x2 + y) + f(x2)

)]
,

where f(x) =
ex

1 − ex
. In fact we obtain the equations (1) by replacing

ex, ey, ex1 , and ex2 with X,Y,X1X2, and X2 respectively and using the above
integral representation.

In this point of view one can regard the usual harmonic relation as the
following equation:( m∏

i=1

f(xi)
)( n∏

i=1

f(yi)
)

=
{∑

p

m+n∏
i=1

f(xpi1
+ ypi2

)
}

+
[
others

]
. (4)

Here xm+1 = yn+1 = 0 and the sum extends over p = (p1, . . . , pm+n+1) such
that
• p1 = (1, 1), pm+n+1 = (m + 1, n + 1),
• pi+1 − pi = (1, 0) or (0, 1), (i = 1, . . . ,m + n).

If we denote the degree (depth) of
∏m

i=1 f(xi) by m, then the degree (depth)
of

∏m+n
i=1 f(xpi1

+ypi2
) is equal to m+n and the degree (depth) of every term

in [others] is less than m + n.
By directing our attention to the highest degree (depth), we regared equa-

tions of the type (
∏m

i=1 f̃(xi))(
∏n

i=1 f̃(yi)) =
∑

p

∏m+n
i=1 f̃(xpi1

+ ypi2
) as func-

tional equations with the fundamental structure of the harmonic relations.
In this paper we give a function Fξ(x; τ) with two parameters ξ, τ which

satisfies the functional equations with the fundamental structure of the har-
monic relations if we neglect the two parameters. We also obtain the har-
monic relations for multiple zeta values by degeneration. This fact guarantees
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that the functional equations for Fξ(x; τ) that is given in this paper are a
generalization of the harmonic relations. Furthermore we give their extended
functional equations (See Theorem 3.1).

The plan of this paper is the following. In Section 2 we introduce the
function Fξ(x; τ) which plays a essential role in this paper. In Section 3
we state our main result, i.e., Fξ(x; τ) satisfies functional equations with
the fundamental structure of the harmonic relations if we neglect the two
parameters ξ, τ . We also obtain the harmonic relations by degeneration.
Section 4 is devoted to the proof of our main result.

2 The Function Fξ(x; τ )

Let τ be a complex number with positive imaginary part, i.e., Im τ > 0. In
this section we introduce the meromorphic function Fξ(x)(= Fξ(x; τ)) on C2

which plays a essential role in this paper.
Let θ(x) denote Jacobi’s theta function:

θ(x) := θ(x; τ) =
∑
m∈Z

eπ
√
−1(m+ 1

2
)2τ+2π

√
−1(m+ 1

2
)(x+ 1

2
) .

The meromorphic function Fξ(x) is defined by

Fξ(x) =
θ′(0)θ(x + ξ)

θ(x)θ(ξ)
,

where θ′(x) =
∂

∂x
θ(x; τ). If ξ ∈ C \Z + τZ, then this definition induces that

the function Fξ(x) with respect to x has simple poles on the lattice Z + τZ
and that it’s residue at the origin is 1. It also satisfies the following:

PROPOSITION 2.1. We have

(i) Fξ(x + 1) = Fξ(x), Fξ(x + τ) = e−2π
√
−1ξ Fξ(x), F−ξ(−x) = −Fξ(x).

(ii)
m∑

l=1

F−ξl
(−x1 − · · · − xm)

m∏
j=1
(j ̸=l)

Fξj−ξl
(xj) +

m∏
j=1

Fξj
(xj) = 0.

Proof. The formulas listed in (i) are derived from the formulas below:

θ(x + 1) = θ(x), θ(x + τ) = e−π
√
−1τ−2π

√
−1x θ(x), θ(−x) = −θ(x).
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In order to prove (ii), let us introduce a function defined by

G(η) =
( m∏

j=1

Fξj+η(xj)
)
Fη(−x1 − · · · − xm),

where ξj, ξj − ξi /∈ Z + τZ, (i, j = 1, . . . ,m, i ̸= j). Since the function G(η)
is doubly periodic, the sum of the residues of G(η) at its poles in any period
parallelogram is 0. Hence we obtain (ii).

3 Functional Equations

In this section we state our main result, i.e., Fξ(x; τ) satisfies functional
equations with the fundamental structure of the harmonic relations if we
neglect the two parameters ξ, τ . We also obtain the harmonic relations by
degeneration.

We first give some notations. Suppose that K1, . . . , Km are non negative
integers. Let K and |K| denote (K1, . . . , Km) and K1+ · · ·+Km respectively.
We define the set P (K) such that if p ∈ P (K) then p satisfies the following
conditions:
• p1 = (1, . . . , 1), p|K|+1 = (K1 + 1, . . . , Km + 1).
• For every i = 1, . . . , |K|, there is a integer l (1 ≤ l ≤ m) such that

pi+1 − pi = ϵl = (0, . . . ,
l−th

1 , . . . , 0).

Suppose that α
(j)
i is a complex number for positive integers i and j. The

|K|-tuple vector αK(= α) is defined by (α
(1)
1 , . . . , α

(1)
K1

, . . . , α
(m)
1 , . . . , α

(m)
Km

).

Here we regard α
(j)
i in αK as a blank word if there is a integer j such that

Kj = 0. For example, α(2,0,1) = (α
(1)
1 , α

(1)
2 , α

(3)
1 ), α(0,1,2) = (α

(2)
1 , α

(3)
1 , α

(3)
2 ).

For any p ∈ P (K), we define the complex number pi(α) as follows:

• If p2 − p1 = ϵl , then p1(α) = α
(l)
1 .

• If pi+1−pi = ϵl′ , pi−pi−1 = ϵl, (i = 2, . . . , |K|), then pi(α) = −α̃
(l)
pi−1,l + α̃

(l′)
pil′ ,

where α̃
(l)
i = α

(l)
1 + · · · + α

(l)
i .

Our main result is the following:

THEOREM 3.1. If x
(j)
Kj+1 = 0 (j = 1, . . . ,m), then

m∏
j=1

( Kj∏
i=1

F
α

(j)
i

(x
(j)
i )

)
=

∑
p∈P (K)

|K|∏
i=1

Fpi(α)(x
(1)
pi1

+ · · · + x(m)
pim

). (5)
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Here we regard the empty product
∏0

i=1 as one.

We derive the harmonic relations from the above functional equation. To
do this, we give the explicit form of the equation (4). Suppose that K1, K2 are
positive and that K is equal to (K1, K2). For any k = 1, . . . , min{K1, K2}, we
define the set P (K; k) such that if p ∈ P (K; k) then p satisfies the following
conditions:
• p1 = (1, 1), p|K|−k+1 = (K1 + 1, K2 + 1).
• There are integers a1, . . . , ak (1 ≤ a1 < · · · < ak ≤ |K| − k) such that
pai+1 − pai

= (1, 1), (i = 1, . . . , k).
• For any i ∈ {1, . . . , |K|− k} \ {a1, . . . , ak}, there is a integer l (= 1, 2) such
that pi+1 − pi = ϵl.

Then the explicit form of the equation (4) is the following:( K1∏
i=1

Xi · · ·XK1

1 − Xi · · ·XK1

)( K2∏
j=1

Yj · · ·YK2

1 − Yj · · ·YK2

)

=

min{K1,K2}∑
k=0

∑
p∈P (K;k)

|K|−k∏
i=1

Xpi1
· · ·XK1Ypi2

· · ·YK2

1 − Xpi1
· · ·XK1Ypi2

· · ·YK2

, (4’)

where P (K; 0) = P (K). In fact we obtain the above equation by comparing

the coefficient of X i1
1 · · ·X iK1

K1
Y j1

1 · · ·Y jK2
K2

(1 ≤ i1 < . . . < iK1 , 1 ≤ j1 < . . . <
jK2) in (4).

COROLLARY 3.1. The functional equations (5) induce the equation (4’),
namely the harmonic relations.

Proof. By [5] Sect.3,

Fx(ξ; τ) = 2π
√
−1

[ ∞∑
j=1

qj

e(x) − qj
e(−jξ) −

∞∑
j=1

qj

e(−x) − qj
e(jξ)

+
e(x)

e(x) − 1
+

e(ξ)

e(ξ) − 1
− 1

]
, (|Im x|, |Im ξ| < Im τ).

Therefore the following formulas hold:

lim
ξ→

√
−1∞

lim
τ→

√
−1∞

√
−1

2π
Fξ(x) = f(2π

√
−1x) + 1,

lim
ξ→−

√
−1∞

lim
τ→

√
−1∞

√
−1

2π
Fξ(x) = f(2π

√
−1x),

(6)
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where f(x) =
ex

1 − ex
. If we lay τ to

√
−1∞ and lay α

(1)
1 , . . . , α

(1)
K1

, α
(2)
1 , . . . , α

(2)
K2

to −
√
−1∞ respectively in the equation (5) where m = 2, then it follows

that( K1∏
i=1

f(x
(1)
i )

)( K2∏
i=1

f(x
(2)
i )

)
=

{ ∑
p∈P (K)

K1+K2∏
i=1

f(x(1)
pi1

+ x(2)
pi2

)
}

+
〈
others

〉
. (7)

Here < others > comes from the formulas (6). That is, for every term g in
< others >, there are p ∈ P (K) and intergers l, i1, . . . , il (1 ≤ i1 < · · · < il ≤
|K|) such that

g =
l∏

j=1

f(x(1)
pij1

+ x(2)
pij2

).

Now we replace ex
(1)
i and ex

(2)
i with Xi · · ·XK1 and Yi · · ·YK2 respectively. By

comparing the coefficient of X i1
1 · · ·X iK1

K1
Y j1

1 · · ·Y jK2
K2

(1 ≤ i1 < . . . < iK1 , 1 ≤
j1 < . . . < jK2) in the equation (7), one get the equation (4’). By using the
integral representation (2), we also obtain the harmonic relations.

EXAMPLE 3.1. The following equations correspond to the equations (3):

Fξ(x)Fη(y) = Fη(x + y)F−η+ξ(x) + Fξ(x + y)F−ξ+η(y),

Fξ1(x1)Fξ2(x2)Fη(y)

=Fξ1(x1 + y)Fξ2(x2 + y)F−ξ1−ξ2+η(y)

+Fξ1(x1 + y)F−ξ1+η(x2 + y)F−η+ξ1+ξ2(x2) + Fη(x1 + y)F−η+ξ1(x1)Fξ2(x2).

4 Proof

We will prove our main result (Theorem 3.1). We first give three lemmas.

LEMMA 4.1. Suppose that Km is positive. For any p ∈ P (K), let the

function fp(x
(m)
Km

) be
|K|∏
i=1

Fpi(α)(x
(1)
pi1 + · · · + x

(m)
pim). Then fp(x

(m)
Km

) has quasi

periodicity 1 and e−2π
√
−1α

(m)
Km as x

(m)
Km

goes to x
(m)
Km

+1 and x
(m)
Km

+τ respectively.

Proof. It is obvious that fp(x
(m)
Km

+1) = fp(x
(m)
Km

). We show that fp(x
(m)
Km

+τ) =

e−2π
√
−1α

(m)
Km fp(x

(m)
Km

). Suppose that Km > 1. Let the set I be {i | pi+1 − pi =
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ϵm}. Since the number of the elements in I is equal to Km, there is two
positive integers j and j′ such that j = max{i ∈ I} and j′ = max{i ∈
I \ {j}}. Thus it follows that pj+1,m = Km + 1, pj,m = pj′+1,m = Km, and
pj′,m = Km − 1. By the proposition 2.1 (i),

fp(x
m
Km

+ τ) =

( |K|∏
i=1

(i≤j′, j+1≤i)

Fpi(α)(x
(1)
pi1

+ · · · + x(m)
pim

)

)

×
( j∏

i=j′+1

Fpi(α)(x
(1)
pi1

+ · · · + x(m−1)
pi,m−1

+ x
(m)
Km

+ τ)

)
= e

−
Pj

i=j′+1
pi(α)

fp(x
m
Km

).

This completes the proof in the case Km ≥ 2 since
∑j

i=j′+1 pi(α) = −α̃
(m)
pj′m +

α̃
(m)
pjm = α

(m)
Km

. One can prove the case Km = 1 in a similar way.

Let N1, . . . , Nm be positive integers such that Ni ≤ Ki +1 (i = 1, . . . ,m).
For the two lemmas below, we suppose that m is larger than one, that Nm =
Km, and that (N1, . . . , Nm−1) ̸= (K1 + 1, . . . , Km−1 + 1).

LEMMA 4.2. If x
(m)
Km

is equal to −x
(1)
N1

− · · · − x
(m−1)
Nm−1

, then the following
identity holds:

0 =
∑
l∈AN

{ ∏
j∈AN
(j ̸=l)

F−α̃
(l)
Nl

+α̃
(j)
Nj

(x
(j)
Nj

)

( Kj∏
i=Nj+1

F
α

(j)
i

(x
(j)
i )

)}{ Kl∏
i=Nl+1

F
α

(l)
i

(x
(l)
i )

}
,

where AN = {l | 1 ≤ l ≤ m, Nl ̸= Kl + 1}.
Proof. It is sufficient to prove the lemma when AN = {1, . . . ,m} since the
other cases can be proved in a similar way. One has

m∑
l=1

{ m∏
j=1
(j ̸=l)

F−α̃
(l)
Nl

+α̃
(j)
Nj

(x
(j)
Nj

)

( Kj∏
i=Nj+1

F
α

(j)
i

(x
(j)
i )

)}{ Kl∏
i=Nl+1

F
α

(l)
i

(x
(l)
i ),

}

=

{m−1∏
j=1

( Kj∏
i=Nj+1

F
α

(j)
i

(x
(j)
i )

)}

×
[ m−1∑

l=1

(m−1∏
j=1
(j ̸=l)

F−α̃
(l)
Nl

+α̃
(j)
Nj

(x
(j)
Nj

)

)
F−α̃

(l)
Nl

+α̃
(m)
Nm

(x
(m)
Km

) +
m−1∏
j=1

F−α̃
(m)
Nm

+α̃
(j)
Nj

(x
(j)
Nj

)

]
(♦)

.
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Since x
(m)
Km

is equal to −x
(1)
N1

− · · · − x
(m−1)
Nm−1

and the equation in Proposition
2.1 (ii) holds, it follows that (♦) = 0. This completes the proof.

In order to give the third lemma, we prepare some notations. Let l be a
integer (l = 1, . . . ,m) such that Nl ̸= Kl + 1, and let the multi-index N ′ be
(N1 − 1, . . . , Nm−1 − 1, Km − 1). For any p′ ∈ P (N ′), let the subset P (l;p′) in
P (K) be {p ∈ P (K) | pi = p′i (i = 1, . . . , |N ′| + 1), p|N ′|+2 − p|N ′|+1 = ϵl}.
The map Φ(l) from P (l;p′) to P (K − N ′ − ϵl) is defined by

(Φ(l)(p))i = p|N ′|+i+1 − N ′ − ϵl (p ∈ P (l;p′), i = 1, . . . , |K| − |N ′|).

Finally the (|K| − |N ′| − 1)-tuple vector βl is defined by

βl = (β
(1)
l,1 , . . . , β

(1)
l,K1−N1+1 , . . . , β

(l)
l,1 , . . . , β

(l)
l,K1−N1

, . . . , β
(m)
l,1 , . . . , β

(m)
l,Km−Nm+1)

= (−α̃
(l)
Nl

+ α̃
(1)
N1

, α
(1)
N1+1, . . . , α

(1)
K1

, . . .

. . . , α
(l)
Nl+1, . . . , α

(l)
Kl

, . . . ,−α̃
(l)
Nl

+ α̃
(m)
Nm

, α
(m)
Nm+1, . . . , α

(m)
Km

). (8)

LEMMA 4.3. For every p ∈ P (l;p′), we have

pi(α) = (Φ(l)(p))i−|N ′|−1(β), (i = |N ′| + 2, . . . , |K|). (9)

Proof. Let i be a integer such that |N ′| + 2 ≤ i ≤ |K|. There are inte-
gers a and b such that pi+1 − pi = ϵa and pi − pi−1 = ϵb. Then we have
(Φ(l)(p))i−|N ′|− (Φ(l)(p))i−|N ′|−1 = ϵa, (Φ(l)(p))i−|N ′|−1− (Φ(l)(p))i−|N ′|−2 = ϵb.
We first consider the case i = |N ′|+ 2. Since (Φ(l)(p))2 − (Φ(l)(p))1 = ϵa, one

obtains (Φ(l)(p))1(β) = −α̃
(l)
Nl

+α̃
(a)
Na+δla

, where δla is the Kronecker’s delta. On

the other hand, because p is a element in P (l), one has p|N ′|+2−p|N ′|+1 = ϵl and

p|N ′|+1 = (N1, . . . , Nm). So it follows that p|N ′|+2(α) = −α̃
(l)
p|N′|+1,l

+α̃
(a)
p|N′|+2,a

=
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(Φ(l)(p))1(β). We next consider the case i > |N ′| + 2. By direct calculation,

pi(α) = −α̃(b)
pi−1,b

+ α̃(a)
pi,a

=


β

(l)
pi,l−Nl

(a = b = l)

−β̃
(b)
pi−1,b−Nb+1 + β̃

(l)
pi,l−Nl

(a = l, b ̸= l)

−β̃
(l)
pi−1,l−Nl

+ β̃
(a)
pi,a−Na+1 (a ̸= l, b = l)

−β̃
(b)
pi−1,b−Nb+1 + β̃

(a)
pi,a−Na+1 (a ̸= l, b ̸= l)

= −β̃
(b)
pi−1,b−(Nb−1)−δlb

+ β̃
(a)
pi,a−(Na−1)−δla

= −β̃
(b)

(Φ(l)(p))i−|N′|−2,b
+ β̃

(a)

(Φ(l)(p))i−|N′|−1,a

= (Φ(l)(p))i−|N ′|−1(β),

where β̃j = β1 + · · · + βj. This completes the proof.

We are in a position to prove our main theorem.

Proof of Theorem 3.1. We use induction on |K| = k. The claim is trivial
for k = 1; Assume it is true for |K| < k. It is sufficient to prove the

equation (5) when m ≥ 2 and Km ≥ 1. We define the function f(x
(m)
Km

) by

f(x
(m)
Km

) = (L.H.S in (5)) − (R.H.S in (5)). By virtue of Lemma 4.1, it has

quasi periodicity 1 and e−2π
√
−1α

(m)
Km as x

(m)
Km

goes to x
(m)
Km

+ 1 and x
(m)
Km

+ τ
respectively. Its possible poles are

−x
(1)
N1

− · · · − x
(m−1)
Nm−1

, (1 ≤ ∀Ni ≤ Ki + 1, i = 1, . . . ,m − 1).

Suppose that x
(1)
N1

, . . . , x
(m−1)
Nm−1

are generic. Hence the order of every possible

pole is 1 or less. We shall calculate their residues. Let X denote −x
(1)
K1+1 −

· · · − x
(m−1)
Km−1+1. Since X = 0,

Res
x
(m)
Km

=X

f(x
(m)
Km

) =
m−1∏
j=1

( Kj∏
i=1

F
α′(j)

i
(x

(j)
i )

) Km−1∏
i=1

F
α′(m)

i
(x

(m)
i )

−
∑

p∈P (K′)

|K′|∏
i=1

Fpi(α′)(x
(1)
pi1

+ · · · + x(m)
pim

).
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Here K ′ and α′ are defined by

K ′ =

{
(K1, . . . , Km−1),

(K1, . . . , Km−1, Km − 1),
α′ =

{
(α

(1)
1 , . . . , α

(m−1)
Km−1

), (Km = 1),

(α
(1)
1 , . . . , α

(m)
Km−1), (Km ≥ 2).

It follows from the induction hypothesis that Res
x
(m)
Km

=0
f(x

(m)
Km

) = 0. We next

calculate the residues on the other poles. Suppose that N1, . . . , Nm−1 are pos-
itive integers such that Ni ≤ Ki +1 (i = 1, . . . ,m−1) and (N1, . . . , Nm−1) ̸=
(K1 + 1, . . . , Km−1 + 1). Let Nm be Km, and let the multi-indices N ′ and N
be (N1 − 1, . . . , Nm−1 − 1, Km − 1) and (N1, . . . , Nm−1, Km) respectively. Let

X denote −x
(1)
N1

− · · · − x
(m−1)
Nm−1

. Then

Res
x
(m)
Km

=X

f(x
(m)
Km

)

= − Res
x
(m)
Km

=X

∑
p∈P (K)

(p|N′|+1=N)

|K|∏
i=1

Fpi(α)(x
(1)
pi1

+ · · · + x(m)
pim

)

= −
∑

p′∈P (N ′)

|N ′|∏
i=1

Fp′i(α)(x
(1)

p′i1
+ · · · + x

(m)

p′im
)

×
[ ∑

l∈AN

∑
p∈P (l;p′)

|K|∏
i=|N ′|+2

Fpi(α)(x
(1)
pi1

+ · · · + x(m)
pim

)

]
(♣)

.

Here AN = {l | 1 ≤ l ≤ m, Nl ̸= Kl + 1} and P (l;p′) = {p ∈ P (K) | pi =
p′i (i = 1, . . . , |N ′| + 1), p|N ′|+2 − p|N ′|+1 = ϵl}. We shall show that (♣) = 0.
We fix p′ ∈ P (N ′) and denote P (l) the set P (l;p′). Since the map Φ(l) in
Lemma 4.3 is bijective and the equation (9) holds,

(♣) =
∑
l∈AN

∑
p∈P (l)

|K|−|N ′|−1∏
i=1

F(Φ(l)(p))i
(βl)(x

(1)
pi+|N′|+1,1

+ · · · + x(m)
pi+|N′|+1,m

)

=
∑
l∈AN

∑
q∈P (K−N ′−ϵl)

|K|−|N ′|−1∏
i=1

Fqi(βl)(x
(1)
qi1+N1−1 + · · · + x

(l)
qil+Nl

+ · · · + x
(m)
qim+Nm−1)

=
∑
l∈AN

∑
q∈P (K−N ′−ϵl)

|K|−|N ′|−1∏
i=1

Fqi(βl)(y
(1)
l,qi1

+ · · · + y
(m)
l,qim

).
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Here βl is the (|K| − |N ′| − 1)-tuple vector (8), and for integers j and i (1 ≤
j ≤ m, 1 ≤ i ≤ Kj − Nj + 2 − δlj), y

(j)
l,i is defined by

y
(j)
l,i =

{
x

(j)
i+Nj−1 (j ̸= l),

x
(l)
i+Nl

(j = l).

By the induction hypothesis and Lemma 4.2,

(♣) =
∑
l∈AN

m∏
j=1

(Kj−Nj+1−δlj∏
i=1

F
β

(j)
l,i

(y
(j)
l,i )

)

=
∑
l∈AN

{ ∏
j∈AN
(j ̸=l)

F−α̃
(l)
Nl

+α̃
(j)
Nj

(x
(j)
Nj

)

( Kj∏
i=Nj+1

F
α

(j)
i

(x
(j)
i )

)}{ Kl∏
i=Nl+1

F
α

(l)
i

(x
(l)
i )

}
= 0.

Hence Res
x
(m)
Km

=X
f(x

(m)
Km

) = 0. Thus, for generic α
(m)
Km

, x
(1)
1 , . . . , x

(m−1)
Km−1

, the

function f(x
(m)
Km

) is an entire function with quasi periodicity. It must vanish
for generic points. It also vanishes for all points by analyticity.
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