Functional Equations and the Harmonic
Relations for Multiple Zeta Values

Tomoya Machide

Abstract

Let 0(x) denote Jacobi’s theta function. We show that the function
Fe(z) = (0'(0)8(x+&))/(0(x)0(€)) satisfies functional equations, which
is a generalization of the harmonic relations for multiple zeta values.

1 Introduction

For any multi-index s = (s1,...,8,) (s;i € N, s, > 2), the multiple zeta
value ((s) is defined by

()= > ﬁ

0<k1<...<km

We call the positive integer m the depth of ((s).
The harmonic relations (stuffle relations) for multiple zeta values arise
from the product of two series ([1],[2],[3]). For example,

C(u)C(v) = {¢(u, v) + ¢(v,u)} + [C(wv)], (1)
¢, v)¢(w) = {¢(u, v, w) + ((u, w,v) + ((w,u,v)} + [((ww, v) + ((u, vw)],

where u, v, and w are integers such that u,v,w > 2. We can divide the right
hand side in each of the above equations into two groups by the depth, which
is expressed by using { } and [ |; The depth of every multiple zeta value in
{ } is equal to the sum of the depth of the multiple zeta values in the left
hand side, and that in [ ] is less than that in { }.



The multiple zeta value ((s) has the following integral representation([4]
Sect.10):

(1)
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Therefore the equations (1) is equlvalent to the following equations:
f@)f(y) —{ffc+y)( (x) + )}+[ (z +y)], (3)

fla) f(x2) fy) = {f(z1+y ( (w2 + ) f(y) + flz2 +y)f(x2) + f(@1) f(2)) }
+[ (xr +y)(f (:c2+y)+f(:vz))}

ex
where f(z) = e In fact we obtain the equations (1) by replacing
—e
e’ e¥, e and e” with X, Y, X; X5, and X, respectively and using the above
integral representation.
In this point of view one can regard the usual harmonic relation as the

following equation:

<ﬁ f(xn-)) <ﬁ f(yi)) = {Z "ﬁ” f(xp, + ypﬁ)} + [others]. (4)

Here z,,11 = yny1 = 0 and the sum extends over p = (p1,. .., Pmint1) such
that

® D1 = (17 1)7pm+n+1 = (m + 17n+ 1)7

epi1—p;=(1,0)0r (0,1), (i=1,...,m+n).

If we denote the degree (depth) of [[, f(x;) by m, then the degree (depth)
of TTI" f(2p,, +Yps) is equal to m+n and the degree (depth) of every term
in [others] is less than m + n.

By directing our attention to the highest degree (depth), we regared equa-
tions of the type ([T, F(@)) [Ty F() = 3, [ F (i + ) as func-
tional equations with the fundamental structure of the harmonic relations.

In this paper we give a function F¢(x;7) with two parameters £, 7 which
satisfies the functional equations with the fundamental structure of the har-
monic relations if we neglect the two parameters. We also obtain the har-
monic relations for multiple zeta values by degeneration. This fact guarantees
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that the functional equations for F¢(z;7) that is given in this paper are a
generalization of the harmonic relations. Furthermore we give their extended
functional equations (See Theorem 3.1).

The plan of this paper is the following. In Section 2 we introduce the
function F¢(x;7) which plays a essential role in this paper. In Section 3
we state our main result, i.e., F¢(x;7) satisfies functional equations with
the fundamental structure of the harmonic relations if we neglect the two
parameters &, 7. We also obtain the harmonic relations by degeneration.
Section 4 is devoted to the proof of our main result.

2 The Function F¢(x;7)

Let 7 be a complex number with positive imaginary part, i.e., Im 7 > 0. In
this section we introduce the meromorphic function F¢(z)(= F¢(x;7)) on C?
which plays a essential role in this paper.

Let 0(x) denote Jacobi’s theta function:

9(1,) - 0($;7') _ Z eﬂm(m+%)2T+2ﬂﬁ(m+%)(I+%) )
meZ
The meromorphic function F¢(x) is defined by
_0(0)0(x +§)
0(z)0(¢)
where ¢'(x) = g@(x; 7). If £ € C\ Z + 7Z, then this definition induces that
x

the function F¢(x) with respect to x has simple poles on the lattice Z + 7Z
and that it’s residue at the origin is 1. It also satisfies the following:

PROPOSITION 2.1. We have

Fe(x)

(i) Fe(z+1) = Fe(z), Fe(z+7)=e ™V ¥ F(x), F¢(—a)=—Fe(a).

(11) E :F—fz(_xl_"'_‘rm) | | Ffj—El(xj)+ | | ng(xj):o.
=1 =1 j=1
(G#1)

Proof. The formulas listed in (i) are derived from the formulas below:

O(z +1)=0(z), Oz+7)=e ™V 1T2V1290)  g(—z) = —0(x).
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In order to prove (ii), let us introduce a function defined by

<HF£+77 x]) n(=1 = = am),

where &, £ —& ¢ Z+TZ,(1,j =1,...,m, i # j). Since the function G(n)
is doubly periodic, the sum of the residues of G(n) at its poles in any period
parallelogram is 0. Hence we obtain (ii). O

3 Functional Equations

In this section we state our main result, i.e., F¢(z;7) satisfies functional
equations with the fundamental structure of the harmonic relations if we
neglect the two parameters £, 7. We also obtain the harmonic relations by
degeneration.

We first give some notations. Suppose that K, ..., K,, are non negative
integers. Let K and |K| denote (K, ..., K,,) and K;+-- -+ K,, respectively.
We define the set P(K) such that if p € P(K) then p satisfies the following
conditions:

Qplz(l,...,l), p|K|+1:(K1—|—1,...,Km—|—1).
e For every i = 1,...,|K], there is a integer | (1 <[ < m) such that

l—th
piJrl_pi:El:(Oa--'a 1 7"'70)'

Suppose that agj Vis a complex number for positive integers ¢ and j. The

| K |-tuple vector ax(= «) is defined by (agl), . ,a%i, Cadmo ,a%ﬁ).

Here we regard aﬁj) in ax as a blank word if there is a integer j such that

K; = 0. For example, a0,1) = (agl), ozél), a§3)), Q12 = (a§2), 0453), ozg?’)).
For any p € P(K), we define the complex number p;(«) as follows:
o If py —p1 = ¢ , then py(a) = agl)-
e Ifpiy1—pi=er,pi—pio1=e,(i=2,...,]K|), then pi(a) = _Ofgl) 1,1 +54§)l;,2,
where a() = ozgl) +- agl).

Our main result is the following:

THEOREM 3.1. [f2{) , =0 (j=1,....m), then

m ,K; ||
H(ITFp6) = ¥ o6 +taf )
Jj=1 Yi=1 peP(K) i=1
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Here we regard the empty product H?:l as one.

We derive the harmonic relations from the above functional equation. To
do this, we give the explicit form of the equation (4). Suppose that K, K, are
positive and that K is equal to (K7, K3). Forany k = 1,..., min{ K, K»}, we
define the set P(K; k) such that if p € P(K; k) then p satisfies the following
conditions:
® D = (1,1), P\K|-k+1 = <K1—|—1,K2+1).

e There are integers ay,...,a; (1 < a; < --- < ax < |K| — k) such that
Pai+1 —Pa, = (L, 1), (1=1,. k)

e Foranyiec {1,...,|K|— k}\{al, ...,ag}, there is a integer | (= 1, 2) such
that pi1 —pi = €.

Then the explicit form of the equation (4) is the following:
L1 - X Xk o 1-Y; - Yg,
min{K1,K2} |K|—k

. X1Y ..Y2 ,
D S M I e

peP(K;k) i=1 pi2 " 2

where P(K;0) = P(K). In fact we obtain the above equation by comparing
t.he c'oeﬂicient of Xt ~XZ(11Y1J1 : -~Y1j£2 (1<i<...<ig,1<j<...<
JK,) n (4).

COROLLARY 3.1. The functional equations (5) induce the equation (4’),

namely the harmonic relations.

Proof. By [5] Sect.3,

(&)-%F[ief (~5€) - fe —
@ Jl]

o)1

Therefore the following formulas hold.

. ) v—1
1 1 R = f(2rv—1 1
{—nl/riiloo T—»j/Iil;loo 2 g(x) f< T m) +

V=1
lim lim ——F, 2y —1x),
Lt ol e(z) = f(2rv—1lx)

+

, (Im 2|, |Im &| < Im 7).



(1 (2 (2)

where f(x) = . Ifwelay 7 tov/—1c0 andlayagl),.. Qe s Qe Qe
_el'

to —v/—1oo respectively in the equation (5) where m = 2, then it follows
that

<ﬁ f(xgl))) (ﬁ f(3652))> { > KﬁK2 f(x o )} + <0thers>. (7)
i=1 i=1 peP(K) i=1

Here < others > comes from the formulas (6). That is, for every term g in
< others >, there are p € P(K) and intergers [,i1,...,4 (1 <i; <--- <4 <

|K|) such that
I

9= Hf('rgj)l + xlgi)Q)

J=1

Now we replace exgl) and exz@) with X; - Xk, and Y; - - - Yk, respectively. By
comparing the coefficient of X" - - -X;fllYljl X 'YIJéQ (1<iy<...<ifg, 1<
J1 < ... < Jjk,) in the equation (7), one get the equation (4’). By using the
integral representation (2), we also obtain the harmonic relations. ]

EXAMPLE 3.1. The following equations correspond to the equations (3):
Fe(a)Fy(y) = Fy(x + y) Fopie(@) + Fe(z + y) Flgin(y),
F§1 (xl)Fﬁz ) ( )

) =
(22
=Fe, (21 +Y) Fey (02 + y) Flg, —gy49(y)
FFe (21 + Y) Fogy (@2 + y) Flprey 1o (22) + Fp(m1 + y) Flype, (01) Fey (2).

4 Proof

We will prove our main result (Theorem 3.1). We first give three lemmas.
LEMMA 4.1. Suppose that K,, is positive. For any p € P(K), let the
function fp( ) be H Fl(a)(:x,(iz 4o+ al™). Then fp(xK ) has quasi

Py= ) (m) (m

pertodicity 1 and e as Ty goes to Ty ™ 11 and :BK ™y respectively.

Proof. Tt is obv10us that fp(xK )—i-l) folxy (m) "'). We show that fp(xé” +7) =
o—2mV/ =1 £, ( ) Suppose that K, > 1. Let the set I be {i | piy1 —p;i =
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€m}. Since the number of the elements in [ is equal to K,,, there is two
positive integers j and j’ such that j = max{i € I} and j/ = max{i €
I\ {j}}. Thus it follows that p;j11, = K + 1, Djm = Djs1,m = K, and
pjr.m = K — 1. By the proposition 2.1 (i),

| K|

fp<x;’sm+r>:( [1 Ao+ +m§)m3>)

(i<4’, j+l<z)

< (IT Bootal ozt o5l )
=541
— ¢ ZimyraaPil) fo(z )
This completes the proof in the case K,, > 2 since Zg:j, L pila) = —64,(3?371

a,(,TW)L = ozg( One can prove the case K,, = 1 in a similar way.

Let Ny, ..., N, be positive integers such that N; < K;+1 (i =1,...,m
For the two lemmas below, we suppose that m is larger than one, tha N,
Km, and that (Nla .. ,Nmfl) 7£ (Kl + 1, ey Km,1 + 1)

LEMMA 4.2. If :z:%:z 15 equal to —xﬁ&f — = x%nill), then the following
wdentity holds:

Z{ 11 g @ ( H Fyo(@”) )}{ ﬁ Fa<l>($§l))},

leAy J(EAN i=N;+1 i=Ny+1
J#l

II\-’ O +

where Ay ={l |1 <1<m, N, # K, +1}.

Proof. Tt is sufficient to prove the lemma when Ay = {1,...,m} since the
other cases can be proved in a similar way. One has

m

{11 et o) £ )

i=Nj+1 i=N,+1
(J?fl)

i)




Since x(K"Z is equal to —xg\l,f — = xg\?lj) and the equation in Proposition
2.1 (ii) holds, it follows that (<)) = 0. This completes the proof. O

In order to give the third lemma, we prepare some notations. Let [ be a
integer (I = 1,...,m) such that N; # K; + 1, and let the multi-index N’ be
(N; —1,..., N1 — 1, K,, — 1). For any p' € P(N'), let the subset P*?) in
P(K) be{p € P(K) | pi =p; (i =1,...,[N'[+ 1), pinvj42 = piv1 = €}
The map ®® from P%) to P(K — N’ — ¢) is defined by

((D(l)(p))’l :p|N’\+i+1 - N/ — € (p € P(l;p')’ 1= 17 ey |K| - |N/|)

Finally the (|K| — |N'| — 1)-tuple vector [ is defined by

1 1) 0] 0] m) (m)
b= (ﬁl(,l)a e ’Bl(,K1—N1+17"" 110 PLK —Ny» "’76l(,1 s Bl K= Nypt1)
() | ~(1) (1 1
= (—agv)l +04§V1),a§\,1)+1,...,oz§(3,...
l l ~(l ~(m m (m)
--'a0‘§\73+17"-704§<)p“-7_045\/)1+0‘§Vm)a0‘§\/,73+1’--'7041( ). (8)

LEMMA 4.3. For every p € P4") | we have
pi(a) = (V@) jn1(8), (= IN[+2,...,|K]). (9)

Proof. Let i be a integer such that |N'| +2 < i < |K|. There are inte-
gers a and b such that p,.1 — p; = €, and p; — p;_1 = €. Then we have
(q)(l) (P))i—\N’I - (‘I)(l)(p>)i—|N’\—1 = €a; ((I)(l)(p))i—|N’\—1 - (q)(l) (p))i—\N’|—2 = €p-
We first consider the case i = |N’| +2. Since (®W(p))y — (#¥(p)); = €4, one
obtains (®®(p)),(3) = —d%ﬁ+@§3§+éla, where 6§, is the Kronecker’s delta. On
the other hand, because p is a element in P®), one has PIN'|+2—P|N'|+1 = € and

P = (Vi Nyp). So it follows that pirjpa(c) = —@fh, , +ES0 0. =



(@D (p))1(B). We next consider the case i > |N’| + 2. By direct calculation,

pila) = — (b) +a(“)
l
ﬁz(z)l N (a=b=1)
b
_ ) 1(71)1b Nb+1+ﬁp” N, (a:l,b;él)
= )
_ﬁ( —1,0— Nz_'_ﬁlafNaJrl (a#l,b: )
=By w1 O e (@ #Lb#D)

2(b)
- _ﬁpifl,b*(Nbfl)*&b + ﬁpi,a*(Nafl)*tsza

_ _ b 3(a)
o 6@([)(1’)) ZINT|=2,b +ﬁ(@(l>(lﬂ))i—w/|—1,a
= (@Y (p))i-in-1(8),
where Bj = [ + - - -+ B;. This completes the proof. O

We are in a position to prove our main theorem.

Proof of Theorem 3.1. We use induction on |K| = k. The claim is trivial
for & = 1; Assume it is true for |K| < k. It is sufficient to prove the

equation (5) when m > 2 and K, > 1. We define the function f (x K, ') by

f(x%:n)) = (L.H.Sin (5)) — (R.H.Sin (5)). By virtue of Lemma 4.1, it has

—2my/~Tal” (m )

quasi periodicity 1 and e as Ty~ goes to xg() + 1 and xK) + 7

respectively. Its possible poles are

—aly) == (1< YN <K+ Li=1,.. m - 1),
Suppose that xg\l,l), . ,x%nj) are generic. Hence the order of every possible
pole is 1 or less. We shall calculate their residues. Let X denote —:13&2 41—

- — x(Km . Since X =0,
m—1 , K; Km—1
m)
gc(]:’})e:SXf ‘TK” H (HF /(]) > H F ,(m)

Km 7=1 Ni=1

|K'|

-2 1A ).
peP(K’) i=1



Here K’ and o' are defined by

1 m—1
o J U ), ;e e, (K =1),
(K1, ..., Kp1, Ko — 1), (@V,...;al ), (Kn 22).

It follows from the induction hypothesis that Resz%n) ot (x%n) = 0. We next
calculate the residues on the other poles. Suppose that Ni,...,N,,_1 are pos-
itive integers such that N; < K;+1 (i=1,...,m—1) and (Ny,..., N,_1) #
(Ki+1,..., K, 1+1). Let N,,, be K,,, and let the multi-indices N" and N
be (Ny—1,...,Ny_1—1,K,, —1)and (Ny,..., Ny_1, K,,) respectively. Let
X denote — 5\}) s — xmj) Then

Res i)

me =X

|K|

=— Res Z H pl—l— 2l

(m) _
Kmfx pEP(K) i=1

@\N141=N)
IN'|
= > Tl +o i)
p'€P(N’) i=1
||
T X B+ g

lEAN pepip’) i=|N'|+2

()

Here Ay = {l |1 <1 <m, N # K, +1} and P& = {p € P(K) | p; =
Py (i=1,...,IN'|+1), pvjs2 — Pivrj+1 = €} We shall show that (d) = 0.
We fix p’ € P(N’) and denote P the set PU#). Since the map ® in
Lemma 4.3 is bijective and the equation (9) holds,

|K|—|N'|-1

_ (1) - (m)
- Z Z H F@(l)(lﬂ))i<ﬁl)(xpi+\1v'\+1,1 + +$pi+\N’\+1,m)

IEAN pep®) =1

e M) 0 (m)
- Z Z H I i(ﬁl)(xQz‘l-i-Nl—l +o Tt xqu-ﬁ-Nz +ee Tt xqz'm-l-Nm—l
leAN geP(K—N'—¢) i=1
K|~V -1

- Z Z H Fi(ﬁl)(yﬁ])l ot yl(zzn)'

IEAN geP(K—N'—¢))  i=1
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Here (; is the (|K| —|N’| — 1)-tuple Vector (8), and for integers j and ¢ (1 <
j<m, 1<i<K;—N;+2—0;), y“ is defined by

O = fgi)Nj_l J#1),
lig — l .
2y G=1).

By the induction hypothesis and Lemma 4.2,

m N]-‘rl (Sl]
S H( I £
leAy j=1 i=1 "
K
!
Z{HF~(1)+ ( H F(J) J )}{ H F%@(xz())}zo'
leAy “ieAy i=N;+1 i=N;+1
G#D)
Hence Res_m)_ f(mg;n)) = 0. Thus, for generic aﬁ@”),x?), .. :L’g(n b , the
Km_ m m
function f (;U(K”:z) is an entire function with quasi periodicity. It must vanish
for generic points. It also vanishes for all points by analyticity. O
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