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BOUNDEDNESS OF FOURIER MULTIPLIER OPERATOR DEFINED BY
ELLIPTIC TYPE FUNCTION

YONGGEUN CHO
HARMONIC ANALYSIS AND ITS APPLICATIONS AT SAPPORO
AUG 22, 2005

1. INTRODUCTION

In this note, we consider a Fourier multiplier operator T5 defined by

(L) 77 =¢ (228 ) e 7w,

where
E=(E,&) ERIXR, 0<8x1
% : smooth supported in a small neighborhood of the origin in R%™!
0€C5(=2,2) or SRY)N{0:suppé C {Jt| ~1}}.

And v is an elliptic type function which is defined as follows (see [13]):
1 174!
WQ=P55} —R
is a smooth function with y(0) = Vy(0) = 0, all of its eigenvalues of the Hessian aé,\if €
[1—¢,14€]( hence its graph is positively curved). The typical example of elliptic type
function is W(&') = $|&/|* or 1 —1/1—|&]% Any convex surface with non-vanishing
Gaussian curvature can be decomposed by finite number of elliptic type functions.

Now let us define the kernel of the operator 75 be K5. Using the stationary and non-
stationary phase estimate, one can easily show that if ¢ € C5(—2,2), then |K5(x)| < 5%
for |x| < 87! and |Ks(x)| < M (1+ |x|)™™ for |x| > &' and large positive number M,
and if ¢ € Cg(Jt] ~ 1), then K is supported in a band {|xz| ~ 871}, |K5(x)| < 5 for
|¥'| < c|xg| and |K5(x)| <M (14 |x|) ™™ for [x/| > c|x4|. We call these point-wise estimates
good localization property of kernel K.

Our aim is to find an optimal pair (p,q) and constant C(8) satisfying

I Z5fllzs < C(8) [ fllzr-

This note was based on the works done jointly with Y. Kim, S. Lee and Y. Shim [1, 2].
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Since by the localization property the kernel Kj is bounded by 5%, (p,g) = (1,00) and
C(%) = C8%* for some constant C independent of . L? restriction result shows that
(p,q) = (2, 2—(1‘%) and C(8) = 81, Interpolating these estimates and extending the range
of exponent to the endpoint of restriction conjecture or the endpoint of Bochner-Riesz con-
jecture, we conclude that (p, g) should satxsfy 1 <g<eoand d“ =d-1)(1- %), and
C(8) =C8" T, By a kind of Knapp counter example, we can deduce that

~1,.d d
5T is optimal along % (d—l)(l——%)

2d+4

In the next sections, we will explain that the conjecture is true for g > and introduce

some applications of the boundedness of Ts.

2. MAIN RESULT

Our main achievement is the following.

Theorem 2.1. Let 0 < 6 < 1 and Ty be defined by (1.1). Then, for p,q satisfying 2‘2—“ <

7d+2 and d-l—l (d—l)(l—%),

q< 3%
1Tl <C5~ T 5| £,

To prove this theorem, we need a series of lemmas. For 0 < 8 < 1, we define multiplier
operators 7; for i = 1,2 by
—~ & —v(€)
T () = uE)H(Z—E20)7E)
where Y1, X2 are smooth functions supported on Q. Then by the sharp bilinear restriction
estimate of Tao [12] we have

Lemma 2.2. Let 0 < 8 < 1. If dist(suppX1,suppX2) ~ 1, then for == 442 « p<2,

2.1 I/ Tagllp < COIfll21l8ll2

where the constant C is stable under small (smooth) perturbation \J.

Here the stability of constant means that
10%(W — ¥)ll1=(g) < 1 — C is independent of V.

Now by using the good localization property of kernel K; of 7; and the argument of

Fefferman and Stein ([3], [16, p.422-423]), we can obtain a refinement of Lemma 2.2.
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Lemma 2.3. Let 0 < 8 < 1. Then if dist(supp1,suppXz2) ~ 1, for p,q satisfying <= 2d+4

q<4and2 < p<q, then

—_d+2d
ITifTogllgs2 < C8' 7 | flollell»

where the constant C is stable under small (smooth) perturbation of .

We use a Whitney type decomposition technique introduced in [13], which is useful
in exploiting bilinear estimate. For each j > 1 we dyadically decompose Q C R4~! into
~ 2(@-1J dyadic cubes Q] of side length 2-U*+1). We say o} ~ Qi, to mean that QJ,
Qi, are not adjacent but have adjacent parent cubes of diameter 277, Soif Qi ~ Qi,,
dist(Qi, Qi,) ~ 27J. By a Whitney decomposition of Q x Q away from the diagonal D of

0 x O (e.g. [10], p.16), ignoring some harmless measure zero set, we have

2.2) QXQ\D=UJ'21UQ,{NQIQQ£><Q£/-
Let fkj be defined by
(2.3) RE) =205 E)F(E).

Since } ;> X oingd, Xpi X, = 1 almost everywhere in Q x Q from (2.2) and ) is supported
= k’VQk/ k Qk’
in a small neighborhood of the origin, we see
2.4) T7(0) - T (@) = L 21 L gigy, Tsf (x) - T f} ().
Fixing j, we define a bilinear operator by
Z 0j~0! TSf X )-Tsg i/ (x).
Then, from (2.4) it is easy to see that

2.5) (Tsf(x))> =Y Bi(f,f).

j>1
Lemma 2.4. If 228 < 1, then for p,q satisfying 244 < g <4, 2< p<gq, there is a
constant C, independent of j,9, such that

2.6) 1B;(f,8) g2 < C2HT ~@DU=5D51=d+ ) £ e,

and if 2218 > 1, then there is a constant C, independent of j, 8, such that for p,q satisfying
A <g<42<p<qand L =(d-1)(1-1),
d-1 d—

_Add-1) 1 _d 1_
@.7) 1B;(f,8) g2 < C270 77 = F)5d 1 =) 1] |lg] .

To finish the proof of Theorem 2.1, let us introduce useful interpolation lemma.
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Lemma 2.5 (Interpolation lemma). Ler €1, €& > 0. Suppose that T; be l-linear oper-
ators satisfying that for 1 < p’i, Py, < oo (here the superscript i is not an exponent, but
an index), i=1,...l and 1 < q1,q2 < o, |T;(f%s--s f)llgy < M12%V T, ||f"]|p,-1 and
I35 ) lgr < Ma27 I TTiy || fill i Then T = LTj satisfies

l .
(2.8) I s P)llgm < CMIM P TT I N i
i=1
where® =g/(€1+€2), 1/g=0/q1+(1—0)/g2, 1/p'=0/p} +(1-8)/p5, fori=1,...,1.

By using the above two lemmas, we give the proof of Theorem 2.1 by summing up the
estimates (2.6), (2.7). Applying (2.8) in Lemma 2.5 to (2.6) with [ = 2, we can see that if

for p,q satisfying 245’—4 <g<4,2<p<gand % =d-1)(1- %), then

2.9) 1Y 521558528l g/ < C8 4 7 7l p gl -

Indeed, observe that in (2.6) the exponent on 2/ is negative if 4—:;—1 <(d-1)(1- %), and

positive if 4;—1 >(d-1)(1- Il)) Using (2.8) in Lemma 2.5, we see that the restricted weak
type estimates hold along the line % =(d-1)(1- 1%) On the other hand, from (2.7) we

can see that for p, g satisfying % <g<4,2<p<gand % =(d-1)(1- %),

(2.10) 1Y 2-21<Bj (£:8)lla2 < €87 [ £l

because p < f;d—l. From (2.9) and (2.10), using (2.5), it follows that for p,q satisfying

2"—;5<q<zj%12and%=(d—l)(l—%),

_ga2d
1(T51)?llg 20 < C8 T 1113

This gives restricted weak type estimates for T5. Strong boundedness follows from real

interpolation among the resulting estimates.

3. APPLICATIONS

In this section, we introduce two applications of Theorem 2.1

3.1. Bochner-Riesz operator. The first is on the Bochner-Riesz operator. Let us define a
modified Bochner-Riesz operator T%, o € R by

e = S XS e

y(E)=1-1-[g
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Obviously, y is an elliptic type function. Here, z; is the function such thatz, =z ifz >0
and ¢y = 0if t <0, and 7 is a smooth function supported in a small neighborhood of the
origin.

Now we decompose T'* case by case as follows:

when a >0, weuse ¢ € Cg (|| ~ 1),

and when o < 0, weuse ¢ € C5(|t| ~ 1).

Then we have the following decomposition

TOF(E) ~ Y 27902 (& —w(E))1(E)F(E) + smooth error,

l:large
Let 27/ be 8. Then from the good localization property of K5 and the interpolation lemma

Lemma 2.5, it follows that for the case that o > 0,

ITflle < M1 fllee

1 1 1
if 0c>max(d ;———l——,O

21 2
(see [8] for the detailed proof) and for the case that ot < 0

g0 2d+d  2d+4
P> P~"3Tg

IT%fllze S Nfllee
: d?—d—2
if a<—2—(m and (l/p,l/q) EAa(d),
where
A(d)={<l l)e[oux[on
o - pvq ) )
1 1 20 1 _d-1 ol d+1 o
___>._____,_>____ -, —_—
p g d+1'p  2d '"d'g 24 d

(see [1] for the detailed proof).

3.2. Convolution operator with singularity on the cone. The next application is on a
Fourier multiplier operator defined in a small neighborhood of light cone. Let & > 0 and

let Sg be a multiplier operator given by

— —Inl? =
5o .09 = ooy m) i, .

where ¢ € C5(1/2,2), y € S(R) and b is a smooth function supported in C7(B(0,1)),
B(0,1) c R4
Following the similar strategy of proof for Sg (instead of using the bilinear estimate for

elliptic surface, using the bilinear estimate for cone [11, 15]), we can have
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Theorem 3.1. If (d—1)(1—1) = (d+ 1)} and g > g0 = U2 then there is a

constant C such that
1
(3.1) 851y < CBFE=) .
And when (p,q) = (po,q0), Ssf is of restricted weak type (po,qo)- Namely,
TSNS
(3.2) 1S5 llgg.ee < €8 70 07| fllpo,1-

As a consequence of Theorem 3.1, we first obtain a sharp estimate for a convolution

operator with kernel defined by

KZ(MI):{ gs-%f)g/r(zﬂ) if1>0 } Re(2) > 1.

ift <0

The result is that there is a constant C such that

d(d+1)?
. ¢ g < Bs - <
(33) 1K+ £l <Clflgy, for — 3y SRe(@ <0
and for all f € S(R?*1), provided p, g satisfies
1 1 2Re(2) Re(z) 1 Re(z)(d—1)
34 ——=-=1 , I+ — < =<1+ —F—,
34 P q +d+1 i d <p + d>+d

where E;}, is a kind of homogeneous Besov space, which is equipped with the norm:

I3

1715, = (ZZ“""HAkfll;> , 1<pr<e, seR,
’ k

where A7 (n,p,7) = 0(Ip|/25) f(n.p,7), (M,p,7) ERY xR xR.
The kernel K¢ was studied by Oberlin [9] and Harmse [5] and the estimate (3.3) is a

slight improvement of the previous result that ||K* * f|zs < C||f]lz» for —3 < Re(z) <0
with (p,q) satisfying (3.4).
To prove (3.3) let us set

K (35,) = 2y (/2902 ((s = P /1) /2')

with 0, such that y, € C5(1/2,2), 0, € Cy((—=2,-1/2)uU(1/2,2)) and for all h €
5(Rd+l),

35 (K4h Zzz (k1) ///\p (1/2y0, (=22 Iyl S=DI/4 0 5 r)dsdyar.
Then by a dyadic decompos1t10n, we can write K * f as

(3.6) Kxf=YY Ky *f
k1
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provided —(d +1)/2 < Re(z) < 0. The estimate (3.3) follows from Theorem 3.1 and the
interpolation lemma Lemma 2.5. By another use of Theorem 3.1, we can also have the
improved sharp estimate for cone multiplier operator with negative index. For the details,
see [2].

Apart from sharp estimates, it is possible to get some better bound for the cone multi-
plier ope.rator with negative index if one use the local smoothing estimates due to Wolff [14]
and Wolff and Laba [6] and the argument in [7] based on some scaling method. Recently,
G. Garrigos improved the Wolff’s local smoothing estimate [4]. Thus a more improvement

is now possible.

Acknowledgement. The author would like to thank the organizers Professor Miyachi and

Professor Tachizawa for their hospitality.
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On the law of the iterated logarithm for gap series
K. Fukuyama (Kobe University)

In this note, we make a brief survey of studies on the law of the iterated logarithm
for the series Z§=1 f(njz), where n; is a rapidly increasing sequence of integers, and f
is a function satisfying

1 1
o +1) = f(a), /0 f@)dz=0, |f|2= /O (@) dz < co. (1)

Kac [13] proved the central limit theorem

{z< 01| mfjﬂnjw) sof|- o= [ e ra -oo)

j=1
by assuming the large gap condition

n
Ml
ng

and (-Lipschitz continuity of f (8 > 0). Later, Takahashi [17] relaxed the smoothness
condition to

1£(- +h) = f(-)ll2 = O((log 1/h)~*7°),

where § > 0.
As to the law of the iterated logarithm, Takahashi [18] proved

Y5y flnyz)
li e - = /2 2
imsup = V2 £ll2, (2)

by assuming the large gap condition and (-Lipschitz continuity (8 > 0). We must
mention here that we cannot weaken the gap condition to Hadamard gap condition

Nk+1
Nk

>q>1.

It is known by the example given by Erdés-Fortet: for f(z) = cos2nz + cosdrz and
ne = 2% + 2, we have

limsu —————Ef:l f(n;)
k_.oop Vvkloglogk

Even we don’t have the law of the iterated logarithm exactly in the same way as the
sum of independent random variables, we still can expect the upper bound estimate. The
result in this direction was first obtained by Takahashi [17]: if one assume the Hadamard
gap condition and B-Lipschitz continuity, one has

= 2| cos 2mz|.

lim su ———————Z?:lf(njx)
k_,oop Vkloglogk

<C< o a.e. . (3)



By applying the methods presented by Takahashi, Philipp [20] proved the following
uniform law of the iterated logarithm:
k
. f(n,z
limsup sup L1 f(n52) < C < oo,

k—oo ||flsv<i Vkloglogk

where the Hadamard gap condition is assumed and the supremum is taken over the
functions satisfying (1) with total variation less than or equal to 1.

Kaufman-Philipp [14] proved the following variation of the uniform law of the iter-
ated logarithm: Let § > 1/2 and ny satisfies the Hadamard gap condition. Then

k
limsup sup —/—m————-

k—oo ||flups<t VEloglogk

where supremum is taken over the class Lip 8 (8 > 1/2) of functions satisfying (1) with
(B-Lipschitz continuity.

By the way, in the classical case when f is a single trigonometric function, i.e.,
in the case of lacunary trigonometric series, the central limit theorem and the law of
the iterated logarithm were first proved by assuming the large gap condition, and then
extended to the case of Hadamard gap condition, and in the last stage is was proved by
assuming the Takahashi gap condition:

< C < oo,

Nk41
Nk

>14ck™ (c>0, a<1/2),

and was also prove that there is a counterexample for these theorems if we relax this
condition to @ = 1/2. From this point of view, it is very natural to expect to extend the
above results to Takahashi gap sequence.

It was accomplished by Dhompongsa [6]: If one assume Takahashi gap condition
and § > 1/2, then

k
. Zj:l f(n;z)
limsup sup

k—oo ||flups<t VEloglogk

By inspired by this result, Takahashi tried to give a concrete estimate of C, and
proved the following law of the iterated logarithm: If one assume the Takahashi gap
condition and f € Lip 8 for some § > %, then

Y e T
e e, = 1l = 2 Y

Although it is not a uniform law of the iterated logarithm, it must be noted that it gives
a concrete estimate of the upper bound of the law of the iterated logarithm.

The celebrated Bernstein’s theorem claims ||f||l4 < oo and the Fourier series con-
verges uniformly if f is 3-Lipschitz continuous for some 8 > 1/2. Thus it is very natural
to expect that (4) holds under the condition ||f|la < oco. Berkes [2] studied in this
direction and succeeded in proving

k—?oop VEkloglogk ’

< C < co.



under ||f||a < co. By modifying that method we proved the following results [7, 8:
1) The Takahashi gap condition and || f||a < co imply (4).
2) Let the Fourier coefficients of f is parallel, i.e., arg f(u) does not vary for all v > 0.
Then for all € > 0, there exists {n} with Hadamard gaps such that

limsup—————ZJ 1/ (n5) > | flla —e.
k—oo Vkloglogk — A

3) Let the Fourier coefficients of f is parallel. Then for all gz | 1, there exists {nj}

such that
Nk+1 . Zy =1 f( )
— > d 1 _
Nk e an lz?i,sip vkloglogk

By 1), we see that (4) holds under minimal condition ||f||4 < oo, and even we can
say that only (1) implies (4) since (4) is trivial in case || f||4 = co. By 2), we see that this
estimate is best possible if we consider the function with parallel Fourier coefficients and
the sequence with Hadamard gaps. And by 3), we see the following: if we assume any gap
condition weaker than Hadamard’s, for any function with parallel Fourier coefficients,
there exists a sequence satisfying the gap condition which attains the upper bound.

As to the uniform law of the iterated logarithm, we have the concrete estimate in
the following way ([9]): Let Lip, . 8 be the class of function satisfying (1) and

= [IF]la-

IFC- +h) = £(-)ll2 = O(K?).

In the following results, we assume X C Lip;.  for some 8 > %
4) If one assume the Takahashi gap condition, then one has

lim sup sup —/————— Zf 11y ) UP £ -
k—oo fex Vkloglogk

5) If one assume the large gap condition, then one has

. i S (niz)
lim sup sup

2
mup sup “Zme e = V2 sup | £l

6) Let us assume that X is round in the following sense: for all f € X, one can find
g € X with parallel Fourier coefficients. Then for all € > 0, there exists {n} with
Hadamard gaps such that

limsup sup —/————— Ef 1 f(ny ) P | flla—e
k—oo fex Vkloglogk —

7) Let us assume again that X is round. Then for all g | 1, there exists {nx} such

that K
Tk+1 . Z] =1 f(n n;z )
> and limsup su = s
% MSUP SUP e T SR I flla-



For f-Lipschitz class with 8 > 1/2, every results concerning the law of the iterated
logarithm for Hadamard gap sequence were extended to the case of Takahashi gap se-
quence. Berkes [2] gave a counterexample function f of 1/2-Lipschitz class which does
not obey the upper bound estimate for the law of the iterated logarithm for Takahashi
gap sequence. Since the class of functions of bounded variation is the subclass of the
L2-1/2-Lipschitz class, it was not clear whether the results of Philipp can be extended in
the case of the Takahashi gap sequence. As to this problem, Berkes—Philipp [3, 4] proved
the following and showed that it cannot be extended for any gap condition weaker than
the Hadamard’s: For f(z) = (z) — 1/2, and for all g | 1, there exists {ns} such that

=1 F(57)
B an lﬁsip Vkloglogk 5)
It is very natural to ask whether this phenomenon occur for all function with disconti-
nuity. As to this problem, we can prove the following ([10]):
8) Assume that f € Lip;» + has zo € Q such that limits f(zo —0) and f(zo +0) exists
and are distinct. Then, for all gz | 1, there exists {ny} such that (5) holds.

~

9) Assume that || f||4 = oo, and that {Rf(v)},>0 or {SF(v)}u>0 is positive, negative
or alternating. Then for all gx | 1, there exists {n,} such that (5) holds.

The result 9) has important examples as log|2sin7z|, log|2cosmz| € Lipy21/2.
These function plays key role when we investigate limiting behavior of the product of
the lacunary trigonometric functions as )Hlkvzl 2sin wnka:| and |H£[=1 2cos mniz|. These
functions are not Lipschitz continuous nor bounded, and we cannot apply the classical
results by Takahashi. Although Berkes [1] proved (2) for large gap sequence and (3) for
Hadamard gap sequence when f is bounded L2-3-Lipschitz continuous, we cannot apply
this results because our functions are not bounded. And these assumptions are much
stronger than the these appearing in the central limit theorem by Takahashi. We tried
to relax these conditions and obtained the following ([11]):

10) We have (2) for large gap sequence and (3) for Hadamard gap sequence under

Nk+1

1F( +B) = £(-)l> = O((log 3)~*loglog 7))

We can also see that the almost sure invariance principle type results under L?-8-
Lipschitz continuity ([12]).
By applying this result, we can conclude that, the large gap condition implies

k 1/1/kloglogk
lim sup H 2 cos(mn;) = e"/‘/g,
k—oo |5
j=1
and the Hadamard gap condition implies
k 1/+/kloglogk
lim sup H 2 cos(mn;z) < C < 0.
k—oo X
J=1

On the other hand, by applying 9), we can conclude that for all g | 1, there exists {ns}
such that

k

H 2cos(mn;z)

j=1

1/\/kloglogk

= Q.

Nk41 .
LS gr and limsup
N k—oo
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A NOTE ON PLATE DECOMPOSITIONS OF CONE MULTIPLIERS

GUSTAVO GARRIGOS AND ANDREAS SEEGER

ABSTRACT. We observe that the range of p for Wolff’s inequality on plate decompositions of cone
multipliers can be improved by using bilinear restriction techniques. This in turn is known to
improve the range for sharp LP results on cone multipliers, local smoothing for the wave equation,
convolutions with radial kernels, Bergman projections in tubes over cones, averages over finite type
curves in R3 and associated maximal functions. We also give some improved estimates on square

functions associated to cone multipliers.

1. INTRODUCTION

Let I = {(1,6) € R x R? : 7 = ||} denote the forward light-cone in R4+, d > 2. For fixed
¢ > 0 and small 6 > 0, we consider J-neighborhoods of the truncated cone

Ts(c) ={(r,§) eR*™ : 1<7<2 and |r—¢] <cb},

with the usual decomposition into plates subordinated to a v/8-separated sequence in the sphere
{wk} C §e-1;

0 = {(r.§) eTs(0) = |¢/lel —wi| V5 };

(1.1)
dist(wy,wir) > V6 ifk £K.
Let
1 1. 1
(1.2) a(p) = d(§ - 5) ~ 5

the standard Bochner-Riesz critical index in d dimensions. Then Wolff’s inequality asserts that for
alle >0

13 |, < ceoo=< (T usel) ™
k k

provided that
(1.4) supp fi C H,(f).
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The power a(p) is optimal for each p (except perhaps for € > 0), and the inequality is conjectured
to hold for all p > 2 + 2%;. In his fundamental work [22], Wolff developed a method to prove such
inequalities for large values of p, and obtained a positive answer for d = 2 and p > 74. Subsequently
the method has been extended in the paper by Laba and Wolff [11] to higher dimensions. It is shown
there that (1.3) holds for p > 2 + % when d > 3 and p > 2 + d—i'ﬁ when d > 4. In this paper
we modify the weakest part of their proof to obtain a better range of exponents in all dimensions
(see Table 1 below). The improvement relies on certain square-function bounds which follow from

Wolff’s bilinear Fourier extension theorem, [23].

Dimension | [22], [11] Improvements Conjecture
d=2 p>T4 p>p2:=63+1/3 p>6
d=3 p>18 p>p3:=15 p>4
d=4 |p>84 P> pg =728 p>2
d>5 |p>2+ 25 p>pa=2+50-25)|p>2+54

T
TABLE 1. Range of exponents for the validity of (1.3) for light-cones.

Theorem 1.1. Let d > 2 and pyq as in Table 1. Then, under the assumption (1.4) the inequality
(1.8) holds for all e > 0 and all p > pq.

A similar result for decompositions of spheres in R% can be formulated as follows. We now let
Ss(c) ={¢ e R*: ||¢| — 1| < cd},

and consider the decomposition into rectangular “caps” subordinated to a /6-separated sequence
{wr} € 8971,
ol = {eess(e): |¢/1gl —wi| < V3 }.

Theorem 1.2. The analog of Wolff’s inequality for the sphere,

(15 |4, < come@(Shag) ™ sumw fic o,
k k

holds forp > 2+ 72-(2 = 3) and all e > 0.

Again (1.5) is conjectured to hold for the optimal range p > 2 + 4/(d — 1). It has been known
to hold for p > 2 + 8/(d — 1); this follows from a modification of the argument in [11], see also [10].
Note that in two dimensions the range is improved from previously p > 10 to p > 8.

Remark 1.3. Theorem 1.2 may be extended to convex surfaces with nonvanishing Gaussian curvature
and similarly Theorem 1.3 may be extended to cones with d — 1 positive principal curvatures. This

can be achieved by using scaling and induction on scales arguments such as in §2 of [16].

We proceed to list some of the known implications of Theorem 1.1.
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Corollary 1.4. Letd > 2 and pg as in Table 1. Then

d

(%) For allp > pq, a > d—gl — 2, we have
2 1/p
(L6) (15 o) 5 Uflziaer
(i2) For all p € (pg,00), o > i;—l - % the Fourier multiplier
(1.7) me(T,€) = (1 - ¢ /7%)%

defines a bounded operator in LP(RT1).

(133) Let ¢ € C§(R?\ {0}) so that ¢ is radial and not identically zero, and let € > 0. Let
K, = f‘l[cpl?(t-)]. Then for all Schwartz functions f and 1 < p < P4

Pad
1K * fllp < Cesup | Kellptel Fllo-
t>0

(iv) Let x € C°(R) and s — y(s) € R® a smooth curve satisfying 3 5_, 146,79 (s))| # O for
every unit vector @ and every s € supp x. Fort > 0 define the convolution operator A; by

Af(z) = / £ — t2(s))x(s)ds.

Suppose that max{n,32+2/3} < p < co . Then A; maps LP(R®) into the LP-Sobolev space L’l’/p(RS).
Moreover the mazimal function M f = sup, |A; f| defines a bounded operator on LP(R3).

Parts (i), (ii), (iii) are standard consequences of Theorem 1.1; see [22] for (i) and the local
version of (ii). The global version follows by results on dyadic decompositions of multipliers and L?
Calderén-Zygmund theory (see [6] or [17]). The proof of Theorem 1.6 in [15] together with these
arguments can be used to deduce (iii) from Theorem 1.1. For (iv) see [16].

Besides the connection to cone multipliers a major motivation for this paper is the relevance of
inequalities for plate decompositions for the boundedness properties of the Bergman projection in
tube domains over full light cones, see [1], [2]. Denote by A(Y) = y3 — |y|* the Lorentz form and
consider the forward light cone on which A is positive;

AYY ={Y = (yo,9") e Rx R¥: 2 — |¢/|* > 0,0 > O}
Let 79+1 C C4+! be the tube domain over A4t! ie.
Td+1 — Rd+1 + iAd+1.

Let w,(Y) = A(Y)” and consider the weighted space LP(7 %! w,) with norm

1Pl = ( / /T o |F(X +iY)PAT(Y) dY dX) Ve

Let P., be the orthogonal projection mapping the weighted space L2(T4*1 w,) to its subspace AP

consisting of the holomorphic functions. Only the case v > —1 is interesting since A5 = {0} for
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4 < —1. We are interested in the L? boundedness properties of P,. For v > —1 the operator P,
can only be bounded on LP(74*!,w,) in the range
-1
1.8 1+ —————<p<lt+—7F—7—,
(18) o rary °F d—1
see e.g. Theorem 4.3 in [3], and (1.8) is indeed the conjectured range for L? boundedness.

Corollary 1.5. Let d > 2 and pq as in Table 1. Then for all v > =1 (py — ﬁd—_“—”—) , the Bergman
2 d—1

projection P, is a bounded operator in LP(T%+!, wy) in the sharp range (1.8).

Beyond Corollary 1.5 both Theorem 1.1 and Theorem 4.3 below have implications for the range of
boundedness of the Bergman projector P in natural weighted mixed norm spaces. We refer to the
derivation of Corollary 1.5 and further discussion to [2] (in particular Proposition 5.5 and Corollaries
5.12 and 5.17).

Our approach to Theorem 1.1 is based on bilinear methods, for which we consider a closely related

inequality:

(L9) |25, < ca= (05u05) i
k k

One can conjecture the validity of (1.9) foralla >0 and all2 <p <2+ d—f"_—l, but for the moment
no positive result for any such p seems to be known. The limiting point p = z(j_—ﬁ'ln should be the
hardest case, since by interpolation and Holder’s inequality it implies both (1.9) and (1.3) in all the
conjectured ranges. This kind of inequalities arises naturally in the study of weighted mixed norm
inequalities for the Bergman projection operator P, see [2].

We shall deduce Theorem 1.1 by using a stronger version of (1.9) for p = 2(d + 3)/(d + 1), but
with a power of 1/§ which is (probably) not optimal. Namely under the assumption (1.4) we have

(1.10) HZ i (Z\f/clz)m
P p

for all £ > 0. We prove this inequality in §2 using the bilinear approach of (20, §5] and the optimal

d—1
i(d+s) ¢

2(d+3) < CE 6 2(d+3)’
—aFT —a+1

bilinear cone restriction inequality of T. Wolff [23], see Proposition 2.3 below. By Minkowski’s
inequality and interpolation (1.10) trivially implies non optimal estimates for the inequality (1.9)
for all p € (2,00) (see Corollary 2.4 below). In §3 we use these to refine a part of Wolff’s proof of
(1.3) and obtain the new sharp estimates for large p announced in Table 1. In §4 we improve on
some of the square-function results in low dimensions; these yield in particular the estimate

(111) 17 e o) S Ifllos o> e,

for the cone multiplier in R?*!, improving slightly on the Tao-Vargas result [20].

Further results. Various further improvements on the range of Theorem 1.1 have been recently
obtained by the authors, and also by Wilhelm Schlag (personal communication). We plan to take

up these matters in a joint paper [9].

Notation. We shall use the notation A < B if there is a constant (which may depend on d) so that
A < CB. We use AS B if for every ¢ € (0,1) there is a constant C¢ so that A < C.0"¢B.
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2. THE BILINEAR ESTIMATE

Following the approach by Tao and Vargas, we first establish an equivalence between linear and
bilinear versions of (1.10), which is a higher dimensional analog of Lemma 5.2 in [20].

Lemma 2.1. Let d > 2, and suppose that for some p € [2,00) and o > max{0,(d —1)(1/4—1/p)}
e (S8 (S ), <ol (S ) |LICE wer) 7],
wi €N Wy €Y wk€Q

holds for all f, € S(R¥*Y) with supp fe C H;Ca), all pairs of 1-separated subsets Q,Q C S41 and
all 6§ € 1. Then, it must also hold

(2.2) HszHp < Cloe
k

()™
k

Observe that (d —1)(1/4 — 1/p) < a(p)/2 is equivalent with d > 2. Thus the restriction on « for
p > 4 is never severe.

Proof of Lemma 2.1. Let ® : Q = [0,1]4"! — S%1 be a smooth parametrization of (a compact
subset of) the sphere and let D denote the set of all dyadic intervals I C @ with |I| > 5T . Asin
(21, p. 971], we may consider a Whitney decomposition @ x Q = |#,._; I x J, where I ~ J means:

(i) I, J € D and |I] = |J};
(ii) If |1| > 5%, then I and J are not adjacent but their parents are.
(iil) If |I| =6 “T* | then I, J have adjacent or equal parents.

For simplicity, we assume (by splitting the sphere into finitely many pieces) that all wy € ®(Q). We
also denote D; = {I € D : |I| =277V}, Then

(C8)'= & k= X N (X WX f)
k wi,wy €E2(Q) VE<2-i<1 ’IJEEJ WkEQ(I) wir €(J)

To establish (2.2) we take LP/?-norms in the above expression and use Minkowski’s inequality in j,
so that we reduce the problem to show, for each j

(23) H Z (2 ) (2 ).

wke

(;w)w I

This is trivial when 277 & v/§ since by assumption the number of wy’s in each I is approximately
constant. We consider the general case Vo < 277 < 1. By construction we must have

(2.4) S xips S

I€D; J~I

Indeed, if ¢; denotes the center of I, then
I+J C (C] +Bcz—j) + (C]+Bc2—j) C 2¢; + Bug-i.

Since for each I there are at most O(1) cubes J with J ~ I, and since the centers ¢; are 277

separated, (2.4) follows easily.
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From (2.4) it follows that the functions Fr,; = (T, ca(n fr) (Zu, caes fir) have pairwise
(almost) disjoint spectra when I ~ J € D;. We may conclude by orthogonality and standard
interpolation arguments

(2:5) | & Fus,, s merzenesmy( 5 1Fnolz2) "

I~JED; I~JED;
(the case p/2 = 2 follows by orthogonality and the cases p/2 = 1 and p/2 = oo are trivial; see e.g.
Lemma 7.1 in [20]). Next, we wish to use the bilinear assumption (2.1) to estimate ||F7,s(|p/2- This
can only be used directly when 27 = 1, since dist(l,J) ~ 1. For other j’s we must use Lorentz
transformations to rescale the problem. To do this, let {n1,...,n4} be an orthonormal basis of R¢
with 71 being the center of ®(I). Then we define L € SO(1,d) acting on a basis of R4™! by

LLm) = (Lm), L-Lm)=%(-Lm) and L(0,m)=1/5(0,m), £=2,...d,

where we choose o = 227§ (so that § < o < 1). The functions fi o L have now spectrum in (perhaps
a multiple) of the plates Hg) corresponding to the /o-separated centers {L(1,wg)}. Moreover, by
the choice of o, the plates corresponding to wy € ®(I) and wy € ®(J) are 1-separated, and therefore

after a change of variables we can apply (2.1) at scale o to obtain

1£7,5llp/2 = H< > fk) ( > f’“')\

wr€B(I) W €2(J)

() IS ),

wrE® Wit (I)(J)

‘)

5 (22j6)—2a

and then also

S amaa) s S0 1w IS wer) )
I~JeD; I~JeED;  wred() wyr EB(J)
se [ [(X 5 )] <@g (Z|fk!’~’)”2])2,
I weed(I) k ?

where we have used the inequalities 2ab < a? + b? in the second inequality and the imbedding
¢ — £% in the fourth. Combining this with (2.5) we obtain

(2.6) l} S Fr H < (2%96)72% max{1, 294D~ 4/”)}“ (Z | ] ) H
I~JED; p/2
and by our assumption on a we may sum in j. This proves (2.3) and establishes the lemma. g

We turn to the proof of (a generalization of) the square function estimate (1.10). We shall use
the following statement of Wolff’s Fourier extension theorem.

Wolff’s bilinear estimate. [23, p. 680]. Letp > 443 ¢ > 0 and let E, E' be 1-separated subsets

d+1’
of Tyyn. Then, for all smooth f and g supported in E and E', and all N-cubes Q, we have
(2.7) 175l 1oy < Ce N7 15Nz gl
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Denote by @ = Q(671/2) a tiling of R4*! with cubes Q of disjoint interior and sidelength §7/2,
with centers cq in §~3Z4+1,

Proposition 2.2. Let d > 2, and suppose that supp ﬁc C Hf), supp g C H,(c&) and let Q,Q c §¢-1
be 1-separated subsets. Suppose 22—‘1:%)- <¢g<p< oo and let

(28) pp) = g - d—;p—l.
Then, for alle >0
) ( 2 H 2 1) Z 2 Z;(Q))Z/p
QEQ(6-1/2)  wheR wi €Q
< o () LI, ),
wrEN P eq P

Proof. Let ¢ € S(R4+1) be so that supp 9 C Biji0 and ¥(z) > 1if |z;] < 2,i=1,...,d +1; then
S onezan Y(-+n)? & L Let ¢g = P(VE(- — c)), so that Y-, 93 = 1. We write

Fe=(>" fi)vg and G2=( ) gw)va,

wWrEN wk/EQ'

so that the supports of FQ and Z:E are 1-separated sets in [' 5. Thus, we can use Wolft’s estimate
(2.7) with N = §=%/2 to obtain

e (505 )

Wer

sy S NP2 Clzanq 072 7415 69,

Now, by almost orthogonality we can write

72~ A« Ball = (32 52) el

and similarly for G2. We write So = (}_,, cq |£e2)Y/2, Sqr = (Cu,eqr |gxl*)1/2, raise (2.10) to the
power p/2 and sum in Q. Thus

(SIS (S o0

wrEQN Wy €

La/2(Q)

p/2 2/p 2/p
)" 5V (3 l18aval2(1Saball}?)
Q
and by the Cauchy-Schwarz and Hoélder inequalities the right hand side is
p\ /P p\1/P
SVE(XlIsavalls) (X ISeellr)
Q Q

/
S VB(S Isavalpiai %) (3 Isauel i@ +72) ™
@ Q

< §Eo(@DG-) [[Sall, [|Sa|l,

which yields the assertion. O

We combine Proposition 2.2 for ¢ = p and Lemma 2.1 to obtain
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Proposition 2.3. Let d > 2, let u(p) be as in (2.8) and suppose that p > %j_:_lél and that (1.4)
holds. Then, for alle >0

(2.11) HZ f’“H,, < C, 5-Hp)—e
k

(18",

We may apply Minkowski’s inequality on the right hand side of (2.11) and obtain (1.9) for the
limiting case p = 2(d + 3)/(d + 1). It turns out this is all what is needed to obtain the claimed
improvements in Theorem 1.1. This inequality can also be interpolated with the trivial estimates
for L? and L™ to give:

Corollary 2.4. The inequality (1.9) holds for all a« > 42 (} — %) when 2 < p < 2(d+3)/(d+1),

and for all o > 41 (1 - ;ﬁizg) +¢& when 2(d+3)/(d+1) <p < c0.

3. IMPROVEMENT OF WOLFF’S ESTIMATE

We turn to Theorem 1.1. The proof in [22, 11] for inequality (1.3) is based on a subtle localization
procedure, induction on scales and certain combinatorial arguments. Here we only cite the main
modifications leading to the claimed improvements. For simplicity, when ¢ is fixed (and small) we
use the notation A $ B to indicate the inequality A < C.67°B for all € > 0. Recall that the
number of plates H,(Ca) covering I's is approximately 55 Also, throughout this section we fix
q(d) =2(d+3)/(d+1).

Due to various reductions (see [11, §3]), it is enough to show that, for all fx with supp fk C IIS)
and || fklleo <1, and for all A > 0 we have

(3.1) HIZs il > A} S 27707 17113

where f =3, fi. In [22, 11] it is observed that, by Chebyshev’s inequality, this property trivially

(d-1)p
2

holds for small enough \; namely for all A < 5T T, We use (1.10) to enlarge this range of A.

Lemma 3.1. Let ¢ = q(d) = 2(d + 3)/(d + 1). Then, inequality (3.1) holds for all

d—1 q
(3.2) A6 T,
Proof. Let = By Chebyshev’s inequality and (1.10), we have

4(d+3)
£ > A} S A9 IAIE S 679N (S D)

and estimate

(Sellfel2)* 5T AT Dl fellg < 57T G Sl fellg supy Il L.

Since by assumption ||fx|lec < 1 and by almost orthogonality 3°, || f«ll3 =~ || f]I3, it suffices to show
that in the desired range of A we have s F(E-D)\-9 < §- “512—d\~p which is equivalent to
(3.2). 0

At this point one can proceed exactly as in the proof of Proposition 3.2 of [11] (or p. 1277 in [22],
- (d —
when d = 2). The desired gain comes from using A > PR o) (rather than A < 5"%—1‘*71—2)
in step (54) of [11] (or (68) of [22]).
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For completeness, we shall briefly sketch this procedure here, referring always to the notation in
[11]. Localizing with v/N-cubes A as in Lemma 6.1 of [11], one can find a collection of functions

{fa} with spectrum in I" 5 and a number
(3.3) A, € (AT FE 57 5F)

so that

11> 2 S D HIfal > A}
A

and

(3.4) card(P(fa)) S A2A2675F.
Here P(fa) refers to the set of plates in the wave-packet decomposition of fo. When the cardinality
of this set is “small”, a further localization argument and induction on scales allows to conclude the
theorem (see Lemmas 6.2 and 6.3 in [11]).

In [11, 22], the size of card(P(fa)) which ensures the validity of these arguments is controlled in

three different ways, each depending on a different combinatorial estimate

(3.5) card(P(fa)) < ce6°XZ,
or
(3.6) card(P(fa)) € ced T oY,

or, in three dimensions (i.e. d = 2) only,
(3.7) card(P(fa)) < cc6F TN,

the last estimate being by far the most difficult (see Lemmas 5.2 and 5.3 in [11] and Lemma 3.2 in

[22]).

Given the lower bound for A, in (3.3) and
(3.8) A>6" Tt
and given (3.4) it remains to verify the estimates (3.5) in the claimed range p > p4, d > 5, (3.6) for

D> pg, d = 3,4 and (3.7) for p > po.
This is straightforward. By (3.4) and (3.8) we have

card(P(fa)) £ 5—8)\35(1—1"2(%%575—3{;1
which gives in the case d > 4 the assertion (3.5) if d — 1 — 5244 — 3d=1 5 ( or, after a short
2(p—q(d)) i

computation p > ¢(1 + ﬁ) =2+ f_—g#‘ll. This is the asserted range if d > 5.
Next we examine the validity of the inequality (3.6) under condition (3.8). We now have
NGEFE e MeT e §=T 0
< x < = <
card(P(fa)) < C AZ\2 T gt T 2D+
3d-3

This quantity is < 656~ 5 A? if and only if 5‘1—4_3 —2(d-1)+ 173-%(%) +4e < ——5%"—3, which yields

the range gives p > ¢(d)(1 + gg_—?). Notice that this inequality amounts to p > 7.28 if d = 4 and

AL

p > 15 if d = 3 which is the assertion in those cases.
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Finally we consider the case d = 2 when ¢(2) = 10/3. By (3.4) we need to have \2\~2575/4=¢ <
ce0M/8)0 | ie. AT2521/8-¢ < ¢ )T provided that A\, > Ad*/4T¢. Thus taking the smallest possible
\* yields §35/8-10c < )9 and this has to hold for all \ satisfying (3.8), i.e. A > PR = o)
Taking the minimal )\ this is achieved if 35/8 — 10e < 9/2 — 9¢q/(4p — 4q) with ¢ = ¢(2) = 10/3.
Solving in p and letting ¢ — 0 yields the range p > 19¢(2) = 63 + 1/3. O

On the proof of Theorem 1.5. The proof is similar to the proof of Theorem 1.1. Instead of (1.10)

we use a square function inequality for the sphere
1
(3.9) [, < coameor= | (T iak?
k k

with a(q) =d(1/2-1/q) —1/2, and ¢ = 2(d+2)/d. In two dimensions this is an old observation by
C. Fefferman ([8]), and holds for ¢ = 4 with € = 0. In general the proof of (3.9) is rather analogous

o SuPP fr C C,ﬁ‘s),

to the proof of Proposition 2.3; one uses Tao’s bilinear Fourier extension inequality [19] (see also
[12] for related results). Unlike (2.11) in the conic case the inequality (3.9) is essentially optimal for
the given range ¢ > 2(d + 2)/d. We omit further details. |

4. MORE ON SQUARE FUNCTIONS

We shall now discuss some improvements of the square function estimate in Proposition 2.3 in

low dimensions; thus we seek for estimates of the form

(4.) IS < e |(S1P) | it supe i c .
k k

for some 8 < min{u(p), (d — 1)/4}.
We shall assume throughout this chapter the Wolff hypothesis

Hypothesis W(w,d). For all § € (0,1) and all families {hi} of functions satisfying supp i C H,(;S),

(42) | Soh], < cesoe<( 3 prali) "™,
k k

where a(w) = d(1/2 — 1/w) = 1/2. Cf. Table 1.
Our improvement is limited to the case where the power u(p) in (2.8) satisfies

(4.3) a(p) < p(p)

which holds if and only if u(p) < 1/2—1/p, or, equivalently p < gjf_}z. By the additional restriction

D > %;%32 we shall get an improvement only in the cases

d=2, 10/3 < p < o0,
(4.4) d=3, 3<p<d,
d=4, 14/5<p<3.

If d = 2 an immediate improvement over the exponent p(p) (= 3 — 2%) follows from (4.3
1

range w < p < co as LP(£?) is contained in ¢P(LP) and thus we obtain (4.1) for 8 > a(p) =

BOl= ~—
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p > w. In what follows we consider the case p < w. While square-function estimates such as (4.1)
cannot a priori be interpolated, one still gets the following formally interpolated result.

Lemma 4.1. Let d = 2, suppose that hypothesis W(w,2) holds. Then for all family of functions
{fx} with supp ﬁ C ng) the estimate (4.1) holds for 10/3 < p < w with

3w —13 9w — 40
6w —20 (6w —20)p

(45) ;B = ﬁ*(p’ ’LU) =

In particular note that 8.(4,w) = 234%‘_1820 so that 8.(4,6) = 3/32. For w = p, = 190/3 we get

only B.(p2) = 89/720 which is worse than 5/44 exponent which is already known from [20], [23].

Proof of Lemma 4.1. Let ¢ be a bump function adapted to the plate Hg) which equals 1 on the
plate. Define the operator Py by ﬁk f= gok)?. Each P is bounded on LP(R?), 1 < p < oo, with
uniform bounds.

Thus by W(2,w) and the embedding LP(£?) C ¢P(LP) we have the inequality

H Z Pkngw < 056‘(a(w)+e) ( Z [IPkgk”;z) 1/w

* k

(Ta,
k

(4.6) < Cg—(etw)te)

We also observe that for 2 < p <4
(4.7) H ( 2; iPk9k|2>1/2Hp < C(1+log 5"1)1/2‘1“’H ( Xk: nglz) 1/2”p
Indeed the left hand side is estimated by

sup <Z/(Pkgk]2wdz>l 2 < sup Z/ngl Mgwd:z:
k

weL(®/2) weL(p/2)

where Mj is a Besicovich-type maximal operator associated to the light cone which is bounded on
L? with norm O(y/log(2 + 6-1)) if § < 1/2, see [7], [14]. Thus Hélder’s inequality implies (4.7).
Now we can combine Proposition 2.3 and (4.7) to obtain

(%: lgkIZ)l/z“lo/s

and after a little arithmetic the claimed bound follows by interpolation between (4.6) and (4.8). O

(4.8) H ZPkngm/3 < C.5-F¢
k

For large values of w one can improve on the result of Lemma 4.1. Our approach will be similar
to the one by Tao and Vargas [20] in 2 + 1 dimensions. By using WW(w, 2) in that approach one can
slightly improve on the previously known exponents.

Theorem 4.2. Let 2 < d < 4, and assume (;:13) < p < min{=7=*,w}. Suppose that hypothesis

W(w,d) holds. Then for p, d as in (4.4) and family of functions {fk} with supp fr C HS) we get
the estimate (4.1) for

2(d 1)

1 d—2 )

(4.9) B=uo) =05 - 57—
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where

410 _d-1 _2gd‘j+13) -3

(4.10) «(p) = 2 dtl 4 1 _ 2(p—1)
P w—1)p

The proof will be given in §5.
In 2 + 1 dimensions Theorem 4.2 yields inequality (4.1) for the range 10/3 < p < w with  equal
to

1 (3p% —2p — 20)w — 23p® + 82p — 40
4.11 (D, W) = — - ,
(4-11) Puelprw) = o (10 + 3p)w — 23p + 10

in particular we have .. (4,w) = 4%:%24. We compare with (4.5). Notice that 3/32 = (.(4,6) <
Bax(4,6) = 1/10. A straightforward computation shows the inequality B..(p, w) < B.(p,w) holds if
and only if (9p — 30)w? + (—9p% — 39p + 230)w + 23p(3p —'10) > 0 and after factoring we see that
for 10/3 < p < w we have B..(p,w) < Bi(p,w) if and only if (p — L)(w — £)(w — p) > 0. Thus for
any p € (10/3,w) we have

(412) Bulpw) < Bulpw) = w> 2

so that the LP result in Theorem 4.2 is better than the result of Lemma 4.1 in the range w > 23/3.

As a corollary we obtain

Corollary 4.3. Let d = 2 and suppose that W(w, 2) holds for some w > 6. Let 10/3 < p < 4 and
let o > min{f.(p, w), Bux (D, W)} (i1-€. @ > Bux(p,w) if w > 23/3).
Then .

(i) the smoothing inequality (1.6) holds true and

(ii) the Fourier multiplier mq in (1.7) defines a bounded operator on LP(R3).

We also observe that by interpolation we obtain the analogous boundedness results for the range

4 < p < w under the assumption that o > -% - -;"; + igi:i; min{ B, (w, D), Bex (4, w) }.

If we use the result of Theorem 1.1 in 2 + 1 dimensions (i.e. hypothesis W(w,2) with w =

po = 190/3) we obtain this result for a > Bu(p, 22) = 501p” ~134p—3920 which equals 445/3934 if
3 2p(501p+1930)

p = 4. This represents a slight improvement over the Tao-Vargas result [20] which yields the L*
boundedness for o > ﬁ = 0.11363; note that -3%51 ~ 0.11311642.... We also see from Lemma 4.1
that the validity of (1.3) for the optimal (conjectured) range p > 6 implies the L* boundedness for

a > 0.09375; however it has been conjectured that it should hold for all & > 0.

Proof of Corollary 4.3. Using the L®/ 2)' (R®) bounds of the Besicovich maximal operators associated
to cones the square function is estimated as in [13], [14] to yield the assertion of Theorem 4.3 for
the range 10/3 < p < 4. O

5. PROOF OF THEOREM 4.2

We shall use the following consequence of W(w, d).
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Lemma 5.1. Suppose that W(w,d) holds. Then forr =p'(w — 1) and every e > 0
_ v’ o(w)—e 1/p
(5.1) |2 ome]| < cea™ 7 (3 )
k " k

Proof. Let ¢ be a bump function adapted to the plate H,(f) which equals 1 on the plate. Then
@i € FL! with uniform bounds. Define P, by Pf = <pkf. Then by hypothesis W(w, d)

|52 Pk < oo (S 1mnelis) " < ot (D elis)
k k k

Interpolation with the trivial || 3", Prhkllco S Dok [hklloo yields the assertion. O

To establish Theorem 4.2 we shall work with the following
Hypothesis H(v,p). For alld <1,&>0

(5.2) ” 3 hk“,, < C.5F
k

(S me)™,

k

provided that supp H C H,(f).

By Proposition 2.3 we know already that for p > 2(d + 3)/(d + 1) this inequality holds true with
the exponent v = u(p) = d/4 — (d+ 1)/2p and we seek an improvement in the ranges (4.4).

We use Lemma 5.1 to prove the following proposition which amounts to an improved version of

Proposition 5.4 in [20] (who considered the case w = oo in the 2 + 1 dimensional situation). As in
§2 we work with a covering Q(61/2) of /1/§ cubes.

Proposition 5.2. Suppose that 2(d + 3)/(d + 1) < p < min{4,w} and suppose that hypotheses
H(v,p) and W(w,d) hold. Let r = p'(w —1). Then

(5:3) (> |2

QeQ(s-t/2)  k

yt+a(p) _

p 1/p
) < C.5- T e
L™(Q)

(Slee)” ZHP.
k

provided that supp gr € H,(f).

Proof. We group the indices k (and thereore the corresponding plates H,(f) into O(5~(¢=1)/4) disjoint
families S; so that dist(wy,wy ) < 614 for k, k' € S;. Define
Gi=Y o
keS,
As in the proof of Proposition 2.2 we also work with the functions ¢ adapted to the cubes
Q € Q(6-1/2). By the support propery of 9¢ the Fourier transform of ¥@G is supported in a Cv/d
plate and these plates forman essentially disjoint plate family. Therefore

326, 505,

5.4) $6 (X fwecl?)
l

by Lemma 5.1 with § replaced by V. By the support property of w/Qa and Young’s inequality

1

(5.5) ¥eGillr S 6T G |yoGill,
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and therefore

1/p _w! a(w) d_ll_l
@) ST (ZuwQalu)

(ZQ:H;GA

A little algebra shows

_iu_’a(w)_i_d——l 1 1 a(p)

7 (___)____

p 2 4 'p r 2

with r = p/(w — 1). Using some straightforward estimation using the decay of the ¥g we also get
p P _ _at)/2 1/p
(5:5) (ZITClg) "5 (S 1ei)

As @l is supported in a Cv/¢ plate we may use rescaling arguments as in the proof of Lemma 2.1

to deduce from the hypothesis (7, p) applied with parameter v/§ that

iy 557772 (3 1:2)” .

and hence -
(SIS 6e) " s e (L (3 1) )™
<o == (Tiar) ",
which is the assertion. k ]

Proof of Theorem 4.2, cont. We first note that Hypothesis H(p, u(p)) holds by Proposition 2.3.
Assuming that H(p,~) holds for some v < pu(p) the following estimate for bilinear expressions is

an immediate consequence of Proposition 5.2.

(N (3 o)

QeQ wrEN Wit €Q

1 1

2\ 1 }
i;@)) L ” Z'f"] i ” Z lgw1?) *

We now assume that Q2 and " are separated as in Proposition 2.2 and interpolate the inequalities
(6.7) and (2.9) with ¢ = 2(d + 3)/(d + 1). As a result we obtain

(SHE WS el fng)” 2 (S 1M (S loe)?
QEQ  wkeEN Wy €Y wrEN wyr €Y
where
T(p,7) = (1 - 9)u(p) +q93(p%1 with © = <?1i - %)/(% _ %)
By Lemma 2.1 we also obtain
s [l oo
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Notice that a(p) < I'(p,v) < v < u(p) provided that a(p) < v < u(p). Define a sequence v, by

setting 1o = u(p) and Yn+1 = [(p,7n) for n > 0. Then <, is decreasing and bounded below and
converges to

Yo = ﬁé(u — 0)u(p) + D)) = pp) ~ 5 (4(r) - alp)).

219
We compute that 9/(2 —9) = (1/¢—1/p)/(1/q¢+1/p—2/r) and a(p) — u(p) = u(p) —1/2+1/p =
(d—2)/4 — (d — 1)/2p and see that 7. is equal to the right hand side of (4.9). Thus (5.8) and an
iteration yields the assertion of the theorem. a
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TWO COUNTEREXAMPLES IN THE THEORY OF SINGULAR
INTEGRALS

LOUKAS GRAFAKOS

ABSTRACT. In these lectures we discuss examples that are relevant to two questions in
the theory of singular integrals. The first question is the L? boundedness of the maximal
operator formed by dilates of Mikhlin-Hérmander multipliers, while the second concerns
the LP boundedness of a well-known object, the classical L?-bounded Calderén-Zygmund
homogeneous singular integral associated with an integrable function on the sphere that
is very rough.

1. INTRODUCTION

We denote the Fourier transform of a complex-valued function f(t) on R? by
foy = [ et
Rd

and its inverse Fourier transform by f¥(r) = f(—T). Many linear operators can be expressed
in terms of their action on the Fourier transform of the input function. In particular,
convolution operators are identified by operators given by multiplication on the Fourier
transform, i.e. operators of the form T;,(f) = (fm)V. Here we will always be interested
in L?-bounded convolution operators for which the corresponding multiplying functions
m (called the Fourier multipliers) must be essentially bounded functions. The Fourier
multiplier associated in this way with an operator bounded on LP(R¢?) is called an L? Fourier
multiplier. The space of all LP Fourier multipliers on R¢ will be denoted by Mp(Rd). This
is a Banach space (in fact algebra) with norm ||m/||az, = ||Tin||Lr—r»-

The classical Mikhlin multiplier theorem [13] states that if a function m(¢) on R? satisfies

(1.1) |9gm(€)] < Cale| ™!

for all multiindices a with |o| < [¢] + 1, then it must be an LP Fourier multiplier for all
1 < p < oo. This theorem was extended by Hérmander [12] to functions m satisfying the
weaker condition

(1.2) i:g Hsﬁ(f)m(Qkf)”L;(dg) < oo

for some 8 > d/2. Here p is a smooth nonzero bump supported in the annulus 1 < |¢] < 2
not vanishing on a smaller annulus and L% is the Sobolev space of functions with “g
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derivatives” in L?. The space L% is one of the Sobolev spaces L% with norm

1£lze = 1 (FEQ +1EP) [ 1o ey

where 1 < p < o0 and v € R. We remark that in Hérmader’s version of this multiplier
theorem the Sobolev space Lf, in (1.2) can be replaced by L7, where v > d/rand1<r <2;
however the least restrictive condition is when r = 2.

By duality an LP Fourier multiplier must always be an L*' Fourier multiplier (where
p’ = p/(p — 1)) and hence by interpolation it must be an L? Fourier multiplier for all ¢
between p and p’. Finding examples of functions that are L¢ Fourier multipliers for some
g > 2 but not L° Fourier multipliers for some s > ¢ may not be an easy task. A question
of this sort will be addressed in section 5.

In the next section we will discuss a problem concerning the LP boundedness of the
supremum of a family of Mikhlin-Hérmander Fourier multipliers.

2. MAXIMAL MIKHLIN-HORMANDER FOURIER MULTIPLIERS

Suppose that we are given a bounded function on R? that satisfies condition (1.1) (or
even (1.2)). The question that we would like to address is whether the maximal operator

M (£)(@) = sup |(F(&)m(t€)) (z)]

is bounded from LP(R?) into itself.
This question is motivated by the almost everywhere convergence questions

(f(f)m(tf))v(:c) — m(0) f(z) for almost all z as t — 0

(f(f)m(té))v(x) — m(o0) f(x) for almost all z as t — oo,

provided, of course, the quantities m(0) and m(oo) exist.

‘We recall that in the usual proof of the Mikhlin-H6rmander multiplier theorem one
obtains a weak type (1,1) estimate using the trivial L? estimate and a smoothing condition
on the kernel. Then the boundedness for the remaining p’s follows by interpolation and

duality.
By changing our point of view, we may consider M,, as a linear map from
(2.3) IP(RY) — LP(RY, L®°(RY)

and we may ask whether the classical scalar argument argument based on the weak type
(1,1) estimate holds in this setting. In the context of the vector-valued setting described
in (2.3) the corresponding multiplier satisfies Mikhlin’s condition but for the weak type
(1,1) argument to go through one needs to know an initial estimate at a single exponent.
In the scalar case, one uses Plancherel’s theorem to obtain the L? estimate for free but in
the vector-valued case the L?(R%, L= (R1)) estimate cannot be obtained using Plancherel’s
theorem, in fact as we will shortly see, it may fail.

The underlying problem here is that the Banach space L* is not a UMD space and for
this reason many analogues of some of the scalar results in the theory of singular integrals
do not hold in the Banach-valued setting.

Theorem 1. (M. Christ, L. Grafakos, P. Honzik, and A. Seeger [4]) There ezists a bounded
function m such that for all multiindices o there are constants Cy, such that

U Sup |0 (0(&)m(2"¢))| < Ca,
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hence m is an LP Fourier multiplier for all 1 < p < 00, but My, is unbounded on LP(RY).
We discuss some of the ideas of the proof of this result.

Proof. Let S = {1,-1,7,—i}. Enumerate the set of all sequences of length N formed by
elements of S as follows: SN = {51, $2,...,84n }. Let @ be a smooth function supported in
8 <1¢] < L2 satisfying @ =1on £ < |§| < 3. Define for N > 10

Z Z 38 2—N£2—-u f)

=1 v=1
and also

= Z T)’L_N(Q—NSNg) .

It is straightforward that for all multiindices o there are constants Cy so that
|6°m(€)] < Calé| ™
and it is also easy to check that for any kg € Z we have
|0%(m(2%€)p(€))] < Ca -
Pick 9 with Fourier transform supported in B(0,1/8) with |[¢||z» = 1. Let

N .
gN(fC) — Ze2ri21z1¢($)
=1

and note that N
= (£ -2(1,0,0,...,0)).
j=1
Also let
fnp(@) = N73@V)5 gy (27" 2)
and notice that in view of the Littlewood—Paley Theorem (see [8]) we have that

llgn|lze ~ N2

while
Il fnplize = Cp.
The main ingredient we need is the following lower estimate whose proof we postpone
momentarily:

(2.4) | S |(mn (25€)gn (€))Y]|,, = ¢ N .

This implies that
[Mm(fuplize 2 VN = cVN || frgpllLs -

The reason for this is that m(&) = zsf:l mn(2—-n8"§) and
M (27" 286) Frp (€) = mn (277" 2%E) g (278 €) = 0

for all 1 < k < N4 unless n # N.
It remains to prove (2.4). We observe that

sup  Re(cz) > |z|/V2.

ce{l,—,1,i,—i}



LOUKAS GRAFAKOS
Thus for all z € R? and all j € {1,2,..., N} there is a ¢j(z) € {1,—,1,4,—4} such that
Re[ej(x) *™*14()] 2 [(z)l/ V2.
Therefore there is a xg € {1,2,...,4"} such that
Sky = (c1(2), c2(z),...,en(z)).
We then have
sup |(mn(2"€)3N (€))" ()]

1<k<N4N
4N N N R . .
> Re[/ Z ZSZ(V)@(2-—NZ—V2N/¢:§) Z ¢(§ _ 2Jel)e2wzz-§d€ ,
RY o1 0=l =

as easily follows by taking &k = Nk;.
Our choice of exponents makes the previous expression inside the the square brackets
zero unless £ = k; and j = v. Also ® = 1 on support(t)) and hence this expression is at

least
N

Re[si, () ($(€ — 27))"(2)] = N[p()|/v2
j=1
which proves (2.4).

3. A POSITIVE RESULT RELATED TO THE PREVIOUS COUNTEREXAMPLE

We recall the main observation in the previous section which can be rephrased as follows:

(3:5) I sup | (2*)TN(©)"| [l 1» 2 ¢ VN llgw ]z -
1<k<N4N
Replacing N4 by N we see that the supremum of a family of A/ Mikhlin-Hérmander
multipliers has operator norm on L” at least as big as a constant multiple of (log N/ )%
The question we would like to address is whether this lower estimate is sharp. We
precisely formulate our question.
Question: Suppose that mj, 1 < j < N, are Mikhlin multipliers satisfying

|6%m; (6)] < Calél ™,

uniformly in § for all |a| < [%] + 1. What is the growth as N — oo of the smallest constant
A(N) such that

| sup_|omsF)Y)
1<jEN

Lr(RY) < ANl Lo (re)

holds for all f?
The counterexample in the previous section shows that for N > 10 we have

A(N) > c+/log N

and we would like to know if the converse inequality also holds for some other constant c'.
The following theorem answers this question.
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Theorem 2. (L. Grafakos, P. Honzik, and A. Seeger [9]) Let 1 < r < 2 and suppose
SN |6°m; (¢)| €11 < B
for all |a| < [%] + 1. Then for any 1 < p < oo there is a constant Cyyp such that for all

N > 10 we have
< CupB/log N || fll o ey -

[ s [oms)

1<j<N LP(RY)

Therefore for N > 10 we have that

A(N) < y/logN

and this shows that A(N) grows indeed like the square root of the logarithm of N as
N — 0.

We will outline a proof of this theorem in the next section, but before we do so, it will be
illuminating to discuss a model case that contains the core idea and forms the basic outline
of the proof in the general case. The model case comes from the theory of Rademacher
multipliers. Let us recall the Rademacher functions defined on the interval [0, 1] as follows:

ro(t) = 1
ri(t) = Xp,1/2 — X[1/2,1]
ro(t) = Xjo,1/4) = X[1/4,1/2] T X[1/2,3/4] — X[3/4,1]

etc. The inspiration comes by studying the growth in N of the LP norms of simple-looking
maximal functions of the form
sup ]Za T_7|

1<k<N

where a;? is a fixed matrix and r; is the ]—th Rademacher function. Let us denote the
sequence (af)j by aF.
It turns out that

(3.6) “ sup ]Z a; J[t

1<i<N

oy SO s Tl

where C(N) grows like v/log N as N — oo.
To see this we set Fj = Zj a;?rj. One has the following exponential decay of sums of
Rademacher functions (see [15], [8])
1z,

(3.7) [{s € [0,1]: |Fk(s)] > A}| < 274"l
Then for N > 10 we have

2
| sup 17

(o]
= M{s €[0,1] : sup|Fk(s)| > A}|dA
1<k<N £2((0,1]) /O .|{ [0, 1] kPl k(s)| > A}

UN o
=/ d/\+/ oo dA

/ )\d/\+/ Z)\HSEOl F(s)| > A} ).

N k=1
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We now use (3.7) and calculate the integrals in question. We obtain

| swp 1B, < 2ok +§: / g e N4l I gy
sup |Fj i < -u e ¢
1<k<N 2oy — 2 — Jun
1
< Zud +2Ne %/ sup ||d¥||%
2 1<k<N
<

clogN sup |a¥||%,
1<k<N

using the optimal choice of

uny = +/4logN sup [|a¥|e .
1<k<N
This proves (3.6).

4. THE GENERAL CASE
We now adapt the idea of the previous section to prove Theorem 2.

Proof. Let Dy, be the dyadic cubes in R of sidelength 2~k We recall the dyadic averaging
operator Ej, the martingale difference operator Ej, and the martingale square function
S(f) associated with the family of dyadic cubes:

Ef)= 3 xc;l%l/Qf(t)dt,

Q€D

Di(f) = Ext1(f) — Ex(f) ,
st = (S Ioanr)”
k

The key element in the proof is the Chang-Wilson-Wolff inequality (3] :
[{z € R ili%IEk(g) — Eo(g)| > 2, S(g) <er}| < Cde_?%|{x eR?: s%p |Ex(g)| > A}

which is valid for all functions g, all A > 0, € € (0,1), and for some fixed constants Cy, cq
(both depending on d).
Recall that we denote by T}, the operator f — (fm)Y. Start with

| sop s, = (o [ 20 Hwp I, (91> a2} )

and control the measure of the set that appears in the previous line by the sum of three
terms:

{sup [T, ()] > 40} < DL+ IL+II1,
k

where
I = I{S?cp | Ty, (f) = Eo(Tmy ()] > 2X, Gp(f) <enA/(AB)},

Iy = [{Gp(f) > enA/(AB)},
III, = I{s%plEo(ka(f))|>2)\}l-
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Here A is a constant and f — G,(f) is an LP bounded maximal operator which controls
the square function applied to each Tp,, , precisely it satisfies:

S(ka(f))SA<sup sup |§I'°‘[13?mk(§)|)Gp(f)SABGp(f)
€ lal<[g]+1

for all Schwartz functions f. (For a precise definition of Gy, see [9].)
To estimate

o 1
(4.8) <p 4P / LI, d>\>”
0
we use the Chang Wilson Wolff theorem to write
I < I{SL;P Tk (f) = Bo(Tmy, (F))] > 2X , Gp(f) <enA/(AB)}

N

< Y HITm () = Bo(Tmi ()] > 20, Gp(f) < enM/(AB)}]
k=1
N

< Y HITm () = Bo(Toni ()] > 2%, S(Tm, (f)) < enA}|
k=1

N
< D Cae /o {sup | BT, ()] > A}
k=1

Insert this estimate in (4.8) to obtain

o 1 N 1
(pe? / YL < @(}je—cﬂ*nsup|Ez<ka<f>>|||’zp)” < dB[Ne™/%]» ~ B
0 =1 !
provided we choose ey = ¢”’/+/log N. Here we used that the maximal operator
g — sup |Ei(g)|

is controlled by the Hardy-Littlewood maximal function and is therefore LP bounded for
all 1 < p < oo, while all Tr,, are LP bounded with norm at most a multiple of B.
Next we turn our attention to the corresponding integral for term Iy

(p4p /0 7 e II,\dA>% .

I = [{Gp(f) > (en/AB)A}|,
where G}, is LP bounded, we deduce that

(p4P /OOO NUIT, d/\)l" <C

This last expression is equal to

Using that

B A, B
. IGp(F)llzr < Cpaﬂf”m-

Cti log N ||f||LP
since ey was chosen to be ¢’ /1/log N.
Finally we need to control

les) 1
(4.9) (p 4P / P III,\d,)\)" .
0
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It turns out that for any 1 < r < p one has an estimate (see [9])

_N 1
(4.10) |Eo(Tm, ()] < Cr B27 7 (MMM(|f]"))
whenever my(€) = 0 on |¢] < 2V (M is the Hardy-Littlewood maximal operator).. This
assumption can be made on each multiplier my, k = 1,..., N as follows: working with f

such that fis compactly supported, we may assume that the multipliers my, are supported
in a finite union of dyadic annuli, which, by changing scales, may assume that do not
intersect the ball |¢| < 2V.

Insert estimate (4.10) in (4.9) to obtain

(o /oo 1107, dA)% < (i HEo(ka(f))llip)% <BN? 27| f|
0 k=1

which is trivially controlled by B+/log N || f|lL». O

5. A PROBLEM INVOLVING HOMOGENEOUS SINGULAR INTEGRALS

Mihklin-Hérmander multipliers correspond to kernels K (y) on R? that are singular at
the origin, satisfy an estimate |K(y)| < Cly|™® for some C < oo and all y # 0, and possess
a certain amount of smoothness. This smoothness suffices to guarantee the boundedness-
on all I?(R%) (1 < p < oo) for the corresponding Fourier multiplier operator (given by
convolution with K) as well as its weak type (1,1) property.

In this section, we study a problem concerning Fourier multipliers given by convolution
with kernels that are homogeneous of degree —d on R%. Such kernels are determined by
their restriction on the unit sphere S~1. Let K be such a kernel and let 2 be its restriction
on S% 1. One may check that the function Q(y/|y|)|y|~¢, v # 0 coincides with a principal
value distribution on RY if and only if Q has mean value zero on the sphere. Only in this
case one can make sense of convolution with K.

Let therefore 2 be an integrable function on S?~1 with mean value zero. We will be
considering Calderén-Zygmund singular integrals of the form

x
510 T = o S i [ -y T gy,
lyl>€
where f is a Schwartz function on R%. This type of singular integrals were introduced by

Calderén and Zygmund in [1].
If Q is odd then the method of rotations (see [2]) gives

T
(512) To(f)(e) = § [, Holf)@)26)db,
where Hy is the directional Hilbert transform

Hy(f)(z —hm—/fm——t@ at

e—0 T
|t|>e

A simple argument using change of variables yields that the operator Hp is bounded on L?
exactly when H( o o) is; the latter is the Hilbert transform in the first variable and the
identity operator in the remaining variables and hence it is trivially bounded on LP(RY)
(and is of weak type (1,1).)
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Thus the boundedness of T on LP(R?) for Q odd is an easy consequence of (5.12) and
of the boundedness of Hg on LP(R?) (which is uniform in ). We point out that, as of this
writing, the weak type (1,1) boundedness of Tp, for 2 odd, remains an open question.

The problem of the LP boundedness of T, is therefore interesting for Q2 even. We begin
our discussion by recalling the results of Calderén and Zygmund [2] who showed that if Q
lies in the space Llog L(S%~1), then Ty, is bounded on LP(R?) for all 1 < p < co. The more
delicate issue of the weak type (1,1) property of T was shown much later by Christ and
Rubio de Francia [5] (for d < 7, published only the case d = 2) and Seeger [14] for all d.

We note that M. Weiss and A. Zygmund [16] have constructed examples of even func-
tions  in L1(S%1) such that Th is unbounded on L? (even when restricted to continuous
functions) and therefore on all other LP. For an operator to be bounded on L%(R%) a
certain condition on {2 is required. A calculation using the Fourier transform gives that the
multiplier corresponding to the kernel Q(y/ |y[)|y|'d is the function

E*/s,d—lﬂ( S |£ o %

Therefore we have the equivalence

essup / Q(0) log —— l <400 &= To:L?— L2
el=1 | Jse-1 (3 9|
and hence condition
(5.13) essup/ |©2(0)] log —— df < 400
le|=1 Jgé-1 |§ 0|

implies the L? boundedness of Tt.

Since condition (5.13) arises naturally, it is reasonable to ask whether it implies the
boundedness of T, on LP for some (or all) p # 2, The underlying question here is whether
the p-independence boundedness property in Calderén-Zygmund theory holds for rough
kernels.

This question was answered in the negative by P. Honzik and D. Ryabogin, in collabo-
ration with the author, who constructed an example of an even function Q on S%~! such
that the corresponding operator Tq is bounded on LP exactly when p = 2.

In fact these authors have obtained the following sharper result:

Theorem 3. (L. Grafakos, P. Honzik, D. Ryabogin [10]): Let 0 < o < 3. Then there

exists € LY(S% 1) with mean value zero such that

essup/ [Q(6)] log*t® —df < +o0
|€|=1 J8d-1 lf 9[

but T is unbounded on LP(R?) for all
1 1
I; - 5[ > .
Taking o = 0 yields the previous case.

6. THE SECOND COUNTEREXAMPLE

In this section we discuss the counterexample of Theorem 3. In the proof we restrict
our attention to the case d = 2 and we note that higher dimensional examples can be
constructed using the two-dimensional example.
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Let M,(Z) be the space of multipliers on LP([0, 1]), i.e. the space of all bounded sequences
(bm)mez such that the linear operator

610 [ e

meZ

maps 1-periodic functions h in LP([0,1]) to functions in LP([0,1]). The My(Z) norm of the
sequence (b, )m is then the norm of the operator in (6.14) on LP([0, 1]).

A

length
of arcs
= (10n)'1

length of
arcs Aj

FIGURE 1. The points z1,. .., Z, lie on a straight line perpendicular to the
vertical coordinate axis. The arcs A; lie in the first quadrant of the unit
circle and have length Ly, a quantity to be determined. The cones [ 7 lie i 1n
the second quadrant and they meet the unit circle on arcs of length (10m)~t
centered at the points z;/|z;|. The centers of the arcs A; and the points
z;j/|z;| form an angle of size /2.

The basis {2} of LP([0,1]), p # 2, is not unconditional. This means that for
allm=1,2,... there exist complex sequences aj and ls”] < 1 such that

(615) Hzgn o ke

for some constant c,. To see this we consider the sequence of a =1 for all k for which the
L? norm if calculated explicitly and gives ~ nl=1/P and a random sequence of +1’s, which

by the Khintchine’s inequality gives the constant NS
Rephrased in the language of multipliers, estimate (6.15) is saying that for some constant

c; we have

n 2mikT

>Cp

L?[0,1] Lr[0,1)

1_1
(s 0,y 0,67, €3, 02,0, ) lay () = Eonl2 77!



TWO COUNTEREXAMPLES IN THE THEORY OF SINGULAR INTEGRALS

We may choose the sequence {e} }}_, to be “maximal” in the sense that its M, norm is the
supremum of the M, norms of all other sequences of £>° norm 1 that satisfy (6.15) for the
choice of aj}}.

‘We now define .
m)(©) = [, wl6) g gy

and we also define a similar quantity
1
ma(@)(€) = [ w(0)] log** b,
sd-1 € - 6]

while for each integer n we define a even function

n 3
Qp = ZEZ C(n) Z(_l)JXAk rotated by ¢
k=1 =0

/

wi;
where Ay are the arcs of Figure 1. Here C(n) is a constant chosen so that
ma (wi) (zk/|zk]) = 1/2
for all k. Finally we denote by D(n) the constant
D(n) = m(wg)(zk/|zk]) -
It is not difficult to check that
C(n) L7 log Ly| 1
D(n) = |logL,|™%.

%

while for all z ¢ U?:o(f k rotated by %T) NS! we have
m(wi)(z)| S (logn)|log Ln| ™'~
ma(wf)(2) S (logn)*e|log Ln| 71 7%.

It follows from these estimates that

(6.16) HQ"HLl(sl) < n(logn)|log L,|™t.

On the other hand we have

m(Q)(zk) = D(n)ep + > efm(wi™)(zx) = D(n)e} + of,
1<i#k<n

where o} is an error term which satisfies
okl < D(n)/4
provided
nin <Lt
We now take a look at certain multiplier norms. Using a deLeeuw type argument [6] we

can restrict the MP(R2) norm of a multiplier to its values at the points (xj)r which lie on
a line parallel to the horizontal coordinate axis and we can thus estimate from below the
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M,(R?) norm of the multiplier by the M,(Z) norm of the sequence of the first coordinates
of its values at the points (z)x. This way we obtain

Im@ullmmz) =l 0,m(Qa) (1), -, m(20) (%), 0, )| (2)

> ¢ D) [l 0,6%, 65,0, -y z)

1
Sl 0,08 08,0, -.-)IIM,,(Z)]

1 n n
2 '2— CPD(n) ”("'70751 v €y 0, )”M”(Z) )

since the inequality

1

sz~ 2 160 et gm0y )

1
D—(n—)‘” (, 0, 0?, ceey 02, 0, )l
would contradict the “maximal” choice of (e})7_;.
We now recall that
1
=1
(..., 0,€T, ..., €0, 0, "‘)”M,,(Z) >c,n'2 7!,
which implies that
Im(Qn)las, g2y = ¢ D(n)nl 775! & |log L | ~*nl2 751,
We finally choose the L,’s. We had the restriction
while the need to make the expression on the right in equation (6.16) equal to a constant
forces us to choose
|log L,| = nlogn.
With this choice of L, and all the facts we have accumulated so far we have
1T llzr—rr = [Im(Qn)lla,w2)

c’[logLnl‘“n‘%—%|

Y

(logn)~nl27517e

Q

We have now constructed a sequence of even integrable functions €, with L' norm at
most a constant such that
1T, |l Lp—1r — o0
when |3 — 11—)| > a.
To complete the proof we need some functional analysis. Let B, the Banach space of all

even integrable functions Q on S! with mean value zero with norm
2018, = 12021s2) + Ima (@)l Lo (s1) < 0.
Consider the family of linear maps
Q—To(f) : Ba— LP(R?)

indexed by the set .
U={fe’®R*): |fllr = 1}.
If no claimed ) existed, then for all 2 € B, we would have

sup |Ta(f)llr < C(R) < .
feu
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The uniform boundedness principle implies the existence of a constant K < oo such that
I Tellr—rr = sup ITa(Flrr < K (|25,
€

for all Q € B,. But this contradicts the construction of §2,’s for I% - %I > a.

7. CONDITIONS THAT DISTINGUISH BETWEEN p’S

Theorem 3 suggests that one should look for conditions on 2 that distinguish bounded-
ness on LP(R?) for different values of p’s.

A natural condition that one should introduce in the study of this problem is the follow-
ing:

1
CL(a) essup/ [2(6)] log!t™ —— df < 40
lel=1 Jsd-1 € - 0]

A result of Stefanov and the author [11] says that CL(a) implies the LP boundedness of

Tq whenever

1 1 o
? 21 “2ita)
This was improved by Fan, Guo, Pan [7] when o > 1 but Theorem 3 is only concerned with
the case o < 1/2. As for @ < 1/2 we have o > /(2(1 + o)), it remains an open question
to find out what happens in between. We pose therefore the following question:

(a) Assume that CL(a) holds for some v < 1/2. Does it follow that

Tq:LP — LP
whenever
o> 1 1 «
“lp 21T 201+

For a > 1/2 the counterexample does not work and one may guess that in this case T
is bounded on L? for the whole range
(b) Assume that C'L(a) holds for some o > 1/2. Does it follow that

To:LP — L7

forall 1 < p < o0?
The author would like to thank the organizers of the meeting in Sapporo for their hospi-
tality and for the inspiring mathematical atmosphere they created during the conference.
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FALCONER’S DISTANCE SET
CONJECTURE FOR POLYGONAL NORMS

SERGEI KONYAGIN AND IZABELLA LABA

ABSTRACT. A conjecture of Falconer [F'86] asserts that if E is a planar set with
Hausdorff dimension strictly greater than 1, then its Euclidean distance set A(E) has
positive one-dimensional Lebesgue measure. We review recent work on the analogous
question with the Euclidean distance replaced by non-Euclidean norms ||-|| x in which
the unit ball is a polygon, and construct explicit examples of sets with large Hausdorff
dimension whose distance set has Lebesgue measure 0.

Mathematics Subject Classification: 28A78.

§0. INTRODUCTION

A conjecture of Falconer [F86] asserts that if a set E C R? has Hausdorff dimen-
sion strictly greater than 1, then its Euclidean distance set

A(E) = Ag(E) = {lz = 2/l : 2,2’ € B}

has positive one-dimensional Lebesgue measure. The current best result in this
direction is due to Wolff [W99], who proved that the conclusion is true if E has
Hausdorff dimension greater than 4/3. Erdogan [Er03], [E04] extended this result
to higher dimensions, proving that the same conclusion holds for subsets of R¢ with
Hausdorff dimension greater than % + % This improves on the earlier results of
Falconer [F86], Mattila [M87], and Bourgain [B94].

- An analogous question may be posed for more general n-dimensional normed
spaces. Let X be the n-dimensional vector space over R equipped with a norm
Il - llxx- We define the X-distance set of a set £ C X:

Ax(E)={||lz - 2||x : z,2" € E},

and ask how the size of Ax(FE) depends on the dimension of E as well as on the
properties of the norm || - ||x. Simple examples show that Falconer’s conjecture
as stated above, but with A(FE) replaced by Ax(E), cannot hold for all normed
spaces X. For instance, let X be the 2-dimensional plane with the norm

|]~’C”lg° = max(|z1],[z2|)

and let E = F X F, where F is a subset of [0, 1] with Hausdorff dimension 1 such
that F' — F := {z — 2’ : 2,2’ € F} has measure 0. (It is an easy exercise to
modify the Cantor set construction to produce such a set.) Then E has Hausdorff
dimension 2, but its |2 -distance set F' — F has measure 0.

Here and below, we use dim(E) to denote the Hausdorff dimension of £, |F|4 to
denote the d-dimensional Lebesgue measure of F', and |A| to denote the cardinality
of a finite set A.

Typeset by AMS-TEX



Definition 0.1. Let X be a 2-dimensional normed space, and let 0 < a < 2.
We will say that the a-Falconer conjecture holds in X if for any set E C X with
dim(E) > a we have |Ax(E)|; > 0.

The above considerations indicate that the range of « for which the a-Falconer
conjecture holds in X will depend on the properties of the norm on X, and in
particular that the curvature of the distance function should play a role. Indeed,
let

BX ={ze X: |z|x <1}

be the unit ball in X. In the example with the product of Cantor sets, the unit ball
was a square (no curvature), and the a-Falconer conjecture fails for all & < 2. On
the other hand, we do have an a-Falconer conjecture with a > 4/3 (and expect it
to hold with & > 1) in a 2-dimensional plane is equipped with the Euclidean norm,
where the unit ball is strictly convex and its boundary 0 BX has nonvanishing cur-
vature. This motivates several natural questions: For what range of « does the
a-Falconer conjecture hold in X if 0BX has everywhere nonvanishing curvature?
What if only know that 0BX is strictly convex, but make no curvature assump-
tions? Does the a-Falconer conjecture with oo < 2 fail for all polygons and for all
a <27
With regard to the first two questions, the following partial results are known.

Theorem 1. (losevich-Laba [IL04]) The 3/2-Falconer conjecture holds in any 2-
dimensional vector space X over R such that BX 1is strictly conver and BX has
the property that the diameter of the chord

: - > . —_—
{zxeBX:z v_yrgg&}c((y v) — €},

where v is a unit vector and € > 0, 1is bounded by C+/¢ uniformly for all v and ¢.

Erdogan [Er03], [Er04] observes that if we make the stronger assumption that
BX is strictly convex and that 0BX is smooth and has nonvanishing Gaussian
curvature, then his arguments for the Euclidean case extend to X, with only minor
changes. Thus, with these assumptions, the 4/3-Falconer conjecture holds in X,
and moreover this result extends to higher dimensions.

Theorem 2. (Erdogan [Er03], [Er04]) If X is an n-dimensional vector space over
R equipped with a norm || - ||x such that the unit ball BX has a smooth boundary
with nonvanishing Gaussian curvature, and if E C X has dimX > % + %, then
Ax(E) has positive measure.

The methods of [W99], [Er03], [Er04], [IL04] are Fourier-analytic. The general
strategy, due to Falconer [F86] and Mattila [M87], employs decay estimates on
the Fourier transform of measures supported on 0BX. In [Er03], [Er04], Mattila’s
approach is combined with a weighted modification of the bilinear restriction esti-
mate of Tao [T03]. [IL04] uses recent stationary-phase type estimates available for
non-smooth surfaces, see eg. [BRT98].

We do not know what the optimal range of a should be for the strictly convex
case. However, there are no known counterexamples to the 1-Falconer conjecture
in normed spaces with BX strictly convex.

On the other hand, the polygonal case has been resolved entirely by Falconer
[Fa04], along with its higher-dimensional analogue:



Theorem 3. If X is an n-dimensional vector space over R equipped with a norm
|- ||x such that the unit ball BX 1is a polytope with finitely many faces, then there
is a compact set E C X with dimE =n and |Ax(E)|1 =0.

In particular, if X is a 2-dimensional space and BX is a polygon with finitely
many sides, then the a-Falconer conjecture fails for all @ < 2. The proof is based on
consideration of “typical” intersections of homothetic copies of fixed Borel subsets
of R™, and, as such, is not constructive.

The purpose of the remainder of this paper is to give explicit examples of subsets
of X with large dimension whose X-distance set has measure zero, for large classes
of 2-dimensional spaces X such that BX is a symmetric polygon with finitely many
sides. Throughout the sequel, we will always assume that X is 2-dimensional, with
BX as above. In general, we do not know how to construct explicit sets £ with
dimE = 2 and |Ax(F)|1 = 0. However, we have the following construction.

Theorem 3A. Let BX be a symmetric convez polygon with 2K sides. Then there
is a set E C [0,1)? with Hausdorff dimension > K/(K —1) such that |Ax(E)|1 = 0.

Using recent results on Diophantine approximations, we can improve this for
almost all polygons BX. Fixing a coordinate system, we can define for any non-
degenerate segment I C X its slope SI(I): if the line containing I is given by an
equation u; 2 + upZs + ug = 0, then we set SI(I) = —uy/us. We write SI(I) = oo
if Ug = 0.

Theorem 3B. For any integer K > 3 and for almost all y1,...,v7k (satisfying
the Diophantine condition stated in Section 2), the following is true. If BX is a
symmetric convez polygon with 2K sides, and the slopes of non-parallel sides are
equal to Y1,...,7K, then there is an ezplicit compact set E C X such that the
Hausdorff dimension of E is 2 and the Lebesgue measure of Ax(E) is 0.

Actually, we will prove the stronger result: if K > 3 and if the slopes of 3
non-parallel sides of BX are fixed, then for almost all choices of slopes of other
K — 3 non-parallel sides we can construct the set E as claimed. More specifically,
the construction can be carried out provided that the slopes 7vi,...,vk satisfy a
certain Diophantine condition stated in Section 2. (Note that for K < 3 Theorem -
3B follows from Theorem 3C below.).

The sets we construct are Cantor-type sets E defined as intersections of a se-
quence of sets E;, each of which is a union of balls of radii decreasing to 0 as j — oo.
The main step in the construction is finding a suitable set A; of the centers of the
balls used at j-th step. On one hand, for the distance set of E to be small we need
estimates on the size of certain projections (depending on BX) of the difference set
Aj — Aj. On the other hand, for the lower bound on the dimension of E we require
that A; be well separated, i.e. we need a suitable bound from below on |a — a'| for
all a,a’ € Aj, a # a’. This is done in Section 1 in the setting of Theorem 3A. The
proof of Theorem 3B is given in Section 2: there, we use the Diophantine condition
just mentioned to improve the separation constants.

If we assume that there is a coordinate system in which the slopes of all sides
of K are algebraic, then a stronger result is known [KL04]. Note in particular that
Theorem 3C applies to all polygons BX with 4 or 6 sides.

Theorem 3C. [KL04] If BX is a polygon with finitely many sides, and if there
is a coordinate system in which all sides of BX have algebraic slopes, then there is



a compact E C X such that the Hausdorff dimension of E is 2 and the Lebesgue
measure of Ax(FE) is 0.

In fact, [KLO4] gives a recipe for an explicit construction of the set E claimed
in the theorem. First, a suitable discrete set of points is constructed in [KLO04]; to
obtain the Cantor-type set F, one then follows the procedure described in [IL04].

§1. PROOF OF THEOREM 3A

We may assume that K > 4, since otherwise Theorem 3C applies. We use B(z, )
to denote the closed Euclidean ball with center at z and with radius r. We also
denote A—A={a—ad: a,a’ € Aand A-v={a-v: ac A}

Let b1,...,bx be vectors such that ’

K
BX = ({z: |z-be| <1}.

k=1
Then for any z € X,
1. - bl
(1.3) lzllx = max [z bl
Let also a,...,ax be unit vectors parallel to the K sides of BX, so that
(14) a]--bj:O,j=1,...,K.

Lemma 1.1. Assume that K > 4. Then there are arbitrarily large integers n for
which we may choose sets A = A(n) C B(0,1/2) such that |A] =n and

(1.1) (A—A) byl <nt VK k=12 K,
(in particular, |Ax(A)] < n*~V%), and
(1.2) lz —2'l|x >n"Y2 2,2/ € A, z#1,

with the implicit constants independent of n.
Proof. Fix a large integer N, and let uj,...,ux be numbers in [1,2], to be deter-

mined later. Define

kukak, Jk € {1,...,N}}.

2|5

K

s={¥%

k=1
We claim that the set
U={(ug,...,ug) e RX : |S] < N¥}

has K-dimensional measure 0. Indeed, if |S| < N*, then we must have

K
k=1

k
Uk = 0



for some ji,...,jxk € {1 = N,...,N — 1}, not all zero. Fix such ji,...,jx. Then
the 2 x K matrix with columns {\—’;ukak, k=1,...,K, has rank at least 1, hence
its nullspace has dimension at most K — 1. It follows that U is a union of a finite
number of hyperplanes of dimension at most K — 1, therefore has K-dimensional
measure 0 as claimed.

We will assume henceforth that (ui,...,ux) ¢ U. Then |S| = NK and S C
B(0,2K). Our goal is to obtain (1.1), (1. 2) for n = N¥ and A = (4K)71S.

We first prove that (1.1) holds, i.e.

(1.5) (S —8) -by| « NE“t «ntVE k=12 .K.

Indeed, let z € §— 5, then z = Zszl lN’Eukak for some j1,...,jk € {1-N,...,N—
1}. Fix ko € {1,...,k}, then

ik
z - by, = E ]_v‘ukak bk, = E jﬁukak‘bkoy
k=1 k£ko

where we also used (1.4). The last sum can take at most (2N)¥~! possible values,
which proves (1.5).

It remains to verify that there is a choice of uy, ..., ug for which (1.2) also holds.
We will do so by proving that if ¢ is a sufficiently small constant, depending only
on K and on the angles between the non-parallel sides of BX, then the set

(1.6) {(ug,...,ux) € [1,2/% : |lz]lx < tN~5/2 for some z € S — S}

has K-dimensional Lebesgue measure strictly less than 1.
Letx € S—S, thenz = Zk 1 Fugay, for some jx € {1-N,..., N —1}. Suppose
that  # 0 and

(1.7) lzllx <tN~E/2,

Assume that |jk, | > |Jk,| = -+ > |jkel, and that [jg, | € [2%,2°F1) for some integer
s such that 1 < 2% < N. If we had |j,| < 2°7%/K, then we would also have

2.2 27t 1
KN ~— N ~2N’

Jk
llzllx > Hﬁluklaklllx Z “_ukak“X >—-K-
k#ky

But if K > 4, then (1.7) implies that ||z||x < tN~2, which contradicts the last
inequality if £ <1 and N > 2. It follows that

(1.8) ks > 2%, |jka| > 2°7%/K.

Fix jk,,Jk, as in (1.8). Fix also y = Zk#kl,kz %ukak, and consider the set of
(ug,, uk,) € R? such that (1.7) holds, i.e.

H—uklakl + 5200k, +yllx < ENTE,

N



By (1.8), this set has 2-dimensional measure

N _ NK
92s 92s—2

< e (tNTE/2)2. =4c K -t2N?7K /92

Here and through the rest of the proof of the lemma, c;,cs,c3 denote constants
which may depend on K and on the angles between the non-parallel sides of BX,
but are independent of ¢t and N.

Integrating over ug, k # k1, ko, we see that the set

K .
{(u1,...,u1<) e[L,2¥: | Z%ukakﬂx < tN—K/z}’
k=1

with fixed j1,...,jk such that

1.9 2° < o] < 25t
(1.9) < max |kl )
has K-dimensional measure < 4c; K - t2N?~K /225,
The number of K-tuples ji,.. ., jx satisfying (1.9) is < (2°72)¥ | hence summing
over all such K-tuples we get a set of measure

< ot N2 Ko(K=2)s,
Now sum over all s with 2° < N. We find that the measure of the set in (1.6) is

S CQ Z t2N2—K2(K~2)s S c3t2N2—KNK—2 — cstz
s:1<25< N

This is less than 1 if ¢ < |/c3, as claimed.

Proof of Theorem 3A. We construct F as follows. Take a small positive number
¢ which will be specified later. Let A; = A(n;) be as in Lemma 1.1, where a
nondecreasing sequence {n;} and a sequence {N;} are such that

J
(1.10) N; = H Ny, MNj—00(j— o), lognjti/logN; — 0(j — c0).
v=1

(We consider that the empty product for j = 0 is equal to 1.) Also, fix s =
(K—1)/K > 1/2. Let also ¢ be small enough so that for any j the discs B(z, en®),
z € Aj, are mutually disjoint and contained in B(0,1); this is possible by (1.2).
Denote .

j

5]':677.]-—3, Aj= Hcsj:Cij_s.
v=1

Let E; = UzeA1 B(z,01). We then define Ey, Ej,... by induction. Namely, sup-
pose that we have constructed E; which is a union of N; disjoint closed discs B; of
radius A; each. Then Ej,; is obtained from E; by replacing each B; by the image
of U,e Ajr B(z,0;41) under the unique affine mapping which takes B(0,1) to B;
and preserves direction of vectors. We then let E = ﬂ;‘;l E;.



We will first prove that E has Hausdorff dimension at least 1/s. The calculation
follows closely that in [F85], pp. 16-18.

Let B; be the family of all discs of radius A; used in the construction of Ej, and
let B = ;2 B, where we set Bo = {B(0,1)}. We then define

(e} [e o]
(1.11) p(F) = inf { ZNRQ) : FC U B(z;,7;), B(zi,7i) € Bj(i)},
i=1

=1

for all F C E. Clearly, p is an outer measure on subsets of E. Observe that if
B = B(z,A;) € Bj, then

(1.12) Nj—l = Mj+1 'N_;l}l = Z (Nj+1) 7%,
B'€B;41:B'CB

hence the sum in (1.11) does not change if we replace a disc B € B; by all its
subdiscs from the next iteration Bjti. In particular, we may assume that all the
discs in the covering of F' in (1.11) have radius less than § for any § > 0.

We first claim that if By = By(zg,70) € B; then

(1.13) w(EN Bg) = Nt

The inequality u(E N By) < N. j"l is obvious, by taking a covering of E'N By by the
single ball By. Let now E N By C |J; B;, where B; € B has radius 7; = Aj(;). We
need to prove that

(1.14) STl =g

Since F is compact and B; are open relative to £, we may assume that the covering
is finite. We may also assume that all B; are disjoint, since otherwise we may simply
remove any discs contained in any other disc of the covering. If the covering consists
of the single disc By, we are done. Otherwise, let By be one of the covering discs
with smallest 7;, say By € Bj, and let B; € Bj_1 be such that By C B;. Then
B; C By, hence all discs in B; contained in By are also contained in Bg. By the
minimality of 77, these discs belong to the covering {B;}. We then replace all these
discs by the single disc By; by (1.12), the sum on the left side of (1.14) does not
change. Iterating this procedure, we eventually arrive at a covering consisting only
of By, which proves (1.14).
Next, we prove that for any s’ > s

(1.15) w(ENB) <« r/

for any disc B = B(z,r), not necessarily in B, where the constant in < may
depend on s'. We may assume that 7 < 1, since otherwise we have from (1.13) with
By = B(0,1)

WENB) < p(E)=1< 77,

which proves (1.15). Let j > 0 be such that 7 € (Aj4+1, 4], and consider all discs in
B; which intersect £ N B. They are closed, mutually disjoint discs which intersect



B and have radius no less than r; hence there are at most 6 such discs. Applying
(1.13) to each of these discs and summing up, we have

-1
uw(ENB) < 6N,
Moreover, .
r> Aj+1 = Nj_snj_flc‘J"l,

and we get (1.15) using (1.10).
Thus, if s > s and {B;}$2, is a covering of E by discs of radii 7;, then from
(1.15) we have

[ee) o)
er/s > Zu(EﬂBi) > p(E).
=1 =1

Taking the infimum over all such coverings, we see that
H, /SI(E) > 0.
Since §' > s is arbitrary, we conclude that the Hausdorff dimension of E is at least

K/(K —-1).
It remains to prove that |Ax(E)|; = 0. From (1.1) we have

(1.16) (A—A)-bp| <Cn*VE k=1,2,... K,
with C independent of n. We choose ¢ small enough so that
(1.17) cC < 1/2.
Let D; be the set of the centers of the discs in B;. We claim that
(1.18) |(D; — Dj) - bg| <C'N;, k=1,2,..., K.

Indeed, for j = 1 this is (1.16). Assuming (1.18) for j, we now prove it for j + 1.
Let z,2’ € Dj11. Then z € B(y,4;), z’ € By, A;), v,y € Dj. We write

(1.19) @—z)b=@-y) b+ (z-y) - -v)) b

The first term on the right is in (D; — D;) - bg, hence has at most C7 N possible
values. Also, by construction z — y,z’ — ¢’ are in A;A;41, hence the second term
is in Aj(Ajr1 — Aj41) - b and has at most Cn,, possible values, by (1.16). This
gives at most CJ +1Nj 1 possible values for (1.19), as required.

By (1.18), (1.3) and the triangle inequality, Ax (Ej;) can be covered by at most
K C’ijs intervals of length 2coA; = 2cochj"s, where cg is the X-diameter of
B(0,1). It follows that

|Ax(Ej)|1 € 2Keo(cC) < 2Keg(1/2)7,

by (1.17). The last quantity goes to 0 as j — co. Since Ax(E) C Ax(Ej), this
proves our claim that |Ax(E)|; = 0. The proof of the theorem is complete.



Remark. It is easy to check that the set constructed in the proof of Theorem 3A
has the Hausdorff dimension exactly K/(K — 1).

§2. PROOF OF THEOREM 3B

The case K < 3 is covered by Theorem 3C. We consider that K > 3 and denote
d = K — 3. Denote )
l= (lly"'ald) € Zi)

LL)y={l:0<lk<L(k=1,...,d)}.

For a real vector ¥ = (y1,...,74) we write ¥ € (K M) if for any positive integer L
and for any € > 0

(14€)L?

inf nytt . 44| | max |nr > 0,

_Z TV - Td (Zec(m' zl)
leL(L)

where infimum is taken over all nonzero integral vectors {n; : | € L}. The following
theorem easily follows from the results of Kleinbock and Margulis [KM98].

Theorem A. For almost all 5 € R? we have ¥ € (KM).

The results of [KM98] have been refined in [BKMO1], [Be02], [BBKMO02].
Now we formulate the main result of this section.

Theorem 4. Let¥y € (KM), K = d+3, and let BX be a symmetric convez polygon
with 2K sides, and the slopes of non-parallel sides are equal to v1,...,74,0,1, and
o0, then there is a compact E C X such that the Hausdorff dimension of E is 2
and the Lebesgue measure of Ax(E) is 0.

Formally, Theorem 4 deals with polygons BX of special kind, but it is easy to
see that for any polygon we can make slopes of three sides of it equal to 0,1, 00 by
a choice of a coordinate system. Indeed, if I1, I3, I3 are 3 non-parallel sides of BX,
then, taking the z;-coordinate axis and the zs-coordinate axis of a new coordinate
system parallel to I; and I3 respectively, we get SI(I;) = 0, SI(I3) = co; moreover,
the slope of I can be made equal to 1 by scaling and, if necessary, reflecting, the
x2-coordinate axis. Thus, combining Theorem A and Theorem 4 we get Theorem
3 (and also its stronger version mentioned in the end of §0).

We use notation introduced in the beginning of §1. To prove Theorem 4, we
need a lemma similar to Lemma 1.1.

Lemma 2.1. Assume that K,d,7, BX satisfy the conditions of Theorem 4. Then
for any € > 0 there are arbitrarily large integers n for which we may choose sets
A= A(n) C B(0,1/2) such that |A| =n and

(2.1) I(A—A)-be| < nV/2*e k=12 .. . K,

(in particular, |Ax(A)] < nM/2+¢) and

(2.2) |z —2'||x > n~ Y% z,2' €A, 2 #2,

where the implicit constants may depend on € but are independent of n.



Proof. Fix a positive integer L > 1/e. Next, fix a large integer N. Define
I 1 ! .
(2.3) So = _z ]—\j_—'yl‘...'ydd:jfe{l,...,N}

and S = Sy x Sy, that is
S = {(171,1‘2) 1 T1,T2 € So}.

For any z € Sy we have

L-1 L-1
2l < STl el =Y Il el <%
1=0

TeL(L) 1=0

where
v =max(ly],...,|vla) + 1.

Therefore, S ¢ B(0,27%%). Our goal is to check that |S| = n and to obtain (2.1),
(2.2) for n = N2L* and A = (4y4L)-18.

We consider that ax (k =1,...,d) are parallel to the sides with slopes 7y1,...,74
respectively and a4+1,0d+2,04+3 are parallel to the sides with slopes 0,1, c0 re-
spectively. Thus, we can take by = (—7v,1) for £ = 1,...,d, bay1 = (0,1),
barz = (=1,1), bays = (1,0).

We first prove (2.1) for k =1,...,d, i.e.

(2.4) (S = S) - bi| < nt/DFe,

Indeed, for z € (S —S) - bg,, ko = 1,2,...,d, we have a representation
T -bgy = =Yk Z YVLVil-"'Véd"‘ Z Wl'yi‘...'yff,
leL(L) leL(r)

where B
jf',jf” €e{l-N,...,N-1} (L€ L(L)).

Denote
L(Lko)={l:0<lg<L(k=1,...,djk # ko), 0 < gy <L}

Then we have

Ji 1 !
x-bkoz_ ]—\lf-yl‘...fyd"
leL(L,ko)
with _
jse{2—-2N,...,2N -2} (I € L(L, ko))-
Hence,

(S = ) - by | < (4N)EHLTH



By the choice of L we have L4+ L%~ < (1+¢)L%, and we get (2.4). fork=1,...,d.
Next, (2.4) holds for k = d+1,d+2, d+3 because for those k and for z € (S—S)-by
we have a representation

3
z by, = E Nl’yil ...'yff
Tes(L)

with )
j7€{2-2N,...,2N -2} (l € L(L)).

Hence,
d
(S = 8) - bro| < (4N)*,

and we again get (4.2) for sufficiently large N. So, (2.1) is proved.
Now observe that the supposition 7 € (K M) implies that elements of Sy with

different representations (2.3) are distinct. This gives |So| = N L* and thus |S| =
|So|?> = n as required. Moreover, since for any z,z’ € Sy there is a representation

T !
;L-_;r/:— Z N’yll...’)/dd
leL(L,ko)

with )
me€{l-N,...,N-1} (l€L(L,ko)).

we conclude from the supposition 7 € (K M) that for z # z’
(2.5) |z — 2| > (2N)~(1+0-1aL -1,

By the choice of L, we have (14 0.1e)L%+ 1 < (1+ 1.1€) L%, and from (2.5) we get
for sufficiently large N and distinct 3,7’ € A

ly — o/ llx > (49%) 7} @N)~OFIOE s N=G20IL4 o1/

This completes the proof of Lemma 2.1.

Proof of Theorem 4. We construct E as follows. Let A; = A(n;) be as in Lemma
2.1 with € = ¢;, where a nondecreasing sequence {n;}, a sequence {N;}, and a
sequence {e;} are such that

J
N]-=Hnu, n; — oo (j — c0), lognjii/logN; —0,e; — 0(j — o).
v=1

(We consider that the empty product for j = 0 is equal to 1.) Let also all n; be

large enough so that for any j the discs B(:r,nj_lm_%j), r € Aj, are mutually

disjoint and contained in B(0,1); this is possible by (2.2). Denote

J
—-1/2-2¢;
6 =n; 2R A =TT
v=1



Let By = U,ea, B(z,61). We then define E, Ej, ... by induction. Namely, sup-
pose that we have constructed E; which is a union of N; disjoint closed discs B; of
radius A; each. Then Ej; is obtained from E; by replacing each B; by the image
of UzeAj+1 B(z,8;+1) under the unique affine mapping which takes B(0,1) to B;
and preserves direction of vectors. We then let E = (;2; E;j. The verification of
properties dim(E) = 2 and |Ax(E)| = 0 is exactly as in the proof of Theorem 3A.
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ABSTRACT. We outline a proof that the ‘little’ Hankel operators on the Hardy space H*(C% )
are bounded iff on the symbol is in Chang—Fefferman product BMO(C%). This extends the
classical Nehari theorem to a range of product domains. This is a Theorem of the author,
Sarah Ferguson [8], and Erin Terwilleger [12].

1. INTRODUCTION

These notes concern the subject of Nehari’s theorem, on Hardy space of the disk, and
products of the disk. The theorem on the disk is classical; the same question on products
of the disk, the polydisk of the title, is a new result of the author, Sarah Ferguson and Erin
Terwilleger [8,12]. The proof in the product setting is much more complicated. It relies
upon a delicate induction on parameters, built around the harmonic analysis associated with
product theory, as developed by S.-Y. Chang, R. Fefferman and J.-L. Journé [3,4,9, 10].
These notes will provide an approach to this result that is more leisurely than the research
articles on the subject. We in particular include a great many references, and a description
of related results and concepts.

The key concepts of this paper concern the intertwined topics of Hankel operators, Hardy
space, Hilbert transforms, commutators, and paraproducts. Let us describe classical Hankel
operators.

L?(R) splits into the sum H2 (C4)@ H2(C.) of functions which are analytic and antianlytic
respectively. Let P. be the corresponding orthogonal projections, which are realized by the

Research supported in part by a National Science Foundation Grant. The author is a Guggenheim Fellow.
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Fourier projections onto positive and negative axes. Namely,

fle) « / f(z)e = d,
P. f(z) / 76 = de.

Consider a function b on L?(R), and the operator M, of pointwise multiplication by b.
That is, My ¢ ey @. A Hankel operator with symbol b is an operator H, from H?(Cy)

to H2(C,) given by Hy ¢ & P M,®. It is clear that this definition only depends on the
analytic part of b.

Clearly, if b is bounded then so is the Hankel operator H,. But, as it turns out this
is not necessary. The Nehari theorem says that the necessary and sufficient condition for
boundedness is that there is a bounded function 3 for which P, 3 =P, b.

Acknowledgment. These notes are prepared for the conference Harmonic Analysis and its
Applications at Sapporo, Hokkaido University, Sapporo Japan, August 2005. We thank the
organizers for the invitation to speak at this conference.

2. MEYER WAVELETS

We recall some basic facts about the Meyer wavelets [14]. Throughout this paper, D
denotes the dyadic grid. Thus,

(2.1) D € {[j28, G+ 1)2%) : j k€ Z}.
Define translation and dilation operators by
(22) T, f(e) € fe~y), yeR,

. 1 ) = 8§ z/s), < §,p <00,
2.3 Dil? o g-irg 0
(2.4) Dil? f(z) «f Trer Dilfy, f(z), 1 is an interval.

In the second definition, s denotes the scale of the dilation, and the normalization is chosen
to preserve LP(R) norm. In the last definition, we extend the definition of dilation to an
interval, which incorporates a translation to the center of I, denoted c(I), and a dilation by
the length of I.

Y. Meyer [14] found a Schwartz function w, with
(2.5) @ is supported on 27 < [¢] < 8,

and the functions {w; : I € D} form an orthonormal basis for L?(R). Here, we use the same
notation as in the case of the Haar basis, w; = Dil%.
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Let us recall that the Hardy space Re(H'(C,)) and it’s dual have convenient expressions
in terms of the Meyer wavelet. Specifically, we have

IS ez 4y = H [; M%I’)Elf} 1/2”1 ’

/
[ flIre(zr 1)y = I fllBMo(cy) = sup [IJi_l > OIS wIHQ]l g

J is an interval TeD
IcJ

Let us write the Meyer wavelet w = u + v, where u is the analytic part of w, and v is the
antianalytic part. In particular u is also a Schwartz function.

3. THE NEHARI THEOREM ON THE DISK

The classical result that we are interested in is:

3.1. Theorem (Nehari’s Theorem, [17]). The Hankel operator Hy from H2(C.) to H2(C,)
iff there is a bounded function B with Pyb = Py[3. Moreover,

Hll = inf I8l

There are three proofs of this fact in the literature. In the new results, we will need to rely
upon methods from two of these proofs. For much more on the proofs of Nehari’s theorem,
and the rich theory that has flowed from it, see the books by V.V. Peller [19], or N. Nikolskii
[18)].

Factorization. Given a bounded Hankel operator Hy, we want to show that we can construct
a bounded function § so that the analytic part of b and 3 agree. This proof is the one found
by Nehari [17]. We begin with a basic computation of the norm of the Hankel operator Hy:

|Hs| = sup sup /Hb Y- -pdr
(32) IIW|!H1(C+)=1 'l¢llyi(c+)=1
= sup sup <(P+ b), (R 90>

!l‘P!lHi(c+)=1 ”¢”H~2}-(C+)=1

But, it is a classical fact that every f € H*(C..) splits into a product of functions in H?(C,).
We read from the equality above that the analytic part of b defines a bounded linear functional
on HY(C,) a subspace of L'(C,).

The Hahn Banach Theorem applies, giving us an extension of this linear functional to all
of L*, with the same norm. But a linear function on L! is a bounded function, hence we have
constructed a bounded function § with the same analytic part as b.
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Duality. In this proof, the H*—BMO duality is decisive. The calculation (3.2) shows that
P, b is a bounded linear functional on H'. Therefore, we have
| Ho | =~ [P+ bllzmo

(This is not equality, since we are not choosing to adopt a canonical norm for BMO.) In
addition, we have BMO = L* + H L*°, where H is the Hilbert transform. Therefore, we can
select 4 € L™ which has the same analytic part as b.

4. AspecTs OF ProbpucT HARDY THEORY

We describe the elements of product Hardy space theory, as developed by S.-Y. Chang
and R. Fefferman [3,4,6,7] as well as Journé [9,10]. By this, we mean the Hardy spaces
associated with domains like C, ® C,, with boundary R® R. In particular, the boundary is
flat, and while we work with several variables, we are very far from the pseudoconvex case.

We view R? as a tensor product of one dimensional spaces. In particular, previously, we
used the splitting of L2(R) = H?(C,) ® H2(C,). This leads to a decomposition of L?(R%)
into 2¢ components. To describe them, let us set P, ; to be the one dimensional Fourier
projection operator P acting on the jth coordinate. For o € {—, +}4, set

d
Po = @) Pty
=1
Likewise, we set Hg((C‘j_) to be the range of the orthogonal projection P,. We then have
PR)= P HICY)
oe{+,—-}¢

Among these 2¢ Hardy spaces, we distinquish H2(C%) in which o = +, and likewise for
HZ(C%). The corresponding orthogonal projections are Pg and Pg.

4.1. Remark. The (real) Hardy space H'(R?) typically denotes the class of functions with
the norm

d
£l + D IR, £l
j=1

where R; denote the Reisz transforms. This space is invariant under the one parameter
family of isotropic dilations, while H'(C%) is invariant under dilations of each coordinate
seperately. That is, it is invariant under a d parameter family of dilations. That is why we
refer to ‘multiparameter’ theory, or ‘d parameters.’

As before, the real H!, Re H 1((Ci) has a variety of equivalent norms, in terms of square
functions, maximal functions and Hilbert transforms. For our discussion of paraproducts, it
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is appropriate to make some definitions of translation and dilation operators which extend
the definitions in (2.2)—(2.4). (Indeed, here we are adopting broader notation than we really
need, in anticipation of a discussion of multiparameter paraproducts.) Define

def
(4.2) Tr, f(z—y) € flz—-y), yeR’,
(43) Dﬂ?l,.,.,td f(xla' . a'rd> d:'e—f (tl"'td)_l/pf('rl/tla' .. ,.’Z'd/td), 1, ... yta > 0
. def .
(4.4) Dil, = Trgr) DﬂfR1|:-~-:|Rd‘ )

In the last definition R = R; X --- X Ry is a rectangle, and the dilation incorporates the
locations and scales associated with R. ¢(R) is the center of R.

Let D¢ = D x --- x D denote the d fold product of the dyadic intervals. These are the
dyadic rectangles in R?. For a non negative bump function ¢* with [ ¢! dz = 1, define the
(strong) maximal function by

M---M f(z) = sup Dil} o' (z)(f, Dil ¢')
ReDd

We use the superscript on ¢! to indicate that it has a non zero integral.

4.5. Theorem. All of the norms below are equivalent, and can be used as a definition of real
Re H'(C%).

d d
MM FL, S IR > > ITTA L

oe{0,1}4 j=1 A;e{LH,} j=1

In the last expression, we are summing over all choices of operators A; being either the
identity operator, or H;, the Hilbert transform computed in the jth direction.

The dual Re H'(C%)* = BMO(CY) is the product BMO space. We describe the charac-
terization of this space obtained by S.-Y. Chang and R. Fefferman [4]. We need the product

wavelet basis. For a rectangle R = Hj=1 R(j) € D% set

d
wr(z1, ..., 24) = | [ w,, (z7) = Dilg wp e (z)
j=1

We will use the notation ug for the corresponding tensor products of the analytic Meyer
wavlets. The product BMO space has the equivalent norm

1/2
4.6 b ~ sup ||U -1 E b, wr 2
( ) | HBMO(Ci) - d[\ | RCU|< >| }

What is essential about this definition is that the supremum is taken over all sets U C R¢
of finite measure. That is, the range of test sets that are required in this setting are much
more complicated than the set of intervals, or even rectangles.
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It is the Theorem of Chang and Fefferman that

4.7. Theorem. We have the equivalence of norms
”fH(ReHl(ci))* = ”f”BMO(ci)

That is, BMO(CY) is the dual to Re H(C%).

To define analytic BMO(Ci), it suffices to replace the Meyer wavelets above by the analytic
Meyer wavelets.

4.1. Journé’s Lemma. The explicit definition of BMO in (4.6) is quite difficult to work
with. In the first place, it is not an intrinsic definition, in that one needs some notion of
wavelet to define it. Secondly, the supremum is over a very broad class of objects: All subsets
of R® of finite measure. There are simplier definitions, (that unfortunately are not intrinsic)
that in particular circumstances are sufficient. This is the surprising conclusion of Journé’s -
Lemma.

For our purposes, there are two appropriate definitions. Set || f||smo(rec) t0 be the supremum
in (4.6), but with the important restriction that the sets U are taken to be rectangles.
Historically, this was the first natural guess for the correct definition of BMO(C%). But,
in a key moment, L. Carleson [2] produced examples of functions which acted as linear
functionals on H'(C%) with norm one, yet had arbitrarily small BMO(rec) norm. This
example is recounted at the beginning of R. Fefferman’s article [7]. Despite this fact, Journé
Lemma, shows that in certain circumstances, the an ‘impovrished’ BMO norm can dominate
BMO(C%) norm.

The second definition is forced upon us by the complexities of three and higher parameters.
Say that a collection of rectangles Y C D? has d — 1 parameters iff there is a choice of

coordinate j so that for all R, R’ € U we have R; = R, that is the jth coordinate of the

rectangles agree. A collection of rectangles has a shadow given by sh(lf) =4 U{R : ReU}.

We then define

def _ 1/2
(48) Ilomoesy & s [Ish@)I™ oI, wadl?]
U hasd—-1 Reld
parameters

Observe that in d = 2 this reduces to the rectangular BMO definition. We use the —1
subscript to indicate that we have ‘lost one parameter’ in the definition.

There is another ingredient that we need, a ‘dilate’ of the set U, which should be taken
just barely bigger than U itself.
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4.9. Lemma (Journé’s Lemma in d — 1 parameters). For all n > 0, and collections of
rectangles U whose shadow has finite measure, we can construct V- C sh(U) and a function
Emb : U — [1,00) so that

(4.10) Ewb(R)-RCV, RelU,
(4.11) VI < (1+n)sh(U)],
(4.12) H];j Emb(R; U)~2(f, wR)wRHBMO(Ci) < Kn”f”BMO_l(Ci)

The last inequality holds for all functions f, with the constant K, depending only on 7.

Notice that the power on the embeddedness term is quite large, twice the number of
parameters. Also, concerning the conclusions, if we were to take Emb(R) = 1, then certainly
the first conclusion (4.10) would be true. But, the last conclusion would be false for the
Carleson examples in particular. This choice is obviously not permitted in general.

The formulations of Journé’s Lemma given here are not the typical ones found in Journé’s
orginal Lemma, or J. Pipher’s extension to three dimensional case. These papers give the
more geometric formulation of these Lemmas, and J. Pipher’s article implicitly contains the
geometric formulation needed to prove the Lemma above (provided one is satisfied with the
estimate |V| < |sh(/)]). See Pipher [20]. Lemma 4.9, as formulated above, was found in
Lacey and Terwilleger [12]; the two dimensional variant (which is much easier) appeared
in Lacey and Ferguson [8]. The paper of Cabrelli, Lacey, Molter and Pipher [1] is a com-
prehensive survey of issues related to Journé’s Lemma. See in particular Sections 2 and
4.

5. MULTIPARAMETER PARAPRODUCTS

We present the paraproducts in the manner in which they arise in our problem. The
reader is referred to Journé [10] where one can find a Theorem which implies the result we
need. Recently, multiparameter paraproducts have received new attention, and extensions by
Muscalu, Pipher, Tao and Thiele [15,16]. Our discussion is drawn from Lacey and Metcalfe
[11] (also inspired by [15,16]). In particular, the main theorem of that paper will prove the
statement below.

We will have need of paraproducts which are presented in a somewhat different way. We
make some definitions. For § € Z¢, let us set

AU;-: Z UR Q UR -

ReD?
|R|=2% , 1<s<d
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Recall that u is the analytic Meyer wavelet, and ug is the wavelet associated with R. For a
subset of coordinates J C {1,...,d} set

def
U &Y ar
kezd
ks_—'js: seJ
ks>js ,s¢J

For those coordinates s € J, we take the wavelet projection onto that scale, while for those
coordinates s ¢ J, we sum over all larger scales.

Write R’ <; R iff |R}| < |Rs| for s ¢ J and |R;| = |Rs| for s € J. Thus R’ <; R iff this
pair of rectangles contributes to the sum Uy ;.

5.1. Theorem. For all J C {1,...,d}, and k € 7% with ||k||s < 8, we have
1> (AU 8) - Trz s @ll, < lbllemoies) llellz

WA

Moreover, suppose we have the following seperation condition: Fixz an integer A > 0. Suppose
that

(5.2) if (b,up) # 0, {p,ur) # 0 with R’ <; R, then ARNR' = 0.

We then have the estimate

(5.3) HZ AUjz;b)-U +kJ90H2 < A_loodeHBMO(C yllelle
Jezd

Implied constants are independent of the choice of k.

6. NEHARI THEOREM IN SEVERAL VARIABLES

The Hankel opererators we are are concerned with are maps from HZ(C%) to HZ ((Cd)
given by H, ga Pe M, %. This definition only depends upon Pg b. The Nehari Theorem in
this context is:

6.1. Theorem. We have the equivalence
(6.2) [[Hs|| 2= [|blleamo(ee)

where the latter space is S.-Y. Chang and R. Fefferman BMO, the dual to the Hardy space
HY(CY). (In particular, this is the analytic version of that space.)

6.3. Remark. These are the ‘little’ Hankel operators, in that we are taking the ‘smallest’
reasonable projection above. To define the ‘big’ Hankel operators, one would replace Pg
above by I—Pg. We refer the reader to Cotlar and Sadosky [5] for the theory of these
Hankel operators.
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There is an an equivalent formulation in terms of factorization. Classical factorization of
H'(C,) functions does not extend to H'(CZ). The Nehari theorem is equivalent to weak
factorization. The formalization of this is done in terms of a tensor products of H?(C1. We
define a projective tensor product norm by

def .
I 2y m2 ey = mf{Z“%‘“H?(ci)WHH?(ci) Cf= Zﬁpﬂbj, P, %5 € H2(Ci)}
J J

6.4. Theorem. FEither of the equivalences of norms below are a consequence of the other
equivalence.

(6.5) IHs|| = [|Pg bllsmoce)
(6.6) Il cey = 1 f a2 eeya a2 (c2)

The last equivalence of norms is the weak factorization statement in H*(C2).
6.7. Corollary. We have
|Hs|l = inf{||8ll : Peb=Psf}.

Theorem 6.4 was known and elementary; once weak factorization (6.6) is known, Corol-
lary 6.7 is easy. Thus, Theorem 6.1 is the main point. The proof we give is an induction on
d, using weak factorization in H'(C%?) in a critical moment.

The inequality ||H,|| < Hb”BMO(Ci ), turns out to be quite easy, and so the issue is to
establish the lower bound on the norm of the Hankel operator.

The central difficulty here lies in the subtle nature of BMO in the higher parameter case.
We adopt a ‘bootstapping’ approach motivated by a critical Lemma of Journé. A crude
description of the method is as follows.

It suffices to assume that b = Pg b € BMO(C2) is of norm one, and find an absolute lower
bound on ||H,||. We begin by using the induction hypothesis to establish

5ol 2 llbllemo_ c2)s
where the latter norm is BMO norm ‘with one less parameter’ defined in (4.8). Thus, we are
free to impose the additional hypothesis that Hb”BMo_l(ci ) is less than some fixed, absolute

constant. Observe that implicitly, this forces b to be the type of functions which Carleson
discovered.

Yet, Journé’s Lemma gives modest sufficient conditions for this improvished norm to dom-
inate the true BMO norm. The lower bound for the norm of H, can then be explicitly
estimated as a main term, plus several error terms. Each of the error terms is a paraproduct,
which can be controlled with Journé’s Lemma and the fact that the improvished norm is
small.
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Proof of Theorem 6.4. We discuss the proof of Theorem 6.4 and Corollary 6.7. Observe that
the computation (3.2) is quite general. In the language we have introduced above, it shows
immediately that

(6.8) [Holl 2= [IPg bll mr2(ce ya 2 (e y-

That is, the Hankel norms are equivalent to the dual norm of the tensor product norm.

The equivalence of (6.5) and (6.6) is then immediate.
O

Proof of Corollary 6.7. We can assume that the symbol of the Hankel operator H, is in
analytic BMO. Then, (6.8) and (6.6) show that b defines a bounded linear functional on
H'(C%) c L'(R?). Appeal to the Hahn Banach Theorem to extend this linear functional to
all of L!'(R%), with the same norm. The Corollary follows. d

7. PROOF OF THEOREM 6.1

The upper bound on the norm of a Hankel operator is easy. Observe that, trivially,
H*(C4)BH(CY) B (CY).
For the dual spaces, we have the reverse inclusion. In particular, the BMO(C%) norm is
larger than the dual tensor product norm. Thus, by (6.2),
[Hsll = [Pe bll s2(ce g2 (e~
S 1Pg bllsmoes)

Thus, the primary difficulty is in establishing the lower bound on the norm of the Hankel
operator.

7.1. The Initial Lower Bound. The proof is by induction on dimension d, and we take
the classical Nehari Theorem as the base case in the induction. Thus, we assume that
Theorem 6.1 holds in dimension d — 1, and prove it in dimension d.

Take b to be in analytic BMO(C?), and of norm one. We recall that this means in
particular, that we have

(7.1) sup [[U™ Y I{b,va)?] = 1,

d
UCC+ ReDd
RCU

where we recall that the supremum is over all subsets U of finite measure, and that the
functions vy are the analytic Meyer wavelets associated to dyadic rectangles in C2.
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Let us argue that

(7.2) Il 2 18llsn0,.. ct)
This last norm is given in (4.8), and in particular, it is a supremum as in (7.1), with an

additional restriction on rectangles that contribute to that sum.

Now, this inequality we are to prove, by (6.8), reduces to showing

(7.3) IPa bll(r2(ce g2 (ce yy- R [IPe bllsmo,_,(ce) -

Now, we can assume that b = Pg b is a Schwartz function, and that HbHBMod_l(ci) =1
Thus, after a permutation of coordinate and a possible dilation, we can take a collection of
rectangles U which achieves the supremum in the BMOy4_;(C%) norm.

In particular, we can assume that |sh(l/)| = 1; there is an interval I of length one so that
for all R € U we have Ry = I; for ) =} p,(b,vr)vr We have (b,4) = 1. Then, it suffices
to see that [|¥[|g2(ce)gazcd) S 1

Write £ = (21, 2a,...,7q4) € R as (z;,7) with 2’ = (29,...,74) € R4L. Each rectangle
R € U has the same first coordinate. So the first coordinate in the in product that defines the
Meyer analytic wavelet vy is independent of R. Therefore, we can write ¥(z) = 11 (x1)y (')
where 9, (z,) € H*(R) is of norm one. It can writen as ¢); = a; - f; with oy and 3, of H?(R)

norm one.

7' satisfies something similar. Observe that
19| g ca-1y < U9l < 1.

Hence, ¢ is in H 1(@1‘1), and is of norm at most one. In fact, it has norm comparable to

one, since by construction

1% IIBMO(Cd < 1

and (¢/, ') = 1. Thus, by the induction hypothesis, we have
Hw/HHl(C‘jfl) = Hw/”H2(Ci-l)®H2(Ci-1) ~ 1.

Thus, ¢’ can be writen as a sum of products of a;. . ﬁj’. with
ZHOZQHHZ(C‘}__l)”ﬂ‘;“HZ(Cj_—l) ~1.
J

But then, it is clear that we can write

Y(zy, 2 Zal T1)o ﬁl(fﬂl)ﬂ( )

and 50 [|9]| g2(ce )gmece) S 1-
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7.2. The BMO((Ci) lower bound. Our task is to ‘bootstrap’ from the weaker inequality
(7.2). Namely, for an absolute constant n_; whose value is to be specified, it suffices to
consider Hankel symbols b which satisfy b = Pg b; b is Schwartz function; ”b”BMO(C‘i y =1
and ”b”BMo-l(ci y < N-1. (The subscript _; mimics our notation for the reduced parameter

BMO space.)

We show by direct computation that ||H,|| 2 1, namely we will apply the Hankel operator
to a particular H*(C%) function, and provide a lower bound on the norm of the image.

Here is how we select the function to apply the Hankel to. Select a collection of rectangles
U which acheive the supremum in the definition of BMO(C%) norm. Thus,

71, vR)? = Ish@d)

Moreover, we can, after taking an appropriate dilation, that |sh(i/)| = 1, and that if R C
sh(U), then R € U.

The function we apply the Hankel to the wavelet projection of b onto the wavelets associated
with U, o =) poy (b, vR)VR.

Observe that

|Hs ol = |Palal’llz 2 llafllz = el
[ a2 [ o] .

Here, we are relying on the Littlewood Paley inequalities, to pass to the wavelet square
function; that 2/ has shadow equal to one in measure, and that L? norms dominate L? norms
on a probability space. Thus, we have |H, || > 9 > 0, for absolute np.

This is in fact our main estimate. Our task is to show that for n_; sufficiently small, that
we have

(7.4) [Hy-a ] < 3.

This can be done with the aid of Journé’s Lemma.

Fix a second small parameter 7y whose value will be specified below. (The subscript j is for
‘Journé.’) Apply Lemma 4.9. Thereisaset V D sh(i) and a function Emb : & — [1, c0) for
which these conditions hold. |V| < 14n;; Emb(R)R C V forall R € U; HaHBMO(ci) < Kpun-aa

where

(7.5) & € 3" Emb(R) (b, va)vr

RelU
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We now decompose the symbol b. We have already defined a. Set
(7.6) BE S (b ur)vr.

RCV
R@U
Thus, these are the rectangles with are ‘close’ to U, but not in it, as defined by the set V.
Define v by b = o+ 3 + . To verify (7.4), it suffices to show that
(7.7) [Hs ] < Kny"™,
(7.8) JH, o < Eopnos
One then specifies 1y so that the top line is no more than %770- The constant K,; that appears
in the second line is absolute, so we can then fix n_; sufficiently small to prove (7.4).

The inequality for 3 is easily availible to us, by the particular form of the Journé Lemma
we are using. Observe first that

L+ > [bur) =D [b,or)> < 1+m;.

RCV RCV
REU
Therefore, ||8]ls < /77. On the other hand, the BMO(C%) norm of 3 is less than or equal
to one. Thus, we have ||B||l4 < 77}/ 4 A Hankel operator is at worst a product, thus

[Hs ol < |1B8llallalla < Ky

So it remains to verify (7.8).

An Initial Calculation. We make an explicit computation of a Hankel operator. Namely,
restricting attention to one dimension, we have
0 8|J] < ||

( ) Vg +(U]/U-]) {P_F(/U[W) lIl S 8'J[

This follows from the Fourier localization properties of the Meyer wavelet. If J is much
smaller than I, then v;U7 is purely anti analytic, giving us the first case above.

We apply the observation above to the term H,@. This leads us to the conclusion that we
need to bound

IEyall < || 32 {bur) T, un) un ]|,
(R,R)eA

AL (R R): RCU, B¢ V,|R|<64R,|,1<5<d},

It is essential to observe that this sum can be written as a finite sum of the paraproducts
in Theorem 5.1, applied to the functions o and 7. This sum varies of choices of k£ with
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k| < 6, and arbitrary J C {1,...,d}. (The subset J consists of those coordinates s for
which |R,| ~ |R}].)

We use Theorem 5.1 to provide an estimate of the L? norm of the sum above an absolute
constant times n_;. In particular, we want to use the more technical estimate (5.3) to acheive
this end.

We will need to decompose the collection A into appropriate parts to which this estimate
applies. That is the purpose of this definition. For an integer n > 1, take

Qi C—léf Z <b, UR>

RCU
2n—1<Enl(R;U)<2"

We claim that

(7.10) I anll S 2701
It follows from Lemma 4.9 that we have the estimate
(7.11) lemllemorcey S 2%y,

indeed, this is the point of this definition. From other parts of the expansion of the Hankel
operator, we need to find some decay in 7.

Nevertheless, from this estimate and the upper bound on Hankel operator norms, we have
the estimate
IH, ol £ HbHBMO(ci)“an”2 <$ 2%y,

We use this estimate for n < 20, say.
Now, for R C U with 2"7! < Enl(R; U) < 2", and rectangle R’ with (R, R") € A, it follows

that we must have 2" RN R = (. That is, (5.2) is satisfied with the value of A in that
display being A ~ 2" for n > 20. Thus, we conclude that

|Hy ]l £ 2751, n>20.

This completes our proof of (7.10), and the proof of the lower bound on the norm of Hankel
operators.

7.12. Remark. The subject of Nehari’s theorem is foundational to the subject of operator
theory. See for instance the books of Nikolskii [18] and Peller [19]. It might well be that the
positive solution to Nehari’s theorem in the polydisk will ultimately be seen as the starting
point of a broader theory, whose outlines we can currently only dimly see.
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Abstract

For the Tolsa RBMO, the (weighted) John-Nirenberg type inequality is shown
and by applying this some vector-valued inequalities are proved.

1 Introduction

In this paper we discuss the (weighted) John-Nirenberg type inequality for the sharp
maximal operator due to X. Tolsa.

By “cube” Q@ C R? we mean a compact cube whose edges are parallel to the
coordinate axes. Its center will be denoted by zg and its side length will be denoted
by 4(Q). By Q(z,1) we will also denote the cube with center at z and sidelength I. For
p >0, p@Q will denote a cube concentric to ) with its sidelength p£(@). Throughout
this paper u will be a (positive) Radon measure on R satisfying the growth condition:

w(Q(z,1)) < Col™ for all z € supp (1) and I > 0, (1)

where Cp and n € (0, d] are some fixed numbers. We do not assume that p is doubling.
By O(u) we will denote the set of all cubes Q C R? with positive y-measures.

! The first author is supported by Research Fellowships of the Japan Society for the Promotion of
Science for Young Scientists. The second author is supported by the 21st century COE program at
Graduate School of Mathematical Sciences, the University of Tokyo and by Fijyukai foundation.



It is well known that the doubling property of the underlying measure is a basic
condition in the classical Calderén-Zygmund theory of harmonic analysis. Recently,
more attention has been paid to non-doubling measures. It has been shown that many
results of this theory still hold without assuming the doubling property.

Nazarov, Treil and Volberg developed the theory of the singular integrals for the
measures with growth condition to investigate the analytic capacity on the complex
plane [5], [6]. Tolsa showed that the analytic capacity is subadditive and that it is
bi-Lipschitz invariant [13], [14]. The research, which was started from their pioneer
works using the modified maximal operator, has been developed in many ways:

Garcia-Cuerva and Eduardo Gatto defined a potential operator for the measures
with growth condition [2]. Tolsa defined for the growth measures RBMO (regular
bounded mean oscillation), the Hardy space H'(u) and the Littlewood-Paley decom-
position [10], [11]. He also gave his H(p) space in terms of the grand maximal operator
[12]. Chen and Sawyer modified the definition of RBMO to investigate the commutator
of the potential operator and RBMO [1]. Deng, Han and Yang defined for the growth
measures the Besov space and the Triebel-Lizorkin space [3], [4]. The authors defined
for the growth measures the Morrey space and established some inequalities [8], [9].
The aim of this paper is to introduce the (weighted) John-Nirenberg type inequality
for the growth measures, which can be applied to obtaining the vector-valued sharp
maximal inequality for the Morrey space.

Given two cubes @ C R, we denote

£(Qr) .
5Q.R) = | %) p(Q(zq,1) di

(@ " L
where Qg denotes the smallest cube concentric with () containing R. We say that
Q is a doubling cube if x(2Q) < 29t u(Q). By Q(u,2) we will denote the set of all

doubling cubes. Given Q € Q(u), we set @Q* as the smallest doubling cube R of the
form R = 27Q with j =0,1,....2

Our BMO here is RBMO (regular bounded mean oscillation) introduced by Tolsa
[10] which are the suitable substitutes for the classical spaces. Denoting the average of
[ over the cube Q by mg(f) := / fdu, we say that f € L} (1) is an element
of RBMO if it satisfies

W= smp oy [ —me i+ g S <o

QeQ(w)
Q,REQ(1,2)

For the many other equivalent norms we refer to [10](Lemma 2.10). The advantage of
RBMO is the following John-Nirenberg theorem due to Tolsa.

2 By the growth condition (1) there are a lot of big doubling cubes. Precisely speaking, given any
cube Q € Q(u), we can find j € N with 27Q € Q(u,2). Meanwhile, for p-ae. z € R, there exists a
sequence of doubling cubes {Qk}x centered at z with £(Qx) — 0 as k — oo. So we can say that there
are a lot of small doubling cubes too (see [10]).



THEOREM 1 Let f eRBMO and Q € Q(u).
(1) There exist positive constants C and C' independent on f such that
3 C'x
p1z € QIIf(@) = mar (NI > A} < Cs (5Q) exp <‘W> . A>o0.

(2) Let g € [1,00). Then there exists a constant C independent on f such that

1

( / 1£(z) = mas( )qu#(m)) < Clfll.

For f € L} (u), we define two maximal operators also due to Tolsa: The sharp
maximal operator M* f (l’) is defined as

]\4'11 xT) = su / e dul(z + sup ImQ(f) _'mR(f)[
f(z) oo |f(2) = me-(f)ldu(z) 0 T10R)
Q,ReQ(1,2) ‘
and Nf(z) is defined as Nf(z) := sup mg(|f]). It is well known that N is a
z€QEeQ(1,2)

bounded operator on LP(x) with p > 1 and by ||N||, we will denote the operator
norm. Since there are a lot of small doubling cubes, we have also a pointwise estimate:
|f(z)] < Nf(z) for p-a.e. z € R%. In this paper the weight w will be a non-negative
function on R? satisfying a mild condition:

w € LP°(u) for some pp > 1 (2)
and w(A), A C RY, will denote / w(z) du(z).
A

We shall prove the following theorem.

THEOREM 2 Suppose that w satisfies (2). For every f € Li,.(1), Qo € Q(u), g € [1,00)
and « € (0,1), there exists a constant C independent on f such that

Q=

(/QO |f (@) = m(qo)- ()] w(z)® du(ft)) ‘<c (/%QO (M f(2)? W () d#(fﬁ))

Here, denoting N7 as the j-th composition of the operator N, we put

W(z) = (26) " Nw(z), B2 |Nlp- 3)

J=1

2 Proof of Theorem 2

The letter C will be used for constants that may change from one occurrence to
another. Constants with subscripts, such as Cy and Ci, do not change in different
occurrences.



The cubes with generation In the sequel we follow [12] with minor modifications.

LEMMA 3 The following properties hold :

(1) For p>1 and Q € Q(u), we have 6(Q, pQ) < Cp log p.

(2) Let Q@ € Q(u) and suppose that 2¥Q, k = 1,2,...,ko, are no doubling cubes.
Then 6(Q,2FQ) < Cp 2™ log 2.

(3) Let @ € Q(p) and @ > 0. Suppose that, for some ¢ > 0,

a<u*Q)<ca, k=0,1,... k.

o
Then 5(Q,2k°Q) < 2" log2cCy cp, where ¢y := Z2“”k.
k=0

Proof. (1) follows easily from the growth condition. We prove (2) ﬁrst The dyadic
£(2k0 Q) k
(Q(zQa )) < 2" 1o Z 2 Q
Q) 2 L2kQ)m
the growth condition (1) we have d — n > 0 and the assumption and the definition of
the doubling cubes imply 297 2(2¥71Q) < u(2%Q). These observations yield

argument yields that 6(Q, 2% Q) = /
&

9ko
5(Q,25Q) < 2" log 2 LE;/» 5)) 2(2”-61—1)’“0-’“ < Cp 2™+ log 2.

Next we prove (3). It follows by the dyadic argument and the assumption that

©w(2%Q) a &

(Q 2koQ < 2" lo 22[21‘:@ < 2" logQC (Q)nZZ—nk<2n ].OgZCCoCn

Given two cubes Q C R, we denote

0.8 [(@7 HQEeD) d
fQR)= [ SRR

where QF denotes the largest cube concentric with @Q contained in R. We will treat
points x € supp (1) as if they were cubes (with £(z) = 0). So, for z € supp (1) and
some cube @) 3 z, the notations 6(3; Q) and z©9 make sense.

Let Cy = Cp2™*! log2. Fix Qo € Q(u) and let Q1 = §Q0.
LEMMA 4 If a > 3Cy, then for each z € Qo Nsupp (u) with §(z, Q1) > a there ezists

some doubling cube QQ C Q1 centered at x satisfying

6(Q, Q1) — o] < 2C1.



Proof. Let R be the biggest cube of the form 27kz@ k=1,2,..., such that
5(2R, Q1) < a < 6(R,Q1).

Then, a < §(R,Q1) = 6(R,2R) + 6(2R,Q1) < Colog2 + 6(2R,Q1). This implies

2C; < 6(2R, Q1) and hence, by Lemma 3 (2), Q := (2R)" C Q1. It follows by Lemma 3

again that a < §(R, Q1) = §(R, Q)+ 5(Q,Q1) <201 +6(Q,Q1), and that 6(Q, Q1) <
6(2R, Q1) < a. Thus, we have [6(Q, Q1) — a| < 2C;. 11

Fix A > 3C;. Let m > 1 be some fixed integer and = € QpNsupp (u). If 5(3:, Q1) >
mA, we denote by Qg m a doubling cube centered at z and contained in ) such that

|5(Q:C,’m)Q1) - mAI < 2Ch.

The cubes Qzm, € Qo Nsupp (i), are called cubes of the m-th generation. The set
of all cubes with m-th generation will be denoted by D,, and the set |J,, Dy, will be
denoted by D.

LEMMA 5 Assume that A is big enough.

(1) For every Qz,m, Qzm+1 € D, we have 100 Qz,m+1 C Qzm-

UQz,m)-

Qo

(2) If 2,y € supp () are such that Qzm N Qyumrt # 0, then Qi) <

Proof. Let us prove (1). If Qzm C 100 Qz m+1, then

(m + 1)A - 2Cl < 5(Qz,m+1a Ql) = S(Qm,m—i—la Qz,m) + 5(Qx,m, Ql)
S S(Qx,m-i—h 1OOQz,m+1) + mA + 201 S CO 10g 100 + mA + 201

This implies A < Cplog 100 4+ 4C which is not possible for sufficiently large A.

1
Let us prove (2). Put P = Qym+1 and P’ = Qg m. If £{(P) > —8—€(P'), then
P’ C 24P. So, if R := Q(z,48¢(P)), we have P, P’ C 24P C R C 72P C @; and hence

§(P,R) < §(P,72P) < C. (4)

We now claim that
S = |5(PR, Q1) — (R, Q)| < C. (5)
We decompose S as
[ uQut & Q) &
¢(PR) In l Jur) n !
min{£(P®1),£(RP1)} Q.1 ; dl
Am (1(Q,V) = BQE,1)) 777
max{£(P%1),£(RP1)}
/ (u(Q(y,l)) L u(Q(%D)) dl

min{£(PR1),(R%1)} m [ l
=: 51+ S+ 5s.

S =

IA

[ ) &

ZONN !




The integrals S and S3 are easily estimated above by some constant C. So we estimate
S. Bound S, from above by

oo dl
S < [ HRWDARED) s

N dl
= /C:(R) /f{d XQ(y,l)AQ(xyl) (Z) d/_j,(z) l?ﬁ,

where x4 is the indicator function of a set A C R¢. A simple geometric observation
tells us that Xg(y,1aQ(,(2) = 0ifl ¢ [min(|z — |00, |2 = Yloo), max(|z—2|oo, |2—Y|oo)]s
where |z|o := max(|z1],...,|z4|). This observation and Fubini’s theorem yield

S, < C f
RA\P

_|y - IIOO ly - xloo
|z=lo>t(P)/2 |2 = Yloo™ u(z) ((P)

1 1

[z —2le™ |z~ yleo"

du(z)

This proves (5).
JFrom (4) and (5) we have

5(P,Q1) < 3(P,R) + 3(PE, Q1)
< 8(P,R)+|6(P%,Q1) = 8(R,Q1)| + 8(R, Q1) < 6(P', Q1) + C

and (m + 1)A < mA + 4C; + C, which is not possible for sufficiently large 4. I

The weight W In what follows we shall show the simple properties of the weight
W defined by (3).

By the subadditivity of N we see that W satisfies the A; condition:
NW (z) < 28W(z) for u-a.e. z € R4 (6)

Indeed, we have

IN

NW (z) i(Zﬁ)l“ij“w(:c)
_ Z

= 28 {i(Zﬁ)l‘ijw(:c) —Nw(a:)} < 28W(z).

This implies the following lemma.

LEMMA 6 Let o € (0,1) and Q € Q(u,2). Then, for any u-measurable subset A C @,

we have
W(A) o (AN
wag) = @9 (mcz)) :




Proof. It follows by Holder’s inequality and (6) that
We(4) = /WO‘ z) dule (/ Wdu> n(A)-e
A 11—«
< W@ - u@ (232 (42)

u(Q)1
< (fowerae)-(45) -
< (2ﬂ)aWQ(Q>~(§%)1_a-

Proof of Theorem 2  Choose A large enough so that Lemma 5 holds and fix D,,
and D. Letting F(z) := |f(x) — m2q,)- (f)|, we consider a maximal function

NpF(z) := esgle)DmQ(F), z € Q.
T

If z € @1\ Ugep @, NpF(z) should be understood as 0.

CLAIM T For p-a.e. x € Qo Nsupp (u) we have

|f(z) —mge ()l < CMf(z)+ Fz),
F(z) < C(M'f(z)+ NpF(z)).
Proof. Since §((Qo)*, (2Qp)*) < C, the first inequality is obvious. So we prove
the second one. First of all, we notice that for p-a.e. * € Qo Nsupp (u) there exists a
sequence of doubling cubes {Q}r centered at z with £(Qx) — 0 as k — oo and (see

(10])
lim mq, (F) = F(z). (7)

k—o0

Fix some z € Qo Nsupp (u). If 6(z,Q1) = oo, {Qqz,m} satisfies £(Qgm) — 0 as
m — co and hence F(z) < NpF(z). If §(z,Q1) € (mA, (m + 1)A], for sufficiently
small doubling cube @ centered at x and contained in Qz m, we have 6(Q,Qzm) < C.
Thus, we see that

1
ma(F) = s /Q | = meagey- (F)] du

< 7 Jo 1 =m0 i+ 1) = MG ()] + 1 (F) = a0y ()

ma(f) = M@y m (£)
< ( /lf mq(f)| du + o )
(Qz,m)/x’mlf m2Qo)*( ) dp
S (Mﬂf(m)‘f'NDF(m)).



If S(a:, Q1) < A, for sufficiently small doubling cube Q@ centered at z and contained in
Q1, we have 6(Q, (2Qp)*) < C and hence

ma(F) < @ /Q 1 = mo(F)| dus + Imo(f) — meagey (F)] < C M*f(z).

These observations and (7) yield the claim.

;From Claim 7 and the fact that w(z) < W(z) for proving the theorem it suffices
to show the following claim.

CramM 8 We have

1
([ or@) W du@)" < ([ 0 @) W@ dutw))’
@1 Q1
Claim 8 can be obtained from the following lemma.

LEMMA 9 For any sufficiently small n > 0, we have

We{z € Q1| NpF(z) > 2X, M'f(z) <nA}
< Cnt *W*{z € Q1|NpF(z) > A}, X>0:

Proof. Choose n > 0 sufficiently small. We set
Ey:={z € Q1| NpF(z) > 2)\, M'f(z) < n\} and Qy := {z € Q1| NpF(z) > A}.

For all z € E), we can select a doubling cube Qr = Q.(z)m@=) € D, @z 3 z, that
satisfies mg, (F) > (3/2)X. If m(z) = 1, we have 6(Qx, (2Q0)") < C and hence

A< ma.(F) < ma. (If —ma, (NN) + Ima. () = Mgy (£ £ O MHf(z) < O,

which is not possible for sufficiently small n. By replacing younger one, if necessary,
we may assume that mg, ,,(F) < (3/2)A for any cube Q;m 2 z with m < m(z).

Let Sz = Q.(z)m(z)—1- We claim that if 7 is small enough, we have mg, (F) > A
Indeed, noticing §(Qq, Sz) < 24, we see that

mQ, (F)

: u@ [ = mau(fldat Ime. () = mo. ()] + ms. (£) = migo- (1)

C M'f(z) + ms,(F) < CnA+ms, (F).

IA

This yields mg, (F) > (3/2)A — C'nA > A. Thus, we have

(3/2)A > mg, (F) > A. (8)



Notice that Lemma 5 (1). By Besicovitch’s covering lemma there exists a countable
subset {z;};cs C Ey such that

E) C U Sr; and ZXSzj < Cxay- 9)
jed jeJ

To simplify the notation, we write S; = Sz; and Q; = Q¢ ;- Now we claim the following:

CLAM 10 If n is small enough, then

We(S; NEy) < Cnt~*W*(S;) for all j € J.

Accepting this claim, we finish the proof of the lemma. By using the claim and (9)
we have

W(Ey) <Y W*S;NE)) <Cnp'™® Y We(S;) < Cn'™we(Q,).
jeJ jeJ

Thus, the proof is over modulo the claim.

Proof of Claim 10. By Lemma 6 it suffices to show that
u(S; N Ey) < Cnu(S;).

Let y € S; N Ex. There exists a doubling cube Ry = Q,(y)m@y) € D, Ry > y, that
1
satisfies mp, (F) > 2X. We show that for sufficiently small 7, {(R,) < 3 £(S;). From
1
Lemma 5 (2) we may assume that m(y) < m(z;). By Lemma 5 (1) if {(R,) > 3 £(55),
then we have Q) mu)-1 D S5 D @;. This and the assumption m(y) — 1 < m(z;)
imply (3/2)A > Mg, nwy-1 (F)- Noticing

mR, (F)

1
Sy Jo ()

+ me, (F) = MQua)me-1 (D + M@ me-1 (F) = M2g0)- (£)]
S C ]V[uf(y) + sz(y),m(y)—l (F)’

,m(y)-l(F) > mp,(F) — C’Mﬁf(y) > 2X — C'nA. Hence, if

1
n < 3—10—, we must have £(R,) < gﬁ(Sj). Thus,

we see that (3/2)A > mq, -

Np <X%SjF> (y) > 2A for all y € S; N Ej.

From (8) we obtain that [ms; (f) — mge)«(f)| < (3/2)A, and that

Np (xgs,(F = ms, (1)) () > 3 for all y € §; N By,



It follows by using the weak-(1,1) boundedness of Np that
C
u(S; () < u{y N (xgs,(F = ms, (1) ) > M2} S 5 [y 1f = ms, (Dl

Noticing that

4%7

1
@/is. |f = ms,(f)l dp

< Tli‘:sj‘j/ |f - M(sg >*(f)ldu+Im(%Sj)*(f)_mSj(f)lSCT)A,

we see that u(S; N Ey) < Cnu(2S;) < Cnu(S;). B

Proof of Claim 8. Using Lemma 9 with n > 0 sufficiently small, for L > 1 we
see that

1 L %
5 </0 g\ IW{z € Q1| NpF(z) > A} dA)

— (/L/Q AWz € Q1| NpF(z) > 2>\}d/\>a

1

IA

/\q IWWe{z € Q| NpF(z) > 2\, M*f(z) < nA} dA)

1
q

+ q)\q 'We{z € Q1| NpF(z) > 2, Muf(:c)>n/\}d)\)

1
q

=

+ ([Torweze M @ > na)’

1
q

(C’n Oq,\q lwe{z € Q1| Npf(z) >)\}d)\>

Cnl=® q)\q_lVVo‘{:c € Q1| NpF(z) > \} d)\>
0

1
s ([ arpewe )’
1
Hence, we have obtained the following:

(/OL QA7 'W{z € Q1| NpF(z) > A} d)\)% <C </Ql(Mnf)q we dp,> 7

Letting L — oo, we obtain the claim.



3 Applications to vector-valued inequality

Applying Theorem 2, we can obtain some vector-valued inequalities. For a vector-
valued function (f1, fa, ..., fj,...) on R%, we denote

1@ |7 = (immr) el o)

i=1

First, we need the following lemma (see [7]).

LEMMA 11 Ifq,r € (1,00), then we have the vector-valued mazimal inequality:
HIN £ 1L < Cor WA 1T LE -

PROPOSITION 12 Let {fj}J‘?‘;l be a sequence of Lllo;:(u) function. Then, for every Qg €
Q(u), g,7 € (1,00), there exists a constant C independent on f; such that

( 15:@) = meque (1717 duta)) " < © ( Jy o, W55 e du(ﬁt)) "

2

Proof. First we note that we may assume that f; = 0 for large j, say j > N,
as long as we obtain the constants independent on N. Take s € (1, min(g,r)) and let
t=gq/s,u=r/s. Take a € (0,1) satisfying 1 < 1/a < min(¢',u'). By using a duality
argument we shall estimate

([, 1560~ miag- 1715 auta))* = (| Wte) = o G 111 )

Take a vector-valued weight (ws,ws,...) such that suppw; C Qo and

1wy 11 27 ()| = 1. (10)
Then it follows by Theorem 2 and Holder’s inequality that

L 55(&) = g (51 () (@) 1 du(o)
S [, O (E)* (W) (@) 1 ditz)

2

AN

1 1
t Y t/
(/3 1M f5(z))° | l“lltdu(m)) x (/3 1(W;)* () [ du(fﬁ)) )
5Qo zQo
w - .
where W;(z) := 2(2 B)1 I NIw;(z). Choose (3 as the constant Cyy gy in Lemma 11.
j=1
Then, Lemma 11, the definition of W; and (10) yield

1
at!

(/Q 0% @) 111 dm)) - </Q Wy 1= du(a:)> <c

2 2



These prove the proposition. il

COROLLARY 13 Let f; €RBMO. For any cube Qo € Q(u) and g,v € (1,00), there
ezists a constant C independent on f; such that

1
q

_‘_1'_—‘ (z) —myons () 1712 du(z . |
(M(%QO) [ 1556@) = () 1717 d >) < lIsh T

We apply Proposition 12 to obtain a sharp maximal inequality on the Morrey spaces.

Let k> 1 and 1 < g < p < 0o. We define the Morrey space M{(k, u1) as

M (k1) = { £ € Lipo() | 1| ME(k, )] < o0},

where
I 1Mkl = swp Q)3 (f lflqd#> . 1)

By applying Hoélder’s inequality to (11) it is easy to see that
LP () = ME(k, 1) C ME, (k, 1) C M2, (k, ) (12)

for 1 < go < g1 <p<oo Letky >ky > 1. Then Mf(k1,p,1") and MP(ko, u,1")
coincide as a set and their norms are mutually equivalent. More precisely, we have (see

8])

P P k- 1\ P
151 M5kl < 151 Mkl < Ca (27 ) 171 MEGR il (19

Nevertheless, for definiteness, we will assume k = 2 in the definition and denote
ME(2, ) by ME(w).

PROPOSITION 14 Let {fj};?‘;l be a sequence of L}, (1) function. Suppose that 1 < q <
p< oo, r € (1,00) and there exist an increasing sequence of concentric doubling cubes
IpcL C...CI;C... such that

lim mp, (f;) =0 for all j =1,2,... and UIszd. (14)
k—o0 &

Then there ezists a constant C > 0 independent on f; such that

155 M) | < © 1adt g5 1 MG )|

Proof. Again we may assume that f; = 0 for sufficiently large j. Let R € Q(u).

We shall estimate p(2R)» : (/ (A du> " It follows by Proposition 12 that
R

R ([ nyll’"lqdu)



1

u(er)s ([ ||fj—mR*<fJ>|zr||4du) + W(R)? mae (£) |

1

( [, 1| du) "+ WB)? mae () 1]

2

IN

Q=

C u(2R)?™

IN

IA

C ||t £ 171 | ME(a/3, )| + (BY? e (£5) 171
So we shall concentrate ourselves on estimating:

w(R)? lma=(£5)|17]. (15)

We choose a cube inductively. Let Rg = R* and R; = (2R;-1)*, 7 =1,2,.... Let d
be the distance between the center of Iy and that of R. We select Ky € N so big that
£(Rk,) > 2d and there exists some Ik, such that Rk, C Ix,, Rxy+1 ¢ Ik, and

1 T
H(R)? Im, (£5) 171 < [|IMP £5 107 | ME ()|
Then simple geometric observation shows that Ry, C Ik, C Rgk,+3, and hence,

5(RK07IK1) < 6(RK07RK0+3) < C. (16)

We put for 1 =0,1,...
J = {j € No N[0, Ko | 2°u(R) < u(R;) < 2”1“(]%)}.

Discarding all empty sets, we obtain a finite sequence of nonnegative integers 0 < i; <
ig < ...<ig,such that J;, #0, k=1,2,..., Ky and that ; =0ifl & {i1,...,ix,}.
Set a(ig) := min J;, and b(ig) := max J;, . Notice that b(ix,) = Ko. From Lemma 3
(1) and (3) we see that 6(Rq(s,), Rpg,) < C and 6(Rpy(iy)s Ragiy,,)) < C. This implies
that

(R)? (1M, (F) = My D11+ Iy, () = Mg, () 17])

| MEf |17 | ME ()| -

3 =

IN

1
ik . ‘
C2F W(Rugs) It |1 H"du(r)>

a(iy)

AN

From (16) we also have
HR)F (108, () = Tk () 1+ I, () = e, () 1)
< 2% It M)

Using the triangle inequality to (15), we have

uw(R)% [mae(f;) | 1]



IA

Ko—1

‘U(R)% Z (”mRa(ik)('fj) - mRb(ik) (fJ) I lr” + ”mRb(ik’)(fj) - mRa(ik+1) (fJ) |lT”)

k=1

+ R (I (55) = i, (5) )+ s (5) =, (5171

+ W(R)F llma, () 17

IA

I M) | ) + BRI g, (55) 1T

K 4
C Z <2_ P
k=1

Koy i
Notice that Z 27% < C. This and above inequalities imply the desired inequality. i

k=1

References

[1]

2]

W. Chen and E. Sawyer, A note on commutators of fractional integrals with
RBMO(y) functions, Illinois J. Math. 46 (2002), no. 4, 1287-1298.

J. Garcia-Cuerva, and A. Eduardo Gatto, Boundedness properties of fractional
integral operators associated to non-doubling measures, Studia Math. 162 (2004),
no. 3, 245-261.

D. Deng, Y. Han and D. Yang, Besov spaces with non-doubling measures, to
appear in Trans. Amer. Math. Soc..

Y. Han and D. Yang, Triebel-Lizorkin spaces with non-doubling measures, Studia
Math. 162 (2004), no. 2, 105-140.

F. Nazarov, S. Treil and A. Volberg, Cauchy integral and Carderén-Zygmund
operators on nonhomogeneous spaces, Internat. Math. Res. Notices (1997), no.
15, 703-726.

F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities
for Calderén-Zygmund operators on nonhomogeneous spaces, Internat. Math.
Res. Notices (1998), 463-487.

Y. Sawano, Sharp estimates of the modified Hardy-Littlewood maximal operator
on the nonhomogeneous space via covering lemmas, Hokkaido Math. J. 34 (2005)
p435-p458.

Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, to appear
in Acta Math. Sin. (Engl. Ser.).

Y. Sawano and H. Tanaka, Sharp maximal inequalities and commutators on Mor-
rey spaces with non-doubling measures, to appear in Taiwanese J. Math..

X. Tolsa, BMO, H!, and Calderén-Zygmund operators for non doubling mea-
sures, Math. Ann. 319 (2001), 89-149.



[11] X. Tolsa, Littlewood-Paley theory and the T'(1) theorem with non-doubling mea-
sures, Adv. Math. 164 (2001), no. 1, 57-116.

[12] X. Tolsa, The space H' for nondoubling measures in terms of a grand maximal
operator, Trans. Amer. Math. Soc.,

[13] X. Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta
Math. 190 (2003), no. 1, 105-149.

[14] X. Tolsa, Bilipschitz maps, analytic capacity, and the Cauchy integral, to appear
in Ann. of Math. 355 (2003), 315-348.



The space of Fourier multipliers as a dual space
Naohito Tomita (Osaka University)

joint work with
Eiichi Nakai (Osaka Kyoiku University)
Ko6z6 Yabuta (Kwansei Gakuin University)

1 Introduction

S(R™) and S’(R™) denote the Schwartz spaces of rapidly decreasing smooth func-
tions and tempered distributions, respectively. The space M,(R™) of Fourier mul-
tipliers consists of all m € &'(R™) such that 7,, is bounded on LP(R"), where T,, is
defined by

Tnf = F ' m f] = [F'm] * f

for f € S(R™), where f and F~!f denote the Fourier transform and inverse Fourier

transform of f, respectively. We define the norm on M,(R") by

Imlas, = sup [T fllp,

where the supremum is taken over all f € S(R™) such that || f||, = 1.
Let 1 < p < 0o and p’ denote the conjugate exponent of p. The space A,(R™)

consists of all f € L*°(R") which can be written as
f= Zfi *g; in L®(R"),
i=1

where {f;}22,,{9:}32; C S(R™) and Y oo, || fillpllgilly < co. We also define the norm
on A,(R")' by

14, = inf > 1 Allolgilr,
=1



where the infimum is taken over all the representations for f. For m € M,(R"), we

define a linear functional ¢, on A,(R") by
om(f) =Y Tmfi* g:(0)
i=1

for f =32, fi* gi € Ap(R™). In [2], Figa-Talamanca proved the following.

Theorem 1.1. Let 1 < p < oo. Ifm € My(R"™), then ¢, € A(R™)* and
lemllca,x = llmlla,. Conversely, if ¢ € A,(R™)*, then there exists m € My(R")
such that ¢ = @p,. In this mean, we have My(R"™) = Ay(R™)*.

The purpose of this note is to consider Figa-Talamanca’s theorem for Bilinear

Fourier multipliers and Fourier multipliers on Lorentz spaces.

2 Bilinear Fourier multipliers

Bilinear Fourier multipliers were studied by, for example, Coifman and Meyer [1]
and Lacey and Thiele [3]. The space MF? (R®*) of bilinear Fourier multipliers

consists of all m € S'(R?") such that T, is bounded from LP*(R™) x LP?(R") to
LP3(R™), where T, is defined by

Tr(fr, f2)(@) = F 7 [m (i ® fo)l(z,2) = [F7'm] * [ ® fol(z,2)

for f1, f» € S(R™) and f; ® f» denotes the tensor product (that is, fi ® fa(z1, z2) =
fi(z1) f2(z2)). We define the norm on MPs_ (R?*™) by

P1,P2
Irallagze,. = 5B [T 1, £l

where the supremum is taken over all fi, fo € S(R™) such that || f1lp, = || f2llp, = 1.
In particular, if m(&;, &) = —isgn(§; — &) then T, is the bilinear Hilbert transform

H, where

filz —y) folz +y) dy.
lyl>e Yy

H(f1, f2)(z) = lim l

e—0 T

About thirty years ago, A. P. Calderdén studied the bilinear Hilbert transform
in connection with singular integrals operators on curves and posed the problem
whether the bilinear Hilbert transform satisfies any LP-boundedness. This problem

was solved by Lacey and Thiele (for example, see [3]).



For appropriate functions f on R?" and g on R", we define the function f %, g
on R?" by

f 2 9(z1,22) = /n flz1—y,z2 —y) g(y) dy

for 1,22 € R™ Let 1 < p1,p2,p3 < o0 and 1/p3 = 1/p; + 1/p2'. The space

Aps (R*") consists of all f € L*°(R**) which can be written as

f= Z[fl,i ® fou) *2 g in L®(R*™),
i=1
where {fl,i}?ip {fz,i}ioila {gi 121 C S(Rn) and Zfil ”fl,i”p:”fZ,i”szgi”Pé < oco. We
define the norm on A%  (R**) by

/1] azz ,, = inf Z [ F1.llps 1 F2i |2 11 il g

where the infimum is taken over all the representations for f. Then AF  (R>")

is a Banach space. Given m € MPs_ (R?"), we define a linear functional 1),, on

P1,P2
Ape L (R*") by

P1,P2

e}

Um(f) = ZTm(fl,i, fo.1) * gi(0)

i=1
for f =301 [f1i ® foi] *2 gi € A (R*™). In [5], we proved the following.

Theorem 2.1. Assume that 1 < p1,p2,p3 < 00 and 1/ps = 1/p; + 1/ps. If m €

MEs, (R, then G € A%, (R*)* ond [Ymllugy - = Imllygs . Comversely
if p € A (R*™)*, then there exists m € ME, (R*™) such that ¢ = tm. In this
mean, we have MP*  (R**) = Aps  (R*")*.

3 Fourier multipliers on Lorentz spaces

For a measurable function f, the distribution function u(f,s), the decreasing rear-

rangement f*(¢) and its maximal function f**(t) are defined by

w(f,s)=|{z eR® |f(z)| > s}| for s>0,
f*(t) =inf{s > 0: u(f,s) <t} fort>0,



@) = %/Ot f*(s)ds fort¢ > 0.

The Lorentz space L4 (R™) consists of all f such that || f|| e < 0o, where

1/q

I fllzeo = (AMt(q/p)_l(f**(t))th) , 1<p<oo,1<g<oo,

sup t1/7 f**(t), 1<p< oo, g=oc0.
t>0

The space M(LP1a) L(P292)) of Fourier multipliers consists of all m € S'(R™)
such that T,, is bounded from L®-9)(R") to L{r242)(R™). The space A(LPo%) :
L@va) [#292)) consists of all f € L) (R™) which can be written as

f=> fixg inL®®(R"),

i=1

where {£;}22;,{g:}21 C S(R™) and 3272, [l fillLwran [1gill Lwean < 00 In [4], we
proved the following.

Theorem 3.1. Let 1 < pp < oo and1 < g, < 00, k =0,1,2. If 1/po = 1/p1 +
1/ps—1and 1/q < 1/q1 + 1/gs, then

A(LEo®) (R™) : LEva)(R), [P (R™)* = M(LE9(R™), L) (R™)).
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ABSTRACT. We divide this talk into three parts. In the first part, we will recall some backgrounds of
the classical Littlewood-Paley operators. Secondly, we will talk about some new results for Littlewood-
Paley operators, including parameterized area integral and parameterized g} function. Some open
problems will be given in the last part.

§1. THE BACKGROUND FOR LITTLEWOOD-PALEY OPERATORS

Tt is well known that the Littlewood-Paley operators, including the g-function, the area integral
and g} function, are very important tools in harmonic analysis and other fields such as PDE. Histor-
ically, the Lusin area integral S and g} function of higher dimension were first introduced by Stein in
1958 [S1] Let f(y,t) = (P f)(y) be the Poisson integral of f, where P;(z) = (721|x—|c2n)tT’T1)77 (t>0)
denotes the Poisson kernel in R™ (n > 2). Then the operators S and g} are defined by

S()e) = ( / /F » [Vy,if (y,t)lztl'"dydt>1/2

and

¢ n 1/2
3 = |— ,8)| 2 dydt
5010 = ( [ (=) e ore )
where I'(z) = {(t,y) € R%™ : |z —y| <t} and V; = (5%, 3;:2,--- ,53—”, %).

In [S1], Stein proved that the operator S is of weak (1,1) type, and can characterize the spaces
LP(R™) for 1 < p < co. More precisely, Stein gave the following result (see also [S2, p.224]).

Theorem A ([S1]). For 1< p < oo, there exists two constants Ap and B, such that

Byl flle < 118(N)llze < Apl fllze-

In 1972, Fefferman and Stein [FS] proved further that the operator S characterizes the real
Hardy spaces HP{(R™) for 0 < p < 1.
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Q. XUE
Theorem B ([FS]). For 0 < p <1, there exists two constants A, and B, such that

Byl flar < 1S(A)llze < Apll £l -

In 1961, Stein [S5] proved that if 1 < A < 2, then g} is L? bounded for 2/A < p < oco. If
A > 2, then g} is of weak type (1,1). Stein [S5] also pointed out that if 1 < A < 2, then for
1 < p < 2/, there exists an f € LP, so that g3(f)(z) = c0,a.e. There is also an f € L!, so that

95 (f)(z) = co,a.e.
The weak (p,p) estimates of g5 was given by Fefferman [Fe] in 1970 if p > 1 and A = 2/p.
In 1975, Calderén and Torchinsky [CT] considered more general area integrals. Suppose that

1 is a real valued function defined on R" satisfying

(1.1) Y(z)dz =

R

then for a measurable function f on R™, the area integral Sy (f) is defined by

. o dydt 1/2
= ([ weerorgs)
where ¢ > 0 and ¥ (z) = & ¥(2).

Accordingly, the generalized g} function is defined by

gy (@) = (//R"H (gré:a)nklwt *f(y)l2j3flt>l/2, A> 1.

Calder6n and Torchinsky obtained the following conclusion.

Theorem C ([CT]). If ¥ € S(R™) and satisfies (1.1), then Sy(f) is a bounded operator from
HP(R™) to LP(R™) for 0 < p < oo, where S(R™) denotes the class of Schwartz functions on R™.

Hence, an important and interesting problem is that if the condition 9 € S(R™) in Theorem
C can be replaced by a weaker condition. In 1990, Torchinsky and Wang [TW] studied this
problem. Let S™~! be the unit sphere of R™(n > 2) equipped with normalized Lebesgue measure
do = do(z'). Take ¢(z) = Q(z)|z|""* X p(0,1)(z), where Q is homogeneous of degree zero on R™
and Q satisfies

(1.2) / Qz')do(z') = 0,
Sn—1

and B(0,1) denotes the unit ball in R™, then

= 1 Qy - 2) 2dydt\'*

- <//r(z) t /ly_zlst p— et % pa ) = as(f)e)
and

(// ( ) : l/ Ay -2 f(z)dz2dydt>1/2
Rn-}—l t+ |CL' — y] t |y—z|§t ]y — Zln—l tn+1

().
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Theorem D ([TW]). If Q €Lip,(S™1), 0 < a < 1, satisfies (1.2), then for 2 < p < oo,
lus(Pllze < Colla(FHlice < Cplifllze-

Clearly, Theorem D is an improvement of Theorem C for 2 < p < oo. In 2000, as a corollary
of the LP boundedness of the well known Marcinkiewicz integral, Y. Ding, D. Fan and Y. Pan
[DFP] improved Theorem D further. In their result, @ € H*(S™ 1) has no any smoothness on
571 where H!(S™!) denotes the Hardy space on the unit sphere (see [FP] for the definition of
Hl(‘S’n—-l))‘

Theorem E ([DFP]). Suppose that @ € H(S™1) satisfies (1.2), then ps(f) and w3(f) are
bounded operators from LP(R™) to LP(R™) for 2 < p < 0.

On the other hand, In 1985, for w(z) > 0,w € L}, ,(R") and ¢ € C§° with [ ¢(z) = 0, Chang,
Wilson and Wolff [CWW] gave the following important results, which concerns closely to the study
of the Schrédinger operators,

S(f)(@)*w(z)dz < C [ |f(z)fPw*(z)dz,
R® R"
where and in what follows, w ( ) denotes the Hardy-Littlewood maximal function of w(z) which
is defined by w*(z) = sup.¢q 15 Q; Jow o w(y)dy. In 1987, Chanillo and Wheeden proved the following

conclusions for the area integral S deﬁned by Stein:
Theorem F ([CW]). If f € S and the nonnegatzve function w € L}, ,(R™), then -

a) f{xER" S(f ):L-)>,3} w(z)ds < C(n) Jgn |f (@) [w* (x)dz, B > 0;
b) Jgn S( ( Pu(z)dz < C(n,p) fRn |f (2)|Pw*(z)dz for L<p <2
C) Jrn S( Pw(z)dz < C(n,p) [gn | (@)[Pw* ()P 2w(z)~ /2~ Vdz for 2 < p < oo.

L. Rosa and C. Segov1a [REF, not known| considered the similar properties as in Theorem F
for one sided g% function in one dimension and the kernel ¢ € S(R™), supported on (—o0, 0].

Now let us recall some endpoint estimates for the commutators of some operators.

In 1995, Pérez [P] obtained the weak type L log L estimate for the commutators of Calderén-
Zygmund singular integral operators. Let T be a Calderén Zygmund singular integral operator,
the commutator of the operator T is defined by [b, T|f = bT(f) — T'(bf). Denote T = T, then the
higher order commutators of T is defined by T7™ = [b, T{"!]. [P] gave the following Theorems.

Theorem G([P]). Let T be a Calderdn Zygmund singular integral operator, m =0,1,2, ..., and b
be a function in BMO. Then there exists a positive constant C such that for each smooth function
with compact support f and for all A > 0,

I{yER”:|Tb’”(y)|>)\}|SC”b”:ﬂ/ |y )I<1+1 og ('f(_;’)')> dy.

In 2001, Yong Ding, Shanzhen Lu and Pu Zhang [DLZ] obtained the similar results for the
fractional integral. In 2004, when the kernel satisfies a Lip, condition, they [DLZ1] gave the
similar results for the commutators of the Marcinkiewicz integral.

Let Q € L'(S™!) be homogeneous of degree zero and satisfies (1.2), then the Marcinkiewicz
integral operator of higher dimension is defined by

o= (1] Eoom )

If Q is continuous on the unit sphere of R™, satisfying (1.2) and the Lip, (0 < o < 1) condition,
then Torchinsky and Wang[TW] also gave the following results for the well known Marcinkiewicz
integral
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Theorem H ([TW]). Suppose 1 < p < 0o, and that ||pa(f)|lp < kpllfllp, then there is a constant
¢p = cp(kp) independent of f such that

M (ua(f)) < cpMy(f)(z), for all z€R™,

The definition of M* and M, will be given later.

Theorem I ([TW]). Suppose 1 < p < oo, and w be the Muckenhoupt A,(R™) class. then there is
two constants cp(w) independent of f, c,(w) independent of f such that ||ua(f)llze < co(W)lflize
and [|Cy(£)llzz < cp(W)l| fllzz, where Cy is the commutator of the operator uq.

In connection with the well known Marcinkiewicz integral, with a strong condition assumed on
the kernel, Hérmander [H] first defined and studied the LP bounds of the following parameterized
Marcinkiewicz integral in 1960.

o0 Qz - dt\ 2
W (f)() = ( R /|z—y[9 ————|z<_”“"y|ny_),,f(y>dy|2{)

We must point out that the Marcinkiewicz integrals and the parameterized Marcinkiewicz integrals
has almost the same properties for p > 0. In 1999, inspired by Hoérmander’s work [H], when the
kernel satisfies a Lip,, condition, Sakamoto and Yabuta [SY] considered the following parameterized
area integral ug and the parameterized g3 function py?. Let p > 0 and B(0,1) denotes the unit
ball in R™. Take ¢(z) = Q(z)|z| " Pxp(0,1)(z), where Q is homogeneous of degree zero on R™ and

Q satisfies (1.2). Then p% and p)” are defined by:

-k ‘%*fw)fffff)w

_ (//F( = /y » w_z*n Uy=2) )d/_iy_f)l/g
nd
a (z) = <//Rn+1 (m)knl%*ﬂy)ffﬁgw
~(Jfo e e )"

where ¢;(z) = &¢(%), p>0and A > 1.
Note the following fact: for any z € R™

s (f)(z) < 22"u3?(f) ().

(For example, see the proof of (19) in [S2, p. 89)).
So sometimes we only list the results for p)*, by the above inequality, we know that similar

results can be obtained directly for the parametric area integral.

Theorem J ([SY]). If Q €Lipo(S™1), 0 < o < 1, satisfies (1.2). Then
(i) forp>0and2 <p< oo, [[uy*(fllzr < Crppallfllze;
(ii) for0 < p <n/2 and 2n/(n+2p) <p <2, |3 (Hlize < Crppallflize;
(ii)) for p>n/2 and 1 <p <2, [|L°(Fllze < CrppallfllLe;
(iv) for 0 < p < n/2, 1 < p < 2n/(n+ 2p), there ezists a function Q €Lipa(S™ 1) satisfies
(1.2), such that p and py* are not bounded on LP(R™).
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Here (i) holds for A > 1, (i1) and (i) hold for X > 2/p.

. Notice that if taking p = 1, then the conclusion (i) in Theorem J is just Theorem D. Therefore,
Theorem J is an extension of Theorem D.
In 2002, Y. Ding, S. Lu and K. Yabuta [DLY] gave the following L” boundedness of the
parametric functions p}” .

Theorem K [DLY]. Suppose that Q € LlogTL(S™ 1) satisfies (1.2). Then for p > 0,A > 1 and
2 <p < ooy’ (Hlle < C//lIf lps

In [DLY], the authors also gave the weighted L* boundedness of .

Theorem L ([DLY]). Suppose that @ € Llog™ L(S™!) satisfies (1.2). Then ezists a constant
C > 0 such that for p > 0, X > 1 and any nonnegative locally integrable function @,

[ e <o [ 1@ @

Since for any 0 < o < 1 and 1 < ¢ < o0, the including relationship
(1.3) Lipa(S™*) € L9(S™!) ¢ Llog*L(S™1) ¢ HY(S™71) ¢ LY(S™ ),

holds. Hence, Theorem K improves essentially the conclusion (i) of Theorem J. If take p = 1,
¢ € C°°, has compact support and satisfies [ ¢(z) = 0, denote @;(y) = Lo(¥),in 1991, D. Yang
[YDC] obtained some results analog with the results of [CW] and the following Theorem for g3.

Theorem M [YDC|. If X >3+ 1/n, then |lgillz2 < Cl|flla-

In 2002, J. Duoandikoetxea and E. Seijo [DS] studied the weighted inequalities for the param-
eterized area integrals and the parameterized Littlewood-Paley function p}”,

Theorem N [DS]. Suppose Q € LI(S"1)(q > 1), p > 2 and w € AW,(Mq) N Ay/z. then both
operators pf, g and py* are bounded on LP(w).

(see [DS] for the defintion of AW, (Mq)).

§2. MAIN RESULTS FOR PARAMETRIC OPERATORS

In order to state our results, first we give one definition and some notations.
Definition 1. L9-Dini condition: For Q(z') € LI(S™~1), the integral modulus w,(6) of conti-
nuity of order ¢ of Q is defined by

®)= sy ([ 106 ~aepase))

|vI<é

where 7 is a rotation on S™7L, |y| = supgicgn-1 [72" — 2’| If wy(d) satisfies the following inequality
1
9
/ “’—<——)d5 < 00,
0 5

we say that Q(z') satisfies the L?-Dini condition.
Here and after, we always assume that  is homogeneous of degree zero on R™ and satisfies

(1.2) /S Q(z/)do(z) = 0.
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(1.3)-(1.7) always represents the same condition as follows:

(1.3) Lipa(S™™1) € LUS™ 1) € Llog*L(S™1) ¢ HY(S™™1) ¢ LY(S™7Y).
1
(1.4) / “’2(55)(1 +|logd|)°ds < 00, o> 1.
0
Lo (6
(1.5) i %d5<oo, 0<a<l
L wy(6)
(1.6) / qé (1+ [log 6])?dd < oo, o> 1
0
(1.7) 1Q(z) — Qy)| < Clz —y|®, forany z,y € S 1 0<a <1

We say that € satisfies L9-log o-Dini condition if (1.6) holds. If (1.5) holds, we say that
satisfies L?-a-Dini condition.

Our main results are as follows:

2.1 The weak (1,1) estimates and weighted L? boundedness

Theorem 1 (Y. Ding and Q. Xue, [DX1]). Let Q@ € L?(S"!) satisfies (1.4)(c > 1). Then for
p>n/2 and A > 2, there exists a constant C = Cppo such that for all >0 and f € L*(R™),

e e R 52()(E) > BH < Sl

By (1.3), applying the Marcinkiewicz interpolation theorem (see [S2]) between Theorem 1 and
Theorem K, we may obtain immediately the LP(R™) boundeds of the operator p:’p forl<p<2.

Corollary 1. Let Q € L?(S™!) satisfies (1.4)(c > 1). Then for p > n/2 and X > 2, uy* is of
type (p,p) for 1 <p < 2.

Remark 1. By [DLX], we know that the condition in Theorem 1 is (1.4) L®-Dini condition,
which is much weaker than (1.7) Lip, condition, so these results substantially improved the results
of E.M.Stein ([S1] for area integral and [S5] for g} function ) with Poisson kernel.

In the above Corollary, A > 2, of course is not the best condition for p > 1, one may guess it is
still hold for A > 2/p.

In fact, by applying Banach space valued version of Stein’s interpolation theorem of analytic
families of linear operators. We have

Theorem 2 (Y. Ding, Q. Xue and K. Yabuta, [DXY1]). Suppose that w(zx) is a nonnegative locally
integrable function to satisfy the doubling property. Let Q@ € L*(S™~1) satisfies (1.4) (o > 1). Then

[i] If p>n/2 and X > 2, then
/ w(z)dz < C/ﬁ/ |f(@)|w*(z)dz for any [ >0;
{zeRm™: P (f)(x)>B} R™
[ii] If p>n/2, 1 <p<2and XA > 2/p, then
| s thieru@ds<c | 1fa)Pu @

[ili] If0<p<n/2, ni’;p <p<2and \>2/p, then

[ mrare@dz<c [ (P @
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For p > 1 and X\ > 2/p, one can see it clearly that the LP? boundedness still holds.

Remark 2. Theorem 1 and the conclusions (i) in Theorem 2 don’t hold for 0 < p < n/2 when
n > 2. Otherwise, just take w = 1, by interpolation between Theorem K and (i), we get the LP
(1 < p < 2) boundedness of u}*, which contradicts with the conclusions (iv) in Theorem J.

Note that the function € in Theorem 2 needs to satisfy the condition (1.3), although this is
a very weak smoothness condition. However, below we will see that for the case 2 < p < oo, in
the results of weighted LP-boundedness for the operators ) and pf, the function Q has no any
smoothness on the unit sphere.

Theorem 3 ([DXY1]). Suppose that 2 < p < oo and w(z) > 0 is a locally integrable function on
R™. IfQ € Llog*L(S™1), then for p > 0 and A > 1,

/ B (H@)Pu(e)de < C | [f(@)Pw* (@) *w(z)”®/* Vi,

R”

where C 1s a constant independent of f and w.

Remark 3. The condition assumed on 2 in Theorem 2 and 3 also is much weaker than that in
[CW] and [CWW].

Remark 4. The similar results for area integral p% in Theorem 2 essentially improved the
results of S. Chanillo and R.L. Wheeden [CW], since the condition assumed on the kernel in this
Corollary is L?-Dini condition, while the results in [CW] was obtained with Poisson kernel.

Now, we need to give some denotes and definitions. Put

1/p
M,f(z) = sup <lQI”1/Q|f(y)l"dy>

where Q is a cube containing z with sides parallel to the coordinate axes; The generalized sharp
function Mﬁ f is given by

1/p
# _ -1 _ p
Mpﬂx)—ggg(@! /Q 1) - fal dy) ,

where fo is the average of f over @, we simply denote M,f = M, Mf f = M'f. then set
BMO@®R™) = {f : || fll« = |[M¥f|lcc < 00}, as is pointed in [TW], the expressions ||M} f||o all give
equivalent BM O norms for a given functions f.

We also get some similar results which is analog to the Marcinkiewicz integral,

Theorem 4 (Y. Ding and Q. Xue, [DX]). Let Q satisfies (1.4)(c > 1). Then for p > n/2,A > 2
and 1l <p < o0,
M¥uyPf)(z) < CoMpf(z)  for all z€R™

where Cy is a constant independent of f.
Let w be a weight in the Muckenhoupt A, class, then we have

Corollary 2. Let Q satisfies the same condition as in Theorem 7. For p > n/2 and A > 2,
1 < p < oo, then there is a constant C independent of f such that

13 (e < Cllflzz-

2.2 Boundedness on Hardy and weak Hardy spaces.
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First, we need to give the definition of the weak Hardy space H:*°(R™), which was first intro-
duced by Fefferman and Soria [FSo] in 1987. A well known fact is that L' ¢ HV.

Definition 2. Suppose that ¢ € C$°(R™) with [ ¢ # 0. Denote f}(z) = sup;sq |(¢¢ * f)(z)],
where ¢y(z) = t~"¢(z /t). A function f is said to belong to the weak Hardy space H:*°(R™) if
fr € LY (R™), i.e., there exists a constant C' > 0 such that for any 5 > 0

sup Bl{z e R™ : fi(z) > B} < C.
B>0

The smallest constant C satisfying the above inequality is called the H1:°°(R™) norm of f, which
is denoted by || f|| g1.cc-
We have the following conclusions for py* on Hardy spaces and the weak Hardy spaces.

Theorem 5 (Y. Ding, S. Lu and Q. Xue, [DLX2]). Suppose Q € L?(S™~!) satisfies (1.4)(c > 1),
for f(x) € HY(R™), p > n/2 and X > 2, then

a3 ? e < Cllfllas-

Theorem 6 ([DLX2]). Suppose Q € L*(S™!) satisfies (1.5)(0 < a < 1), for f(z) € HV*(R"),
p>n/2 and A > 2, then

Hz 1y (N @) > B < Clifllan=/B ¥ >0

Remark 5. Compare with the standard theory of g3 function, the conditions of {2 in our results
are much weaker than Theorem M, and since 2 < 3 + 1/n, so Theorem 5 is better than that in
Theorem M.

It is easy to see that the condition (1.4) is weaker than the condition (1.5). However, the
relationship between the condition (1.5) and the Lipschitz condition (1.7) is not clear up to now.
But note that Theorem 6 holds for any o > 0, we have

Corollary 3. If Q €Lipo(S™™1),0 < a < 1. Then for p > n/2, X > 2, there exists a constant
C = Cp po such that for any B> 0, [{z: |7 (f)(2)] > B} < CB7H fll 1o

2.3 Boundedness of the Commutators
In order to state clear, now we give the definitions of the Commutators of u{* and u%. Let H;
be the Hilbert space defined by

= {hi e = ([ /lyI<1 1h<t,y>|2d—i@f)m < oo}.

o= s Wb = ([ [ () e 2) ™ <o,

Then the parametric operators can be looked as vector valued functions in the following Hilbert

spaces.
* - 1/2
g = ([T 1 [eretsE -nsee it
yI<
= s (N @b

o _, 1/2
@ = ([ [ )™ e ~us@ %)
1= e,y () (@)l 12

and
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where ¢(z) = |x|n p X{|z|<1},then the commutators of py? and u% are defined by

K1) (@) = 10E)00s (1)(&) — du )@l
e ICORO O

(I
o I'(z) 3 ly—z|<t ly

B8(F)(@) = [1b(2) ey (£)(@) — bey (0F) (@),
B ¢ An g Qy-2) .
B <//Rg+1 <t+lz~yl) w0 /,y et Ty — 2me @) BEDF(E)d

If m > 1, then the higher order commutators is defined by

@ =[] |5 ] st — s
and

—z|<t |y - Z]n—p
#ipm(£)l@) = <//R <t+ I:v—yl>

We have the following weighted endpoint estimates for the commutators.

Theorem 7 (Y. Ding and Q. Xue, [DX2]). Let b € BMO , m = 0,1,2,..., Q satisfies (1.4) for
o>2and A > 2. wis an Ay weight. Then there exists a positive constant C, such that for any
B > 0 and each smooth function with compact support f,

ol B3 (N0) > 8) < e [ L (141087 (12)) woyan

Remark 6. Note that in [P], the condition assumed on the kernel is the usual C-Z conditions;
In [DLZ1], the kernel satisfies the Lip, condition. While in the above Theorem, only the condition
(1.4) assumed on 2 is needed. As we know this condition even is much weaker than Lip, condition
indeed.

2.4 Boundedness on Campanato spaces

We recall also the definition of Campanato spaces For 1 < p < o0 and —n/p < a < 1, the
Campanato space £*7P is defined by the set of functions for which

1/p
Iflees = sup sup [Q/n<|BI/ e fB|Pdm> oo

ToER™

2 dydt 1/2
tn+1

2 Jydt 1/2
tn+l :

2 dydt\ 1/
tn+1

2 dydt \ V/?
tn-}—l

1 Q(y—z) P m
-/ly M= 2) (42 - b(z))™f (2)dz

P —z|<t Iy - Zl'n—p

where B moves over all balls centered at zo, and fp is the average of f over B, (1/|B|) [ f(t) dt.

Tt is well known that for 0 < a < 1, £%P = Lip,: the Banach space of Lipschitz continuous
functions of exponent o, and the norms are equivalent. If a = 0, £%P coincides with BMO: the
space of functions of bounded mean oscillation. - And if o < 0, CalE*P is equivalent to the Morrey
space LP™tP® and these norms are equivalent. We note that balls can be replaced by cubes with
sides parallel to the coordinate axes and the norms are equivalent.

In 1984, S. Wang [SW1] showed that the BMO boundedness of Littlewood-Paley’s g-function
follows from its finiteness on a set of positive measure. Since then, many authors considered such
problems in BMO, Lipschitz spaces, and Morrey spaces i.e. in Campanato spaces. In 1990, S.
Wang and J. Chen [SC] showed that the BMO boundedness follows from its finiteness at only one
point for Littlewood-Paley’s g-function, Lusin’s area function and Littlewood-Paley’s g*-function,
and Marcinkiewicz function. Recently, Y. Sun [Su] improves and extends their results to the case
of Campanato spaces. Further, K. Yabuta | Ya] improves Sun’s result and also treats the case of
parametrized Marcinkiewicz integrals. With Y. Ding and K. Yabuta, we improved the results in
[Ya] with more rough kernels and also get the following results for the operators py? Our results
are as follows. :
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Theorem 8 ([DXY2]). Let p > 0, A > 1, and suppose that @ € LI(S™1) for some ¢ > 1 and
satisfies the cancellation condition. Then, if f € BMO(R™) and py?(f)(x) is finite for a point
zo € R™, then py?(f)(z) < 0o a.e. on R™, and there is a constant C independent of f, such that

1632 (F)lBmo®n) < CllfllBMO®n)-

Theorem 9 ([DXY2]). Let 0 > 0 and Q € L}(S"~1) satisfies L'-B Dini condition for some 0 <
B <1 and the cancellation condition. Suppose that f € Lipo(R™) for 0 < a < max{%, min{f3,0}}
and py?(f)(z) is finite for a point zog € R™ X > Ao, where A\ = 1 for 0 < o < 1/2, and
Xo =1+2a/n for 1/2 < a < 1. Then py?(f)(z) < co a.e. on R™, and there is a constant C
independent of f, such that

[3? (F)ILipa®r) < CllflILipa@n)-

Theorem 10 ([DXY2]). Let 1 < p < 00, —n/p < a < 0. Suppose a positive number o and a
function Q on S™~1 satisfy one of the following conditions:
(i) ¢ > —a, max{1, ni’;a} < p, A > max{1,2/p}, Q € L™>{2P'}(S"~1) satisfies the cancella-
tion condition. In the case p < 2, Q moreover satisfies L?-log 3-Dini condition for some 0 < 3 < 1.
(i) ¢ > n/2, A >2, Q€ L%(S""1) and Q satisfies L*-log 3-Dini condition for some 0 < § < 1
and the cancellation condition. Then, if f € EP and py*(f)(z) is finite for a point g € R™, then
P (f)(z) < 0o a.e. on R™, and there is a constant C independent of f, such that

lux?(F)llgar < C|fllgaw-

§3 Open Problems

Problem 1. Most of our results hold for p > n/2 and not hold for p < n/2, but unknown for
p =n/2, in particular, the boundedness from H?! to L! holds or not is unknown.

Problem 2. For p > n/2 and A > 2, we guess if the kernel Q € L?(S™"!), Both u}” and u%
are of weak (1,1) type. Is this true?

Problem 3. Can we improve that condition Q € L?(S™~!) by a weaker one, such as L9(S"1)-
Dini condition for 1 < g < 27

Problem 4. We assumed the weights with the doubling properties in Theorem 2, which is
unnatural condition compared with the results of Chanillo and Wheeden (Theorem F). Can we
remove this condition?
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Kazuya Tachizawa (Hokkaido Univ.)
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August 22(Mon)

9:30-10:30 : Michael Lacey (Georgia Institute of Technology)
The Nehari Problem in Several Complex Variables, I

10:45-11:45 : Katsushi Fukuyama (Kobe Univ.)
On the law of the iterated logarithm for gap series

12:00-13:00 : Yonggeun Cho (Hokkaido Univ.)
Boundedness of Fourier multiplier operator defined by elliptic type func-
tion
15:00-16:00 : Gustavo Garrigds (Universidad Autonoma de Madrid)
Bergman projections and Wolff’s local smoothing inequalities in light-
cones

16:15-17:15 : Loukas Grafakos (Univ. of Missouri)
Two counterexamples in the theory of singular integrals, I
August 23(Tue)

9:30-10:30 : Izabella Laba (Univ. British Columbia)
Distance sets: combinatorics and Fourier analysis, [

10:45-11:45 : Qingying Xue (Kwansei Gakuin Univ.)
Parameterized Littlewood-Paley Operators

12:00-13:00 : Michael Lacey (Georgia Institute of Technology)
The Nehari Problem in Several Complex Variables, 11

15:00-16:00 : Naohito Tomita (Osaka Univ.)
The space of Fourier multipliers as a dual space

16:15-17:15 : Loukas Grafakos (Univ. of Missouri)
Two counterexamples in the theory of singular integrals, II
18:00-20:00 Banquet at Faculty House “Enreisou”

August 24(Wed)

9:30-10:30 : Hitoshi Tanaka (Univ. of Tokyo)
Morrey spaces for non-doubling measures

10:45-11:45 : Izabella Laba (Univ. British Columbia)
Distance sets: combinatorics and Fourier analysis, 11
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