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PREFACE

This volume is intended as the proceedings of Sapporo Symposium on Partial
Differential Equations, held on August 4 through August 6 in 2004 at Faculty of
Science, Hokkaido University.

Sapporo Symposium on PDE has been held annually to present the latest devel-
opments on PDE with a broard spectrum of interests not limited to the methods
of a particular school. Professor Taira Shirota started the symposium more than
25 years ago. Professor Kéji Kubota and Professor Rentaro Agemi made a large
contribution to its organization for many years.

We always thank their significant contribution to the progress of the Sapporo
Symposium on PDE.

T. Ozawa, Y. Giga, S. Jimbo, G. Nakamura,
Y. Tonegawa, and K. Tsutaya
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(GEOMETRIC FLOWS AND BERNOULLI PROBLEM

Olivier Ley, University of Tours, France

This is a joint work with Pierre Cardaliaguet (University of Bretagne Occi-
dentale, Brest, France). '

Statement of the problem and motivation

The aim of the work [CL)] is to study nonlocal geometric flows (€(t))¢>o. For
the moment, suppose that all sets considered are smooth enough to give sense
to our calculations. For all t > 0, Q(t) is a bounded subset of RY whose
boundary 9€(t) evolves with a normal velocity of the type

Vigo = F(vg, Hy) + Ah(z,Q(t)) for every z € 9Q(2), (1)

where A > 0, v, is the outward unit normal to Q(t) at =, H is the curvature
matrix of 9Q(t) at = (nonpositive for convex sets), F' is continuous and el-
liptic, i.e. nondecreasing with respect to the curvature matrix. The nonlocal
term h is of Hele-Shaw type:

h(z,Q(t)) = |Vu(z)]f with =1 or 2, (2)
where u is the solution of an auxiliary partial differential equation

—Au=0 in Q()\S,
vu=1 on 85, 3)
u=0 on 00().

The set S is a fixed source with C2 boundary and we always assume S CC

Q(t%n our talk, for simplicity, we will focus on two model cases:

Vig = —1+ | Vu(z)[? (4)
and

Vio = Hy + M| Vu(z) . (5)

The motivation to study such problems comes from the numerical work
of Allaire, Jouve and Toader [AJT] in shape optimization. They use formally



a gradient method for the minimization of an objectivé function J(Q) where
€ is a subset of RN.

Let us describe briefly their approach in the case related to the above
velocity (4). Consider the problem of minimizing the capacity of a set under
volume constraint:

i ) with vol(Q2) = t
s in RN{cap( ) with vol(2) = constant}, (6)

where
— 2 —
cap(Q?) = /Q\S]Vu(z)l dz, vol(Q2) = ./ﬂ\S dz

and u is the solution of (3). For any local diffeomorphism 6 which maps Q
to 8(2), we can compute the shape derivatives with respect to 8 of the two
previous quantities. By Hadamard formulas, we get

cap'()(0) = — /a . [Vu(a:)]z(ﬂ(z), vz)do and vol'(Q)(0) = ./a n(6’(.7:), vp)do,

where (-, ) is the usual euclidean inner product and do is the induced measure
on 9f2. Writing the necessary condition of optimality, there exists a Lagrange
multiplier A > 0 such that

cap’(02)(8) + Avol'(R2)(8) = 0.

If we set ‘
JA(2) = vol(Q) + Acap(£2),

and choose 6 = —1 + A\|Vu(z)|? as in (4), then, at least formally, we get
? —_— o 2\2
JL(Q)(0) = /a (14 AVu(@)?do < 0.

Therefore § = —1 + A\|Vu(z)|? appears as a descent direction for the opti-
mization problem (6). The method used in [AJT] to solve (6) is now clear:
they fix an initial set {2y, consider the evolution (£2;);>¢ with normal velocity
(4) and compute the limit of §; as ¢ — +oo which is the candidate minimizer
to (6). ‘

We end with two important remarks. At first, problem (6) is equivalent
to the well-known Bernoulli exterior free boundary problem (see [FR] for a
survey):

1
V5

Find a set S CC @ CC R"such that |Vu(z)| = —< forallz € 8Q.  (7)



Secondly, (5) appears when considering the previous problem with perimeter
constraint instead of volume constraint:

i Q) wit] Q) = constant 8
s Jmin RN{cap( ) with per(2) = constant}, (8)

In this case, for any local diffeomorphism @,

")) =- [ H, 'z
per(@)(0) = — [ Ho(0(@), v2)do
and 0 = H, + A\|Vu(z)|? as in (5) looks as a descent direction for

JA(Q) = per(2) + Acap(Q2).

Definition of solutions

As we said at the beginning, this approach relies on the assumption that all
sets are smooth enough to give sense of our computations. But in reality,
even for nicer velocities (as mean curvature for instance), the evolutions face
a lack of regularity and singularities occur in finite time.

We intend to make the approach of [AJT] as rigorous as possible by defin-
ing generalized solutions for (4) and (5) widely inspired from the theory of
viscosity solutions. Before describing our method and stating our results, let
us recall some previous works on evolutions with prescribed normal velocity
close to ours. .

Following the numerical work of Osher and Sethian, a breakthrough was
made by the articles of Chen, Giga and Goto [CGG] and Evans and Spruck
[ES] in the case of local evolutions. They described the evolution as the
level set of the solution of an auxiliary pde, the level set equation. This
equation is solved in the sense of viscosity solutions (see [CIL]). This powerful
method leads to plenty of results and was developed, in addition to the quoted
mathematicians, by Barles, Ishii, Ohnuma, Sato, Soner, Souganidis and many
others. We refer to Giga [G] for an overview.

When dealing with nonlocal velocities, it is not easy to write and study
the level set equation. Some results in this direction were obtained recently
by Kim, Slepcev and Da Lio. Our method does not use the level set approach.



Instead, we use generalized solutions which are kind of “geometric viscosity
solutions” and were introduced by Cardaliaguet [C1], [C2]. Next, in [CR],
these solutions were used to solve Hele-Shaw problem. The main novelty in
our work is that we can deal with nonlocal Hele-Shaw terms like (2) and
mean curvature as in (5) at the same time.

Before giving the definition of generalized solutions to (1), we need to
introduce some notations.

Our evolution (£2;)s>p will be described by a tube K which is a subset of
IR* x RN such that XN ([0,T] x R") is a compact subset of R¥+! for any
T > 0. We recover the desired evolution at time ¢ by setting Q(t) = K(t).
We denote by K = RN — K the ezterior of the tube.

If K is a C! tube (i.e. a tube whose boundary has at least C* regularity)
then, in a natural way, at any point (¢,z) € 9K, the normal velocity Vt’fz to
KC(t) at z is defined by

(9)

A regular tube K is a tube with a non empty interior whose boundary has at
least C regularity, such that at any point (¢,z) € 8K, the normal velocity
is finite:

' V(’zw)<oo = v #0.

The above regularity assumption is generalized to nonsmooth tube as
follows: we say that a tube K is left lower semi-continuous if

Vt >0, Vz € K(t), if t, —»t~, 3z, € K(t,) such that z, — z .
A C" regular tube K, is externally tangent to a tube K at (t,z) € K if
K CK,and (¢,z) € 0K, .
It is internally tangent to K at (t,z) € K if
K, C K and (t,z) € 0K, .

The reason to introduce externally and internally tangent tubes is clear
when making the analogy with viscosity solutions: such tubes will play the
role of test-functions. With this aim, it remains to decide what regularity
one has to assume for test-tubes.



Looking at (1), we see that the local term (which depends only on the
curvature of 2(t) at ) has a sense as soon as € is C? in a neighborhood of
(t,z). On the other hand, from classical pde theory, we know that we has to
assume that 8Q(t) is C*! to solve (3) and compute the nonlocal part in (1).
Therefore, we will say that K7, is a smooth test-tube at (t, z).if (t,z) € 0K},
and K7, is a C"! regular tube with a C? boundary in a neighborhood of
(t, ).

We are now ready to give the definition of generalized solutions:

Definition (Generalized solutions) Let IC be a tube and S CC Ky CC RN
be an initial set.

1. K is a viscosity subsolution to (1) if K is left lower semi-continuous,
S CC K(t) for any t, and if, for any smooth test-tube K, externally
tangent to K at (t,z) with t > 0, we have

3
Kt,::

K.
V(t:w) -

< F(Vz, E ) -+ Ah(il:, ’C:,m(t))7

where vy 1s the spatial component of the outward unit normal and H:’nc be
is the curvature matriz to K (t) at (t,z).

We say that K is a subsolution to (1) with initial position Ky if K is a
subsolution and if K(0) C Kp.

2. K is a viscosity supersolution to (1) if K is left lower semi-continuous,
S CC K(t) for any t, and if, for any smooth test-tube K} internally
tangent to K at (t,z) with t > 0, we have

Vis > F(va, Ha ) + Mz, K3, (2)-

We say that K is a supersolution to (1) with initial position Ko if K is
a supersolution and if K(0) C RN\ Kj.

3. Finally, we say that a tube K is a viscosity solution to (1) (with initial
position Ky) if K is a sub- and a supersolution.

Statement of the results

Our main result is the following preservation of inclusion:



Theorem (Inclusion principle) Let T > 0 and 0 < Ay < Ag be fized. Suppose
JCy (respectively K) is a subsolution (respectively a supersolution) to (4) or
(5) with X = )y (respectively with A = Xy) on.the time interval [0,T). If

K1(0) NC(0) =0,

then .
Yt €[0,7), Kit)NnKq(t)=0.

A sketch of the proof will be given in the talk. This result corresponds to
a comparison result for viscosity solutions. It implies existence and unique-
ness of solutions.

Theorem (Ezistence) Let S CC Ko CC IRN. There erists at least one so-
lution to (4) (or (5)) with initial position Ky. More precisely, there ezists a
largest solution denoted by S(Kp) which contains all the subsolution K such
that K C K, and there ezists a smallest solution denoted by s(Ko) which is
contained in all the supersolution K such that K D K.

We continue by giving a first result of uniqueness:

Theorem (Generic uniqueness) Let (K)e(o,+00) be @ family of initial posi-
tions such that, if X < X, then K} C K2 and 0K} NOK} = 0. Let s(K3)
(respectively S(K3)) be the smallest (respectively biggest) solution for (4) (or
(5)) with X and initial position K. We have uniqueness in the following
sense: there exists a countable subset I of (0, +o0) such that

s(K2) = S(K2) for all A € (0,~+oo)\I.

Now, we turn to the asymptotic behaviour of X(t) as ¢ — +oco as an-
nounced. From now on, we consider the evolution problem with velocity
given by (4). As we said above, this problem is related to the Bernoulli exte-
rior free boundary problem (7). We start to give a definition of generalized
solutions to (7) (or equivalently (6)).



Definition (Generalized solutions for the Bernoulli problem) A set  C IRY
is a solution to (7) is the constant tube K = [0, +00) X Q is a solution to (4).

There are different notions of weak solutions for (7). The one we give
here is the most suitable for our purpose.

Theorem (Ezistence and Uniqueness for the Bernoulli problem) Suppose
that the source S is strictly starshaped. Then for any A > 0 there exists a
unique solution Qy to (7). :

This result was first proved by Tepper [T]. We conclude with

Theorem (Asymptotic behaviour) Let A > 0 and suppose that the source S
is strictly starshaped and consider S CC Ky CC RN. Then every solution
K to (4) with initial position Ky converges (for the Hausdorff metric) to the
unique solution of (7) as t — +oo.
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A variational approach to self-similar solutions
for semilinear heat equations
Yiki Naito
Department of Applied Mathematics, Faculty of Engineering, Kobe University
Nada, Kobe 657-8501, Japan (e-mail: naito@cs.kobe-u.ac.jp)

1. Introduction

We consider the Cauchy problem for semilinear heat equations with singular
initial data:

(1) wy=Aw+w? RN x (0,00),

(2)x w(z,0) = Xa(z/lz)) |2 */®~Y  m RN\ {0},

where N > 2,p>1,a: S¥-1 - R, and X > 0 is a parameter. We assume that
a€ L*®(SN-1) and ¢ > 0, a £ 0. A typical case is a = 1.
The equation (1) is invariant under the similarity transformation

w(z,t) — wy(z,t) = p2/ @ Dw(uz, p’t)  for all u > 0.

In particular, a solution w is said to be self-similar, when w = w, for all p > 0,
that is,

(3) w(z,t) = p¥ @ Vw(pz, 4x%t) for all p> 0.

Such self-similar solutions are global in time and often used to describe the
large time behavior of global solutions to (1), see, e.g., [14, 15, 5, 21].

If w(z, t) is a self-similar solution of (1.1) and has an initial value A(z), then
we easily see that A has the form A(z) = A(z/|z|)|z|~2/®~1). Then the problem
of existence of self-similar solutions is essentially depend on the solvablity of the
Cauchy problein (1)-(2)x. In this talk we consider the existence of self-similar
solutions of the problem (1)-(2)y. The idea of constructing self-similar solutions
by solving the initial value problem for homogeneous initial data goes back to
the study by Giga and Miyakawa [12] for the Navier-Stokes equation in vorticity
form.

It is well known by Fujita [9] that if 1 < p < (N+2)/N then (1) has no time
global solution w such that w > 0 and w # 0. (See also [25, 14].) Then the
condition p > (N + 2)/N is necessary for the existence of positive self-similar
solutions of (1).



We briefly review some results concerning the Cauchy problem for (1) with
initial date in LI(RN). Weissler [23, 24] showed that the IVP (1) with w(z,0) =
A € LI(RY) admits a unique time-local solution if ¢ > N(p — 1)/2. He also
showed in [25] that the solution exists time-globally if ¢ = N(p — 1)/2 and if
lAllLe@ny is sufficiently small. Giga [11] has constructed a unique local regular
solution in L*(0,T : L#), where o and 3 are chosen so that the norm of L*(0,T :
LP) is invariant under scaling. On the other hand, for 1 < g < N(p —1)/2,
Haraux and Weissler [13] constructed a solution wg € C([0,00); L4(RY)) of
(1) satisfying wo(2,?) > 0 for t > 0 and |{wo(:,?)||Lemry — 0 as ¢ — O when
(N+2)/N < p < (N+2)/(N - 2) by seeking solutions of self-similar form.
Therefore, the Cauchy problem

(4) wy = Aw+w? in RN x (0,00) and w(z,0)=0 in RV

admits a non-unique solution in C([0,00); LI(RN)) for 1 < ¢ < N(p —1)/2
when (N +2)/N <p < (N +2)/(N —2).

Kozono and Yamazaki [16] constructed Besov-type function spaces based
on the Morrey spaces, and then obtained global existence results for the equa-
tion (1) and the Navier-Stokes system with small initial data in these spaces.
Cazenave and Weissler [5] proved the existence of global solutions, including
self-similar solutions, to the nonlinear Schrédinger equations and the equation
(1) with small initial data by using the weighted norms. By [16, 5] the problem
(1)-(2)» admits a time-global solution for sufficiently small A > 0.

We note here that the equation (1) with p > N/(N — 2) has a positive
singular stationary solution W(z) = Ljz|~2/®~1 where

) 9 1/(p-1)
=l (v p))
Galaktionov and Vazquez [10] investigated the uniqueness of solutions to the
problem (1)-(2)) in the case where a = 1 and A = L, and showed that the
problem has a classical self-similar solution for ¢ > 0 with certain values of p.
In [10, p. 41] they also conjectured that the problem (1)-(2), has exactly two
solutions (the minimal and maximal) when N/(N —2) < p < (N +2)/(N —2).

Letting p = t~1/2 in (3), we see that the self-similar solution w of (1) has

the form

(5) w(a,t) = /0 Du(e/VA),
where u satisfies the elliptic equation

1
(6) Au+§w~Vu+p

i1u+u7’=0 in RV,



In addition, if w satisfies (2), in the sense of L} (RY), then u satisfies

Tx lim 72/ @ Vy(rw) = a(w for a.e. we N1,
T

Conversely, if u € C?(RY) is a solition of (6) satisfying (7), then the function
w defined by (5) satisfies (1)-(2) in the sense of LL ,(R"). (See Lemma B.1 in
7],

In this talk we investigate the problem (6)-(7), by making use of the meth-
ods for semilinear elliptic equations to derive the results for the Cauchy problem
(1)-(2)x. First, we show the existence of the minimal solution by employing the
comparison results based on the maximum principle. Next we apply the varia-
tional method due to [1, 6, 4] to show the existence of the second solution of the
problem (6)-(7)x, which implies the non-uniqueness of solutions to the problem

(1)-(2)a-
2. Existence of the minimal solution [17, Sec. 4]

For simplicity, we define Lu by

EuzAu-}—%m-Vu—i— U

p—1
for u € C2(RY). First we obtain the following results.

Lemma 1. Let p > (N + 2)/N. Assume that —Lu > 0 in RN, and that

lim inf |z[*/®?~Du(z) > 0.

|00

Then u >0 or u =0 in RN. In particular, if —Lu > 0 and v > 0 in RN then
u>0o0ru=0inRV.

Lemma 2. Assume that p > (N +2)/N, and that o, 8 € L®(SN-1) satisfy
0 < a(w) £ B(w) for ae. w e SN-1. Suppose that there exists a positive

function v satisfying
~Lv>v? n RN and  lim r¥Py(re) = W), a.e we SN
P00
Then there exists a positive solution w of the problem

—Lu=uP nRY and Jim rH P Vy(rw) = a(w), ae wesVN L

By using of Lemmas 1 and 2 we obtain the following;:



Theorem 1. Assume that p > (N + 2)/N. Then there exists a constant
X > 0 such that

(i) for 0 < X < X, (6)~(7)x has a positive minimal solution uy € C*(RN);
the solution u,, is increasing with respect to A and satisfies [|u || L@~y — 0 as
A—0;

(ii) for X > X, there are no positive solutions u € C*(RYN) of (6)-(7)a.

3. Weighted Sobolev space
Put p(z) = el*”/4, Then the equation (6) can be written as
V- (pVu)+p (;é—fu + up> =0.
Escobedo-Kavian [8] investigated the corresponding functional

— 1 2 1 2 1 p+1
Ip(u) = 3 Jun ([Vu[ p TU )pd:z: s i) " uP™ pdz
on the weighted functional spaces

L;’,(RN)z{ueLq(RN):‘/RNqudm<oo} for1<g<oo

and
HY(RN) = {u e HNRY): [ (IVuf +u?)pds < oo} .

We recall here some results about the weighted Sobolev space H (RN).
Lemma 3 8, 14]. (i) For every u € H}(RY),

N 2 12
5./111\’“ pdz < /RN |Vul*pdz.

(ii) The embedding HL(RN) C LZH(RN) is continuous for 1 < p < (N +
2)/(N —2), and is compact for 1 <p < (N +2)/(N - 2).

It was shown by [8, 24] that there exists a solution ug of the problém

u+uf =0 in RY,

1
Au+§:1:-Vu+p_1
ve HyRY) and u>0 mRV,

(8)

with (N 4+ 2)/N < p < (N + 2)/(N — 2). Moreover, it was shown in [8] that
up € C*RY) and ug(z) = O(e1#°/8) as |&| — oo. The uniqueness of the
solution to the problem (8) was obtained by combining the results [7, 27, 19].



Now put,
(9) wo(z,t) = 7/ Dug(a/v3),

where g is the solution of the problem (8). We note that ug € LI(RN) for all
q>1 and

llwo(-, )| Leqravy = t /@ DNy || o vy
Then wg solves the the Cauchy problem (4) in C([0,00); LY(RY)) for 1 < ¢ <
N(p — 1)/2. By the uniqueness result [19], we find that wq defined by (9)
coincides with the non-unique solution of (4) constructed by [13].

4. Existence of the second solution: subcritical case- [17, Sec. 5]

Let uy be the positive minimal solution of (6)-(7)x obtained in Theorem
1. In order to find a second solution of (6)-(7)x we introduce the following

problem:

Au+%wVU+;éTu+ﬂ%%J=OinR&

(10)x
uEH;(RN) and u>0 inRY,

where g(t,s) = (t+ s)? — sP?. We easily see that, if (10), possesses a solution
u), then we can get another positive solution @y = uy + uy of (6)-(7)a.

In this section we will show the existence of solutions of (10)y in the sub-
critical case (N+2)/N < p < (N+2)/(N —2) by using the variational method.
To this end we define the corresponding functional of (10)) by

_1 2__1 2) __/
I(u) = 3 Jan (]Vul pn TU pdx o G(u,uy)pdz

with u € H}(RV), where

1
(t+ s)PH! — ———gPtL _ 5P,

G(t,s) = P

p+1
We see that the nontrivial critical point v € H, ;(RN ) of the functional Iy is
a weak solution of the equation in (10)y. Moreover, we have uy € C*(RY)
and uy > 0 in RY by employing the bootstrap arguments and the maximum
principle.

We will verify the existence of nontrivial solution of (10), by means of the
Mountain Pass lemma ([1, 20]). '

Lemma 4. For A € (0,)) there exist some constants § = 6()\) > 0 and
n=mn(X) > 0 such that Ix(u) > n for allu € HL(RN) with IVullrz = é.



Lemma 5. For anyv € H,% (RN) withv > 0, v # 0, we have I)(tv) — —oo

ast — 00.

Lemma 6. The functional I, satisfies the Palais-Smale condition, that is,
any sequence {u} C HL(RY) such that

{In(ug)} is bounded and Ij(up) —0 ask — oo
contains a convergent subsequence.
In the proofs of Lemmas 4-6, the following results play a crucial role.

Lemma 7. Let uy be the minimal solution -obtained in Theorem 1 for

A € (0,)). Then the linearized eigenvalue problem

—Aw — —;-a: -Vw — —p:l—_-—l-w = pplu\ P w  in RY,
we H ,% (RN),

has the first eigenvalue p = p(X) > 1. Moreover, () is strictly decreasing in

A e (0,7).

Lemma 7 follows from the fact that uy is the positive minimal solution.
As a consequence of Lemmas 4-6 we obtain the following:

Theorem 2. Assume that (N +2)/N < p < (N +2)/(N —2). Then, for
0 < X\ < X, there ezists a positive solution Ty of (6)-(7)x satisfying Tx > uy,

Uy —uy € Hg(RN), and Ty\(z) —up(z) = O(e“[””IZM) as |z| — oo.
Furthermore,
Ty — Uy —* Uy inH,}(RN)ﬂLw(RN) as A — 0,

where ug is the solution of the problem (8). In particular, Ty — ug in L°(RYN)

as A — 0.

Now we consider the Cauchy problem (1)-(2),. Recall that, if v is a solution
of (6)-(7), then the function w defined by (5) is a solution of (1)-(2)x in the
sense of L} (RN), and that wp defined by (9) coincides with the non-unique
solution of (4) constructed by [13]. As a consequence of Theorems 1 and 2, we

obtain the following results.



Corollary 1. Assume thatp > (N +2)/N. Then there exists a constant X > 0
such that

(i) for 0 < X < A, (1)-(2)x has a positive self-similar solution wy; the
solution wy(-,t) satisfies, for each fized t > 0,

llwa(sOllpo@yy — 0 as A —0;

(ii) for A > X, (1)-(2)x has no positive self-similar solutions.
Assume, furthermore, that p < (N +2)/(N —2). Then (1)-(2)x has a positive
self-similar solution Wy satisfying Wy > wy n RN x (0,00) for 0 < XA < X. The
solution W), satisfies, for each fized t > 0,

[@A(<2) — wo(-, t)|| oo rivy = O -as A — 0,

where wy is the non-unique solution vof (4) in C([0,00); LIRN)) for 1 < ¢ <
N(p—1)/2, which is constructed by [13].

5. Existence and nonexistence of second solutions: critical case [18§]

In this section we consider the existence and nonexistence of second solutions
of the problem (6)-(7)) in the critical case p = (N + 2)/(N — 2) by following
the argument due to Brezis-Nirenberg [4].

For the critical growth case, there are serious difficulties in obtaining solu-
tions by using variational methods because the Sobolev embedding H' C LP*+!
is not compact. It is well known that this lack of compactness exhibits many
interesting existence and nonexistence phenomena. Seé, e.g., [4,2].

Let us denote by S the best Sobolev constant of the embedding H*(RYN)
L2N/(N+2)(RN)| which is given by

/RN |Vu|?da
S = inf .
N-2)/N
ueH (RV)\{0} ( / ] ulzN/(N—2) dm)( %
RN X

In the critical case, the functional I, satisfies the following local Palais-Smale

condition.

Lemma 8. Let p= (N +2)/(N —2). Then I satisfies the (PS). condition
for c € (0,SN/2/N), that is, any sequence {ug} C H}(RN) such that

L(ug) —ce <O, -]%SNﬂ) and Ii(ux) =0 ask— oo

contains a convergent subsequence.



By Lemma 8 and the Mountain Pass lemma, we obtain the following exis-

tence result.

Lemma 8. Letp = (N+2)/(N—2). Assume that there ezists vg € H:(RN)
with vg > 0, vy % 0 such that

(11) sup I (tvg) < —1-SN/2.
t>0 N
Then there exists a positive solution uy € H}(RN )} of (10).

Moreover, we have uy € C*(RY) by employing the estimate due to Brezis-
Kato [3], based on the Moser’s iteration technique.
In order to find a positive function v € H pl(RN ) satisfying (11), we set

¢(x)

—1/2 U (z)
CrEpeanr . amd ul@) =

- ”’U;s“Lg—!—I

us(m) =

for € > 0, where ¢ € CP(RYN) is a cut off function. We remark that the

functional I, can be written as

i

1 1 1
Ix = (V 2_____2) dp — —me p-l—ld
sw) = 5 [ (1l = o) pe— — [ s

- /R H(u, w3 pdz
= Io(u)— /RN H(u,u)pdz,

where
1

= - ptl
H(t,s) = G(t,s) p+1t .

Lemma 10. For sufficient small € > 0, there exists t, > 0 such that

sup;s.o Ia(tve) = In(teve). Moreover, as € — 0 we have

O(e), N >5
To(teve) < -]-ff-sN/? +{ O(elloge]), N=4
O(el/?), N=3

Cce¥4,  N=5

/RN H(teve,up)pde > { Cet/2, N=14
Cel/4, N=3

with some constant C > 0.



As a consequence, we obtain the following;:

Theorem 3. Letp = (N+2)/(N—2) and N = 3,4,5. Then, for0 <A <2},
the problem (6)-(7)» has a positive solution Ty € C?(RN) satisfying W, > uy
and Ty, — uy, € HL(RV).

On the other hand, for the case N > 6 we obtain the uniqueness result in

the radial class by employing the Pohozaev type identity.

Theorem 4. Let p= (N +2)/(N —2) and N > 6. Assume that a =1 in
(7)x. Then there exists a constant Ao € (0, X) such that (6)-(7)x has no positive
radial solutions u € C*(RN) with u % uy for A € (0, X0), that is, (6)-(7) has a

unique positive radial solution uy for 0 < A < Ap.

[11]

REFERENCES

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical
point theory and applications, J. Functional Analysis 14 (1973), 349-381.

- H. Brezis, Elliptic equations with limiting Sobolev exponents—the impact of

topology, Comm. Pure Appl. Math. 39 (1986), 17-39.

H. Brezis and T. Kato, Remarks on the Schrédinger operator with singular
complex potentials, J. Math. Pures Appl. 58 (1979), 137-151.

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations
involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983),
437-477.

T. Cazenave and F. B. Weissler, Asymptotically self-similar global solutions of
the nonlinear Schrodinger and heat equations, Math. Z. 228 (1998), 83-120.

M. G. Crandall and P. H. Rabinowitz, Some continuation and variational
methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch.
Rational Mech. Anal. 58 (1975), 207-218.

- C. Dohmen and M. Hirose, Structure of positive radial solutions to the Haraux-

Weissler equation, Nonlinear Anal. TMA 33 (1998), 51-69.

M. Escobedo and O. Kavian, Variational problems related to self-similar so-
lutions for the heat equation, Nonlinear Anal. TMA 11 (1987), 1103-1133.

H. Fujita, On the blowing up of solutions of the Cauchy problem for u; =
Au+u'*® J. Fac. Sci. Univ. Tokyo, Sect.I 13 (1966), 109-124.

V. A. Galaktionov and J. L. Vazquez, Continuation of blowup solutions of
nonlinear heat equations in several space dimensions, Comm. Pure Appl.
Math. 50 (1997) 1-67.

Y. Giga, Solutions for semilinear parabolic equations in LP and regularity
of weak solutions of the Navier-Stokes system, J. Differential Equations 62
(1986), 186-212.



(12]

Y. Giga and T. Miyakawa, Navier-Stokes flow in R® with measures as initial
vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989),
577-618.

A. Haraux and F. B. Weissler, Non-uniqueness for a semilinear initial value
problem, Indiana Univ. Math. J. 31 (1982), 167-189.

O. Kavian, Remarks on the large time behavior of a nonlinear diffusion equa-
tion, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 423-452.

T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation
with subcritical nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 13
(1996), 1-15.

H. Kozono and M. Yamazaki Semilinear heat equations and the Navier-Stokes
equation with distributions in new function spaces as initial data, Comm.
Partial Differential Equations 19 (1994), 959-1014.

Y. Naito, Non-uniqueness of solutions to the Cauchy problem for semilinear
heat equations with singular initial data, Math. Ann. 329 (2004), 161-196.

Y. Naito, Self-similar solutions for a semilinear heat equation with
critical Sobolev exponent, preprint.

Y. Naito and T. Suzuki, Radial symmetry of self-similar solutions for semi-
linear heat equations, J. Differential Equations 163 (2000), 407-428.

P. H. Rabinowitz, Minimax methods in critical point theory with applications
to differential equations, Amer.Math. Soc., Providence, 1986.

S. Snoussi and S. Tayachi, and F. B. Weissler, Asymptotically self-similar
global solutions of a general semilinear heat equation, Math. Ann. 321
(2001), 131-155.

P. Souplet and F. B. Weissler, Regular self-similar solutions of the nonlinear
heat equation with initial data above the singular steady state, Ann. Inst. H.
Poincare Anal. Non Lineaire 20 (2003), 213-235.

F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct.
Anal. 82 (1979), 277-296.

_F. B. Weissler, Local existence and nonexistence for semilinear parabolic equa-

tions in L?, Indiana Univ. Math. J. 29 (1980), 79-102.

F. B. Weissler, Existence and non-existence of global solutions for a semilinear
heat equation, Israel J. Math. 38 (1981), 29-40.

F. B. Weissler, Rapidly decaying solutions of an ordinary differential equa-
tion with applications to semilinear elliptic and parabolic partial differential
equations, Arch. Rational Mech. Anal. 91 (1985), 247-266.

E. Yanagida, Uniqueness of rapidly decaying solutions to the Haraux-Weissler
equation, J. Differential Equations 127 (1996), 561-570.



Uniqueness in the Cauchy problem for systems
with partial analytic coefficients

Mitsuji Tamura

June 17, 2004

The problem of the uniqueness in the Cauchy problem is a fundamental prob-
lem in a theory of partial differential equation. The purpose of this paper is to
extend, to the case of system, the recent results of Tataru|[T], Hormander[H], and
Robbiano-Zuily[RZ] concerning the uniqueness of the Cauchy problem for operators
with partially analytic coefficients. Concerned results in analytic coefficients is in
[U]. The method of proof in [U] is the one of ‘Algebraic analysis ’. It is different
from our proof by Carleman estimate.

- We introduce our results. Let n,, n, be non negative integers with n = n, +n, >
1.We set R* = R™ x R™and (for x or £ in R*, 2 = (z,,2;),§ = (€,,6). Let
P(z,D;) = (pij(z, D))igiisN = 2joj<m Aa(2)Dg be a linear differential system
with principal part P, (z,¢) = Zl al=m £*A,(z). Let S be a C? hypersurface through
0 locally given by

S ={z:¢(z) = 0},¢(0) = 0,¢'(0) = (¢a(0),¥4(0)) # 0.

Our results are as follows;

Theorem 0.1
We assume that the coefficients of P(z,D,) are C*° in z and analytic in z, in a
neighborhood of 0 and P,,(z, ) satisfies

1. For any & € R™\{0}
det P, (0,0,¢;) 5 0. (1)

2. For any & € R™
det P (0, i‘P:z(O)a igof,(O) + &) # Oj (2)
Let V be a neighborhood of 0 and u = (uy,us,- - -,un) € C*°(V)Nbe such that

P(z,D,)u(z)=0, z€V
suppu = UL, suppu; C {z € V : p(2) < 0}

Then there exists a neighborhood W of 0 in which u = 0.



We make some comments on this result. Theorem 0.1 is an extension of Tataru’s
results[T] to systems. Alinhac-Baouendi[AB| showed that in the case of second
order hyperbolic operators P = 97 — A(t,z, D), the initial hypersurface is time-like
and corresponding uniqueness result is false if the coefficients are merely C*. But
in[T] Tataru showed that under the assumption that the coefficients are partially
analytic , uniqueness result holds for any non-characteristic initial hypersurface.
In theorem0.1, we showed the Tataru’s result hold for systems. An appliation of
theorem.1 to elastic equation is as follows.

Corollary 0.2
a(t,z),B(t,z) € C°(R; x R3) satisfies

1. a(t,z),B(t,z) > 0,(t,z) € R, x R3.
2. a(t,z),B(t, z)is analytic in t.
then elastic equations

O?u(t,z) = a(t,z)Au(t, z) + B(t, z)grad divu(t, z)

has a unique solution for any non-characteristic initial hypersurface.

The method used here will be basically the same as in the proof given by[RZ],
that is the use of the Sjostrand theory of FBI transformation to microlocalize the
symbols and symbolic calculus and the Garding’s inequality.
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We study the initial value problem for the rotating Navier-Stokes equations:

V-U=0 for0<t<T, z€R3

U —-AU+Qes x U+ (U-V)U=-Vp for0<t<T, z€R?
(RNS)
U(t, z)|i=0 = Up(z) for z € R3,

where U = (U'(¢, z), U?(t, ), U%(¢, z)) is the velocity vector field of the fluid, p = p(t, z)

is the scalar pressure and T' > 0. Here, fixed constant ) € R is called the Corio-

lis parameter that represents rotating speed of the fluid around 3 axis. The term
ez x U (= QJIU) is called the Coriolis term where es = (0,0,1) and J is the corre-
sponding skew-symmetric matrix.

In periodic and cylindrical domains, Babin-Mahalov-Nicolaenko [1] and Mahalov-Nicolaenko
[9] proved local existence and uniqueness of solutions uniformly in the Coriolis parame-

ter ). Moreover, they proved global in time regularity of solutions when § is sufficienly
large.

Our aim in this talk is to prove local existence uniformly in {2 € R for nondecreasing
initial data U, at space inifinity. For this purpose we formally transform (RNS) into the
integral equation of the form:

(I) U@)= exp(—A(.Q)t)Ug — /Ot exp(—A(Q)(t — 3))Pdiv(U @ U)(s) ds for t > 0.

Here, P = (6;; + R;R;);;, 1 < 4,7 <3, where §;; is the Kronecker delta and R; is the
scalar Riesz operator whose symbol is v/—1¢;/|¢|. Since PU = U for divergence free
vector field and PA = AP, we have

AQ)) = -PA+QPJ
= —A+4+QPJP, (0.1)
hence exp(—A(N)t) = exp(tA)exp(—QPIPL).

In the case Q = 0, that is, on the Navier-Stokes equations (NS) without the Coriolis
term, unique local existence of mild solution was proved if initial data Uy belongs to
L2, the space of bounded solenoidal functions, in Cannon-Knightly [2], Cannone [3] and



Giga-Inui-Matsui [5]. Of cource, the space L contains nondecreasing functions. The
method in [5] is to use estimate for the derivative of the heat kernel in the Hardy space
H* obtained by Carpio [4]. For (NS) with initial data L°, Giga-Matsui-Sawada [6] ob-
tained unique global existence of strong solution U € L in the 2-dimensional case and
J. Kato [8] proved uniqueness of weak solution (U, Vp) when U € L™ and p € BMO
in the n-dimensional case with n > 2. Here, BMO is the space of functions of bounded
mean oscillations.

In the case {2 5 0, the crucial step is to estimate the Coriolis solution operator that comes

from the Coriolis term PJU = (—R, R, U*+ R, R,U', —R, R, U + R, R, U, — R R, U +
R3R,U"). The difficulty is that the term contains the Riesz operator R; which is not
bounded in L*°. Moreover, Carpio’s estimate does not apply to the term since it has no
derivatives.

Recently, Hieber-Sawada [7] and Sawada [10] constructed a local solution for (RNS)
with generalized Corilolis term for the solenoidal initial data Uy € Bgo,l.' Here, 320,1
is a Besov space including various periodic and almost periodic functions, that do not
decay at space infinity. The space BY, ;, which is a subspace of L%, is first used to
solve Boussinesq equations by Sawada-Taniuchi [11] (see Taniuchi [12] for recent im-
provement). The advantage of the Besov space is boundedness of the Riesz operator in

it. They are successful in estimating the Coriolis term in the Besov space.

However, their existence time estimate depends on {2, since the Coriolis term is regarded

as a perturbation. In this talk, we transformed (RNS) into (I) to estimate the linear
“Heat+Coriolis” term uniformly in the Coriolis parameter { by using skew-symmetric
structure of the operator PJP. That is the reason that we deal rather the operator
PJP instead of PJ as in (0.1). Smallness of the Coriolis term is not assumed. This is a
major difference between our and their approach.

In the integral equation (I), the unboundedness problem in L™ arises again in the
linear term. Since the Coriolis solution operator exp(—QPJPt) contains the Riesz
transforms, one cannot expect its boundedness in L™. There was still a possibility
that the “Heat+Coriolis” operator exp(tA)exp(—QPJIPt) is bounded in L*, even if
exp(—QPJPt) is unbounded in L*°. Unfortunately, our exact calculation of the symbol
arrived at conclusion that the solution operator is not bounded in L.

In this situation we are forced to restrict initial data to a subspace of L. To introduce
our new subspace we split initial data into 2D3C (2 dimensional 3 .components) vector
field part and z3—dependent part by taking vertical average.

Definition (Vertical average). Let U € L®(R®). We say that U admits vertical
averaging if
.1 -
LHI-Eoo 5L . U(z1, 22, z3)dzs = Uz, 22)

exists almost everywhere. The 2D3C vector field U(z;, z;) is called vertical average



or barotropic part of U(z;, 23, z3). Then the baroclinic part U' of U is defined as
Ut (21, 29, 23) = Uy, 23, 23) — U(21, T5).
Definition (Space for initial data). We define a subspace of L (R3) of the form
L, = L2,(RY) =
{U € L=(R®); U admits vertical averaging and U" ¢ 1.32011}.
The space L3, is a Banach space with the norm [|U]|re, = |0 |z ey + |[U]] B,

Theorem. Let Uy € Lgfa. Then
(1) There exzist Ty > 0 independent of Q and a unique solution U = U(t) of (I) such
that ‘ 4
U € C([6, To); L) N Cy([0, To]; L) for any & > 0.
(2) The solution U satisfies

sup ||[t2VU||Le <00 and VU € C([6, To]; L)  for any & > 0.
tE(O,To)

Remark. For a lower estimate for Ty > 0 we get To > C/||Ugl[}x, , where C >

0 is independent of Q. Moreover, if in addition we assume that U, € BUC, then
U € C([0,To); BUC) where BUC denotes the space of bounded uniformly continuous

functions.

Outline of the Proof
The symbol of the Coriolis solution operator is given by

(S) o (exp(—OPIPY)) = cos (]%m) I—sin (%m) R(¢)

where I is the 3 x 3 identity matrix, and R is the vector Riesz operator with its symbol

( 0 —&/IE] &/l )
R =1 ¢&/|¢ 0 —& /€] | : skew-symmetric matrix.
=&/l &/1E 0

The symbol (S) consists of the operators of the form exp(aR;) for o € R. By virtue of
splitting initial data it suffices to show boundedness only for baroclinic part belonging
to BY, ;-

It follows from Mikhlin’s theorem in the Hardy space H!, that the spectrum set is in-
cluded in the pure imaginary axis. Then by the spectrum mapping theorem, we estimate
|| exp(aR;)| |1y = sup{|exp(—iaz)|; z € Spec(iR;)} < 1 since |exp(—taz)| =1 if
z € R. Since the boundedness of the convolution type operator in the Hardy space
H! yields the boundedness in the Besov space Bgo,l, we conclude the boundedness

|| exp(@R;)||#1—31 < 1 uniformly in Q € R.
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Blow-up profile for a nonlinear heat equation
with the Neumann boundary condition

Kazuhiro Ishige and Hiroki Yagisita*
May 17, 2004

This talk is concerned with the nonlinear diffusion equation

u=Au+v? inQx(0,7T),
=90 on 89 x (0,7),
u(z,0) =u(z) z€9Q,

where () is a bounded smooth domain in RY, v is the unit outward normal
vector on 09, p > 1 is a constant and ug € L*®(f2) is a nonnegative function
with ||ug||eo 5% 0. For the solution u(z,t) of the nonlinear diffusion equation,
the blow-up time T is defined by

T = sup{r > 0| u(z,t) is bounded in Q x (0,7)}.

Then, 0 < T < +oo and lim,,7|ju(z,t)||c@) = +oo hold. The blow-up set
of the solution u(z,t) is defined as the set

{z € Q| there is a sequence (%y,t,) in Q x (0,7 such that

(%, tn) = (z,T) and u(zy,t,) — +00 as n — oco}.

This set is a nonempty closed set in ). From standard parabolic estimates,
we can obtain the blow-up profile, which is a smooth function defined by

us(z) = }gr% u(z, t)

outside the blow-up set.
TS CGURER KR T HHECER - B P)




The blow-up problem has been studied by many authors since the pi-
oneering work due to Fujita [13]. There are a number of results for the
nature of the blow-up set. For the Cauchy problem with (N —2)p < N + 2,
Veldzquez [34] showed that the (N —1)-dimensional Hausdorff measure of the
blow-up set is bounded in compact sets of RY whenever the solution is not
the constant blow-up one (p — 1)’#(1’ - t)—z?”iT. For the Cauchy problem
or the Cauchy-Dirichlet problem in a convex domain with (N —2)p < N 42,
Merle and Zaag [25] showed that for any finite set D C §2, there exists ug
such that the blow-up set is D (See also [1] and [3]). For the Cauchy problem
with N = 1, Herrero and Veldzquez [17] showed that for any point Z in the
blow-up set of a solution % and & > 0, there exists uy with ||up — Gollc < €
such that the blow-up set of u consists of a single point z with |z — Z| < e.
For the Cauchy-Dirichlet problem in an ellipsoid centred at the origin with
(N — 2)p < N, Filippas and Merle [10] showed that if the blow-up time is
large, then the blow-up set consists of a single point near the origin. Also,
for the Cauchy or Cauchy-Dirichlet problem with (N — 2)p < N + 2, Mi-
zoguchi [27] showed the following. For any nonnegative function ¢ € C()
and 6 > 0, if € > 0 is small, then any point z in the blow-up set satisfies
@(z) > max, ¢(y) — d for uy = e7'¢. For the Cauchy-Neumann problem,
the first author [18] showed the following. Suppose that Q = (0,7) x Qg is a
cylindrical domain with a bounded smooth domain €y in RV~ and that a
nonnegative function ¢ € L*(Q) satisfies [ ¢(z1, %2, -, Zn) cosz1dz > 0.
If ¢ > 0 is small, then the blow-up set is contained in the base plane
{0} x Qo for ug = £¢. Recently, for the Cauchy-Neumann problem with
(N — 2)p < N + 2, Mizoguchi and the first author [20] obtained the follow-
ing. Let P be the orthogonal projection in L?(f2) onto the eigenspace corre-
sponding to the second eigenvalue of the Laplace operator with the Neumann
condition. For any nonnegative function ¢ € L>(2) and neighborhood W of
{z € Q| (P¢)(z) = max,cq(P@)(y)}UOL, if € > 0 is small, then the blow-up
set is contained in W for uy = €¢. See, e.g., the references in this note for
related results or other studies on blow-up formation in u; = Au + v”.



In this talk, we study the blow-up profile.

For large initial data u§ = £ '¢, we have the following.

Theorem 1 ([35]) Let ¢ € C2(Q) be a positive function satisfying 3¢ =0
on 00, and let 6 > 0 be a constant. Then, there exists €9 > 0 such that
for any € € (0,¢&], the blow-up set of the solution u® with the initial data
u§ = e7'¢ is contained in the set S := {z € Q|P(z) > max,eqd(y) — 0}
and the blow-up profile ut satisfies the inequality

<4d.
C(\8)

() ~ (8(2) — (max,end(y)00) 7T

Theorems 2 and 3 are instability results for constant blow-up solutions.

Theorem 2 ([36]) Let f € C(Q) be a positive function, and let & and
Ty be positive constants. Then, there exist C and €9 > 0 satisfying the
following: For any € € (0,&q|, there exists u§ € C*(Q) satisfying %—/a =0
on 0) and

< CePl

. -
ui(e) - - )L |
()

such that the blow-up time of the solution u® with initial data u®(z,0) = u§(z)
is larger than Ty and the inequality

leu® (z, To) — f(@)lle@) <0

holds.

Theorem 3 ([36]) Let f € C?(Q) be a positive function satisfying %5 =0
on 00, and let 6§ and c be positive constants. Then, there exist C and
g0 > 0 satisfying the following: For any € € (0,0, there ezists u§ € C?({2)
with %—/5 =0 on 8Q and |[u§ — cl|gaiqy < CeP~" such that the blow-up set
of the solution u® with the initial data u§ is contained in the set S := {z €
Q| f(z) > max,eq f(y)—08} and the blow-up profile uS satisfies the inequality

<.
Cc(\S)

Jeus (@)  (£() 0 — (maxyenf () 0~0) 7




Let A; be the i-th eigenvalue of —Ay = Ap with the Neumann boundary
condition %‘5 = 0, where 0 = A\; < A2 < A3 < ---. We denote the orthog-
onal projection in L?(f2) onto the eigenspace X; corresponding to the i-th
eigenvalue by P;. Here, we remark that Pi¢ = Ts%T Jo ¢dz is a constant.

For small initial data u§ = e¢, Mizoguchi and the first author already
showed Propositions 4 and 5 below.

Proposition 4 ([20]) Let ¢ € L™(2) be a nonnegative function with ||@||co
# 0. Then, there ezist a constant €9 > 0 and a family {(t°,0°)}ec(o,e0] C
R? such that the solution u® with the initial data u§ = ed and its blow-
up time T¢ satisfy lim,_,,ot° = 1, lim._,0e?'T% = (p — 1)~} (Py¢)~ 1),
lim,10£P7'eX7°6° = (p — 1)7(P1¢) P and

€

£ (1-(p - V77w (z, T° — 1))

li
im 5

e—++4+0

=0.
L=(9)

Proposition 5 ([19]) Let ¢ € L™(Q) be a nonnegative function with ||d||c
# 0. Then, there exist C and g9 > 0 such that for any € € (0,g0], the
solution u® with the initial data uf = €¢ and its blow-up time T° satisfy

w(z,t) < C(TF — )71 for all (z,4) € Q2 x [T° — 1, T¢).

~e ((maxyea(P29)(v)) — (P2) ()

We obtain the following as a corollary of the propositions above.

Theorem 6 ([21]) Let ¢ € L™(Q) be a nonnegative function with ||¢||e #
0, and let 6 > 0 be a constant. Then, there exists €9 > 0 such that for any
e € (0,&], the blow-up set of the solution u® with the initial data u§ = e¢ is
contained in the set S := {z € Q| (P2¢)(z) > max,cq(Pa®)(y) —6}. Further,
the blow-up time T° and the blow-up profile us satisfy the inequality

1 —22T%
e le” P T uf(

77T ~ (p — 1) (Brg) P +

z)

< 4.

—(p - 1)-;,i—1(p1¢);i’-1 ((maxyEQ(P2¢)(y)) - (-P'?‘b)("l;))~;;ET (\S) -
C(O\S
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Nonlinear wave equations in exterior domains
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1 Introduction

In this talk we consider the initial -boundary value problem for linear and nonlinear
wave equations in an exterior domain € in RY with the homogeneous Dirichlet boundary
condition. Roughly speaking we derive local and total energy decay estimates for the
linear wave equation with some localized dissipation like a(z)u; and apply these estimates
to the existence problem of global decaying solutions of nonlinear wave equations.

The dissipation a(z)u; is intended to be as weak as possible , and if the obstacle
V = R" /Q is star-shaped some of our results hold even if a(z) = 0. Throughout the works
we employ only standard multiplier methods originated by Protter [47] and Morawetz [27]
, and in this sense our arguments are elementary.(Cf.Chen [4], Komornik [17], Lions [19],
Zuazua [58] etc.)

To specify our assumption on a(z) we introduce a part of the boundary 052 following
Russell [50] and Lions [19]:

I'(zo) = {z € 8Q|v(z) - (& — o) > 0}, =z € RV, (1.1)
where v(z) is the outward normal at z € Q. We note that V is star-shaped with respect
to zo if and only if I'(z¢) = . We shall assume

Hyp.A. a(z) > €0 > 0 on a neighbourhood w of I'(zg) for some zo.

a(z) = 0 ( no dissipation) is allowed if V' is star-shaped.
First ,following [32]we consider the local energy decay to the linear problem:

uge — Au+ a(z)u; = 0 in Q X [0, 00), (1.2)

u(z,0) = uo(z), us(2,0) = u1(z) and ulpg = 0. (1.3)

We shall prove an algebraic decay of the local energy Egr(t) = [, |us(t)[>+{Vu(t) |2)dz, Qg =
QN Bk, for the finite energy solutions u(t) of (1.2)-(1.3), where By, denotes the ball centered
at the origin with the radius R. When N is odd we can further apply the method due to
Morawetz [28] to conclude the exponential decay of Er(t). When a(z) = 0 and V is not



star-shaped we can not generally expect any uniform decay rate like Fr(t) < C(E(0))g(t)
with lim;_sc0 g(t) = 0 ( Ralston [49] ) . But, in our case , due to the dissipation a(z)u:
we need not assume any geometrical condition on V. Our result is a natural extension
of the classical one due to Morawetz [28] to a general domain. The same result has been
proved by Aloui and Khenissi [1] by a different method based on Lax-Phillips Theory.
Tkawa[9],[10] proved an exponential decay of local energy under a derivative-loss for some
special situation with several convex obstacles. Iwasaki[12] proved a local energy decay
for a rather general hyperbolic system with a general boundary condition which yields a
contraction semi-group, but, no decay rate is given there.

Next, we shall derive (total) energy decay like E(t) < CI¢(1+t)~! where IZ = ||uo||%: +
||u1]|? for the same problem (1.2)-(1.3). For this, however, we must assume further

Hyp.A’. a(z) > €9 > 0 for |z| >> 1.

The result is well known when © = RNand a(z) > €0 > 0 on RY and our result
extends it to a more delicate situation.

We use the local energy decay to derive L? estimates for the linear wave equation
in exterior domains. For this we use the so-called ‘cut-off’ method as in Shibata and
Tsutsumi[53].

We apply the estimates to the existence problem of small amplitude global solutions
for the semilinear equations:

ugt — Au+ a(z)us = f(u) in Q x [0,00), (1.4)
u(z,0) = uo(z), ut(z,0) = u; () and ulpg = 0, (1.5)
where f(u) is a nonlinear resource term like f(u) = |u|®uw,a > 0. We consider this

problem under two types of assumption on a(z) (1) Hyp.A and Hyp.A’ and (2) Hyp.A.
For the first case we require only the regularity on the initial data as (uo,u1) € Hg X L?
or (ug,u1) € H?2N H x HE, while for the second case we need much more regularity as
(ug,u1) € H*M x H*M~1 M = [N/2] + 1. Note that the latter is applied to N > 3. Our
restrictions on the exponent a do not seem to be optimal compared with the nondissipative
case or the dissipative case as u; in the whole space (Pecher [46], Georgiev [6], Todorova-
Yordanov [56], Nishihara [43],Ikehata[11] Narazaki [42] etc. ) and it is desirable to refine
our results by making additional assumptions on the initial data. See Smith and Sogge[55]
for the critical exponent of f(u) = —|u|*u outside a convex obstacle in R.
We also consider the quasilinear wave equation:

ug — div{o(|Vu|?)Vu} + a(z)u; = 0 in X [0, 00) (1.6)
u(z,0) = uo(z) and u(z,0) = us(z) and ulag =0 (1.7),

where o(v?) is a function like o(v?) = 1/v/1+ 2. Under two types of assumptions,
respectively, we prove the existence of smooth global solutions for the small initial data.
The essential idea of the proof is the same as semilinear cases. But, More careful analysis
will be required. When a(z) = 1 Matsumura [21] proved the global existence of smooth



solutions for (1.6)-(1.7) with © = R" and this result was generalized by Shibata [52] to
the exterior problems with N > 3. Our first result establishes a global existence under
a weaker assumption on a(z) which admits a(z) to vanish in large area. For some very
delicate dissipations in bounded domains see Shibata and Zheng[54] and Nakao[29, 34].

When a(z) = 0 and N = 1,2 we can not generally expect the global existence of
smooth solutions of (1.6)-(1.7) even if the initial-data are small and smooth. Indeed,
when Q = R¥ nonexistence was proved by Lax [18] and John [13] for the case N = 1 and
Hoshiga [8] for the case N = 2. For the case N > 3 Kleinermann and Ponce [16], Shatah
[51] proved global existence of small amplitude solutions when € = RV and Shibata and
Tsutsumi [53] proved similar results for exterior problems under the assumption that the
obstacle V = RN /S is non-trapping, especially ,convex. Recently, Keel,Smith and Sogge
[14],[?] have developed the theory in this direction. However, if  is a general domain no
result on global existence has been known.

Finally , following [39],we consider the initial boundary value problem (1.4)-(1.5)
with the linear dissipation a(z)u: replaced by nonlinear one p(z,u:). It is an inter-
esting problem to discuss the energy decay property for the nonlinear dissipation like
p(z,u;) = a(x)|us|"us. Indeed, such a problem has been fully studied for the case of
bounded domains (see Nakao [31],Tcheugoue’ Te’bou [?], Martinez [20] and the refer-
ences cited there). Further, corresponding problem for the Klein-Gordon equation was
studied by Nakao [29, 33], Mochizuki and Motai [25]. But, for the wave equation un-
der consideration there seems to be little results. Mochizuki and Motai [25] treated the
case p(z,u:) = |us|"u; and derived a logarithmic decay rate. Ono [44] treated the case
p = u + |u|"u; and derived an algeblaic decay of energy F(t). In [44] the linear term u;
plays an essential role. Some related topics are discussed also in Matsuyama [22]. The diffi-
culty for the whole or exterior domains comes from the facts that (1) Poincare’s inequality
fails and (2) we have very few means to control L?(£2) norm well. Here we consider the
case like that p(z, u;) = a(z)|us|"u; on some bounded domain Qg and p(z,w;) = a(z)u; ,
linear, for large |z| with a(z) satisfying Hyp.A and Hyp.A’. We also present a result on
the global existence for the semilinear equations (1.4)-(1.5) with a source term f(u). For
detailed proofs see [39].

For Kirchhoff type quasilinear wave equations in exterior domains see Racke [48],
Mochizuki [23], Yamazaki [57], Bae and Nakao [2] and the references cited in these papers.

Basic identities

Let f € L{,.([0,00); L2()) and let u(t) € C([0, 00); H3(2)) N C([0, 00); L) be a
solution of the problem

uy — Au+ a(z)ug = f in Q X [0, 00), (2.1)
u(z,0) = uo(z), us(z,0) = uy(z) and u|sg =0, (2.2)

Let n(z) € Wh(Q)) and h(z) = (hi(z),- -, hn(z)) € W(Q). Then multiplying the
equation by u;,n(z)u and h(z) - Vu and integrating by parts we obtain the following
identities:

%E(t)+/Qa($)]ut|2dw=/0futdm, (4)



c;lt/ n(w)"’u‘lm“/ ﬂ(w)[utlzdw+/ﬂ\7u-V(nu)dz

+_/ﬂ77(w)a(:c)utudw =‘-/Qf77(fb‘)u‘193 (B)

and

d 2 3h1 du 6u
5 { /ﬂ uth(w)-Vudw} / V - h(a)(|usf? = [Vu[?)ds + / Z Rt et

L%y
"9 aq Ov
We also use some variations of the above identities. These are the main tools.

h(z)dS + /9 a(c)ush(z) - Vuds = /ﬂ fh(z) - Vuda. ©)

2 Local energy decay

Consider (1.2)-(1.3). Concerning the initial data we assume that (ug,u;) belongs to
H}(Q) x L*(Q) and has a compact support, that is,

supp up U supp w3 C By = {z € RY| |z| < L}

for some L > 0.
We assume further that supp a(-) C By for some L > 0. We may assume L < L.
Our main result reads as follows.

Theorem 2.1 Under Hyp.A the solutions u(t) € C([0, 00); H}(R2)) NC ([0, 00); L%(2)) of
the problem (8.1.1)-(8.1.2) satisfy the estimate

Bfo(t) < CegBO)(1 +1)7+ (2.3)

with any 0 < €,6 < 1, where we set
5 1
=3[ (ul+ VP
QnBL-}-et .

The constant C, 5 depends on €,6 and L.

Since a(z) has compact support we can apply the argument in Morawetz[28] to get the
exponential decay for the case of odd dimensions.

Corollary 2.1 Let N > 3 be odd. Then, under the conditions of Theorem 2.1, we have
further .
foc(t) < CesE(0)e™

Jor some A = A(g,d) > 0.



Remark. When a(z) = 1 Dan and Shibata[5] proved by a spectral method that
E1o.(t)CE0)(1 +1)~N.

Remark . When a(z) = 0 and V consists of several convex bodies in some location
Tkawa[9][10] proved for the case N = 3,

Eoo(t) < Cllluollar, + lluallm, )™
with some A > 0.
For aproof of Theorem 2.1 see [32]
3 Quasilinear wave equations

We consider (1.6)-(1.7). As in the previous section ,under two types of assumptions Hyp.A
and Hyp.A on the dissipation a(z)u;, we give theorems of global existence of the problem
(1.6)-(1.7).

Concerning o(-) we make the following assumptions.

Hyp.D. o(-) is a differentiable function on R* = [0, 00] and satisfies the conditions:
a(v?) > ko > 0 and a(v?) — 2|0’ (v*)|v® > ko > 0, if [v] < L

where L > 0 is an arbitrarily fixed constant and ko = ko(L) is a positive constant. ( We
may assume o(0) = 1 for simplicity.)

Our first result in this section reads as follows.

Theorem 3.1 Let N be any integer > 1 and assume that o(-) € C™*Y(R*) and a(-) €
C™+1(Q) with an integer m > [N/2]+ 1. Then, under Hyp.A and Hyp.D, there ezists
8 > 0 such that if (uo,u1) € H™1 x H™ satisfy the compatibility condition of the m — th
order and smallness condition I, = ||uo||gm+1 + ||vallg= < 8, the problem (1.6)-(1.7)
admits a unique solution u(t) in the class Xy,. Further, the following estimates hold:

IDE u(t) [ (fymer + IDF VU@ s < CIRA 4+ for0<k<m

and
Ve imes < CIE(14+8)71  for 0< k< m.

Remark. When Q is a bounded domain we can consider a more delicate situation
where a(z) is localized and further degenerate on any (N — 1) submanifolds in . See [34].

The result by the second approach are stated separately in the cases N > 4 and N = 3.



Theorem 3.2 Let N > 4. When N is even we assume that V is convexr. Assume that
o and a(-) are of C®*M class. We assume that (ug,u;) belongs to H3M+1 n W2M+L1
H3M A\W?2M1 gnd satisfies the compatibility conditions of the 3M th order associated with
the quasilinear problem (1.6)-(1.7) and also the linear problem with o = 1. Further, we
assume that a(-) satisfies Hyp.A and suppa(-) is compact . Then, under Hyp.D, there
ezists § > 0 such that if

Ispr = ||uol| graress + ||wollwzsesss + ||ua |l gose + ||uallweren <6,
there exists a unique solution u(t) in the class
Y3M =

() C(0,00)s B~ 1 ) () GO (0,0)317) [ We2 ([0, ) H+1-He= ()
k=0

, satisfying
3M
Z ]]DfVu(t)Hgsm—k <Chliy < o0
k=0

and

M
Z ]]DfVu(t)”WM—k,oo < CIap(1+ t)"d

k=0 .
with d = (N - 1)/2 .

More interesting is the case N = 3, where the situation is also more delicate .

Theorem 3.3 Let N = 3. Assume that o and a(-) are of C*M+2class. We assume that
(ug, u;) belongs to HAM+3 N WAM+24  [aM+2 0 WM+Le gnd satisfies the compatibility
conditions of the 4M + 2 — th order associated with the quasilinear problem (1.6-(1.7) and
also the linear problem with o = 1. We assume that a(-) satisfies Hyp.A and supp a(-) is
compact . Then, under Hyp.D, there exists § such that if

Linrsz = [[uoll garess + lluollwaneezg + lua || ganesa + JJuaflwenssra <6,
there exists a unique solution u(t) in the class
4M+2
Yures = (| CH(0,00); H¥**F 0 Hg) (| C*M+*([0, 00); L7)
k=0
, satisfying
aM+43 3
Z | DEVu(t)|| gasess—k < Clangya < 00
k=0

and
M1

S IDEVu(®)|lwasrore < Clanssa(l+1) =40
k=0
with d(p) = (p—2)(1—¢€)/p,0 < & << 1, where we should take 6 < p < oo and ¢ = p/(p—1)
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Movement of Hot Spots
of the Exterior Domain of a Ball

Kazuhiro Ishige
Mathematical Institute, Tohoku University,
Aoba, Sendai 980-8578, Japan

1 Introduction

We consider the movement of the maximum points of the solutions of the
Cauchy-Neumann problem and the Cauchy-Dirichlet of the heat equation,

Ou = Au in Qx(0,00),
(1.1) du=0 on 99 x (0,00),
u(z,0) = ¢(x) in Q
and
Ou = Au in Qx(0,00),
(1.2) u=0 on 0N x (0,00),
uz,0)=g(z) i 9,

where () is a domain with the smooth boundary 052, and 0; = 0/8t, 8, =
8/0v, v = v(x) is the outer unit normal vector to 9N at z € 9. Let u be a
solution of (1.1) or (1.2). Under suitable assumptions on the initial data ¢,

the set of the maximum points of u(-, t),

H(t) = {:v €0 : u(x,t) = r:llea,ﬁxu(y,t)}

is not empty for all £ > 0. Then we call H(t) the hot spots of the solution u
at the time ¢. In this talk we study the movement of hot spots H(t) of the
solution u as t — 0co. We next give some known results on the movement of
the hot spots H(t) as t — oo.



(1) Q : bounded domains

Let €2 be a bounded domain with the smooth boundary 0Q2. By the
Fourier expansions of the solutions of (1.1) and (1.2), we see that, for “al-
most all” initial data ¢ € L%(Q), the hot spots of the solutions tend to the
maximum points of the first nonconstant eigenfunctions of A (see [12]).

For the zero Neumann boundary condition, Kawohl [10] conjectured that,
for any convex domains €, the set of the maximum points of the first non-
constant eigenfunction is a subset of 9. If this conjecture is true, then the
hot spots of the solution of (1.1) in a bounded convex domain 2 tend to
the boundary of the domain Q for “almost all” initial data ¢ € L*(Q). It
is known that this conjecture holds for parallelepipeds, balls, (see [10]), and
two dimensional, thin convex polygonal domain with some symmetries (see
[1] and [8]). For any non-convex domain 2, we have an example of the do-
main where any first nonconstant eigenfunction does not take its maximum
on the boundary of the domain (see [2]).

(2) Q : unbounded domains

Chavel and Karp [3] studied the heat equation dyu = Awu in several Rie-
mannian manifolds, and obtained some asymptotic properties of solutions
concerning the movement of hot spots of the solution. In particular, for the
Euclidean space R", they proved that, for any nonzero, nonnegative initial
data ¢ € L2 (RN), the hot spots H(t) of the solution at each time ¢ > 0 are
contained in the closed convex hull of the support of ¢, and the hot spots
H(t) tend to the center of mass of ¢ as ¢t — oo. Subsequently, Jimbo and
Sakaguchi [9] studied the movement of hot spots of the solution of the heat
equation in the half space RY under the Dirichlet, Neumann, and Robin
boundary conditions. In particular, they proved that the hot spots H(¢) of
the solution of (1.1) in the half space RY with the nonzero, nonnegative
initial data ¢ € LP(RY) satisfies

(1.3) H(t) c ORY = {z = (z',zn) € RN : 2y = 0}

for all sufficiently large . We may obtain their results for the cases Q = RV
and ) = Rﬂ‘r' by using the fundamental solution of the heat equation.
Next we consider the simplest exterior domain of a compact set,

Q={zecR" : |z|>1}.

Even for this simple exterior domain, it is difficult to know the sign of dif-
feréntial of the Neumann and Dirichlet heat kernels. So it seems difficult to



stydy the movement of hot spots by using the the Neumann and Dirichlet
heat kernels directly. Jimbo and Sakaguchi [9] assumed the radially symme-
try of the initial data ¢, and studied the movement of the hot spots H(t)
of the solutions of (1.1) and (1.2). For the Cauchy-Neumann problem (1.1),
they proved that the hot spots H(t) satisfies

(1.4) H(t) C 89 = 8B(0, 1)

for all sufficiently large ¢. Furthermore, for the Cauchy-Dirichlet problem
(1.2), they proved that there exist a constant 7" and a function r = r(¢) €
C>([T, 00)) such that

(1.5) H(t) = {z € RY : |z| = r(t)}, lim trt)® =2

if N = 3. Their proofs of (1.4) and (1.5) heavily depend on the properties of
zero sets of the heat equation in R, and it seems so difficult to apply their
proofs to the solutions without the radially symmetry.

In this talk we study the movement of hot spots of the solutions of (1.1)
and (1.2) in the exterior domain of a ball as t — oo, without the radially
symmetry of the initial data ¢.

2 The Cauchy-Neumann Problem

In this section we consider the Cauchy-Neumann problem (1.1), and study
the movement of hot spots H (t) of the solution of (1.1) in the exterior domain
Q of a ball. Throughout this section we assume that

21) Q={zcRY:|g|>L}, e LXQ, pdz), / Hz)dz > 0,
Q

where L > 0 and p(z) = el*’/4. We first give a sufficient condition for the
hot spots H (t) to exist only on the boundary 92 for all sufficiently large ¢.

Theorem 2.1 Let u be a solution of the Cauchy-Neumann problem (1.1)
under the condition (2.1). Put

Ax(@) = [ o) (14 5ol ) s/ [ oo




Assume
(2.2) An(¢) € B(0O,L) =RV \ Q.

Then there exists a positive constant T' such that
(2.3) Ht)coQ={zeR":|z| =L}
forallt>T.

In particular, we see that, under the condition (2.1), the hot spots H(t) of
the radial solution of (1.1) exists only on the boundary of the domain € for
all sufficiently large t.

Remark 2.1 Let u be a solution of the Cauchy-Neumann problem (1.1) under
the condition (2.1). Let C(u(t)) a center of mass of u(t), that is,

O(u(t))=/Q:cu(a:,t)dw//9u(x,t)dx.

Then it does not necessarily hold that C(u(t)) = C(¢) for all t > 0. On the
other hand, we put

An(u(t)) = /ﬂ:w(m,t) (1 + NLNll.'L']"N> dx//ﬂu(m,t)dm, t>0.

Then we have An(u(t)) = An(¢) for all t > 0, and lim;_,o C(u(t)) = A(¢).
Next we give a result on the limit set of H(¢) as t — oo.

Theorem 2.2 Let u be a solution of the Cauchy-Neumann problem (1.1)
under the condition (2.1). Assume An(¢) # 0. Put

Too = LM if An(¢) € B(O,L) and zo = An(¢) if An(¢) €Q

[An(#)]
Then ‘
lim sup {|zoo —y| : y € H(t)} =0.

By Theorem 2.2, we see that the hot spbts H(t) tends to one point Zo as
t — oo if An(¢) # 0, and see that (2.3) does not hold if Ay(¢4) € 2 (compare
with (1.3) and (1.4)).



3 The Cauchy-Dirichlet Problem

In this section we consider the Cauchy-Dirichlet problem (1.2), and study
the movement of hot spots H () of the solution of (1.2) in the exterior domain
Q of a ball. Throughout this section we assume that

31 Q={zeR:|z|>L}, ¢el¥ Qe dx), my>0,

where L > 0 and :
/¢ ( lNz)dx if N >3,

/q&(a:) log -—Eldw if N> 2
Q

We first give the following theorems on the agymptotic behavior of the
solution u of (1.2), which implies that the hot spots H(t) run away from the
boundary 0%2 as t — oo.

Mg =

Theorem 3.1 Let u be a solution of the Cauchy-Dirichlet problem (1.2) un-
der the condition (3.1) and N > 3. Then

(3.2) Jim | w(z,t)ds =mq >0
and N N IN-2
(3.3) t]_iglot'z_u(ﬁ, t) = (4m) "7 my (1 - {wIN—z)

uniformly for all z on any compact set in Q.

Theorem 3.2 Let u ’be a solution of the Cauchy-Dirichlet problem (1.2) un-
der the condition (3.1) and N = 2. Then there exists a constant C such
that

(3.4) lu(:, B)llz20) < Clogt) ™ 1]l z2(@,pa0)
for all t > 1. Furthermore
(3.5) ltlim (logt) / w(z, t)dz = 2my
— 00 Q
and )
(3.6) tlim t(logt)* u(z, t) = —Mg log J%—l

uniformly for all x on any compact set in Q.



Remark 3.1 Collet, Martines, and Martin [4] proved the asymptotic behav-
ior of the Dirichlet heat kernel G = G(z,y,t) on the exterior domain of a
compact set as t — oo. In particular, for the exterior domain RN \ B(0, L),
they obtained that

) N N LN—-Z LN-Z ' .

% log ‘%l if N =2,
for all z,y € ) (see also [6]). By (3.3) and (3.6), we may obtain (3.7) and
(3.8), and the proof of this paper is complete different from the one of [4].
Furthermore we remark that Herraiz (7] applied the comparison method to
the Cauchy-Dirichlet problem (1.2) in general exterior domains and obtained
the similar results to Theorems 3.1 and 3.2 for nonnegative initial data ¢.

(38) lim t(logt)® G(z,y,t) = %log

Next we give a result on the rate for the hot spots H(t) to run away from
the boundary 2 as t — oc.

Theorem 3.3 Let u be a solution of the Cauchy-Dirichlet problem (1.2) un-
der the condition (3.1). Put

Ct) =2(N—=2)LN%t 4f N >3, ((t)=2t(logt)™ if N=2.

Then
(3.9) lim sup |¢(t)7!z|¥ —1|=0.
t—o0 zeH(t)
Furthermore there exists a positive constant T such that, if x € H(t) and
t> 1T, then
(3.10) H(t) NIy = {z},

where I, = {x € RN : kz/|z|, k > 0}.
Remark 3.2 Let u be a radial solution of the Cauchy-Dirichlet problem (1.2)
under the condition (3.1). Then we see that there exists a smooth curve

r =1r(t) € (I, 00) such that H(t) = {z € RM : |z| =r(t)} for all sufficiently
large t.

Next we give a sufficient condition for the hot spots H(t) to consists of one
point z(t) after a finite time. Furthermore we give the limit of =(t)/|z(t)| as
t — o0.



Theorem 3.4 Let u be a solution of the Cauchy-Dirichlet problem (1.2) un-
der the condition (3.1). Assume that

N

Ao(g) = [ 20(z) (1 —-E;,—N) dz #0.

Then there ezist a positive constant T and a smooth curve T ='x(t) €
C>([T, o0) : Q) such that H(t) = {x(t)} for allt > T and

z(t)  Ap(9)

e R0l o]

4 Qutline of the Proofs

In this section we give the outline of the proofs of Theorems 2.1 and 2.2
only. In order to prove Theorems 2.1 and 2.2, we consider the asymptotic
behavior of the radial solution v; of the Cauhy-Neumann problem (L):

Oy, = Lyvy, = Avg, — l—;.}—lkka in Q x(0,00),

(Lx) d,u =0 on 99 x (0, 00),
w(z,0) = i (a) in Q

where k € N U {0} and ¢ is a radial function belonging to L?(, pdz) with
p(y) = exp(|y|*/4). Here {wr}, be the eigenvalues of

(4.1) ~Agn-1Q =w@ on SN

suchthat 0 = wp K w1 = N —1 < wy = 2N < w3 < ---, where Agn-1 is
the Laplace-Beltrami operator on SV~!. Furthermore we define a rescaled
function wy, of the solution v, as follows:

Ntk
Gl ryk(

(4.2) wi(y,s) = (1+1¢) z,t), y=(1+t)"2z, s=1log(l+1).

Then the function wy, satisfies

Oswy = Pywy, + N ; kwk in W,
(P%) O,wg =0 on OW,

wi(y, 0) = B(y) in Q,




where

Pow = Ayw+ - Vyw — dlv(pvyw)

lyl [y P
Qs) =e2q, W= (] (@ x{s} ow = |J (09(s) x {s}).

0<s<oo 0<s<o0

We study the asymptotic behavior of the first eigenvalue and the first eigen-
function of the operator P, and obtain the asymptotic behavior of the solu-
tion wy, in the space L? with weight p. Furthermore, for k = 0, 1,2, by using
the radially symmetry of v, the equations (Lz) and (Fy), and the Ascoli-
Arzera theorem, we study the asymptotic behavior of vy, 9,vk, and 82y as
t — o0o. Finally we study the asymptotic behavior of u, Vu, and V?y as
t — 0o by using the results on v, 8,v, and 82v;, and prove Theorems 2.1
and 2.2.

For the case k = 0, we extend the domain of wy to RN, and apply the
Ascoli-Arzera theorem to wp. Then, by using the results on the asymptotic
behavior of wy in the space L? with weight p, we obtain a result on the
asymptotic behavior of vy and 8,vp, where r = |z|. Furthermore we obtain a
result on the asymptotic behavior of 8%vy as t — oo by using the ones of g
and 0,vg. On the other hand, for the case k = 1, the inequality

sup [V 2w1 (-, 8) |l o) < o0

does not necessarily holds, and w(y, s) tends to 0 uniformly for all y with
ly| < Re=*/? with any R > L. So it is not useful to apply the Ascoli-Arzera
theorem to w; for the aim at studying the asymptotic behavior of w; and
d,w; in the domain {y € Q(s) : |y| < Re™/?}, as s — oco. To overcome this
difficulty, we may apply the Ascoli-Arzera theorem w; in the any annulus
D(e,R) = {y € RN : ¢ < |y| £ R} with 0 < ¢ < R, and obtain the
asymptotic behavior of w; in the annulus D(e, R). Furthermore we use the
equation (L;) effectively, and study the asymptotic behavior of vy, 8,v; and
02?v, as t — oo. For k = 2, we apply the similar arguments to in w; to w,
and study the asymptotic behavior of vg, 8,v3 and H2v; as t — oo.

For the Cauchy-Dirichlet problem (1.2), we follow the strategy for the
proofs of Theorems 2.1 and 2.2, and study the asymptotic behavior of the
solutions of (1.2) to prove Theorems 3.1-3.4.
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1 ABSTRACT

The classical Ginzburg-Landau equation (GLE) when n =1
up = (@ + ja)Au ~ (b + if)|ul*u (L.1)

was found for a general class of nonlinear evolution problems including several classical problems from
hydrodynamics and other applications in chemistry and physics. It was derived from the Navier-
Stocks equations via multiple scaling methods in convection. This equation and its variations with
additional nonlinear terms have been extensively studied. For example, a mathematically rigorous
proof of the validity of this equation was given for a general solution of one space variable and a
quadratic nonlinearity [1]. For a sample of references, see [2]-[7].

The Ginzburg-Landau equation has an intimate relation to the nonlinear Schrédinger equation

(NLS). By taking a = b= 0 in (1.1), the GLE formally becomes the NLS
v = ialAv — if|u[*v. (1.2)

Frequently it is asked if the solution u of the GLE approaches to the solution v of NLS in an
appropriate space norm as a,b tends to zero. If the answer is positive, then what is the convergence
rate? The inviscid limit itself is an interesting topic because of its importance in both mathematical
theory and physical applications.

Although there is a very large literature on the Ginzburg- Landau equations (classical or general-
ized), most of them are concerned with initial value or homogeneous boundary value problems. For
inhomogeneous boundary value problem of GLE, we are only aware of certain results in one space
dimensions. Existence, uniqueness and well-posedness of a global solution are proved (Bu [8]) when
af > 0 or |8] < v/3b. Global strong solutions to a more generalized version of the GLE with either

Dirichlet or Neumann boundary data are found in [9]-[10]. There is a complete lack of publication



regarding well-posedness and inviscid limit of the GLE with inhomogeneous boundary data in higher
dimension (n > 2).
We study the following inhomogeneous boundary value problem for the n + 1 complex Ginzburg-

Landau equation:

up = (a+ ia)Au ~ (b + if)|u|?u (1.3)
w(z,0) = h(z) for z € © (1.4)
u(z,t) = Q(z,t) on 69 (1.5)

where € is an open bounded set in .R"™ with C* boundary and k, ) are given smooth functions. The
boundary condition is inhomogeneous and of Dirichlet type. Under suitable conditions, we prove
the existence of a unique global solution in H'. Further, this solution approaches to the solution of

the corresponding NLS limit under identical initial and boundary conditions as a,b — 07.
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The upper bound of the best constant of
Trudinger-Moser inequality and its application
to Gagliardo-Nirenberg inequality

Hidemitsu Wadade

Abstract

We have considered so-called Trudinger-type inequality which was
proved in [11] , and obtained the upper bound of the best constant of
the Trudinger-type inequality , and by changing normalization from
homogeneous-norm to inhomogeneous norm , we have gotten the best
constant of Trudinger-type inequality in parts.

1 Introduction

We can say that Trudinger’s inequality is one of Sobolev’s inequality , and
originally , Trudinger had led this inequality to argue the regularity of the
solutions of the elliptic partial differential equation. At first , we state the
classical Sobolev’s imbedding theorem which is the following;

Sobolev’s imbedding theorem . Letn be dimension ,andp € (1,00). Then
the following continuous imbeddings hold;

H*?(R™) = LY(R") (1/q = 1/p — 5/n, 0 < s < n/p),
H*?(R") < L®(R") (n/p < 5 < o),

and when s =n/p, it is called the limiting case ,
H™??(R™) — L(R™) (p < Vg < o), (1.1)

however,

H™MP?(R™) ¢ L=(R™).



Remark . (i) For p € (1,00), we let LP(R"™) denote the classical Banach
space consisting of measurable functions on R™ that are p-integrable. The

norm in LP(R™) is defined by

fully = lelzsey = ([ fu(o)Pe) ™

(ii) Fors >0, and p € (1,00) , we let H*?(R") denote the fractional Sobolev
space;

H*P(R™) := (I — A)"*2LP(R™) (I;the identity operator),
and the norm in H*?(R™) is defined by

(I = A)*?ul| o n),
||| zrop(®my = or : ”
[l zogem) + I1(=A)*/?4]| o (gr)-

These norms are equivalent each other.

Trudinger-type inequality which was proved in [11] is the following Proposi-
tion 1.1. We can say that Proposition 1.1 is the inequality which generalizes
the limiting case in Sobolev’s imbedding theorem. In fact , we can lead the
limiting case (1.1) by applying Proposition 1.1.

Proposition 1.1 ([11]). Let n be dimension , and p € (1,00). Then there
exists a positive constant oy, satisfying the following;

for all o € (0,ay,) , there exists a positive constant Cyp, , such that the
following inequality holds for all u € H™PP(R™) with ||(—A)@y|, <1,

| #s(alu(e)do < Caplul,
where

b©=c@)- 3 & €er,y=pp-1),

0<j<p—1
jeNu{o}

Though two positive constants o, and C,pn appear in Proposition 1.1 , one
of our goal is to investigate the best constant of a,, in the left-hand side.



2 Main results

We have obtained the upper bound of the best constant of Trudinger-type
inequality in Proposition 1.1 , which is the following Theorem 2.1;

Theorem 2.1. Let n be dimension , and p €[2,00). Then for all oo € (Apn,0) ,
there exists a sequence {ug }32, C HYP?(R™) with ||(—A)"®Pull, £1 (k€ N),
such that

1 /
— [ @, (alug(z)|F )dz — 00 as k — oo,
HUkH’{: R P( l k( )l )
where
A= " [W“”?“/’”F(n/(?p))]pl
P e | TR
2,”71./2
Wpot 1= (the surface area of the unit ball in R"),

T(n/2)

and T is the Gamma function.

Remark . (i) We let a,, be the best constant of Trudinger-type inequality
in Proposition 1.1;

apn :=sup{a > 0; There ezists C > 0 which is independent of u,
such that for all w € H™PP(R™) with ||(—=A)" @y, £ 1,

[ #y(aluta)p)ds < Culg ),
then, Theorem 2.1 implies that oy, S Apn (p € 2, 00)).

(ii) Unfortunately, when p € (1,2), we couldn’t obtain the same result. It is
the technical problem of the proof.

Next, we state Trudinger-type inequality the normalization of which is
different from the one of Proposition 1.1.For this Trudinger-type inequal-
ity, we have obtained the following result;



Theorem 2.2. (i) Let n be dimension, p € (1,00), and € > 0. Then for all
a € (0, Apn/Bp), there exists a positive constant Cypn, such that the follow-
ing inequality holds for all w € H™P?(R™) with ||(el — A)™ Py, <1,

[ Sulelu@)P)ds < Cope™,
Rn

where A, is the same value as the one in Theorem 2.1,

By :=(p—1)° [ sup { / (f () - f*(t))”dt}} 1/@-1),

fELP(R™)
lIifllpst

f* is the rearrangement of f, and
f** is the average function of f*; f*(t) =1 fo f*(s)ds (t > 0).

(ii) For all a € (Apn,0), there exists a sequence {ug}ie; C H??(R™) with
(eI — AYYCPyy||, < 1 (k € N), such that

/ ®,(alug(e)P)dz — oo ask — oo.”
Rn

Remark . (i) For the constant appeared in By, we can easily see that

Ifllp=1

therefore the contradiction doesn’t arise in Theorem 2.2 because 1 < B, < oo.

(ii) When p € [2,00), we have been able to obtain the ezact value of By;
% sk %K 1
o { [0 - ropit} = 25 el
fELP(IR")
fisipst

therefore, B, = p—1(p € [2,00)). So, when p = 2, we can say that Ay, is the
best constant of Trudinger-type inequality in Theorem 2.2 because By = 1.

Next, we state the application to Gagliardo-Nirenberg inequality proved
in [11] which is the following;



Proposition 2.1. ([11]) Let n be dimension, and p € (1,00). Then there
exists a positive constant M, such that for all u € HYP?(R*), and for all
q € [p,00), the following inequality holds;

leally S My g7 | (=A) P[22 ][22, (2.1)

Remark . (i) It was proved that Proposition1.1 and Proposition 2.1 were
equivalent in [11].

(ii) We can say that Proposition 2.1 is the precise estimate of Sobolev’s imbed-
ding theorem in the limiting case. Actually, we can get the fact (1.1) from
(2.1). Moreover, since H™P?(R") is never imbedded to L®(R"), we can see
that the right-hand side in (2.1) diverges as q tends to infty. It was also proved
in [11] that this order q'/?" of divergence was optimal.

By applying the relation proved in [11] between the positive constant a,, of
Trudinger-type inequality in Proposition 1.1 and the positive constant M,
of Gagliardo-Nirenberg inequality in Proposition 2.1, and Theorem 2.1, we
can obtain the lower bound of the best constant for M, , appeared in (2.1)
which is the following ;

Theorem 2.3. Let n be dimension, p‘ € [2,00), and
M, :=inf{M > 0; Forallue H™P?(R™) and for all q € [p,0),

the following inequality holds ;
lulle S Mg (- APz,

M > 1 1/p'
0 — p’eA n .

Trudinger-type inequality and Gagliardo-Nirenberg inequality are equivalent.
Therefore, to investigate the best constant of the former is useful to investi-
gate the one of the latter.

‘then,
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1 Introduction

We consider an anisotropic Allen-Cahn equation and the motion of its internal
transition layers. It is well-known that its internal transition layer converges to the
interface moving under a corresponding anisotropic mean curvature flow. The aim
is to show that the convergence is uniform with respect to any derivatives of the
surface energy density.

An anisotropic Allen-Cahn equation is proposed by [MWBCS]. We consider the

functional of the form
1 1
F.(v) = / [—z—y(vvf + E—Z(W(v) - eAfv)] dz,
Rn

Here v € C?(R™\ {0}) is positive in S™!, convex, positively homogeneous of degree
one. Moreover, we assume that 72 is strictly convex. The function W is a double-well
potential of the form W(v) = (v? — 1)?/2. The quantity A is a constant depending
only on W. The quantity f is a constant. We consider a weighted L?-gradient flow
of this functional, and obtain an anisotropic Allen-Cahn equation. Its explicit form
is
1

B(Vv)dw — divy(Vv)é(Vv) + -6-5(W’(v) ~erf)=0. (1.1)
Here 8 € C(R™\ {0}) is a positive in 5" ! and positively homogeneous of degree
zero, and & = Dy = (8,,7(p), - - -, 0p,¥(p)) for p = (p1,. .-, pn). A formal asymptotic
analysis provided by [MWBCS], [WM] and [BP1] (the case 8 = 1) says that the



internal transition layer of (1.1) approximates the evolving interface {I';};>o under
the evolution law of the form

Bm)V = —y(n){divr,{(n) + f} on T, (1.2)

where n denotes the outer unit normal vector field of I';, V' denotes the velocity for
the direction n, and the divergence operator in this equation denotes the surface
divergence on I';. Physically, the function v is called surface energy density, which
induces an anisotropy of the equilibrium form of interfaces. The function £ is called
Cahn-Hoffman vector. The function  expresses an anisotropy of kinetics. The
quantity f is a driving force of the evolution. The quantity v/8 is called mobility.

For the solution of (1.1) with initial data such that v(z,0) is positive in inside
of I’y and negative in outside of I'g, the fact that

v —s { +1 in inside of I';

_1 in outside of I, } locally uniformly as e — 0 (1.3)

is rigorously proved by [EIS1] at least if the initial interface is smooth, [EIPS] and
[E1S2] for more general cases than [EIS1], these include the double obstacle problem.
In [EIPS] and [EIS2], they introduce a generalized solution of (1.2) by using a level
set method due to [CGG1] or [ES]. They consider a signed distance function from I';
and construct a sub- and supersolution of (1.1) for the estimate of convergence. In
[E1S2], they use an anisotropic distance function that is induced by Finsler geometry
as outlined by [BP2] (see section 3).

Here we note that their convergence results depend on the smoothness of 4. One
can find in [E1S2] that how to determine € for the estimate to obtain (1.3) at least
depends on the 2nd derivatives of . Physically, however, there is a situation such
that v is not smooth, i.e., an equilibrium form of interface may have a flat portion
called facet. If one tries to consider such a situation by (1.1) with 4, approximating
nonsmooth ~, their results is not enough. |

In this paper, therefore, we will show the convergence of internal transition
layer is in some sense ‘uniformly’ with respect to any derivatives of 4 provided
that +,1/v,83,1/8 on the unit sphere is bounded. No control of derivatives of v
is necessary. This gives a way to approximate crystalline motion [T], [AG] in the
plane by an anisotropic Allen-Cahn type equation in conjunction with a general
level set method for nondifferentiable v in [GG1], [GG2]. Recently, [BGN] proved
the convergence of (1.2) to crystalline motion (even with double obstacle form) when



{7 < 1}is a convex polygon. We call such v crystalline. However, they assume § = 1
which is very restrictive. Moreover, our uniform convergence result itself holds for
arbitrary dimensional spaces.

The difficulty treating (1.1) directly is that (1.1) does not enjoy a comparison
principle. This problem is overcome in [E1S2] by adjusting a definition of solution to
have a comparison principle. In this paper we consider a modified equation of (1.1)
instead of (1.1) to remove singularities which are due to nonconstant kinetic factor 3.
The advantage of our idea over [E1S2] is that the usual theory of viscosity solutions is
available for a modified equation. We prove that the solution of a modified equation
satisfies (1.3) and the convergence is ‘uniformly’ with respect to any derivatives of
.

The proof of (1.3) is completed by following the method in [EIS2] and adjust
some properties in [ElS2] for our problems. We construct a viscosity sub- and
supersolution of (1.1) for estimate to obtain the convergence result by combining
a distance function induced by Finsler geometry as in [BP2], the method as in
[ESS] and the traveling wave as in [BSS]. The key estimate why we can prove the
convergence result without respect to the derivative of 4 is in an estimate of the
time derivative of a distance function from I;. The similar estimate is in [EIS2].
However they obtain the estimate by using the quantity ||v||c21(B,(0)\B, .(0))- In this
paper we will prove that by using a duality between v and a support function of

{r € R%~(p) < 1}

2 Main Result

2.1 Equations

We now recall an anisotropic mean curvature flow. Let {I';};>0 be a family of closed
hypersurfaces in R™. We consider an evolution law for I'; of the form

B(m)V = —y(n){divr,é(n) + f} on I}, (2.1)
where V denotes the normal velocity of the surface I'; and n denotes the outer unit

normal vector field of T';. In this paper we assume that
(A1) p e C(R™\{0}), v € C*}(R™\ {0}), f is a constant,
(A2) there exist positive constants Ag and A, satisfying
AP S B<Ag, ATV Sy <A, on ST



(A3) B and v is positively homogeneous of degree 0 and 1, respectively,
(A4) « is convex, and +? is strictly convex,

where S™! is a unit sphere. The vector field ¢ is the gradient field of v i.e., { =
Dy = (0p,7,-+++0p,7), Oy = 07/0p;, 1 < i < n. The divergence operator in (2.1)
denotes the surface divergence on I';. In this paper, we only consider the driving
force term f is constant in order to remove the technical difficulties.

We are interested in the motion of I'; started from some compact I'y in finite
time interval (0,T). Then we may assume that there exists a big cube [];_,[a;, b;]
satisfying I's C ]}, [a;,b;] for ¢ € [0,T). Therefore we consider the all equation on
T" = [[}<, R/(b; — a¢;)Z (j = 1, 2, ..., n) with the periodic boundary condition,
ie., u(z + (b; — a;)ej,t) = u(z,t) (=1, 2, ..., n) for (z,t) € R* x [0,T).

A generalized notation of the motion of I'; is given by using the level set method
(See [CGG1], [G2]). We introduce an auxiliary function function u: T* x[0,T) = R
and define

I'y = {z € R"; u(z,t) = 0}. (2.2)

The level set equation obtained from (2.1) is of the form

{ B(Vu)du — y(Vu){divé(Vu) + f} =0 in T x (0, T"), 23)

u(-,0) = up(-) on T™.

It is well-known that, for the periodic initial data, there exists a unique global
periodic viscosity solution of (2.3) (See [CGG1] or [G2]). We define that I'; is a
generalized solution of (2.1) if I'; is given by (2.2) for a viscosity solution u of (2.3)
with initial data ug satisfying I'o = {z; ue(z) = 0}.

As the way to analyze the motion of 'y, there is the approximation of I'; by the
internal layer of Allen-Cahn type equation induced by [MWBCS]. The explicit form
is

{ B(V0)Byw — div{y(Vo)e(Vo)} — SE(W'(U) —eAf)=0 T x (0,T),
v(-,0) =vo(-) on T".

(2.4)
Here W is a double-well potential of the form W(c) = (62—1)?/2, and )X is a constant
depends on W, in our case A = 2/3. We choose a suitable vy to approximate an
interfaces moving by (2.1). See section 2.4 and Theorem 2.1 to know how to choose



vo.- The internal transition layers of (2.4) approximates the motion of I';. It is
already proved rigorously by [E1S2] et al.

Our aim in this paper is to clarify quantities which determine the speed of the
convergence of internal layers.

Unfortunately, (2.4) has singularities so that we cannot apply the usual theory
of viscosity solutions. To overcome this difficulty, we modify the equation. We
introduce a cut-off function ¢ € C*°([0, 00)) satisfying

(1 o<1/2,
4()"“{0 if o> 3/4,

and N < 0. Let B be a function defined by

Br) = (1 = C(1pD)BE) + Aaclp): (25)
We introduce a modified equation of (2.4) of the form

B(V0)aw — div{x(Vo)E(Vo)} + (W) ~eAf) =0 in T" x (0,7),
v(-,0) = vo(-) on T".
(2.6)
The same type of modification appears in [EIPS]. The main advantage of (2.6) over
(2.4) is that the singularities at Vv = 0 is reduced since (3 is positive so that we can
apply the usual theory of viscosity solutions, in particular the comparison principle.

We treat (2.6) as the approximation model of an anisotropic mean curvature flow
instead of (2.4).

2.2 Anisotropic distance

To state our main result it is convenient to introduce a anisotropic distance func-
tion induced by Finsler (Minkowski) metric as in [BP2]. We introduce the support
function «° of the convex set {p € R";y(p) < 1} defined by

7°(p) = sup{(p, 9);7(q) < 1}.

Here we remark that 4° € C?(R" \ {0}), 7° is convex, positively homogeneous of
degree 1. Moreover we observe that, for each p € R™ \ {0}, there exists uniquely
q € {p € R™;v(p) < 1} satisfying v°(p) = (p, q) since 4* is strictly convex. By using
this, we define an anisotropic distance = by

E(z,y) = 7°(z — y).



We remark that, while the definition of distance, only the symmetry does not hold
for E. For the subset I' C R™ we define

E(z,T) = inf{ZE(z,y); y € T}.

We remark that the orientation of z and a set in = is suitable to our proof. Our
argument in hereafter also apply to the reversed oriented version of the anisotropic
distance function such as Z(T, z) = inf{Z(y, z); y € I'}. However, we remark that
the sign of the derivatives of d is also reversed if we use reversed version of d. In
this paper we only use our orientation with respect to z and a set.

2.3 Traveling wave

To construct layers around I'; it is convenient to introduce a traveling wave. Let &
satisfy that o — W'(o) — e\ f has exactly three zeros h_ < hg < hy provided that
e € (0,&). For € € (0,&) we now consider an ODE of the form

R"+cQ =W'(Q)—erf inR, (2.7)
hma-—-):i:oo Q(U) = h:l:v Q(O) - hO?

where c is constant determined by hy, ho. We remark that () and ¢ depend on €.
Here and hereafter we suppress the dependence of €. The explicit form of @) is in

[BSS].

2.4 Main result

We now determine the moving interfaces by (2.1). Let Op be an open subset in
T"™ and I'y = 00,. Let dy be a signed anisotropic distance function from an initial
interface 'y defined by

do(z) = { =

We now note that dg is continuous on T™ and spatially periodic. Let u be a periodic

(.'l),Fo) if z = Oo U Fo,

(z,Tp) otherwise. (2.8)

viscosity solution of (2.3) with initial data ug = dp. Then we obtain a generalized
solution T; of (2.1) started from Ty by (2.2) with a viscosity solution u of (2.3).

We assume that T; 5 @ for t € [0,T). We define a signed anisotropic distance
function d: T" x [0,T) — R by

Z(z,Ty) ifz € {y € T% u(y,t) > 0},

1@ ={ ST e s et a2 o) 29)



We are now in position to state our main result.

Theorem 2.1 Let O be an open set in T™ and 'y = 00,. Let do(z) and d(z,t) be
the anisotropic signed distance function fromI'y and I'; defined by (2.8) and (2.9), re-
spectively. Let v be a viscosity solution of (2.6) with initial data vo(z) = Q(do(z)/e).
For each 6 > 0, there exist positive constants § = 6(0), eo = €o(6,Ap,A,) and
C = C(0,Ap, \.,) satisfying

v(z,t) < =1+ Crexp (—%) + Ce (2.10)

if (z,t) € {(y,s) € T" x (0,T);d(y,s) < —0} provided that € € (0,e,), where C;
and Cy are numerical constants.

We remark that this result is a refined version of [E1S2] since the constants Cy, Cy,
C and ¢, are independent of first and 2nd derivatives of «. It is useful to treat the
approximating problem of (2.3) and (2.6) for nonsmooth 1.

The main strategy of the proof stems from [ESS] and [EIS2]. We construct a
function ¥ = 1), s satisfying

1. for each 6 > 0, there exist positive constants é§ = §(f) and C = C(0, Ag, A,,)
such that ¥(z, t) satisfies (2.10) for (z,t) € {(y,s) € T*x(0,T); d(y,s) < —0},

2. for each 4 there exists a positive constant &y such that 1 is a supersolution of
(2.6) provided that € € (0, &),

3. the inequality ¥ (z,0) > Q(do(z)/¢) holds for z € T".

Then, by the comparison principle, we obtain Theorem 2.1. Unfortunately the
construction by [ESS] and [ElS2] is suitable only to construct a supersolution of
(2.4). It is not enough to construct a supersolution of (2.6). We now give a formal

calculation. Set
Re = B(V4) — divfy(VHE(VH)} + (W) — eAf),
R = B(V) — divEr(VHECVH) + V') — eAf).
Then we observe that

R. = Re + (Ap = B(VH))C(IV)Oup.



So it suffices to obtain the suitable estimate for ;1. This estimate also is a crucial
one for the dependence of the derivative of v to the estimate of the convergence.

We only give a few words on the estimate of ;3. One of key observation is the
new proof of the estimate

n—1

—div{y(Vd){(Vd)} > -

in the viscosity sense for any distance function d(z,I') where T is closed set. The
traditional way to calculate the left hand side is to differentiate v twice. However,
if we do so we need the modulus of the second derivative of v. We use the duality
property of 4 and 4° to obtain the key estimate instead of the direct calculation.
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Hydrodynamics For Materials With Elastic Properties
Transport and Induced Stresses

Chun Liu

Complex fluids such as polymeric solutions, liquid crystal solutions, pulmonary surfac-
tant solutions, electro-rheological fluids, magneto-rheological fluids and blood suspensions
exhibit many intricate rheological and hydrodynamic features that are very important to
biological and industrial processes. Applications include the treatment of airway closure
disease by surfactant injection; polymer additive to jets in inkjet printers, fuel injection, fire
extinguishers; magneto-rheological damping of structural vibrations etc. The segregation,
migration and aggregation of the particles and the stretching, coiling and entanglement of
the molecules in the complex fluids that endows them with the unique rheological and hydro-
dynamic properties required for specific biological, physiological and industrial needs.One
good example is the migration of blood cells in arteries towards the center axis (the Fahreus-
Lynquist effect). This segregation leaves a low viscosity plasma marginal layer that helps
reduces the overall resistance to blood flow. This complex physiological rheology has im-
portant implications in blood pressure, clotting, plaque formation and other cardiovascular
diseases. An important goal of the large and multi-disciplinary field of fluid mechanics is to
derive continuum partial differential equations (field equations) to describe the rheology of
these various fluids and to solve these equations to explain and predict their macroscopic
behavior.

The most common origin and manifestation of anomalous phenomena in complex fluids
are different “elastic” effects. They can be the elasticity of deformable particles, elastic
repulsion between charged liquid crystals, polarized colloids or multi-component phases,
elasticity due to microstructures, or bulk elasticity endowed by polymer molecules in vis-
coelastic complex fluids. The physical properties are purely determined by the interplay
of entropic and structural intermolecular elastic forces and interfacial interactions. These
elastic effects can be represented in terms of certain internal variables, for example, the
orientational order parameter in liquid crystals (related to their microstructures), the dis-
tribution density function in the dumb-bell model for polymeric materials, the magnetic
field in magneto-hydrodynamic fluids, the volume fraction in mixture of different materials
etc. The different rheological and hydrodynamic properties can be attributed to the special
coupling between the transport of the internal variable and the induced elastic stress. In
our energetic formulation, this represents a competition between the kinetic energy and
the elastic energy. We look at the following system (a simplified Ericksen-Leslie system
modeling the flow of nematic liquid crystals) as an example for such complex fluids:

u+(u-Vu+Vp—vAu+ AV - (Vdo Vd) = 0, (1

&+ (- V)i-1(Ad= (&) = o, )

with V - u = 0, where u represents the flow velocity, p the pressure, d represents the
normed director, .f(d) = F'(d) where F(d) is the bulk part of the elastic energy. It is the

coupling between the transport of d (material derivative here) and the induced elastic stress
(Vdo Vd)i; = Y7-1(Vidi)(V;dy) that yields the following energy law, which presents the



dissipative nature of the system:

5 Jo P + AVl + 20P@)dz = — [ (IVal + dlAd— f@F)ds. (3)
On the other hand, the force balance (momentum equation) can be derived by the Least
Action Principle, using the total energy functional and the way the internal variable d
is transported. The competition between kinetic and elastic energy also produces the
specific properties of the system, such as the stability and regularity of the hydrostatic
configurations. When applied to micro-particles or molecules, the elastic energy determines
the microstructures formation and how they interact with the fluid. The understanding of
such underlying structures is also crucial in designing the accurate numerical algorithms in
order to simulate the system, especially when the solutions involve singularities.

Most complex fluid behavior results from the multi-scale properties of the fluid material
at the micro-structure scales. Hence, understanding complex fluid rheology and hydrody-
namics must necessarily begin at the molecular and particulate level. The Fokker-Planck,
Ginzburg-Landau or Liouville type statistical equations describing the nanoscale molecular
dynamics or the microscale particulate dynamics are used to obtain rheological constitu-
tive equations through least action principles, as have been done for viscoelastic polymeric
fluids and liquid crystal solutions. The systems will satisfy the energy law (Second Law of
Thermodynamics). The resulting partial differential equation system will involve multiple
scales. In order to obtain the effective continuum equations at the macroscopic scale, mean
field theories are often invoked to obtain closure in such field theoretic approaches. When
these constitutive equations are inserted back into the Cauchy equation for force balance,
the desired partial differential equation results.

The Navier-Stokes equation for Newtonian fluids is the simplest of these, and fortu-
nately, it does obey an energy law. On the other hand, the dumbbell model equation for
polymeric materials loses the energy law after closure, even for the simple cases such as
FENE models. Recently, more and more studies show that this classical approach is in-
adequate due to several deficiencies. Pertinent physics at the particulate and molecular
level remains elusive for many complex fluids. Even when the physics are known, some
microscale phenomena remain unexplored due to mathematical and/or numerical difficul-
ties. For example, defects in the liquid crystal have been shown to produce bulk flow (back
flow). The resulting flow can also destroy the defects and hence change the bulk rheology.

In this talk, we intend to introduce some of the mathematical tools, modelling, analysis
and numerics, that are useful in studying these important and complicated materials.
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It is known that several geometric flows on Adjoint G-orbits are completely integrable
and equivalent to soliton equations. One of them is the Heisenberg (or Landau-Lifshitz)
ferromagnetic model for 1 : R*! — S2,

(S P X (2
which is transformed into the SU(2)/U(1) form, say,

1
St = '2—[5, Sxm]

with S € su(2). In this talk we generalize it in some directions.

Let G be a Lie group and g is its Lie algebra. Assume that there is an Ad-invariant
inner product < -,- > in g. Let A € g and M, be the adjoint G-orbit at A € g and Hy
be the isotropic subgroup at A€ g Then, M, ~ G/H, is a homogeneous space. The
minimal polynomial ¢4()\) of A € g is invariant for the adjoint G-orbit and yields the
constraint for S.

Consider a one parameter family of g-valued connection 1-form

w = ASdz + (A25 + Ap(S, 5.) ) dt (1)

where A € C, S € M, and p(S,S;) denotes a polynomial of S and S;.
The flatness assumption of the form w for all A € C yields a variety of complete
integrable equations for appropriate p(S, S;) as follows:

1. For pa(A)=A2+ar+b (a®—4b0) we have

1

St:4b—~a2[

S, Sez )



2 . When ¢4(A) = A% +a)? + b) + ¢, if a® = 3b and ab — 9¢ 3 0, we have

_ 1
" 9¢c—ab

S, [ 5,208 + 3(5Ses + S2 + S505) ]

If (a® — 4b)(a® — b) + bc = 0 and (a® — 4b)(ab — 3c) + 2a’c # 0, then we have
1

(a? — 4b)(ab — 3c) + 2a%c

+(a® — 4b)[ S, SSzs + SzeS + S2] T

St

{2a[ S, SS? + 55,05 + 528 — 5,55, ]

If a(a® — 4b) + 9c = 0 and b(a® — 4b) + 3ac 5 0, we have

1
b(a? — 4b) + 3ac

Sy = {4b— d*[ S, S;x] —3[S, SSse + SS2 + 525 — 5,55, }.

3 For ¢a()) = A — 1, we have

Sy = é[s, 3525, + 455,58 + 35.5%],.
Instead of (1) we consider
n—1
w=ASdz + (A5 + > Nepi(S, Sy, -+, 0"7FS) ) dt (2)
k=1

where p;, is a polynomial of the indicated variables. Then, the flatness assumption gives

the hierarchies of higher order generalized Landau-Lifsitz equations. For example S? = —I
we have
1 3 o2
S = 4Swm — 8(5’5,5),,; (n=3)

Si+ 7515, Suuea ] 3515, 52800 + 8,80080 + 5:282] =0 (n=1)
_lg 5 2 _
We discuss the Gauge equivalence of the generalized Landau-Lifshitz equations and the
counterparts of generalized nonlinear Schrodinger eqations.

Finally in this talk we also mention the local well-posedness of the Cauchy problem
for the higher dimensional gneneralized Landau-Lifshitz flows on G-Adjoint orbits.



