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Abstract

Let 1 < p < oo. In this paper, for a measurable function v and a
weight function w, the generalized Riesz projection P? is defined by Pf =
vP(v tf), (f € LP(w)). If Py is the self-adjoint projection from L2(w) onto
H?(w), then Py = P® for some outer function « satisfying w = |a| 2. In this
paper, PY on LP(w) is studied. As an application, the invertibility criterion
for the generalized Toeplitz operator T, and the generalized singular integral
operator ¢P¥ + QV, Q¥ = I — P are investigated using the weighted norm
inequality. The operator norm inequality for the generalized Hankel operator
Hg is also presented.



1 Introduction

Let P = span{e™®;n > 0}, and let Q = span{e™;n < 0}. Then P + Q is the set
of all trigonometric polynomials. Let dm(e?) = df /27 be the normalized Lebesgue
measure on the unit circle T. Let w be a positive function in L' = L'(dm). Let
1 <p<oo. Then P+ Q is dense in LP(w) = LP(wdm) in norm. Let HP(w) denote
the norm closure in LP(w) of P, and let Hf(w) denote the norm closure in LP(w) of
Q. We will write H?(w) = H? when w = 1, and then this is a usual Hardy space.
The Riesz projection P from P + Q to P is an operator defined by

(PHE?) =3 f(R)e*, (feP+0Q),

k>0

where f(k) denotes the k-th Fourier coefficient of f. Hence, the Riesz projection
P is a densely defined operator from LP(w) to HP(w). P may not be extended to
a bounded operator. P can be extended to a bounded operator from LP(w) onto
HP(w) if and only if w satisfies the condition:

ooty feon) st o on) <

where the supremum is over all intervals I of T. This is the theorem of Hunt,
Muckenhoupt and Wheeden (cf. [1, p.39], [4, p.255], [11, p.209, p.450], [12, p.119))
which is a generalization of the theorem of Helson and Szegé (cf. [4, p.147], [11,
p.450], [12, p.99]). Let v be a measurable function on the unit circle T satisfying
|u| > 0. In this paper, the generalized Riesz projection P is defined by
(P* 1)) = v(e®)P(v ' F)(?) = v(e®) D (v f)" (k)e™,
k>0

(f € vP +vQ). Then vP NvQ = {0}, and P¥ maps vP + vQ onto vP. Hence,
(PY)? = PV. Let w be an integrable function on T satisfying w > 0. Let 1 < p < oo.
If v € LP(w), then vP +vQ is dense in LP(w). Let 1 < p < oo, and let 1/p+1/q = 1.
In Section 2, we will consider the boundedness of the generalized Riesz projection
P°. Tt is well known that if p = 2 and v is an outer function such that |v|?
then PY becomes a self-adjoint projection which maps L?*(w) onto H?(w) (cf. [2],
[7]). In particular, P = P! is a self-adjoint projection which maps L? onto H?. We
will prove that if 1 < p < oo and w, v satisfy some conditions, then P? is a bounded
operator on LP(w) if and only if |v[Pw € (4p).

In Section 3, we will consider the adjoint operator for P’. We will give the form
of (P¥)*, and prove that if 1 < p < oo and w,v satisfy some conditions, then
(P*)* = P? on LP(w) N L4(w) if and only if |v|>w is a constant function.

In Section 4, we will consider the invertibility of the Toeplitz operator T} and
singular integral operator ¢PY + ¥, where Q¥ = I — PY. Let 1 < p < o0, and let
¢ € L>™. If P* € B(LP(w)), then the operator T§ from ranP” to ranP" is defined by

T, f = P'(¢f), (f €ranP”).

:w,
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If w € (A4p), then Rochberg [13] established an invertibility criterion for the Toeplitz
operator T, on HP(w) (cf. [1, p.216]). If p = 2 and w = 1, then this reduces to a
theorem of Widom and Devinatz (cf. [1, p.59], [11, p.316], [12, p.250]).

In Section 5, we do not assume the boundedness of PY on LP(w). Hence, the results
in Section 5 do not follow from the theorem of Rochberg and Simonenko or the
theorem of Widom and Devinatz (cf. [13], [1, p.216], [12]). We will consider the
invertibility of the quotient type Toeplitz operator R for an outer function v. Let
1 < p < oo,andlet ¢ € L*®. If log|v| € L', then an operator R} is defined as a

bounded operator from HP(w) to LP(w)/%Hg(w) by
Ryf = ¢f + ~Hy(w), (f € H(w)).

If PY € B(LP(w)), then ker P* = LHf(w). Ry is always bounded. When v = 1,
Nakazi ([8], [9]) considered the quotient type Toeplitz operator Ry = Ry from HP(w)

to LP(w)/HE(w) and proved Lemma 5.1. We use Lemma 5.1 to prove Theorem 5.2.
In Section 6, the operator norm inequality for the generalized Hankel operator Hj
is presented. Let 1 < p < oo, and let ¢ € L™, If PY € B(L?(w)), then the Hankel
operator Hj from ranP" to ranQ" is defined by

Hyf = Q"(¢f), (f €ranP?).

If v = w = 1, then this reduces to a theorem of Nehari (cf. [1, p.54], [11, p.181], [12,
p.181)).

2 Boundedness of P?

In this section, we discuss the condition such that the generalized Riesz projection P°
is extended to LP(w) by continuity to a bounded operator. We will not distinguish
between an operator’s being bounded and being densely defined and extendable by
continuity to a bounded operator. We use Lemmas 1.1 and 1.2 to prove Theorems
2.3 and 2.4.

Lemma 2.1 Let 1 < p < oo. Let w be a positive function in L'.

(1) If |v| >0 and v € LP(w), then vP 4+ vQ is a dense subspace of LP(w).

(2) Iflogw € L' and |v| = |k| for some outer function k in HP(w), then kP is
dense in HP(w).

Proof. (1): Let f € LP(w). Then, v 'LP(w) = LP(Jv|Pw). Hence, v7'f €
LP(JuPw). Since P + Q is dense in LP(|v|Pw), it follows that there exists a sequence
fn € P+ @ such that

i — fIP = i — o LfP|ylP —
T}Lr{}o/|vfn fl wdm—nlggo/ﬁn v fIPlvPwdm = 0.
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(2): Let g € HP(w). Since k is an outer function such that |k| = |v|, it follows
that k'g € H?(Jv[Pw). Since P is dense in HP(|v[Pw), it follows that there exists a
sequence g, € P such that

lim /|kgn — glPwdm = nhg&/ |gn — k™ g[?|v|Pwdm = 0.

n—oo

Hence, kP is dense in HP(w). Lemma 2.1 is proved. O

Lemma 2.2 Let 1 < p < co. Let w be a positive function in L'. Suppose |v| > 0
and v € LP(w). Then the following properties are equivalent.

(1) PV is a bounded operator on LP(w).

(2)  P" is a bounded operator on LP(w).

(3) P is a bounded operator LP(|v|Pw).

If one of these conditions holds, then

1P || Bzewy = 1P Bzew) = 1Pl (olew)-

Proof. It is sufficient to prove the equivalence of (1) and (3). By (1), for all
fePandge Q,

[1sPlrwdm = [ fofiPwdm
< ||Pv||%(LP(w))/|vf+vg|pwdm
= 1P niay [ 1 + glFlowdm.

Hence, ||P||g(rr(jvpw)) < 1P| B(re@w)) < 0o. This implies (3). Conversely, by (3), for
all f e P and g € Q,

[lefrwdm = [ 1fPloPwdm
< NP zrqopuy [ 1 + P lolwdm
= Py ungupuy [ [0f + vgPwdm

By Lemma 2.1(1), vP+vQ is dense in L?(w). Hence, ||P*||p(rrw)) < ||PllBEe(opw) <
oo, and hence (1) follows. Lemma 2.2 is proved. O

Suppose w = |a|? for some outer function a. Then Py = P? is a self-adjoint
projection from L?(w) onto H?(w). Let Qo = I — Fy. If a,b are constant functions,
then ||aPy + bQol|p(r2(w)) = max(|al, |b]) (cf. [5, VolI, p.79]). By the similar proof
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of Lemma 22, if a,b € Loo, then ||CLP0 -+ bQO“B(LZ(w)) = ||aP + bQ||B(L2(|a|2w)) =
|aP + bQ|| p(12)- Hence,

||GP0+bQ0||B(L2(w)) = ||GP+bQ||B(L2)
2 |p2 ~ 2 _ |p2)\ 2
ing |12+ 1 +\l|ab—k|2+ (L L )
kCH> 2 2

[eo]

The infimum is attained (cf. [10]).

Let 1 < p < oo. There are many measurable functions v and w such that
v,logv,logw ¢ L', w € L' and P® € B(LP(w)). For example, let

1
2 — 6

v(e) = exp ( ) , (0<6<2m),

and let w = |[v|?. Since 7B- < 2, it follows that 0 < w(e®) = exp( P ) <

0—2x 627
exp (;—7{’) < 00. Hence, w € L*°. By Lemma 2.2 and the theorem of Gohberg,
Krupnik, Hollenbeck and Verbitsky (cf. [5, Vol.II, p.102], [6]),

1
pY Plw)) — P Py = T < .
I ||B(L (w)) | ||B(L ) sin( /p) o0

Then ranP’ @ker P’ = vHP@uHP? = vL? = LP(w). If p = 2, then P? is a self-adjoint
projection on L?(w).

Theorem 2.3 Let w be a positive function in L'.

(1)  If|v| > 0 and v € L'(w), then P’ is an unbounded operator on L'(w).

(2) Letl<p<oo. If|v] >0 and v € LP(w), then P' € B(LP(w)) if and only if
[vfPw € (4p).

Proof. (1): Suppose P’ € B(L'(w)). By Lemma 2.2, |[v| > 0, and P €
B(L'(Jv|w)). By the theorem of Forelli (cf. [3]), P € B(L"). This is a contradiction
(cf. [5, Vol.I, p.78]).

(2): By Lemma 2.2, if PY € B(L?(w)), then P € B(LP(|v|Pw)). By the theorem of
Hunt, Muckenhoupt and Wheeden (cf. [1], [4], [11], [12]), this implies |v[Pw € (4,).
The converse is also true. Theorem 2.3 is proved. O

Theorem 2.4 Let 1 < p < co. Let w be a positive function in L'. Suppose |v| > 0
and v € LP(w).
(1) If P* € B(L*(w)), then

ranP’ = ker Q¥ = vH?(|v[’w) = [vP]Lr(w),
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ker P¥ = ranQ’ = vHj (|v[Pw) = [vQ]Lr(w),
where [ - |1r(w) denotes the norm closure in LP(w).
(2)  Suppose logw and log|v| are in L*. Let k be an outer function such that
|k| = |v|. Let Q° =1 — P*. If P’ € B(LP(w)), then

ranP’ = ker Q¥ = —H?(w) C LP(w),

I @

ker P’ = ranQ" = =H}(w) C LP(w),

| <

and

LP(w) = H?(w) ® %Hg(w).

(3)  If there is an outer function k such that |k| = |v| and LP(w) = HP(w) @

EHY(w), then PY € B(LP(w)).

Proof. (1): Suppose f € ranP". Then there is a g € LP(w) such that f = P"g.
By Lemma 2.1(1), there is a sequence {t,} in P + Q such that

/ |vt, — g|Pwdm — 0,
as n — oo. Since P’ € B(L?(w)), it follows that
/|Ptn — v PlufPwdm = /|thn — flPwdm
- / [P (vt — g)[Pwdm
< 1P o) / vt — glPwdm.

Hence,
/|Ptn — v LfP|v[Pwdm — 0,

as n — oo. This implies that v~ 'f € HP(Jv[Pw). Hence, ranP’ C vHP(|v[Pw).
Suppose f € vHP(|v|Pw). Since v'f € HP(|v[Pw), there is a sequence {g,} in P
such that

[ 10gn = flrwdm = [ g, — v~ £ lolrwdm — o,

as n — oo. This implies that f € [vP]e(w). Hence, vHP([v|Pw) C [vP]Lr(w)-
Therefore,
vP C ranP’ C vHP(|v[Pw) C [vP]rr(w)-

Since (PY)? = PY, ranP" is a closed subspace of LP(w). Similarly

vQ C ranP’ C vHj(|v[Pw) C [vQ]rr(w),



and ran@? is a closed subspace of LP(w). Hence (1) follows.
(2): By Theorem 2.3, if P* € B(LP(w)), then |[v[Pw € (A,). Since k is an outer
function such that |k| = |v|, it follows that

ranP’ = P°LP(w) = vP(v 'h™'LP) = vPLP(|v|Pw)
= vH(|jvPw) = kH?(kPw) = - HP(w),

and
ranQ’ = Q"LP(w) = vQ(v™'h7'LP) = vQLP(|v[Pw)
v v
— vH}(uPw) = CRER(Rpu) = YHE(w).
Hence, _
k k
LP(w) = ranP" + ranQ’ = ;Hp(w) ® ;H{)’(w)

Since |k| = |v], it follows that
k k——
(3): Since |[v[Pw € L' and LP(w) = HP(w) ® £H{(w), it follows that
LP(Jvffw) = k7' IP(w) = k7 HP(w) @k 1HY(w)
= H(Jof'w) @ Hy(|v[Pw).

By the closed graph theorem, this implies that P € B(LP(|v[Pw)). Theorem 2.4 is
proved. O

Let 1 <p<oo. If f € LP(w) and w € L', then fw € L'. Let

KP(w) = {f € L’(w) ; (fw) (n) =0, (n <0)},
and let

Kg(w) ={f € LP(w); (fw)"(n) =0, (n <0)}.
Hence, KP(w) and K§(w) are closed subspaces of LP(w) satisfying KP(w) = LP(w)N
w'H'. The shift operator maps K?(w) onto K¥(w). If p = 2, then we have the
orthogonal decomposition:

L*(w) = H*(w) @ K§(w).

If w =1, then KP(w) = HP. According to the Riesz representation theorem, for
every bounded linear functional ¢ € HP(w)*, 1 < p < oo, there exists a unique
function g € K%w), 1/p+1/g =1, such that

#(f) = [ Fgwdm, (f € H(w)).

We use Lemmas 2.5 and 2.6 to prove Theorem 2.7.



Lemma 2.5 Let 1 < p < oo, and let 1/p+ 1/q = 1. Let h be an outer function
satisfying w = |h|P.

(1) KP(w) = hfulﬂp _ %Hp(w).
2) K(w) = qu _ %H‘I(w).

(3) KP(w) = HP(w) if and only if w is a constant function.

Proof. (1): Suppose f € KP(w). Then f € LP(w) Nw *H'. Then fh € L and
(fw)/(h?~') € HP. Then f € %AH”. The converse is also true. Hence, KP(w) =
b~ HP. Since HP(w) = HP(|h|P) = h 'HP?, it follows that K”(w) = " HP(w).

(2): Suppose f € K% w). Then f € LY(w) N w 'H'. Then fh¥' € L7 and
fw/h € H?. Then f € 2H9 The converse is also true. Hence, K9(w) = 2HY.
Since H9(w) = HI(|kP|) = h'"PHY, it follows that K%(w) = 2 HI(w).

(3): Suppose KP(w) = HP(w). Since 1 € HP(w), 1 € KP(w). By (1), 1 € ”2—le”.
Hence, there is an f € HP such that fh:)—fl = 1. Since h?! € HY, fhP ! is a positive
function in H!'. Hence, f and h are constant functions. Hence, w is a constant
function. The converse is clear. Lemma 2.5 is proved. O

Lemma 2.6 Let w,logw,w? /2 c L',
(1) H?(w)®KE(w) = LP(w) if and only if HP(w?~P)/2)@ HE (w(2-P)/2) = LP(w(2~P)/2),
(2) There is a constant C such that

/|f|pwdm < o/ If + glPwdm, (f € H?(w), g € KE(w))

if and only if there is a constant C such that

[ 15w P2dm < C [[|f + gPw® P2dm, (feP, g€ Q).

Proof. By the closed graph theorem, it is sufficient to prove (1). Since logw € Lt
there is an outer function h satisfying w = |h|P. Let p = 2a. Then w = h®h® and
w?P)/? = y'-¢ By Lemma 2.5,

he (HP(w) ® K§(w)) = h*'HP @ he 1H}

u' ) @ T
w(2fp)/2) D Hg(w(pr)/Z).

Since LP(w(P)/?) = [P(w'~®) = LP(|h'~%|P) = h* 1LP = h®LP(w), this implies (1).

Lemma 2.6 is proved. O



Theorem 2.7 Let w € L'. Suppose w = |a| 2, for some outer function a.

(1)  P* e B(L*(w)) if and only if w® P2 € (A,). Then || P?||prew)) = || Pl (reue-r12)-
(2) ranP® = H?(w), kerP*=K{(w), ranP®= KP(w), kerP®= H(w).

(3)  Ifw® P2 c (A), then LP(w) = HP(w) ® K (w), and P* is a bounded pro-
jection from LP(w) onto HP(w) such that

P*(f+g)=f, (f€H"(w), g€ Kg(w)).

(4)  P? (resp. I — P%) is a self-adjoint projection from L*(w) onto H*(w) (resp.

Proof. (1): By Theorem 2.3(2), if P* € B(L*(w)), then |afPw € (A,). Hence,
w? P2 = y7P/2y = |a|Pw € (4,). The converse is also true.
(2): By Lemma 2.5(1), H5(w) = %Kg’(w) By Theorem 2.4(2), ranP* = HP(w)

and
IOéI2

ker P* = Hp( ) = -~ Kg(w) = Kj(w).

Similarly, ker P* = Hf(w) and

~ = 2

ranP® = gﬂp(w) = L ap K W) = Ko (w).

(3): If w2P)/2 € (4,), then LP(w? /%) = HP(w(P)/2) @ HE (w(2-P)/2). By Lemma
2.6(1), LP(w) = Hp( ) & K5(w). Since (P*)? = P*, (3) follows.
(4): Since

[ fgwdm =0, (f € B w), g € K3(w)),
it follows that L?(w) = H?*(w) & KZ(w) is the orthogonal decomposition. Since

ranP® = H*(w), and ker P* = K2(w), it follows that P? is a self-adjoint projection.
(5): Since

[ fawdm =0, (f € K*(w), g € H(w))

it follows that L?*(w) = K?(w) & HZ(w) is the orthogonal decomposition. Since
ranP?% = K%(w), and ker P* = HZ(w), it follows that P® is a self-adjoint projection
from L?*(w) onto K?(w). Theorem 2.7 is proved. O
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3 Adjoint operators for P°

Let 1 < p < oo, and let 1/p + 1/¢ = 1. In this section PY is supposed to be a
bounded operator on LP(w). For functions f € LP(w) and g € LY(w), let

(. 9)w = [ Fgwdm.
To each PY € B(LP(w)) corresponds a unique (P*)* € B(L%(w)) that satisfies

<Pvf’ g>w = <f’ (Pv)*g>wa (f S Lp(w)’ g e Lq(w))

We use Lemmas 3.1 and 3.2 to prove Theorem 3.3.

Lemma 3.1 Let 1 <p < oo, and let 1/p+1/q=1. Let w € L*, w > 0, and let v
be a measurable function.

(1)  |vfPw € (A4,) if and only if |v| 9w ™% € (A,).

(2)  w® P2 e (A) if and only if w972 € (A,).

Proof. (1): If [uPw € (4,), then (Jv[Pw) ™Y € (4,). Since (p—1)(g—1) =1,
it follows that |v| 7w ¢ € (4,). The converse is also true.

(2): If w® P2 ¢ (4,), then (w2P)/2)=1/F-1) ¢ (A,). Since (p —1)(g— 1) = 1, it
follows that

(2;1)) (P_—ll) :2(pp—1)_pi1:%_(q—1)=2%q.

Hence, w(2~9/2 € (A,). The converse is also true. Lemma 3.1 is proved. O

Lemma 3.2 Let 1 < p < oo, and let 1/p+1/qg = 1. Let w € L', w > 0, and let
[vfPw € (4y). Then (P*)* € B(Li(w)), ((P*)*)? = (P*)*, and

(1) (P')(g) = —P(vwg), (g€ L4(w)).

vw

(2) Iflogw, log|v| € L', then

1 1
v\ ® _ 1 711g q
(P")* (91 + 92) = o1, (91 € ]m_)wH (w), g2 € _—kvaO(w)> ;

where k is an outer function satisfying |k| = |vw|™".
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Proof.  (1): By Theorem 2.3(2), P’ € B(L?(w)). Hence, (P")* € B(L%(w)).
If [v|Pw € (A,), then there is a constant § > 0 satisfying (|v[Pw)'*? € L' (cf. [4,
p.262]). Since 1/p+ 1/q = 1, there is a constant r > 1 satisfying

Then

/ lvgw|"dm < (/(|U|Pw)1+§dm> FeEm)) (/ |g|qwdm)2 |

For all f € vP +vQ and all g € L(w),

f, (P 9w = (P°f, ghw = / (P°f)gwdm

= /vP(v_lf)gwdm = /P(v_lf)de

— /v—ldemzfﬁfP (Tgw)wdm
= (£, P ouy))

Tw w
By Lemma 2.1(1), vP + vQ is dense in LP(w).

(2): By Lemma 3.1(1), if [v|Pw € (4,), then |v|™9w'~? € (A,). Hence, |(vw) !|%w =
|v] 9w'~? € L'. By (1) and Theorem 2.4(2),

1 1
U\ k — q U\ * e — q
ran(P?) _kT)wH (w), ker(P?) —kvaO(w)
Since ((PY)*)? = (P)",
L9(w) = ran(P*)* @ ker(P")* = —— H(w) & —— Bl (w).
ktw kvw °

Lemma 3.2 is proved. 0O

By Lemma 3.2, if v = 1 and w satisfies the Muckenhoupt condition (4,),
then P*f = PYvf (f € Li(w)).

Theorem 3.3 Let 1 < p < oo, and let 1/p+1/q = 1. Suppose v, w € L', w > 0,
lvlPw € (4p) and |v|%w € L'. Then the following two properties are equivalent.

(1) (PYg=Pg (g€ LP(w)n Le(w)).

(2)  |v]*w is a constant function.

Proof. Suppose (1) holds. Since v € LP(w) N LY (w), (P")*v = P'v = vP1 = v.
By Lemma 3.2, (vw) 'P(vwv) = v. Hence, P(|v|*w) = |v|*w. By Lemma 3.1(1),

12



if |ulPw € (4,), then there is a constant § > 0 satisfying (Jv[Pw)'"® € L! (cf. [4,
p.262]). Since 1/p+ 1/q = 1, there is a constant r > 1 satisfying

1 1 1

p(l—l—&)—i_g_r.

Then
/(|v|2w)’"dm = /|v|’"w’"/p|v|’"w’"/qdm
< (/(|v|pw)1+‘5dm) P (/ |v|qwdm) ' < oo
Hence, |v|*w is a positive function satisfying |v|?w € H", r > 1. This implies (2).

Conversely, suppose (2) holds. By Lemma 3.2, for all g € LP(w) N L4(w),

(P)'g = - P(owg) = 2P ('”'2“’9) =P (%9) = vP(w g = Py

Tw lv|2w v v

Theorem 3.3 is proved. O

By Theorem 3.3, if v = 1 and w satisfies the Muckenhoupt condition (4,),
then P* = P on LP(w) N L% w) if and only if w is a constant.

Corollary 3.4 Let 1 <p < oo, and let 1/p+ 1/q = 1. Let o be an outer function
such that w = |a|™2. If w@ P2 ¢ (A,), then P° is a bounded operator on LP(w),
and (P*)* is a bounded operator on LY(w) such that

(P)' (91 +92) = 91, (91 + g2 € H'(w) ® Kg(w)).

and
(P¥)* =P on LPlw)n LY w).

Proof. By Theorem 2.7, if w®7P)/2 € (4,), then P* € B(LP(w)) and HP(w) ®
Ki(w) = LP(w). By Lemma 3.1(2), if w?P/2 € (A4,), then w92 € (4,),
and hence HY(w) ® ) = L%w). For all fi + fo € HP(w) ® K{(w), and all
91+92 € H(w )®K (

P(fi+ f2)y g1+ g2)w
fiy g1+ G2)w

fiy 91)w

fi+ f2y G1)w

On the other hand, by Theorem 3.3, (P%)* = P®. Corollary 3.4 is proved. O

(fi + f2, (P*)" (91 + 92))w (
(
(
(
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4 Invertibility of T} and ¢P" + Q"

In this section, the invertibility criterion for the generalized Toeplitz operator T} and
the generalized singular integral operator ¢P¥ 4+ @, Q° = I — P" are investigated
using the weighted norm inequality. By the theorem of Hunt, Muckenhoupt and
Wheeden (cf. [1], [4], [11], [12]), w € (A4,) if and only if P is a bounded projection
from LP(w) onto HP(w). For ¢ € L, the Toeplitz operator T is defined as a
bounded operator from H?(w) to HP(w) by

Tsf = P(of), (f € HP(w)).

By Theorem 2.3, if |[v|Pw € (4,), then P’ € B(LP(w)). Since (P")? = P, ranP"
is a closed subspace of LP(w). For ¢ € L, the generalized Toeplitz operator Ty is
defined as a bounded operator from ranP? to ranP? by

T, f = P'(¢f), (f €ranP”).

We use Lemma 4.1 to prove Lemma 4.2.

Lemma 4.1 Let 1 < p < co. Suppose ¢ € L™, w,logw € L', and |v[Pw € (A,).
Then the following properties are equivalent.

(1) Ty is a left invertible operator on ranP".

(2) Ty is a left invertible operator on HP(|v|Pw).

(3) @P + Q is a left invertible operator on LP(|v|Pw).

(4) ¢PY 4+ Q" is a left invertible operator on LP(w).

Proof. Let w' = |v[Pw. By Theorem 2.3, T§, Ty, ¢P+@Q, P’ + Q" are bounded
operators on each spaces. Suppose (1) holds. Then there is an €; > 0 such that

/|Tq§’f|pwdm > 51/|f|pwdm, (f € ranP?).

Suppose f € HP(w'). Since logw € L', there is an outer function h satisfying
w = |h|P. Since log|v| € L', there is an outer function k satisfying |k| = |v].
Since w' = |v[Pw, H?(w') = HP(|kh|P) = LH? = k 'HP(w). By Theorem 2.4,
ranP? = 7y HP(w) = vHP(w'). Hence, there is a g € ranP” such that g = vf. By
(1), there is an €; > 0 such that

[ Tsswam = [1P(f)Plowdm
= /|vP(¢v’1g)|pwdm

= [ 1P*(¢9)Pwdm

14



= /|T(;’g|pwdm
61/|g|pwdm

= 61/|f|pw'dm.

v

This implies (2). Suppose (2) holds. Then there is an €5 > 0 such that

/|T¢f|pw'dm > 62/ |fPw'dm, (f € HP(w')).

Suppose f € LP(w'). Let g = (I + Q¢P)f. Since ¢ € L™ and w' € (4,), it follows
that g € LP(w'), and there is a C; > 0 such that

[1@gpwam = [1Q(PsP + Q)glrudm
< G [I(PoP + Q)gPPw'dm.

By the theorem of Hunt, Muckenhoupt and Wheeden (cf. [1], [4], [11], [12]), if
w' € (4p), then P,Q € B(LP(w')), and there is a Cy > 0 such that

52/|Pg|pw'dm < /|T¢Pg|pw'dm
= /|P(P¢P—{— Q)gPw'dm
< G [I(PoP + Q)glPw'dm.

Since Q@ = I — P, it follows that @ € B(LP(w')), and there is a C5 > 0 such that

/|g|pw'dm < C’g/|(P¢)P + Q)g[Pw'dm.

Since P,Q € B(L*(w'")), it follows that (I + Q¢P)f € LP(w'), and there is a C4y > 0
such that

[1spwdm = [|(1-QéP)(I +QoP)fPu'dm

Cs [ (1 +QoP) frw'dm

< GGy / (POP + Q)(I + Q¢P) fIPw'dm
CsCs [ (6P + Q) flPw'dm.

IA

This implies (3). Suppose (3) holds. Then there is an e5 > 0 such that
[P+ Q)fPuw'dm > & [ |fIFw'dm, (f € LP(w)).

15



Suppose f € LP(w). Then vf € LP(|v|Pw) = LP(w'). Since P'f = vP(v'f) and
Q'f = vQ(v'f), it follows that

[P+ Q) Pwdm = [ 1o(gP + Q) )Pwdm
= [P+ Q™ Plofrwdm
> 53/|v_1f|p|v|pwdm:€3/|f|pwdm.

This implies (4). Suppose (4) holds. Then there is an £4 > 0 such that

J@P" + Q") fPuwdm > e [ |fPwdm, (f € I(w)).

By Theorem 2.3, P¥ € B(LP(w)). Suppose f € ranP". Since Q" = I — P, it follows
that P'f = f, QVf = 0, and there is an €5 > 0 such that

[T fpwam = [1P*(6f)Pwdm
= [(P'oP" + Q") flrwdm
[16P" + @)1 = QU6P) fPwdm
> e [ I~ Q"¢P)fPwdm
> o5 [ 1L+ Q6P — Q"6P")f Pwdm
— / | f[Pwdm.

This implies (1). Lemma 4.1 is proved. O

We use Lemma 4.2 to prove Theorem 4.3.

Lemma 4.2 Let 1 < p < co. Suppose w,logw € L' and |v|Pw € (4,). Suppose
w = |h|P and |v| = |k| for some outer functions h and k. Let ¢ be a nonzero function
in L°° and let

kh
=0
Then the following properties are equivalent.

(1) Ty is a left invertible operator on ranP".
(2) Ty is a left invertible operator on HP.

16



Proof. Suppose (1) holds. By Lemma 4.1,

[P +@)sFlopudm > & [ |5Flopudm
&2 [IPfPloPwdm, (f € IF(juPw)).

\

Hence,
[ 1650+ Gl olrwdm > & [ |fooPwdm,  (fo € H(olw), g0 € H(jow)).

Hence,

p

kh _
/‘éﬁﬁkhfo + khgo| dm > 52/|khfo|” dm, (fo € H*(|kh["), go € H{(|kR[")).

Since khHP(|kh|P) = HP, it follows that

[ 1wfi+giltam > < [ |fiPam,  (fi € B, g1 € H).

Hence,
[1wP +Q)fpdm > e [ |fpdm, (f € 17).
By Lemma 4.1 with v = w =1,

[ 1Tufldm = e [ 1fPdm, (£ € B?).

This implies (2). The converse is also true. Lemma 4.2 is proved. O

If P € B(LP(w)), then Ty is an invertible operator on ranP" if and only if
PY¢P"+Q)" is an invertible operator on L?(w) if and only if P+ Q" is an invertible
operator on LP(w), since P'¢P" + Q" = Ty P* + Q° ,(¢P" + Q")(I — Q"¢P") =
P ¢P® + Q°, and (I — Q*¢P¥)"! = I + Q°¢P" (cf. [11, p.393], [12, Vol.1, p.274]).
Hence, we consider only the invertibility of Tj. Corollary 4.4 is the theorem of
Rochberg and Simonenko (cf. [13], [1, p.216|, [12]). Their proof did not use the
theorem of Widom and Devinatz. We use the theorem of Widom and Devinatz to
prove Theorem 4.3.

Theorem 4.3 Let 1 < p < oco. Suppose w,logw € L' and |[v|Pw € (A,). Let ¢ be a
nonzero function in L°. Then the following properties are equivalent.

(1) Ty is an invertible operator on ranP*.

(2) ¢ = vexp(U — iV), where v is a constant with |y| = 1, U is a bounded real
function, V is a real function in L' and |v|Pwexp(pV/2) € (4,). (V denote the
harmonic conjugate function of V'.)

17



Proof. Suppose (1) holds. Since logw € L', there is an outer function h satisfying
w = |h|P. Since log|v| € L', there is an outer function k satisfying |k| = |v|. By
Theorem 2.4, ranP’ = YHP(w) = vH?(jv[Pw) and LP(w) = HP(w) ® ¥H{(w) =
ranP? @ pHg(w). Since 1 € HP(|v[Pw), v € vHP(|v[Pw) = ranP”. Since Ty is
invertible, there is an f € ranP” such that T§f = v. Hence, P'(¢f) = v. Hence,
of —v=Q"(¢f). Hence, there is a g € ran@" such that ¢f = v+ g. Let

Fh
=0

Then ¢ fkh = ¢fkh = (v + g)kh. Since f € ranP” = 2HP(w), it follows that
It ¢ HP(w) = h™'H?. Hence, I ¢ HP. Since g € ranQ® = $H}(w) = L HJ, it
follows that 2 € HY. Let Fy = ¥ Then F, € H?, and

v
k

—  gkh
WFy — kh = — c HE.

Let ¢ be the O0th Fourier coefficient of kh. Since kh is an outer function, ¢ # 0. Then
YFy—¢c € E’;. Hence, Ty Fy = ¢. Hence, 1 € ranT,,. Hence, there is an F' € H? such
that 9 F — 1 € HY. Hence, 1)zF — z € HP. Hence, Ty(2F) — z is a constant. Since
1 € ranTy, this implies that z € ranTy. Suppose 1,z,...,2" € ranTy and there are
constants ¢y, ¢y, ..., C, such that 12" F — 2™ — (¢;2" '+ ¢32" 2+ ...+ ¢,) € Hy. Then

P2" I — 2" (12" o™ L+ cp2) € HE.
Let ¢, 1 be the 0th Fourier coefficient of this function. Then
P2"E — 2" (2" 4 2™ o a2+ ) € HE.

Hence,
Ty(z" T F) — 2" — (c12" + 2™ 1 + .. 4 a2 + Cag1) = 0.

Since 1, 2, ..., 2" € ranTy, it follows that 2"*' € ranTy. Hence, 1,z,2%, ... € ranT).
Hence, ranT), is dense in H? (cf. [9]). By Lemma 4.2, T, is left invertible. Hence,
Ty is an invertible operator on H?. By the theorem of Widom and Devinatz (cf. [1],
[11], [12]), ¥ = m exp(U —iV,), where ; is a constant with |y,| = 1, U is a bounded
real function, V; is a real function in L' and exp(pVy/2) € (4,). Hence,

kh 5
¢ =¥ =mexp(U —iV).
There are constants v, and 73 with |ys| = |y3] = 1 such that
h? = s exp (logw + i(log w) ),
k = 73 exp (log |v| + i(log [v]]) .
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Hence, there is a constant 4 with |4 = 1 such that

2
¢ = 71% exp(U — iVp) = ygexp (U —i(Vy — log |v|* — log w2/pf> .

Let V =V — log |v]? — logw®®. Then ¢ = v4exp(U — iV) and |v[Pw = exp(p(Vy —
V')/2). Hence, |v[Pwexp(pV/2) = exp(pVy/2) € (4,). This implies (2).

Conversely, suppose (2) holds. By the similar calculation, (2) implies that ¥ =
1 exp(U — iVy), where 7, is a constant with |y;| = 1, U is a bounded real function,
Vo is a real function in L' and exp(pV;/2) € (4,). By the theorem of Widom and
Devinatz (cf. [1], [11], [12]), Ty is an invertible operator on HP. By Lemma 4.2, T}
is a left invertible operator on ranP?. It is sufficient to prove that ranTy is dense in
ranP?. Let n be a nonnegative integer. Then there is an F' € H? such that T, F" =
P(2"kh). Since P(¢F — z"kh) = 0, it follows that Y F — 2"kh = ¢ 2 F — ;"kh € HE.
Hence, 2£ — znk € Hf(w). By Theorem 2.4, ££ — 2"y € 2HE(w) = ker P°.
Let G = *£. Then G € 2HP(w) = ranP’. Since ¢G — z"v € ker P?, it follows
that TG = P°(¢g) = P°(2"v) = z"v. Hence, z"v € ranTy, (n = 0,1,2...). Let
g € ranP'. Then v~'g € k7'H?(w) = HP(|v|’w). Hence, there is a sequence
of analytic polynomials f, such that ||f, — v g||Le(jopw) — 0, (n — 00). Hence,
|vfn — gllze(w) — 0. Therefore ranT} is dense in ranP”. This implies (1). Theorem
4.3 is proved. 0O

By Theorem 4.3, T} is invertible on ranP" if and only if Ty is invertible on
H?(|v|Pw). Hence, it is proved that the condition "7}, is an invertible operator on
HP” is also equivalent in the theorem.

Corollary 4.4 Let 1 < p < 0o. Suppose w € (Ap). Let ¢ be a nonzero function in
L. Then the following properties are equivalent.

(1) Ty is an invertible operator on HP(w).

(2) ¢ = yexp(U — iV), where v is a constant with |y| = 1, U is a bounded real
function, V is a real function in L' and wexp(pV/2) € (A,).

Proof. Let v = k = 1. By Theorem 2.4, ranP = ranP’ = 7H?(w) = H(w).
Theorem 4.3 proves Corollary 4.4. 0O

Corollary 4.5 Let 1 < p < oo, and let 1/p+ 1/q = 1. Let o be an outer function
such that w = |a|72. If w@ P2 € (A,), then P* is a bounded projection from
LP(w) onto HP(w) such that (P*)* = P*, on LP(w)NLYw). Then the following
properties are equivalent.
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(1) Ty is an invertible operator on HP(w).
(2) ¢ = vexp(U — iV), where v is a constant with |y| = 1, U is a bounded real
function, V is a real function in L' and w?P)/2exp(pV/2) € (4,).

Proof. By Corollary 3.4, P* is a bounded projection from LP(w) onto HP(w)
such that (P*)* = P?. In the proof of Theorem 4.3, let v = k = @. Then

*h
b=dr

By Theorem 4.3, T¢ is invertible on HP(w) if and only if ¢ = yexp(U — iV), where
7 is a constant with |y| = 1, U is a bounded real function, V is a real function in
L' and w?7P)/2 exp(pV/2) = |v|Pw exp(pV/2) € (A,). Corollary 4.5 is proved. O

Corollary 4.6 Let ¢ be a nonzero function in L®. Let w € L'. Suppose w = |a| ™2
for some outer function o. Then P® is a self-adjoint projection from L?(w) onto
H?(w). Then the following properties are equivalent.

(1) Tg is an invertible operator on H?(w).

(2) T, is an invertible operator on H*.

(3) ¢ = vexp(U — iV), where v is a constant with |y| = 1, U is a bounded real
function, V is a real function in L' and ¥ € (As).

Proof. By Theorem 4.3, T} is invertible on ranP’ if and only if T, is in-
vertible on HP(|v|Pw). Hence (1) is equivalent to (2). By Theorem 2.7, P* is
a self-adjoint projection from L?(w) onto H?(w). Since p = 2, it follows that
w2 P)/2exp(pV/2) = €¥ € (4,). By Corollary 4.5, (1) is equivalent to (3). Corollary
4.6 is proved. O

By the theorem of Widom (cf. [1, p.68], [12, p.260]), the spectrum of
Ty € B(H?(w)) is connected.

5 Invertibility of R}

In this section, we assume that v is an outer function. We do not assume that
PY € B(LP(w)). Hence, the results in this section do not follow from the theorem
of Rochberg and Simonenko or the theorem of Widom and Devinatz (cf. [13], [1,
p.216], [12]). Let 1 < p < co. Let w, logw € L'. Let ¢ € L™. The operator R}, is

defined as a bounded operator from H?(w) to LP(w)/2Hf(w) by
U—
3 = of + V), (f € H(w)).
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If P' € B(L?(w)), then ker P' = 2H{(w). If w = |a|™* for some outer function e,

then R3 is a bounded operator from H?(w) to LP(w)/K§(w) such that

of = of + Ki(w), (f € H"(w)).

If P* € B(LP(w)), then T§ is an invertible operator on ranP"” if and only if RY is

an invertible operator from HP(w) onto LF(w)/2Hg(w). Theorem 4.3 for an outer
function v follows from Theorem 5.2. Theorem 5.2 with P? € B(LP(w)) follows from
Theorem 4.3. We use Lemma 5.1 to prove Theorem 5.2. Nakazi [9] considered the
case when v = 1, and proved Lemma 5.1. We use Lemma 5.1 to prove Theorem 5.2.

Lemma 5.1 Let 1 < p < co. Suppose w = |h|P for some outer function h € HP,
¢ € L™ and v is an outer function. Then the following conditions are equivalent.

(1) Ry is an invertible operator from HP(w) onto LP(w)/Hf(w).

(2) ¢ = ko(ho/ho)(h/h), where ko is an invertible function in H® and hy is an
outer function in H? with |he|P € (A4,).

(3) ¢ = vexp(U — iV), where v is a constant with |y| = 1, U is a bounded real
function, V is a real function in L' and wexp(pV/2) € (A4,).

Theorem 5.2 Let 1 < p < oo. Suppose w = |h|P for some outer function h € HP,
¢ € L™ and v is an outer function. Let

=9,
v

Then the following conditions are equivalent.

(1) Ry is an invertible operator from HP(w) onto LP(w)/2Hy(w).

(2) ¢ = vexp(U — iV), where v is a constant with |y| = 1, U is a bounded real
function, V is a real function in L' and |v|Pwexp(pV/2) € (4,).

Proof. If R} is left invertible, then for any f € HP(w) and g € Hy(w),

/‘gb%wa?pwdm = / ‘¢f+ %y‘pwdm > 5/ | f|Pwdm,

1
ok /k
is also true. Hence, Ry is left invertible if and only if R

is left invertible. The converse

1
ok/k

where ¢ is a positive constant. This implies that R
is left invertible. Since

()W) = LK), (B ()" = L(w)/Ki(w),
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it follows that (R%)* is a bounded operator from K(w) to L%(w)/Kg(w). For all
F € K9%(w) and all g € H?(w),

(o (57) - 5) = (55 o)
= /%F@wdm
= (62F+ K3, ).

Hence, B
(RL)" (%F) _ &%F +KI(w), (F € K%(w)).

If Ry is a right invertible operator from H?(w) to LP(w)/ZHg(w), then (R3)* is a

left invertible operator from ?K?(w) to L(w)/Kg(w). Hence,

_ q
/‘¢%F+G‘ wdm > 5/ |F|*wdm, (F € K%w), G € K§(w)).

Hence (Ry;,,)* is a left invertible operator from K?(w) to LY(w)/Kg(w). Hence,
Ry, ), is a right invertible operator from HP(w) to LP(w)/H§(w). The converse is
also true. Hence, Ry is right invertible if and only if R;w /v is right invertible. Hence,
Ry is invertible if and only if Ry, , is invertible. By Lemma 5.1, Ry, , is invertible
if and only if

v
v

¢ = ¢~ = yoexp(U — iVh),

where g is a constant with |y| = 1, U is a bounded real function, V; is a real
function in L' and wexp(pV/2) € (4,). Since v is an outer function,

v* =y exp(log [v]* +i(log [v]*) ).

Hence,
¢ =y2exp (U —i(Vo — log [v]*) ) .

Let V =V, — log |v[2. Then ¢ = v, exp(U — iV), and

[oPwexp(pV/2) = w (o) = wexp(pVo/2) € (4,)

Theorem 5.2 is proved. O

By Theorem 4.3 and Theorem 5.2, if P’ € B(L?(w)) and v is an outer
function, then Ty is invertible if and only if Ry is invertible.
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6 Norms of Hankel Operators Hj

In this section, the operator norm inequality for the generalized Hankel operator
H} is presented. Let Q" = I — P'. By Theorem 2.3, if Q" € B(LP(w)), then
[v[Pw € (Ap). For ¢ € L™, the generalized Hankel operator HY is defined as a
bounded operator from ranP? to ker P¥ by

Hyf =Q"(¢f), (f €ranP?).

If we (4,), @ =1— P, and ¢ € L*, then the original Hankel operator Hy is
defined as a bounded operator from HP(w) to H?(w) by

Hyf = Q(¢f), (f € HP(w)).

We use Lemma 6.1 to prove Theorem 6.2.

Lemma 6.1 Let1 <p < oo, and let 1/p+1/q=1. Suppose w € L', w > 0,logw €
LY. For a function k, the following two properties are equivalent.

(1) k€ Hy, and k], < 1.

(2) There are f € HP(w) and g € Kj(w) such that ||fllpw = [|9llgw < 1, and
k= fow.

Proof. Suppose (1) holds. By the factorization theorem, there exists an
inner function j and an outer function ky € H' such that k = zjky. Let h € H? be
an outer function such that w = |A[P. If f = h~1jks/?, then f € HP(w). By Lemma
2.5,if g = wilhzké/q, then

h? 1-prra h? q q
gc Eh Hy = EHU(U’) = Kj(w),

fllpewe = llgllgwe = llElls < 1, and k = fgw. This implies (2). Conversely, sup-
pose (2) holds. Since K¢(w) = 2 H{(w), it follows from (1) that gw € hPH{.
Hence, fgw € W HP(w)H{(w) = h*Hy(w) = H}. By the Holder inequality, ||k|; =
Ifgwllr < |Ifllpwllgllpw- This implies (1). Lemma 6.1 is proved. 0O

Theorem 6.2 Let 1 < p < 0o. Suppose ¢ € L™, and w is a positive function such
that w, logw € L'. Let log|v| € L*. If |v[Pw € (4,), then the following inequality
holds.

1 Hyll(r2y < |HgllBzew) < 1Q°IB@e )| HgllB(z2)-
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Proof. By Theorem 2.3, if |v|Pw € (A4,), then P’ € B(LP(w)). We shall prove

the first inequality. Let & be an outer function such that |v| = |k|. Hence,
1 H ||B Lr(w)) = sup [E2) f“pw
feranP||f|lp,» <1
N
> sup [0~ qudm
feranP,||fllp,w <1LgE K (w),|lgllq,w <1 v
k
~ sup|[ Q”(qﬁf);gwdm‘.
9

By Theorem 2.4, ranP’ = “HP(w). Hence, P'(¢f)% € HP(w). By Lemma 2.5,
if g € K¢(w), then g € ®H{(w). Hence, gw € h?H{(w). Hence, P'(¢f)igw €
h*Hy(w) = Hj. Hence,

/d)%fgwdm‘ .

|1 H§ || B(zr(w)) > sup
1.

Let F = %f. Since ranP’ = 7HP(w), it follows that f € ranP" if and only if
F € HP(w), and || f|[pw = ||F||pw- Hence,

| HgllB(Lr(w)) > sup
FeH?(w),||F||p,w <1,9€ K& (w),|lgllq, <1

/ ¢ngm‘.
By Lemma 6.1 and the theorem of Nehari (cf. [1], [11], [12]),

| HllB(zew)) > sup
ke HY JIk{l: <1

/ ¢kdm‘ — dist(¢, H®).

Next we shall prove the second inequality. If f € ranP" and G € H*, then Gf €
ranP’ = YHP(w). Hence, v 'Gf € k™'H?(w) = HP(|v|pw). Since |[v[Pw € (4,),
it follows that P*(Gf) = vP(v 'Gf) = vv 'Gf = Gf. Hence, Q*(Gf) = (I —
P*)(Gf) = 0. Hence,

| H |l Bzrw) = sup |H f
FeranP || lpw<1

- sup  [1Q°(8S)lpw

feraan7||f||P:w§1

— sup 1Q°((¢ — G) f)llpw

feranP? || f|lp,» <1

< @°MBe@ylld — Glleo-

lpw

Hence,

g[8y < 1Q°BErw) Jmf, 16— Glloo = Q|| Bzr@ydist(e, H>).
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Hence,
dist(¢, H*) < ||Hgllp(zo@w)) < Q°||(zrw)dist(d, H?).

If v = w = 1, then the equalities hold, and hence we have the Nehari theorem:
| Hyl| 52y = [|Hgllpz2) = dist(¢, H®). Theorem 6.2 is proved. O

Corollary 6.3 Let 1 < p < co. Suppose ¢ € L™, and w is a positive function such
that w, logw € L'.

(1) If w=|v|™ for some function v, then HY is a bounded operator from ranP" to
ker PY satisfying

1

H 2 < Hv Plw < IEEEIRY
15l B2y < [[HgllBrr@w) < sin(7/p)

| HyllB(L2)-

(2) If w = |a|™ for some outer function «, then Hg is a bounded operator from

H?(w) to KZ(w) satisfying
| H3 || Bz2wy) = 1 HpllB(22)-

Proof. It is sufficient to prove (1). By Lemma 2.2, if |v|Pw is a constant, then
|P’||B(rr(w)) = ||PllBr)- By the similar proof, it follows that [|Q”||p(re(w)) =
|Q||B(rry- It is known that ||P|| sy = ||Q|Bezey (cf. [5, Vol.I, p.79]). By the theo-
rem of Gohberg, Krupnik, Hollenbeck and Verbitsky (cf. [5], [6]), || P||p(r) =

1
sin(/p)*
By Theorem 6.2, Corollary 6.3 is proved. O
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