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THE INITIAL VALUE PROBLEMS
FOR QUASI-LINEAR WAVE EQUATIONS
IN TWO SPACE DIMENSIONS WITH SMALL DATA

AKIRA HOSHIGA

Department of Mathematics
Hokkaido University
Sapporo 060 Japan

Abstract. The present paper studies the lifespan of solutions to quasi-linear
wave equations in two space dimensions. We shall show a lower bound for
the lifespan. We shall also show that if the non-linear term satisfies “null-
condition”, the equations have global solutions. Our basic idea is to solve

ordinary differential equations which are constructed from wave equations.

1. Introduction and Statement of Results. We study the lifespan of solutions of

quasi-linear wave equations in two space dimensions, with small initial data, as following

type;

COu(z,t) = anp(u')0a0pu(z,t), (z,t) € R x [0,00), (1.1)
u(z,0) = ef(z), Oou(z,0)=c¢eg(z), =€ R (1.2)

Here aqp(u') = ago(u') and we denote 8 = 8/0t, §; = 0/0=; (i = 1,2) and O =
85 — 87 — 82. The gradient of u is denoted by u' = (8u, 81u, §3u). We use the summation
convention with subscripts «, 8- ranging over 0, 1, 2 and ¢, j,- -+ over 1,2. Moreover we

assume that

£9€C(R?) and f(z)=g(e) =0, for |o|>M (13)

aap(p) € C=(R®) (1.4a)



aap(p) = O(p|*)
laas(p)| < 1/2

for |p| < 8, where § is a small positive number.

(1.4b)

(1.4¢)

The supremum of all 7 for which C*(R? x [0,7))-solution of the Cauchy problem
(1.1), (1.2) exists is called the “lifespan” T,. When T, = oo, we say the Cauchy problem

(1.1), (1.2) has a global solution.
M. Kovalyov has proved in [12] that

limiélfe:2 log(1+T.) = C,

(1.5)

where the constant C depends on f,g and a,g. The first aim is to determine the constant

explicitly by Friedlander radiation field. Let U(z,t) be a solution of linear wave equation;

OU(z,8) =0, (=,t) € R? x [0, 0),
U(z,0) = f(z), 6oU(z,0)=g(z), =¢cR?

Then we can define the Friedlander radiation field F(w, p) by
F(w,p) = 1-1-1320 M2 (z,t), z=rw, we St p=1r—t.
F is explicitly expressed by
Forp) = 575 [ 0= ) R, ) = 0.y, 1)
where R;, is Radon transform of h € C(R?),d.e.,
Ri(w,s) =/ h(y)dS,.
w-y=s

Note that F satisfies

F(w,p)=0 for p= M,
10,7 (w,p)] < C(1+ o)/~

(1.6)
(1.7)

(1.8)

(1.9)

(1.10)
(1.11)



For the above facts, see Hérmander [3].

We write the non-linear term in (1.1) as

00 (1')0u B = Zepys(8y0)(85)(8apu) + O(Io' [P, (1.12)

where

%aqp(u')
Doy = ————"—r . 1.13
15 = B8)0(051) o (19
Thus we define an important quantity
_ O 2

H= max {-0(-1,0)0,%(w,0)0F(w,0)}, (1.14)

where
C(X) = Zoprs XaXp X, X5, X =(Xo,X1,X2), (1.15)

and C(—1,w) is defined by setting Xo = —1, (X1,X;) = w € St. By (1.10) and (1.11),

we find that H is well-defined and non-negative.

Theorem 1.  liminf e?log(1+7T.) > T];I—

Proof of this theorem is basically owed to the method in F. John [6]. When a,g(u') =

O(|«'|) in three space dimensions, he proved that

. . >
hlzn_)lgxfelog(l +T.) 2 ek

where

* _ _:_l_ . 2
H _peg}g)ecs’{ 20( 1,w)85F (w,p)}.

We next study the interesting case H = 0. The condition is equivalent to the condition (i)
f and g vanish identically or (ii) C(—1,w) = 0 for any w € S* (see Appendix). Under the
condition (i), the Cauchy problem (1.1), (1.2) has a trivial global solution « = 0. Under the
condition (ii) which is called Klainerman’s null-condition, we find from (1.15) that C(X)



is devided by X2 — X? — X2. Hence a,s(u')0,0s% is represented as a linear combination

of the followings:

Cap(0a0pu){(80u)? — (81u)® — (82u)?} + O(|'[P["]), (1.16a)
Cap(0aw)0p{(B0u)* — (810)? — (82u)7} + O([w'[*|w"]), (1.16b)
Cop(0av)(fpu)u + O(|u'P|«")), (1.16¢)

Ca(Oau){(9pu)(0105u) — (05)(9s O5u)} + O(lw'Plu"]), B,7,6=0,1,2,  (L16d)

where C,g and C, are constants.
Theorem 2. If H = 0, there exists an g > 0 such that T, = co for any 0 < ¢ < &p.

S. Klainerman [11], L. Hérmander [3], D. Christodoulou [1] and F. John [6] proved
independently that the null-condition implies global existence for small data in three space
dimensions. When the non-linear term is cubic form of ' in two space dimensions, P. Godin
[2] proved the same results by making use of L1-L* estimates studied in L. Hormander
[4] and S. Klainerman [9]. Theorem 2 is obtained along the same lines as in P. Godin [2].

We will prove Theorem 1 in section 2 and Theorem 2 in section 3.

2. Proof of Theorem 1. First we introduce the generalized Sobolev space. Denote by
r'y,Ts,--- , Tz, the vector fields '
Lo = tao -3 2101 + 2282, L,‘ = 23,'(90 + t0,~ ('I- = 1, 2),
Q =210, — 2,81, 0o,01,0,,

respectively. These operators satisfy commutation relations

[I‘p,D] =FPD— DI‘F = 261?':]’ p= 1’2,... ,7’

[r,T] = 3T, [T, 8] = 6. (2.1)



3 stands for finite linear combination with constant coefficients. For o € Z% (Z4 is the

set of non-negative integers), we put I'? =T'7'I';?---I'7". We df:ﬁne the norms

@Ol = 3 IIT70(t)llz2 (=), (2.2)

o<k

@l = D 1T, )l (m2). (2.3)

lo|<k

For convenience, when k& = 0, we omit sub-index. Following propositions are very impor-

tant in proving our theorems.

Proposition 2.1. (Klainerman’s inequality [10]) For smooth function v(z,t) (z € R*,n >

2),
[o(2, )] < Ca(1+ [2] + )DL+ [t = [=]]) 2 ][o()] 13141, (2.4)

where [s] stands for the largest integer not exceeding s.

Proposition 2.2. (generalized energy estimate) If the solution u of (1.1), (1.2) exists in
C>(R? x [0,T)) and satisfies

sup |u'(s )I[L] <1, sup |u'(s)]<é for 0<t<T, (2.5)
0<s<t 0<s<t
then
t
2
o' ®)llx < Crllw'(0)]] eXP(Ch/O [@/(8)|24215), (2.6)

where 6 is the one in (1.4) and k € N.

We prove Proposition 2.2. Multiplying Lv by 0pv and integrating with respect to @

over R2, we arrive at the “energy identity” for a scalar v:

% /R 1(0av)(8av) ~ a00(80v)? + az; (80)(8;v) }de = /m J(t,2)dz,

where I = 00 — aqp(u')0.0s and
J = 2(00‘1))(L’U) - (00(100 + 2(9.'0.,'0)((901))2 - 2((9;0.,',')((901))(6;1))
+ (60&;5)(8{@)(0}’12).

(2.7)



Using assumption (1.4c), we get

t
@I < Sl @)F +2 [ ds [ 17(s,2)ldz, (2:8)
0 R3
which implies
. t
W OIP <O +0 [ W(9)lfagn (o) . (29)

Using (1.1) and (2.1), we verify that for |o| < k
IT7u = B¢ ()D€ Oy u)(T42 0y w) - - - (T4 0, ), (2.10)
where ¢ € C* in o' is formed from the a,g(%'), and g and the multi-indices ¢; satisfy
3<g<k+2, |&|+ b+ -+ Sk+1 (2.11)
By (2.9) we can assume that
k+1

6l S[5—] for p22. (2.12)

Therefore we find from (2.7), (2.10), (2.11), (2.12) and (2.5) that
/w |7(s,2)ldz = O(['(5)|{agayll2'(s)I1%)-
Applying (2.8) to v =I'“u and combining with (2.9), we get
W < GO+ [ 6yl Edo)

Therefore Gronwall’s inequality yields (2.6).

In order to prove Theorem 1, it is sufficient to show following lemma.

Lemma 2.1. For any k 2 9 (k € N), B > H and m > 0, there exist J,(B) > 0 and
ex(m, B) > 0 such that if

. 1
7 < min{7,, —1 + exp( Ber )} (2.13)
and
me
|u’(t)l[_h_-§l] < m for 0<t<T, (2.14)



then for any 0 < € < &,(m, B)

J;,(B)e
Iu'(t)|[h_;1-_1] < m for 0<t<T, (2.15)

where H is given in (1.14).
We shall prove Theorem 1 by assuming Lemma 2.1. Let U(z,t) be the solution of
(1.6), (1.7). We find from (1.4b) that

I ulizo = 77U |¢=0 + 0(63) for any o € Z:’,_. (2.16)

Therefore by (2.16)
' (0)|]x < Chre.

Moreover by k > 9 and (2.4)
[#'(0)]242) < [/ (0)]a—2 < Chllw'(0)][x < Che. (2.17)

Letting m > max{2J3(B), Cr}, we get for sufficiently small 7

me
|u’(t)l[]._-2u] < (1—"}'_—5-1—/_2- for 0<i<T. » (2.18)

If (2.18) holds for any 7, then T, = co. Hence there exists a 7 (0 < 7 < T.) such that
(2.18) holds and

W (Mlg) = G - (219)

1
Suppose that 7 < —1+ exp(ﬂ), then we can apply Lemma 2.1 and obtain
€

Ju(B)e me

<
(1+t)1/2 2(1+t)1/2 for 0K<ti< .

(@), <
This contradicts (2.19). Therefore we have
1

T.>72 -1+ exp(B—ez) for 0<e <ep(m,B)."

Since B is arbitrary except for condition “B > H”, Theorem 1 follows.



Now we prove Lemma 2.1. First we verify that (2.15) holds for 0 < ¢ < ¢™1. By (2.17).
we get

|]u'(0)||1. < Che.

Then for sufficiently small ¢
| [l ()l < 2Cie,

also by (2.4) and k > 9
2C3e
lu'(t)l[hinll < m‘z')l—/; < 6,

for sufficiently small €. Using Proposition 2.2, we find that these inequality will continue
to hold as long as

4C7e? log(1 +t) < log 2.
Therefore if we take ¢ such that
4CTe? log(1+¢71) < log?2,

(2.15) holds for 0 < ¢t < e~ 1.
Moreover we have u(z,t) = 0 for |2| > £ + M (see [8], Appendix 1). Therefore we can

restrict ourselves in the region
elgt<r, |e|<t+ M. (2.20)

In order to show (2.15) in the region (2.20), we introduce “pseudo characteristic rays” in
8 y

(r,t)-plane, which is given by solutions of ordinary differential equations;

dr
i k(7 1), (2.21)
where w € S? is fixed and
K(rt) =1+ 30(~1,0)(00u)" (2.22)

For each point (r,¢) with » > 0, ¢™! < ¢ < 7, there exists such a curve through this
point. Continuing this curve backwards, we arrive at a point (»1,%;) for which either

7y =0,y > e torry 20,¢; = et We call Sy the solution of (2.21) with ¢; — ry = A.



Along Sy, we find that

!d(t (2.23)

___’\)! 11— C’|u'|2 <

[t —r— Al < Cm2ellog(l+1t) <

(2.24)

where we have used (2.21), (2.22), (2.14) and (2.13). We take ¢4(m, B) such that
ex(m, B) < §m™!, then Proposition 2.2, (2.14) and (2.13) yield

2.2 2

. t
[|v' ()] < Ckeexp(Ck/ = ds) < Cre exp( Crm
0 1 + S

Therefore by £ = 9 and Proposition 2.1

Cheexp(g—"ﬂ?-)
1 . ! B
|'"' (t)I[Lzztl]_Fz < l'“ (t)Ik—z < (1 +t)1/2(1 + |t _,.l)l/z ‘

(2.25)

We set
Cm? 2Ckm

Ao = B+ exp(

)- (2.26)
Then by (2.24), (2.25) and (2.26) along Sy with A > Ay

Cksexp(g"é”—:-) < Chre
(1+8)2(1 + exp(2Gm2))1/2 ~ (1+8)1/2

|u'(t)|[1.%_1_] < for 0<t< T

This implies that (2.15) is valid along S with X = Ao, then it is sufficient to show (2.15)
along Sy with V—M <AL Ao., eTlgt< T

For functions ¢(z,t;¢),¥(z,t;¢) we write ¢ = O*(¢), if for any k = 9,B > H and
m > 0, there exist Ji(B) > 0 and €x(m, B) > 0 such that

[go(?-,t;e)] < Jk(B)¢(z;t;e) for 0< e <ex(m,B),

as long as (2.13),(2.14) hold, along Sy with —M < A < Ag and ¢! € ¢t < 7. Then our
purpose is to prove

[ (t) 242y = O (e(1 +1)"V/?). (2.27)
If we take ex(m, B) < A;l/p, then we find

Ao = O0%(e7?) for fixed p> 0. (2.28)



For later we shall assume that p < % We find from (2.28) and (2.24) that
t=r+0%(c7?), rl=t"140%(Pt7Y), PP =24 O (e,
Then it follows from (2.25), (2.29) and (2.28) that

|u'(t)|[1._42._1]+2 = O*(el—pt—l/z)-

Since

t+M
I u(z, t)| = , - / wi 6T u(sw, t)ds

t+M _
= 0(/ Iul(t)l[l:ztl]_*_zds) — O*(€1—2pt—1/2)’

k
for |o] < [Ll] + 2, we have

Iu(t)l[;_._;_,]_” = 0*(51"2pt—1/2),

The operator §, can be written as

1 i
0 = —wilo + +Li + -

t+ tt+r) t?

(see [6], Appendix 2 and [7]) and these representations yield
8av = —woOgv + O(t ™ o|1) = ~wabrv + Ot~ 1|v]y),
Oav = O(=—Iol)
al = It _ 7'| v]1),
8x0pv = wawg83v + O(t ™ '|1) = wawpd2v + Ot v'|1),
(8o + 8, )v =001 v]1), (80+8,)v=0(t"%v|s),

where 0, = w;0;.

The operator L can be written in the form

Lv = 2t"Y%(8 + 18, ) (£ 28ov) — (80 + 8, ) v 4+ 001)

— 2(x — 1)(8o + 8, )8ov — ‘5”—t-i"i_r, I; 'v+ =L

— 0 (2!)0aBpv + O(—1, )83

10

ot —_—T 00 = _‘;E'(tLD - z,-L,-),

(2.29)

(2.30)

(2.31)

(2.32)
(2.33)
(2.34)

(2.35)



Then by (2.29), (2.33), (2.34), (2.35) and (2.30)
d /2 1472 .(1-3/2
E(t 00’0) = Et Lv+ 0 (t l'vlz).

E+1
2

We apply (2.36) to v = I'"u with |o| < | ] below. When v =T7u

/20607 u(t)]i=e-1 = O™ ?|u' (67 |pag)) = O(e).
Now we show (2.27) by induction. We first show
[u'(t)] = O*(et™*/?).

Let v = w in (2.36). Then it follows from (2.31) and Lz = 0 that

%( Y2890u) = O* (e}~ ?7¢72).

Integrating (2.39) from e~ to ¢, we find from (2.37) that

t

1£/265u(t)] < |8"/260u(s)], 2ot + O ( /

which implies

Sou(t) = O*(et~/?).

Using (2.32), (2.31) and (2.41),

Ou(t) = —wibou + O(t™*|ul)
= 0" (et™Y?) + 0*(e'"t7%%) = 0* ().

Next we shall show

[u'(t)]s = O*(et~Y/?).
We begin the proof of (2.42) by showing

8o 0pu(t) = O* (et™1/2).

11

61_2”3“2d3) = 0*(¢),

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)



Letting v = Gpu in (2.36), it follows from Lu = 0, (1.15), (2.32), (2.34), (2.30) and (2.31)

that
L(ao‘u) = D(ao'u) - aaﬂ(’u')aaapaou

= (Ooaap(u'))0a0pu

= Zapy500{(05u)(054)}0a0pu + O(|u'|*["|?)

= 20(~1, w)(9gu)*dou + O(|w'|*[u"* + ¢t [u]s |u'|})
= 2C(~1,w)t "1 (t502u)? pu + O* (3~ 1P¢2).

Then we write the differential equation (2.36) as

%Wl(t) = C(~1,w)t™ YWy (t)2 Oou(t) + O*(e'~Pt73/2), (2.44)
where
Wi(t) = t*/262u(t). (2.45)
Notice that by (2.30),
Wi(t) = 0*(e'7?). (2.46)

The following facts play an important role in our proof.

e85V (=,8) — (=1)“0;F(w, p)| = O(er™*/?), (2.47)
|05u(z, ™) — eBEU (=, e71)| = O(e?), (2.48)
with £ = 1,2. (2.47) can be proved by using Lemma 2.1.1 in [3]. We prove (2.48) for £ = 1

because another case can be proved in the similar way. By (2.16), the function u — U

satisfies

O(u — €U) = aaqp(v')0:0pu, (2.49)
|160%(0) — €80T (0)]| = O(&®). (2.50)

Applying Proposition 2.1 and classical energy estimate to (2.49), (2.50), we find that

|Bou(e™") — €0l (e™7)| < C(1+ &™) ?||Bou(e ™) — €U (7))

-1

< C<M2([100u(0) — e8oU(0)]) + / " llaap(u'(5))0 B u(s)ds).

12



Since 0 < s < €71, we find that

1/2
|leap(w'(5))0uBpu(s)|| < C(/;ﬁ Iu'(s)[?,%;]ds) = 0(533_1/2).

Therefore we have

-1

|8ou(e™) = eBoU (™) = O(e7/% + £*/? / 25712 ds) = O(e%).
0
This implies (2.44) with £ = 1.
It follows from (2.40), (2.47) and (2.48) that
tY28gu(t) = (7)Y 28pu(e™?) + 0" (%/?)
= (e™H)2e8,U (1) + O*(e3/?)

= (7t = A)Y2e0U(e71) + 0* (%) + O({(e™1)/? — (67 = A)!/%}¢)

= —£8,F(w,—A) + 0" (e3/?).
On the other hand, by (2.47) and (2.48)
Wi(e™) = (™) gule™)
= (7)Y 22U (™) + O(e5/?)
= (7t = \)Y2eB3U (™) + O(%/2) + O({(e"1)? — (71 = A)Y2}e)
= 82 F(w, ~A) + O(%/?).
Then by (2.46), (2.51) and (2.52) we rewrite (2.44)

LWs(t) = —e0(~1,0)0,F (e, ~ Nt Wa(1)? + O (224~ 4 gT/3-30p)
Wi(e™?) = e82F (w, —A) + O(*/?).
If the solution Wy(t) of (2.53), (2.54) satisfies
Wi(t) = O*(e),
then we obtain (2.43). Indeed, using (2.45), we have

au(t) = O*(et™/%),

13

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)



then (2.34), (2.30) and (2.56) yield (2.43).
We shall show (2.55). Multiplying sgnW; to both sides of (2.53),

ZAWL)] < ~e0(=1, )8, F(w, -\ WA + L),

where

L(t) = O*(e'"P473/2 4 £T/23- %7471,

Note that

t ,

/ |L(s)|ds = O*(5/%).
e~1

Replacing if necessary W; by —W;, we may assume

W]_(E,'—l) 2 0

We set

B(t) = W1(€—1) + Jk(B)€5/4 —eC(~1,w)d,F(w,—A) /_1 |[Wa(s)|%s~1ds,

then we find that
0 < [Wi(8)] < B(@).

If C(=1,w)8,F(w,~A) > 0, by (2.57)
ZIW0) < 150)
g '
Integrating this inequality from ¢~ to ¢, we obtain by (2.37)
[W1(t)] < Wi(e™?) + 0" (e%/%) = 07 (e).
Therefore we assume C(—1,w)d,F(w,—A) < 0. In this case,

£ 600 = ~0(-1,0)8, Fw, N WO
< —eC(=1,w)8,F(w, —A)t~18(t)2.
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Now we consider a Cauchy problem;
d -1 2
EZZ(t) = —eC(—1,w)d,F(w, - A}t~ Z(2)?, (2.60)
Z(e™) = B(et) = Wa(e™ ) + Ju(B)e¥/ 2. (2.61)
Then by (2.59) and (2.60)

G260~ ) exp(eC(-1,0)0,7(w, =) [ (:(6) + Bl ds)}
={22() ~ ZB() + e0(~1, )68, F(w, - (Z(2)? - A1)}

x exp(eC(—1,w)0,F(w, —A) /t_l(Z(s) + B(s))s~1ds) > 0.

Since Z(e™') =pB(e7 1), we have
B(t) < Z(2).

Solving (2.60), (2.61) explicitly, we have by (2.13) and (2.45)

Z(e™1)
1-¢eZ(e~1)(-C(-1,w))8,F(w,—A)logt
_ 0 (¢)
11— g(e02F(w,—A) + O*(5/%))(—C(~1,w))8,F(w, —A) log t
_ 0" (¢)
1= F{(=C(=1,0))0, F(w, —A)02 F(w, =) + O*(e¥/*)}
oW
= 1(B— H + 0*(c1/%))

2(t) =

= 0*(¢).

Hence we have

0 < [Wh(t)l < B(2) < Z(t) = 0°(e),

then (2.55) holds.
Now we prove (2.42). Let v = I'u in (2.36) (L' is an arbitrary one) and set

W(t) = t*/28,Tu(t). (2.62)
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It follows from (2.1), (2.32), (2.38), (2.43) and (2.62) that
L(Tu) = OC% — an(u')8,05Tu
= [l — T0u 4+ I'(aqp(2')0a0pn) — anp(u')0,05Tw
= C0u + (Taas(2'))00s% + aop(vw')(T0adpu — 8:0sTu)
= Caap(v')0a0pu + (Taas('))0a0su + ang(v')d,05u
= O |u] + | o' o]
= O(fu'PJu"| + 8uTa| o/ [u")
= O/ fu"| + [Tl [u| + £ [
= 0*(e%3/2 4 e4=3/2|W| + €3~ 2¢~512)
= 0" (%732 + 273 |\w)).
Therefore by (2.36) and (2.31)
d

W)= O* (%1 + 2t~ H|W(¢)| + €' 2Pt 72).
Integrating this equation from ¢! to £ and using (2‘.13) and (2.37), we have
W) < |[W(e™h)| + 0" (/t_l(sas‘l + 2|W(s)|s~t + el‘ps"z)d3>
= 0°(e) + 0” (52 / t_ lW(s)|s’1ds>.
Hence Gronwall’s inequality and (2.13) lead to |

[W(t)] = 0" (¢ exp(e® log t)) = O°(e€'/®) = 0*(¢),

i.e.,

8oTu(t) = O*(et~1/?).

‘We also find from (2.1), (2.32), (2.31), (2.38) and (2.63) that (2.42) holds.
Finally we prove (2.27). It is sufficient to show that

W' (£))e = O* (et™1/2),

16
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under the assumption

o' (£)]-1 = O*(et™1/?), (2.65)
kE+1 . ‘ .
where 1 < £ < [T] Let v=T*u (for { € Z,,I stands for Y, I'?) in (2.36) and set
lo|=¢
W(t) = t*/28, T u(t). (2.66)

Using (2.1), (2.32), (2.38), (2.42) and (2.65), we have
L(Tu) = OlMu — anp(v' )0 85T u

=TOu+ Y Cul*Ou — aap(w')06 85T u
n<s

= T(aap(u')0uBpu) + D CuT#(aap(u')0adp2) — aap(u')0x0sT u

w<d

= Z (ﬁ) (I‘t-uaaﬁ(u'))(ryaaaﬁu) + aaﬁ(u')I‘laa@ﬂu

v<{

+ Z CuT*(aap(u')0a0pu) — anp(w')0a0sT u

p<t
= O(lullﬂlullflullf) (77a ¢ €< ¢, n+(+¢ < £+ 1)

= O(|w'[7_1 + ['olu'|1 |2
— O*(Eat—s/z + €2t_1|u'|z)
= 0* (3732 4 232V (1)),

where

V(t) = /2 (2)].. (2.67)

Therefore by (2.36) and (2.31)

d

W) = O*(e%™1 + 241V (1) + e1727¢72).

Integrating this equation from €~ to ¢ and using (2.13) and (2.37), we have

t

we < weei+or( [
= 0*(e) + O° <62 / t V(s)s-lds).

(371 + 2V (s)s™! + el“zpsfz)ds>
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Then by (2.66), (2.1), (2.32), (2.37), (2.65) and (2.31)
V(t) = 0*(c) + 0*(&? / t V(s)s~1ds).
Gronwall’s inequality and (2.13) yield
V(t) = O*(cexp(e?logt)) = O*(ee'/B) = 0*(¢). (2.68)

We find from (2.67) and (2.68) that (2.64) holds and this complete the proof of Theorem |
1.

3. Proof of Theorem 2. For a function k € C*°(R? x [0,T')), we denote by Er(h) the
solution of the Cauchy problem;

OBr(h)(z,t) = h(z,t), (2,t) € R? x [0,T),
Br(h)(2,0) =0, O6Br(h)(z,0)=0, zeR?.

Using an L'-L* estimate in Corollary 6.2 in [4] (also see [2], Lemma 4.1), we can prove;

Proposition 3.1 Suppose that b € R, and hy,h; € C®(R? x [0,T)) have a compact
support in @ for fixed ¢, then there exists C > 0 such that

(+0iEsbs)eor <o 3 [ IEROE,) (5 [ 'gafi,“)”z ). e

TIPS l8]<1

for 0 ¢ < T. We also need following proposition which is proved in [13].

Proposition 3.2 If functions u,v are smooth and
u(z,t) =v(z,t) =0 for |z|2>t+ M,
then we have

llu(®)o' (@)l < Car Y ITP0(0)] 1" (D). (3.2)

18|=1
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Let k be fixed and k > 9. For functions ¢(z,¢;¢),¥(z,t;¢), we denote ¢ = O*(¥) if for
any m > 0, there exist J > 0 and (m) > 0 such that for 0 < £ < &(m)

|§0(Z,t;€)l < Jwﬁ(z,t;e) for 0<t<,

as long as 7 < T, and

me :
|u(t)|[_k2i]+1 < H——I-t)_l/z for 0<t<T . (3.3)

By the similar argument in Section 2, it is sufficient to prove;
Lemma 3.1. |u(t)][,._.2E] = 0"(e(1+ t)-1/2).

We conclude this section by proving Lemma 3.1. Denote by F the right-hand side of
(1.1). By (2.1) we have
Or w= Y GI*F (C, =1).

A

Then we can write

Iu=W’+ ) C\E(I*F),
ALe

where W7 is a solution of linear wave equation;
OW(z,t) =0, (=,t)€R?x][0,7),
W (=,0) =Tu(z,0), G W(=,0) = dIu(z,0), =€ R

Since, as well known,

C,e
W (z,t)| € ————x <
W (2,1)]| TEEE for 0<t<T,
it is sufficient to show
A » -1/2 k+ 1
E.(T*F)=0"(e(1 +t) ) for |A| < [T] + 1. (3.4)

As stated in introduction, we may assume that F has a form in (1.16a-d). We verify (3.4)

for each case.
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Case (1.16a). We have to show
B, (1 (0a0puQ(u'))) = O°(e(1 +t)~*/?),

E- (D (|'Plu"])) = 0™ (e(1 +1)7/?),

(3.5)

(3.6)

where Q(u') = (8ou)? — (81u)? — (82u)?. It follows from Proposition 2.2 and (3.3) that

t
@l < Ceexp(C [ 14 ()ngnyds)
0
< Ceexp(Cm?e?log(l + t))
<C

e+t for 0<t<,
if Cm?e? < p. For later we shall assume that p < -}I Hence we have
[l (&)]x = O% (e(1+ £)7).
Now we shall prove (3.5). Using Proposition 3.1 with b = —1, we get

(1487 B, (DX (0a05uQ(w)) S C Y L(t)J(t),

ptrv=2A

where

t 1/2
[ e e.dpuaip+ o2
0

0= %

Ui

) = ( >

ll<1

¢ 1/2
fo HI‘OI‘"Q(u’(s))Hz(l+s)ds) .

Since k 2 9,10 +|p|+1< [-]?;—1] + 3 < k. Therefore, by (3.7) we get

L(t) = 0" ((/: e*(1+ s)zP"zds> 1/2) = 0*(¢).

On the other hand, since

Q(v') = t ™ (Loubou — L;ub;u),
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I°T”Q(«') is represented as the sum of
TPt~ (Lew) ¢ (0qu), p+n+€=0+v, a=0,1,2.

We can verify in the support of u

IP(t=) < Gt~ (1 4+ ¢ 1), (3.10)
Moreover we find that
107 (Zau(t) T (dau()I] < Clult)lpaga; |1’ (#)]le; (3.11)
k+1 : .
where £ = [———-] + 3. Indeed, if we set { = n+ x (x| = 1, T* = L,), we obtain
k+1 £+
¢+ ¢ < [%] +3 =L H|E > [fl;-l-] then [¢] < [£ 1 and (3.11) holds. It
+ {+1

1€l < [ l,i.e,]é] < [-———-] — 1, we have by using Prop051t10n 3.2

I¢u()Tdau(@)l| < © 3 [PE+a(t)] |IT¢w!(2)]]

J¢e]=1

< Clu(t)|pegyllv' (E)le,

which implies (3.11). Since k > 9, we get £ < k and [l ks 1] < [k ;_ 1]. Then, by (3.3) and
(3.7) |

IP¢u(t)T Oau(t) ]| < Clult) gyl )]l (3.12)

= 0" (e(1 +t)P~1/?),
Combining (3.10) and (3.12), we get
I Q(w'(2))|| = O* (et~*(1 + =19+ 1)(1 4+ ¢)2~1/2). (3.13)

On the other hand, as shown in section 2,

IITT” Q(x'(¢))]| € Ce for 0<t<1. (3.14)

Hence by (3.13) and (3.14)

n0= (3 / PP QU NIFa-+ s + 3 [ T QeI + 5)e )1/2

611 1911

< (Ce+ o* (/lt e2(1+ 8)2”‘2ds)>1/2 = 0*(e).
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Therefore (3.5) follows from (3.9) and (3.15).

1
Next we shall prove (3.6). Using Proposition 3.1 with b = g1 we get

L+ ) 2B ([Pl C Y L)L), (3.16)
ptv=2A

where

L.(2)

1l

( 2 /: T (' ()PP + s)"1/2d3> "

lo1<1

¢ ' 1/2
Jo(t) = (15121/5 IIPGI‘"(Iu'(S)IIu"(s)l)llz(1+8)'1’2ds> :

Since |6 + p| < [kTH'] + 2 < k, we can verify
T () < Cluls)lgagay o145
Using (3.3) and (3.7), we get
T (' (s)P)l| < Ome?(1+ 8)P~H% = 0% (e(1 + 57 7H/72).

Then we have

L(t) = 0" ((/Dt e2(1+ s)zp"3/2d3> 1/z> = 0*(¢). (3.17)

Similarly we also find that
T,(t) = 0" (e). | (3.18)

Therefore (3.16), (3.17) and (3.18) imply (3.6).
Case (1.16b). We have to show
E.,(I‘A(ﬁau(?,s Q(v'))) = 0" (e(1 + t)_l/z).

This can be obtained similarly to (3.5), by using (3.10), (3.11) and Proposition 3.1, 3.2
k
but £ = [—'2”-] +4in (3.10).
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Case (1.16c). We have to show
E, (T*(8audguln)) = 0" (e(1 +t)~/?).

Using (1.1), we get
I (0aubpulu) = T*(00udpu(d,udsullu + O(|'|*|u"])))
= o).
Therefore this case can be reduced to (3.6).

Case (1.16d). We have to show

Er(T*(0au(8pu0y05u — 0,udgdsu))) = O*(e(1 + £)~1/7),

Using (2.32) and ‘(2.34), we have
Oau(Bpudy B5u — 8yudp Ou) = O™ (|o'[*|u'|1 + |[o'||u"||u]1))
= Ot~ u'|[ulv]u']1).
Therefore this case can be verified similarly to (3.5) as Q = t~1|u/||ul;, then the proof of

Theorem 2 is complete.

Appendix. If H =0, we find from the definition of H (1.14) that
1
C(=1,0)0,F(w, )0, F (w0, p) = 5C(~1,0)0,((8,F(w, p))*) 2 0,

for any.w € ' and p € R. For fixed w, if C(~1,w) # 0, then 8,((8,F(w,p))?) is of
constant sign in p. Using (1.10) and (1.11), we find that 8,F(w,p) = 0 for any p € R, i.e.,
F(w,p) = const in p. Therefore (1.10) implies F(w, p) = 0 for any p € R.

We set

Q=5"\{w e SC(-1,w) =0 and F(w,p) =0 for any p € R}.

We claim that ) is either the set of w such that C(~1,w) = 0, or the set of w such that
F(w,p) =0 for any p € R. Set A

F={weQ C(-1,w) # 0}.
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Clearly F is open in 2. On the other hand, by the above argument we have
F = {we Q| F(w,p) =0 for any p € R}.

Then we find that F is also closed in 2. Therefore F is equal to either ¢ or 2. When
F = ¢, is the set of w such that C(—1,w) = 0. When F = Q, Q is the set of w such that
F(w,p) =0 for any p € R.

Since
§'=QU{w e §*|C(~1,w) =0 and F(w,p) = 0 for any p € R},

either “C(—1,w) = 0 for any w € S” or “F(w,p) = 0 for any w € S and p € R”, when
H = 0. Moreover if F(w,p) = 0 for any w € S and p € R, then, by (1.9),

. 1 (=] _
Fwp)+ Fl=w,=p) = == [ (4= p) /2R, a)ds =0,
2w J,
F(,) = F(-w,=p) = =7 [ (s = P70, Ry(, )ds = 0.
'\/—2-77 P
Using Tichmarsh’s Theorem (see [14], p.166), Radon problem (see [5], p.162) and integrat-
ing by parts, we find that f and g vanish identically. Therefore the condition “H = 0”

implies either “C(—1,w) = 0 for any w € S” or “f and g vanish identically”.
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