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Neumann problem for singular degenerate
parabolic equations

Yoshikazu Giga*
and
Moto-hiko Sato**

In the memory of Yoshi’s first daughter

Abstract. We prove a comparison theorem for viscosity solutions of singular degenerate
parabolic equations with the Neumann boundary condition on a domain not necessarily
convex. Our result applies to various level set equations including the Neumann problem
for the mean curvature flow equations where every level set of solutions moves by its mean
curvature and perpendicularly intersects the boundary of the domain.

1990 Mathematics Subject Classification: 35K22, 35K 60, 35K65

1. Introduction

This paper continues our investigation [S, GS] on the Neumann problem for singular
degenerate parabolic equations. A typical example is

= [Va| div (Va/|Val) =0 in (0,00) x 9, (1.1)
Oufv=0 on (0,00) x 89, (1.2)

where  is a bounded domain in R™ and §/dv denotes the outer normal derivative
on 8. As explained in [CGG, ES] the first equation asserts each level set of u
is evolving by its mean curvature in Q at least formally. The boundary condition
formally says that each level set of u intersects perpendicularly with the boundary
0Q. We often call (1.1) the level set equation of the motion by mean curvature.
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The level set equation (1.1) with @ = R™ provides a new notion of generalized
mean curvature motion of hypersurface in R™ as studied by [CGG], [ES] and others.
The generalized motion is given as the zero level set of v as defined by [CGG] and
[ES] (see also [CGG2] for corrections). One of key ingradients of their theory is to
establish the comparison principle for viscosity solutions of (1.1) (see [CIL] for the
theory of viscosity solutions).

In [S] the second author adapted the level set approach by [CGG] and [ES] to
geometric evolutions of hypersurfaces (in ) intersecting with 8 perpendicularly.
He established the comparison principle for the Neumann problem a typical example
of which is (1.1)-(1.2). However, his method needs the convexity of Q.

Our goal in this paper is to extend the comparison principle even if Q is non-
convex. Qur theory applies to a class of equations (cf. [CGG]) including (1.1). The
basic strategy is the same as [S] where Crandall-Ishii’s lemma[CIL, CI] is applied.
However, we choose test functions in more clever way to handle nonconvex 2.

There are extensive articles for generalized evolution without boundary con-
ditions. We refer to [AAG], [ES2], [BSS], [OhS] and references cited there for a
history of the level approach and its recent development. For the theory of viscosity
solutions for the Neumann problem we refer to [Li], [S] and references therein.

Since existence of global solutions with continuous initial data is proved in [S] for
geometric equations with (1.2) even for nonconvex §2, our comparison result enables
us to extend the level set approach for constructing generalized evolutions with
the Neumann boundary condition (cf. [CGG]). In fact unique existence of global
generalized evolutions for interface equations (cf. [GG]) with right angle boundary
condition can be proved for general domain Q. We do not state this result since it
is already stated in [S, §4] for convex domain Q.

If the initial hypersurface is the graph of a smooth function on a bounded do-
main D i R", Huisken [Hu] constructed a global smooth evolution of hypersurfaces
intersecting perpendicularly with 8 and moving by mean curvaturein @ = D x R..

Although we assumed that Q is bounded in our comparison theorem, our theory
is basically applicable to this cylindrical domain with technical modifications. This
problem will be treated in the second author’s forthcoming paper. We note that the
‘motion by mean curvature with right contact angle at 6Q arises as a singular limit of
the Allen-Cahn type reaction-diffusion equation with the Neumann condition [RSK)].

The results in this paper has been announced in [GS]. However, it seems that
the choice of test function appeared there does not achieve their comparison result.
We choose test functions different from those in [GS].

2. Comparison principle
Let ) be a bounded domain in R™ and T be a positive number. Let v(z) be

outer unit normal at z € Q. We consider the Neumann boundary value problem
of form



e+ F(t,Vu, Vi) =0 in Q=(0,T)x 0 | (2.1a)
OufOv =0 on S=(0,T) %890, ~ (2.1b)

uy = Ou/Ot, Vu = Vyu ; V2u(= V2u) denotes the Hessian of u in the space variable
z. We list assumptions on F.

(F1) F:(0,T) x(R™\{0}) x S™ — R is continuous, where s" denotes the space of
n X n real matrices equipped with usual ordering.

(F2) F is degenerate elliptic, i.e. F(t,p, X+Y) < F(t,p,X) forallY > 0,t € (0,T).
(F3) —c0 < F,(t,0,0) = F*(1,0,0) < oo, t € (0,T), where F, and F* are, respec-
tively, the lower and upper semicontinuous envelope of F on (0,7) x R™ x S™ (see

[GGIS)).

THEOREM 2.1. Let Q be a bounded domain in R™ with C? boundary 85). Suppose
that F satisfies (F1)-(F3). Let u and v be, respectively, viscosity sub-and superso-
lutions of (2.1a)-(2.1b). If u*(0,2) < v.(0,2) on Q, then v* < v, on (0,T) x 1.

REMARK 2.2: As usual we may assume that u and v are bounded on Q (cf. [I],
[S]) for the proof. We may assume that u and v are, respectively, upper and lower
semicontinuous on Q. We argue by contradiction. Suppose that » > v at some
point of Q. Let (s,z) denote a maximizer of u — v on Q. By the initial condition
we observe 3 > 0.

We shall find a good parabolic super 2-jet of w(t,z,y) = u(t,2) — v(¢,y) at
some point where w > 0. We consider maximum of &(¢,z,y) = w(t, z,y)— ¥(¢, z,y)
with a suitable choice of ¥. If z is an interior point of , we may take |z — y|*/e +
/(T — t) + a|z — y|* + bt — 5|* with some constant €,7,a,b > 0. In this case we
easily lead a contradiction by applying Crandall-Ishii’s lemma as in ([GGIS], [S], [cf.
Section 3]). Even if z € 82, this choice of ¥ is good for our purpose provided that
(2 1s convex. The main reason is that

(V(2),Vaz —9*) 20, 2z€06Q, ye

holds, where (,) denotes the inner product in R™. Unfortunately, if Q is not convex,
the inequality is no longer valid, so we must replace ¥ by another function. The
crucial step of our proof is its choice of test function as presented in the next section.
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3. Proof of Comparison theorem

We will state several propositions and lemmas to be needed to prove Theo-
rem 2.1. Assume that u and v are, respectively, upper semicontinuous and lower
semicontinuous on Q. Then the maximum of v — v is attained on Q, i.e.,

o = maxg(z — v) = (v — v)(s,2). (3.1)
For e,6,7,a,b > 0 we set
§(t,a:,y) = w(ta z’y) - q’(tszsy)’w(t:zvy) = u(tsz) - v(t’y)

‘I’(t,z,'y) = _-_E(LE__}_/_)_ + B(tlz’y) + S(tnz)y)

) (3.2)
B(t,z,y) = 8(p(z) + ¢(y) + 26) + T3

S(t,z,y) = a|z — z|* + b|s — t°.

The function B plays the role of a barrier for boundary and ¢ = T. At present the
text function = is only assumed to be a C? function such that

alz|* < E(z) € ;2| (3.3)
The function ¢(z) € C*(Q) is taken so that ¢ < 0in £, ¢ = 0 on 80, v(z) =

Vo(z)/|Ve(z)| for all z € 0Q, |p(z)| < B for some B > 0 independent of = € T,
|[Ve(z)] 2 1 for all = € 69.

ProrosiTioN 3.1. Suppose that u and v be, respectively, upper semicontinuous
and lower semicontinuous. Assume that

+ o =maxg{z~v) > 0. (3.4)
Then there are positive constants g, 6y such that
supg &(t,2,y) > /2

holds for all 0 < 6 < 8o, 0 <y < 70,6 > 0,a > 0,b > 0, where U = (0,T) x Q x €.

Proof: Since 2 is compact, % — v is bounded from above. This implies o < 00. We
see

supg ®(t,2,2) > #(s,2,2z) = 0 — /(T — 5) — 6(2¢(2) + 2B).
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Since supgF &(t,2,y) > supaé(t,z,z), we observe supz &(¢,z,y) > o/2 if §and v
is sufficiently small.

ProrosiTioN 3.2. Let u,v,68p,70 be asin Proposmon 3.1. Suppose that w is upper
semicontinuous in U.

(i) & attains a maximum over U at (£,%,3) € U witht < T.

(i) |Z — 9] is bounded as a function of 0 < € < 1,0 < & < 85,0 < ¥ < 70,2 > 0 and
b>0.

(iii) |z — Y| tends to zero as € — 0; the convergence is uniform in 0 < § < 8,0 <
v<%0,a>0andb>0.

(iv) E(Z —¥)/e tends to zero as € — 0; the convergence is uniform in 0 < § < 63,0 <
7<790,a>0andb>0.

(v)Z— z,7—zandf— s as 8,v,€ — 0.

" Proof: (i) This is obvious.
(ii) From (3.4) it follows $(%,2,5) > 0 for 0 < § < 8,0 < v < 70,€ > 0,a > 0 and
b> 0. By the property (3.3) of E this yields

~am 10 o
w(t, z,y) 2 -6-:.(2 —-y) 2 ?1 z -9 (3.6)
The property (ii) now follows since 'w(? Y) < M for some M > 0 1mp11es

M2 —75*/e. (3.7)

(iii) From (3.7) it follows (iii) as ¢ — 0.
(iv) By (8.6) and (3.7) we observe that

E(Z(e) —7(e))/e— ¢ as £—0 (3.8)

for some non-negative number ¢ if we take some subsequence. From (ii) and bound-
edness of 2 it follows that

fe) = 1, 2(e),5(e) =z as e—0 (3.9)

for some £ € [0 T),Z € O if we take a subsequence e=¢; — 0. By the definition
of the point (t Z,7) we have ®(t,2,v) < &({;,%;,7;), where {; = 1(e;) and so on.
Pluging ¢ =%,z = y = 7 in this inequality, we obtain

- 7 = Y ~ ~ o~y 1 Y
u(t,z) - 'v(t,z) —_ ﬁ. S 'll,(tj,zj) - 'v(t,-,yj) - 'EC.‘.( - y,) T — {\ . (310)
J

By (8.8) letting €; — 0 in (3.10) yields



ut;5) = o(1,7) - 75 < Bm (5, §) ~ o5, 5) - =) - €.

From (3.9) it follows ¢ < 0. Since the limit in (3.8) is independent of the choice of
subsequence, the convergence (3 8) now yields (iv).
(v) From (iv) it is clear that 2,5 — z and  — s as §,v,¢ — 0.

Consiruction of 2. Above two properties are standard (cf. [GGIS]). We have given
a proof for completeness. We first state a key lemma to construct test function =.

LEMMA 3.3. Let £ be a domain in R™ and let p be a point on 8. Suppose that
89 is C? near p. Then there is a continuous function ¢ = ¢, on R™ such that

(i) ¢ is positively homogeneous of degree one.

(ii) ¢ is smooth except the origin.

(iii) inf{é(z); |z| = 1} > 0.
(iv) (v(z),Vé(z —y)) 2 0 for = € BR(p) ﬂﬁﬂ,y € Br(p) NQ for small R > 0.

LEMMA 3.4. Suppose that N is a cone such that N = {(2',z,) € R*;|2'| cz,,}
with ¢ > 0. Then there is a cont.muous function ¢ on R" satisfying (i)-(iii) in
Lemma 3.3 such that

8¢ /0z, < —co (3.11)

with some co > 0 outside the interior of N.

Proof of Lemma 3.4: We set
L= {(&,2a); [&' [}/ + (2 - 2)°/5 < 1.
Let ¢ be the Minkowski function of L, i.e., ¢(z) = inf{a;z € aL}. Since 8L is

smooth and the origin is an interior point of I, ¢ is smooth outside the origin and
Ii?f ¢ > 0.(Of course ¢ is continuous in R™.) It is not difficult to see that ¢ satisfies
z|=1

|22 /c* + (24 — 26)7/5 = 4.

Thus the function ¢ is

¢ = —2z, + /5c%22 + 5|2'[?/c

which satisfies the properties of Lemma 3.3 (i)-(iii). A simple calculation shows
(3.11) with co = (4 — v/10)/2 > 0 outside the interior of N. N
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Proof of Lemma 3.3: We may assume v(p) = (0,---,0,—1) by a rotation of coordi-
nates. Since 8 is Lipschitz near p € 09, there is ¢ > 0 such that

(y+ N)nBr(p)~{y} CcQ for yeﬁ‘

with N = {(2',2,)|2'| € cz,} provided that R is taken sufficiently small. We shall
later take R smaller. We take ¢ as in Lemma 3.4 so that it satisfies (i)-(iii). The
property (3.11) is rewritten as

(v(p),Vé(z —y)) 2 co, z€8UNBr(p), v€QNBzr(p)
since 2 is outside the interior of y + N. Taking R smaller we may assume
[v(2) — v(p)| < co/sup,40|Ve| for =€ QN Br(p).

We thus obtain (iv) since

(v(2), Vé(z = v)) = (v(p), V(2 — ¥)) + (v(2) — v(p), V(= — ¥)),

260—6;;?0..

ProrosiTiON 3.5. Let 1 be a domain in R™ and let p be a point on 0. Suppose
that 8 is C* near p. For ¢ = ¢, in Lemma 3.3 set ¢ = ¢*. Then

(i) ¥ is a C? function. .

(ii) ci|z|* < ¥(z) < cy|z|* with some positive constants c}, cl.

(i) (4(2), V(= — ) > 0 for = € Ba(p) 109, € Ba(p) N1 for small R > 0.

Proof: (i) Since ¢ is positively homogeneous of degree one, so v is C? at the origin.
(ii) This follows from Lemma 3.3 (i)(iii).
(iii) This follows from Lemma 3.3 (iv). N

We next define a C? function pg for each R > 0 in Proposition 3.5 such that
0<pr<1,p520and

pr()=1 for ¢ 22R, pr(¢{)=0 for 0K (<R (3.12)
For p € 80 we set ¢ = ¢? and define E € C?(Q x Q) by

E(z,9) = pr(lz — 9l)lz = 9|* + (1 = pr(lz ~ ¥]))¥(= — ). (3.13)

PROPOSITION 3.6. (i) There are positive constants ci!,cy > 0 such that
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dlzl* < E(=) < el

(i) (v(2), VE(z — 3)) > 0,2 € Br(p) N 60,y € Ba() T

for sufficiently small R > 0.

This follows from Proposition 3.5. We state a version of localized parabolic
Crandall-Ishii’s lemma [CI,] which will be used in the proof of Theorem 2.1. The
version presented below is interpreted as a localized version of [GGIS, Lemma 2.10]
which can be easily reduced to usual parabolic Crandall-Ishii’s lemma ([GGIS,
Lemma][ClI, ]).

LEMMA 3.7. Suppose that u; is an upper semicontinuous viscosity solution of

u + Fi(t, Vo, Viu) =0 in (0,T) x Q;

Oufdv =0 on (0,T) x 0Q;
in a neighborhood of (7:, @) € (0,T) x §;, where Q; is an open set in RYi and
F; : (0,T) x R x 8N — R U {+co} is lower semicontinuous for i = 1,--- , k.
Let ¥(t,21,--- ,21) be a function on a neighborhood of (r,q) = (r,q1,*** ,q1) €

(0,T) x RV x ... x RN+ such that ¥ is once continuously differentiable in ¢ and
twice continuously differentiable in z = (z1,-+ ,23). Suppose that

k
Bty 21, ,2x) = Zu sty 2) — Ot 2y, ,28) S B(7,q,0 0, Q)
i=1

Suppose that
(‘I’z,'('r, q),u(q,-)) >0 if g; €09Q;. (3.14)

Then for each A > ( there exists X; € SNi such that

k
¥y(r,q) + Z Fi(¥,,(rq), X) <0

and

X1 (0]
1 .
(5 +14DT < 3 < A+2A%



where A = V2¥(r,q) and |A| denotes the operator norm of A.

Proof of Theorem 2.1: We may assume that (F1)(F3) holds including ¢ = T by
taking T" smaller. We argue by contradiction. By Remark 2.2 we may assume

o = maxg{u —v) > 0

and the maximum is attained at some point (s,z) € (0,T] x Q. Comparison result

[CGG] implies that
o =(u—v)(s,z) forsome (s,z)€(0,T]x 6Q.

We take E with p = z in (3.13). By Remark 2.2 and Proposition 3.6(i) we may
use Proposition 3.1-3.2. By Proposition 3.2 (i) ¢ attains a maximum over U at
(t,2,9)(€ (0,T) x 0 x 0) close to (s,z,2) for small ¢,6,v. In other words

§(t’zay) = w(t,z,y) - ‘I’(t,z,y) < §(2\):"\: y) in (O)T] x 0 x .

Let R be taken as in Proposition 3.6 (ii). We may assume that Z,5 € Bg(z)
for sufficiently small €,6, v, say € < €5,6 < 83,7 < 4g, by Proposition 3.2 (v). If
z € 0N we have, by Proposition 3.6(ii),

(v(2), VE(Z - 7)) > 0 (3.15)

for Z € Br(z) N 00,5 € Br(2)NQ. If a < §/2R, from (3.15) and the property of ¢
it follows '

(1(3), VE(Z - 9)) = (v(£), TVH(E ~ §)) + 8+ 2a(v(3), - 2)
26— 2alz—2z] 26— 2aR > 0.

(3.16)

By (3.16) the function ¥ satisfies the assumption (3.14) in Lemma 3.7, so we
can apply Lemma 3.7 with k = 2,u; = w,u; = —v,8 = 1,z = (%,7), % = Q. We
thus conclude that for each A > 0 there are X, Y € S™ such that

T, + G, X)- F*(1,-%,,-Y)<0 (3.17)

and

1 X 0 -~ ‘
—<;+|Am<(0 Y)<A+AA2,A>V2‘I’(t,5,37) (3.18)

9



where ¥, = 8, ¥(1,%,9), ¥, = V,¥(f, 2,7), etc. By calculating ¥, we observe that

= 7 ~ 7
= —8) > -L — 2T | 3.19
I (T 5) > 5 — 2T (3.19)

By ¥, = —&, we see that (3.17) yields
0>~T - 2T + i1, %, X)- F*(1,%,,-Y). (3.20)

We next take a special A. Calculating V?¥ yields
(@,, @> 1 ( V(5 -9) —Viy(2 —g)) N 6(Viso(£) 0 )
Ve ¥yy) E\-V(E-9) V(E-9) ) 0 Vie(d)

2a O 1(J =J I 0
+ < - +{ EA’
O O E\N-J J o I

where J = V2%(Z — ), = 2a + k6 (k = maxg|V2¢p]|). Clearly

. ) J: —J? °of J —=J ) I O
A= - + - +¢ .. (3.21)
€ -Jz J? EN-J J O I

We take A = 1in (3.18) to get

, 2T =\ s3I -J LI O
A+AAT= 2 + = + L+ £2) (3.22)
e\ gz g2 e\ —-J J o I

X 0
< A+ AA% (3.23)
OY .

and

Since F' has singular at T, = 0, we divide the situation in two cases.

Case 1. ¥, - 0asé — 0,a — 0 witha < §/2R. From (3.22) and (3.23) it
follows

2 3

X, Y< I+ =T+ ({+)I=B.
: £ [ .

By the degenerate ellipticity (F2) we have

10



9%, X)> F.(4%,,B),F*t¥,,-Y)< F.(, ¥, -B).
"' We may assume that { > s/2 for € < €},8 < 8,7 < 7, by taking €0 89, 7o smaller.

Since B — 0 as § — 0,a — 0, we observe by taking a subsequence if necessary, that
t—1€(0,T] and that

lim inf F.(3,¥,,X) > F.(£,0,0)
lim sup F*(,¥,,-Y) < F*(%,0,0)

as § — 0,a — 0 with a < §/2R. From (3.20) we obtain
0> yT"% — 2T + F.(,0,0) — F* (3,0, 0).

By (F3) this yields 0 > /272 if b < 4/4T®. This contradicts v > 0.

Case 2: ¥ -« #0asé— 0,a — 0, witha < §/2R at least for a subsequence.
This can be treated by a standard argument. We give a proof for completeness.

From (3.22) and (3.23) we see X +Y < (£+£?)I. We shall study (3.20). We choose
b < v/4T? and obtain, by (F2),
02 7/2T + Fu(f, ¥., -Y + (L + O)) - F* (£, 8,,-Y). (3.24)

Since Y is bounded as § — 0,a — 0 with @ < §/2R by (3 18) and (3.22), there is
a subsequence ¥; = Y(6) and Y € S™ such that ¥; —» Y,7 — 7 as é; — 0,a; — 0
with a < §/2R. Lettmg 8; — 0,a; — 0 in (3.24) y1elds )

0>+/2T% + F.(f,,Y) — F*({,0,Y).

Since F is continuous at (,a,Y) for @ # 0, this contradicts v > 0. N

REMARK 3.8: The method presented above leads a contradiction even if z is not a
boundary point.
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