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§1 Introduction and statement of the results
This paper studies the existence of global solutions of the Cauchy problem of
the form:

e~ Apu=ad? +BVou?  in R™ x [0,00),
(E)
(=,0

,0) = fo(z), wu(z,0)=go(z) for z€ R™,
where a and b are real constants, p and q are positive integers.

For n > 3, S.Klainerman [7] showed the existence of unique global C*-
solutions of (E) with p > 2 for the sufficiently small and smooth data which
are compactly supported. When n = 3 and p > 2, he obtained the lower bounds
for the so-called life span, namely, the maximal time interval where C®-solutions
of (F) exist. When the initial data may have singularity, P.Godin [4] and [5] ob-
tained the global and long time existence results of piecewise smooth progressing

waves of (E) with p > 2 or second order quasilinear equations.



On the other hand, when n = 3, F.John [6] has obtained the same life span
e‘stima.te as [7] for radial C?-solutions of (E) witha = 1, b = 0, and p = 2,
even if the data do not have compact support. Whena =1,5 =0, and p > 3,
H.Takamura [8] showed the global existence of unique radial C2-solutions of (E)
with n = 3.

Furthermore, F.Asakura [2] applied the method proposed in [6] to the case
n = 5. But unfortunately, it seems that his estimates for the nonlinear terms woul&
need more explanations. Although it is possible to complete the proof following [2],
the real proof would make the computations very involved and technical. In fact,
there arise undesirable unbounded terms which require nice cancellations among

themselves.

One of the aims of this paper is to present a new formulation of the problem.
This enables us to avoid such technicalities as well as the previous proof much
simpler. Further details will be stated in Remark 5.7 below. We next point out
the assumption of the regularity for the initial data. It is assumed that f € C5(R),
g € C*(R) in [2]. By virtue of Proposition 2.1 below, however, it is possible to
weaken these assumptions as f € C*(R), g € C3(R). Moreover, our formulation

leads to a natural regularity result as far as radial solutions are concerned.

Let u(z,t) be a C*-solution of (F) which depends only on » = |z| and ¢. Then,
fo and go are radially symmetric. Note that for any radially symmetric function
on R™, the associated function of » = |z| on the half line can be extended to the
whole line as an even function with the same regularity. Indeed, we use Taylor’s
formula with respect to r at the origin to find that the odd order derivatives vanish
at the origin. Let f and g be the extensions of fo and go as above, respectively.

We consider the radially symmetric version of (E) in R x [0, c0):

n—1

Ut — Upy —

(5%) 2, = G(ug, u,) for (r,t) €R x [0,0?),
u(r,0) = f(r), u(r,0) = g(r) for r€R,

where G(us,%,) = aul + bu?9.



We set for f € C™*+3(R) and g € C™+*+2(R),

H() = [ (o g™ (o™ f(e))de

- (j+1) (4)
M= o nex, sup{lHF ()l + Hg (e},

where m = — and k € Z,, the set of nonnegative integers.

In addition, we consider the following condition:

nts3 if n>5,

, 29>
(A1) Py 29>

P, 2923 if n=3.

Now we state the main result of this paper.

MAIN THEOREM. Let n be an odd integer with n > 3. Suppose that f €
Cmt*+3(R) and g € C™+*+2(R) are even functions. If 7 is sufficiently small

and (A.1) holds, the problem (E*) admits a unique global C*+2-solution which is

even in r.

We notice that this theorem refines the results of [2] and [8]. But, for n > 7,
the assumption (A4.1) is stronger than the condition p, 2¢ > -:—:l__—l which was
conjectured in [8]. It is remarkable that if a +b = 0, p = 2, and ¢ = 1, the
problem.(E) has a unique global solution in general space dimensions. Indeed,
setting v(z,t) = e:i:p{—rau(m,t)}, we can rewrite the equation as vy — Azv = 0.

The proof of the Main Theorem for k£ > 1 has the same line as that of the
case k = 0. So we concentrate the latter case, but a necessary modification will
be discussed in Remark 2.2.

This paper is organized as follows. In Section 2, we convert the problem (E*)
into a system of integral equations (H) and fix some notations. The proof of the .
Main Theorem, which is given in Section 3, is completely classical and independentl
of energy estimates and of formation of support of data. In Sections 4 and 5, we

carry out the estimates for solutions of the linear problem and for the nonlinear
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terms, which are used in Section 3. In Appendix, we prove the assertion of the
Main Theorem for n = 3. It is a simple application of the arguments done for the

case n > 5.

§2 Formulation of the Problem

Since the uniqueness of solutions to () is valid (see e.g. [6], Theorem 4 or
R.Agemi (8], p.156), in order to prove the Main Theorem for k = 0, it suffices to
construct a C?-solution of (E*). To do this, we convert the problem (E*) into a
system of integral equations (H).

As is well known, a solution of (E*) is furnished by a solution of the following

integral equation:
(2.1) u(r,t) = u(r,¢) + L(u, u, )(7, 1) for »#0,

where u%(r,t) is the solution of the linear wave equation, (3.2) below, which will

be studied in Section 4 and

m t—T1tr :
o a)(r8) =gy f3m+1/ / (P (p, 7) + Bu3%(p, 7))

- | (ap 2p)m(¢’"(p, ¢ —7))dp,
d(oymt) =r2 — (t—p)?, m= n;3

(See e.g. Courant-Hilbert [3], Chap.VI, §13). Suppose that u(r,t) is a C2-solution
of (2.1), then u(r,t) and u,(r,t) satisfy the following system with vy = ¢, uy = u,:

{ uy(7,t) = ud(r,t) + D¢ L(uy, us)(r, t),
(2.3)

up(r,t) = 'u.f('r,t) + D, L(uy,u) (7 1),
for » # 0.

Conversely, we can construct » € C*(R x [0, 00)) satisfying (2.1) from the
C*-solution of (2.3). In fact:



PropoSITION 2.1. Let uy, uz € C(R x [0,00)) satisfy (2.3). Set

(2.4) - u(r,t)éf(r)+/; uy (7, 7)dT.

Then u(r,t) is a C*-solution of (2.1) in R x [0, 00).

Proor: Since L(uy,u;)(r,t)is a C%-function for » # 0and u%(7,t) is a C%-solution

of the linear problem, it follows from (2.3) that
(2.5) D,ul(r,t) = Dg’uz(‘r,t) for » 7é 0.
Moreover, since uy, u; € C*(R x [0,00)), (2.5) holds for any (r,t) € R x [0, o).
We next deduce the following relation:

~ t ¢ ,
(2.6) f(r) +/ uy(r, 7)dr = f(0) +/ u1(0,7)dr +/ uy(p, t)dp.

0 0 0

Indeed, by (2.5), we have

(2.7) us(r,8) = (7, 0) + /0 Dyus(r,7)dr.

Noting that us(r,0) = f'(r) and integrating (2.7) with respect to », we obtain
(2.6). ' '

Combining (2.4) and (2.6), we have u(r,t) = ul(r,t),ru, (ryt) = ug(r,t). This
implies that u(r,t) € C*(R x [0, 0)) and that

(2.8) uy(r,t) = uf(r,t) + Dy L(ug, w, )(r, 1) for = # 0.

Integrating (2.8) with respect to ¢ and using(2.4), we have (2.1).

From now on, let m > 1. Making use of the decay property of the solutions

to the wave equations, we convert the problem (2.3) into the following:

‘ Pl <r>m"l  <p>mTl

_ 770
() U(r,t) =U"(r,t) + P D, L( pe—) | V)(r,t),
m-+1 m-~1 m-—1
1,0 T <r> <r>
V(r,t) =V(rt)+ = D L( g | V)(r, 1),

5



where
m+1 ,’,m+1

u ~ul(r,8), V(rt)=

r>M-

<r>=+v1+7%

—u)(mt),

0 — ——
U (T’t)"< < r Sme

Note that #™*? is the usual decay rate and the factor < » >™~! is necessary to
control the behavior of functions as » tends to co.

We introduce some function spaces on which we intend to study the problem
(H). Let B*(R x [0,00)) denote the space of functions u(r,t) € C*(R x [0, c0))
such that

lulle = IamI?’i sup{|D*u(r,t)|: (rt) €R x [0,00)} < c0.
We agree that T'; and I'; defined by the following are the closed subspaces of
BX(R x [0,00)):

I''={U e B"*R x [0,00)) : DiU(0,t) =0 (0 < i < m),
U(-rt) = (=1)""U(,1)},

I, ={V € B™?*R x [0,00)) : DiV(0,t) = 0 (0 < i < m),
V(=1t) = (-1)"V(r,1)}.

I' =T x I'; is a Banach space with respect to the norm:

@ V)lle = 1Tllm+2 + |V ]lmet2-
Note that if we find (U,V) € T satisfying (H), we construct a solution of the

original problem (£*). In fact, setting

<r>mt <r>m1
ul('r,t) = -W-U('r,t), ug(r,t) = _WI_V(T’t)’

we find that u;, u; satisfy (2.3) and belong to C*(R x [0, 00)).

REMARK 2.2. The regularity of the solution of (E*) is closely related to the defi-
nition of the function space I'. Let k € Z. If we intend to get the C**2-solution

6



of (E*), it is necessary to consider the problem (H) on the following fanction space

I' =T, x Iy, where

I'ip={U € B"* R x [0,00)) : DiU(0,2) =0 (0 < i < m),
U(-rt) = (-1)""U(r1)},
Tz = {V € B™**3(R x [0,00)) : DiV(0,2) =0 (0 < i < m),
V(-rt)=(-1)"V(r,1)}.
Accordingly, we have to change the statements of the proposiﬁ'ons and lemmas

below. Although it seems an easy task, we shall point out the essential point in

Remark 5.3.

§3 Proof of the Main Theorem

In this section, we shall prove the Main Theorem with m > 1 by assuming
the following two propositions. One is concerned with a priori estimates for the
integral terms of the system of integral equations (H) which will be proved in

Section 5. To state it, we set

= rmt <r>ml o <p>mol
(3.1) A7) = <p>m-17 ( pmtl v pmtl V),
(T, V) < 7 >m-1 D, I( pmtl 1 amatl V),

-3
where m = -7-1—5— Throughout this paper we denote A = O(B) when there exists

a universal constant x such that |4| < &|B| for all 4, B in question. -

ProPoSITION 3.1. Let n be an odd integer withn > 5. Suppose that (A4.1) holds.
Then for W = (U,V) €T, 5(W) € I; and

NE: (W) lmsz = O,y + [IVI%,,) (i=1,2).

7



The other is concerned with the properties of the solutions of the linear prob-

lem of the form:

(3.9) { u“—u,,-—n:lu, =0A for (r,t)‘eRx [O,oo),
u(r,0) = f(r), u(r,0)=g(r) for r€R,

where f and g are the same functions as in (£*). The following proposition below

will be proved in Section 4.

ProPOSITION 3.2. Let n be an odd integer with n > 5. Suppose that f €
C™*+3(R) and g € C™*?(R) are even functions. Then the problem (3.2) admits a
unique global C*-solution w%(r,t). Set

0 pmtl 0 0 pmtl
Uint)= —smmu(nt), Vo) = —oagw(nt).

In addition, suppose that 79 < co. Then U° € Ty, V° € I'; and

HUlm+2 = O(m0)y  ||V°|lm+2 = O(m0),

where 79 is the same number as in the Main Theorem.

As we have already pointed out in Section 2, proving the Main Theorem is

equivalent to solving the problem (H):

U(rt) = U(r,t) + E1(U, V)(r,1),
o

V(1) = VO(r,t) + E5(U, V(1)

This is done by the contraction mapping principle. For W = (U,V) € T, define

an operator = on I' by
EW ) = 0 + SWNn ), VO(r,t) + ZW)0, ).

For § € (0,1),set Bs={W €TI: ||W||r < 6}. Now we show that = maps B; into

itself and is locally Lipschitz continuous. Combining the results of Propositions

8



3.1 and 3.2, we have

IEW)lle = O(I(T®, V°)lIr + I(Z2(W), Z2(W))ir)
= O(m0) + OV |2 + IV Izt
= O(no) + O(IIWIIr),

where I=min(p, 2g).
| Similarly, it is shown that =’ is locally Lipschitz continuous: For W, W* €T,

1E2(W) = EW*)lle = O{IIWlle + [W*[le}' " IW = W*|Ir).

These imply that = is a contraction mapping in Bjs, provided that 7, and § are
sufficiently small. This completes the proof of the Main Theorem for n > 5 and
k=0.

§4 The linear wave equation in odd space dimension

This section is devoted to the study of the problem (3.2). Let u%(#,t) be a

solution of (3.2). When n is an odd integer with n > 3, u%(r,t) is represented as

1 8 [ m
Cnt) = s - D, Hy(p) - ¢™(pyrit)dp
(4.1) 1 ”

Py Ty D,Hy(p) - o™ (p, 7 t)dp,
2m) p2m+1 s P Q() (’ 7)

n—

5 3. (See e.g. Courant-

’ d
where Hy(p) = / -l-— (¥ f(s))do and m =
Hilbert [3], Chap. VI §13) |
First, we shall study the function ¢(p,r,t) = »% — (£ — p)2.

LeMMA 4.1. Let m be a positive integer. For all € 2% with |a| < m, there
exists a polynomial 9, of degree 2m — || such that

() D DF¢™(p,7,1) = rm=lolh (L),

9



(i) Ya(£1)=0 for |a|<m-1.

Proor: Since ¢™(p,7,) = ™™ (1= (L))", by setting ¥a(0) = (1~ 0™, the

assertions are valid for || = 0. From now on, let || > 1. We write

¢"(pymt) ={r—(t—p)}"{r +t—p}™.
By Leibniz’ rule, we have

De¢™(pyr,t) = ) Cp{r — (t = p)}™ 1Pz + 2 — pymla—tl,
BLa

where Cp is a universal constant. So, setting

Yao(o) = Z Cs(1 - o)™~ 1l(1 4 o)™=12=Al  we obtain the desired results.
, f<e

Next we shall show the following proposition from which we can derive Propo-

sition 3.2.

PrOPOSITION 4.2. Let m be a positive integer. For h € B3(R), set

. 1 t+7r o
(4.2) w(r )= g | MAD™ om0
m-+1l ,rm+1
Put Wl(‘l',t) = -<—r>?i-'wt('r,'t), Wz(‘r,t) = Ww,(r,t).

Then W; €T;  and  ||Willmsz = O(|[Rlls) G = 1,2).

Proor: Since ¢(p,»,t) is even in », w(r,t) is also even in ». Hence, by the
definition of W;(r,t), we find that
Wi(r,t) = (1) Wy(—r,t) and W,(r,t) = (—1)"Wy(—n,t).

From now on, let m > 2. By virtue of Lemma 4.1,
(4.3) De¢™(t £ r,7t) =0 for |al<m-—-1.
So we have from (4.2),

1 t+r
(4.4) Wi(n8) = i [ MADDE™(oimt)dp

m-1 .m
> T t~r

10



and

1 t+r m
Walnt)= oo /: _ h(p)D,D,¢™(p,r,t)dp
(4.5)
2m +1

t4r
- ’ 17m+1[ h(p)DP¢m(p)77t)dP-

First, we shall carry out the estimate for Wy(r,t). Let |a| < m — 2. By noticing
(4.3) and using Leibniz’ rule, it follows from (4.4) that |

D“Wl(r t)

(49 -ZC :—mﬂ/ h(p) D=~ DE 1D, 6™ (o, 7, t)dp.

By Lemma 4.1, for each k, there exists a polynomial v of degree

— | + & — 2 such that
t —
D=+ Dyt gm (o, n,t) = p2m-lebth=ty, (=F),
P

~2 in (4.6), we have

Hence, changing the variable as o = :
.DaW1('I‘ t)

(4.7) Z 2m—|a|+k—1 )k
=) CprimTI® D}(
k=0

) / h(t — ro)pa(c)do.

<p>m-l

Since Di(< » >!"™) = O(< r >'~™) for any nonnegative integer I, it follows
from (4.7) that D=Wy(r,t) = O([|R]]o)-

From now on, let |a| =m — 1 and a; > 1. In a similar fashion, we have

D“Wl(r t)
Y k peatl
ZC:, W) /t h(p) D7 ™" Dg™™ " Dp¢™ (py 7y t)dp

Co
+ < p S>Mm- 1 Pm
(48) a1—1 nastl m
+h(t-—'r)D TIDITID (- 1)}

Z Ck'rm+k_Dk(_<__TW)/ t — 'ra')’g[)k(O')dO'

k=0

{h(t +r)DE"1 D31 D ™ (t + 7, 7,1)

Ca,

S {h(t+ (1) + At = ) (D),

11



where 1, are polynomials of degree m+k—1 (0 < k < ;). Hence, for all 8 with
|8] < 3, we conclude from (4.8) that D? D*W;(r,t) = O(||h||s). When |a| = m—1
and oy = 0, we easily get the same estimates as above. This completes the estimate
for Wi(r,t). Similarly, we get the same bound for Wy(r,t) from (4.5).

We next show that DiW;(0,t) = 0 for 0 < j < m. Notice that D¢ = -D,¢.
Integrating by parts in (4.4), we have

1 t4r :
Wil t) = /t R(p)D2¢™(p,r,t)dp

<7 >m—1 rm —

(4.9)

- t-+7
—m [ K.

=< p >m=1m —r
Differentiating (4.9) ¢ times, we get
1 t+7

) . h"(p)D},qu(p,'r,t)dp.

-7

<7 >m—1 Pm

(4.10)  Diwy(r,t)=> GiDi7Y(
1=0
By virtue of Lemma 4.1, we have therefore,
DiWy(r,t) = O(x™ 1)  for 0<i<m.

Letting » — 0, we get the desired results. Similarly, we obtain D} W2(0,t) = 0 for
0 <7< m—1, which implies that

7,'In

+1 p1
— / (1= X)™ D7 W,(rA, t)dA.
. 0 .

(411)  Wi(rt) = :n—p;an(o,t) +
Using the definition of W3(r,t), we have from (4.11) that

m!»
4.12)  D™W Y= ————
( ) : T 2(0’ ) < p >m-1

1
w, (mt) = 7 / (1= \)™ DL, (r, ).
-1
On the other hand, from (4.2), we have

1 t+r
w(r,t) =— m/ h'(p)é™ (py7,t)dp

t—?r

- /_ 11 K (t - r0)(1 — o?)"do.

12



Since k € B3(R), we find that w, € C}(R x [0, 0)). And also
D**W,; € CY(Rx [0, 00)). Therefore, it follows from (4.12) that DT*W,(0,t) = 0.
This completes the proof for m > 2. Similarly, we can derive the assertions for

m = 1. We omit the further details.

We are now in a position to prove Proposition 3.2.

PROOF OF PROPOSITION 3.2: Werecall that u°(r,t) is represented as (4.1). Notic-
ing that D¢ = —D,¢ in the first term and integrating by partsin the second term,
we have
0 1 ’ t4r
v ("t) =~ ot /M D,H(p)D,¢™(p, 7 t)dp
1 “pttr

- | p2m+1
2ml p2m+l J, |

(4.13)
Hy(p)Dpd™ (py 7, t)dp.

By the assumptions on f and g, we find that D,H;, H, € B*(R). Therefore, we
apply Proposition 4.2 to each term of (4.13) to get the desired results.

§5 Proof of Proposition 3.1
Our goal in this section is to prove the following which are equivalent to the
assertions of Proposition 3.1: For (U, V) € T,
E1(U, V)(=nt) = (-1)"" 50, V)(r,1),

(5.1)
E(U,V)(—nt) = (-1)"E(T, V)(7,t);

(5.2) 120, V)llm+z = O(Usz + IVIIiy2)  (6=1,2);
(5.3) D*E(U,V)(0,6) =0 (i=1,2 and 0<Ek<m).
For convenience, we set
<r>m-1
{ uy(rt) = —TmTU('r,t),
<p>m-l
’ll,z(’l',t) = —:—nT-}-—l_V(T,t)’

13



where (U,V) € I'. And we rewrite L(ug,uz)(r,t) by making use of following
properties: p*™*'G(uy,u2)(p,7) has appropriate regularity which will be shown
in the proof of Proposition 5.5, STEP II. By virtue of Lemma 4.1 (1), integrating

by parts m times in (2.2), we have

L(ul, uz)(‘)', t)

R [ G366, ), )™ oyt = ),

where vy =t—7—7r, y=t—1+7.

We shall split this section into four subsections.

5.1 Proof of (5.1)
Since ¢(p, ,t) is even in r, it follows from (5.4) that L(uy,u,)(r¢) is also even
in #. Then it follows from (3.1) that

Eu(U, V)(=nt) _%

=(=1)"*E(T, V)(n1)

D L(uy,uz)(—r,t)

and )
= (=r)m*
E3(U, V)(-n,1) =z, omot

=(-1)"Z(U, V)(r, ).

D, L(uy,uz)(—7,1)

This completes the proof of (5.1).

5.2 Formulation of the Integral Operator and Preliminaries

First of all, we shall prove that the integrand of L(u;,u;)(r,t) is odd in p
at T' = t. Since ui(p,7) is even in p, G(u1,u;)(p,7) is also even in p. Hence,
Z% ™(p®™ G (u1,u2)(p, 7)) is 0dd in p. On the other hand, ¢(p,,0) is even

in p, so the assertion follows. Now we compute the derivatives of I(uy,u;)(r,):

(ul,uz)(r t)

(5'5) m m m
=gy |, 47 [ G (5 Gl DA™t~
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D, L(uy,u;3)(rt)
2m' :2m+1 / / (i’a—)m(/’zm-*-lG(P’ 7))D, (6™ (p,7,t — 7))dp

2m + 1
T om! p2mtz

(5.6)
T2

/ / (——)’"(pz”‘“G(p, 7))¢™ (p,7,t — )dp,

where we have used ¢(y;,7,t—7)=0 (i=1,2).

Here we introduce some integral operators as follows:

For X : R x [0,00) — R and a positive integer s,

$,X(r,t)
— 1 ‘ 1 0 vy amr, <p>™1 .
(57) Toml < p >m=1m ‘/(; dT/ 2p 6p) ( (—W_X(P;T)) )
x Di(¢™(p,r,t — 7))dp,
2,X(r,t)
— 1 t my 2miry < p >t s
69 =gmrerseryw |, ¢ [ Gy e X))
x D, (¢™(pyr,t — 7))dp,
(5.9)
¥, X(rt)
_— 2m + 1 72 my¢ _2m+1 < P >m—1 3
- 2m! <7 >m—- pm+1 / / 2P ap) ( ( pm+1 X(p!T)) )

< D, (g™ (pyrt — 7))dp.
Then it follows from (3.1), (5.5) and (5.6) that
E((U,V)(rt) = aB,U(r,t) +bBsV(mt),
{ (U, V)nt) = aU(r )+ b2y V(rt) + aBU(r,£) + by V(r, 1),

which imply that proving (5.2) is equivalent to carrying out the estimates for the
derivatives of &, X (»,t), £2,X(r,t), and ¥,X(r,t) up to order m + 2.

To do this, in the rest of this subsection, we shall study the properties of:
functions X (r,t) which belong to the following function space:

A={XeB"?Rx[0,00)): DiX(0,t)=0 (0<3i<m)}.
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Note that if (U, V) € T, then U, V € A. Using Taylor’s formula with respect to »
at the origin, we have

pht1

1
(5.10) DoX(rt) = - / (1 - 0)* D**1 DX (ro, 8)do,
¢ 0

where 0 <k < m — |a|, 0 < |a] < m. This implies that the lemma below holds.

LeMMA 5.1. Forall X € A, there exist P; € B™+2-{(Rx[0,00)) (1<i< m-f-l)
and R, € B™+*-I¢|(R x [0,00)) (1 < |a] < m) such that
(i) X(r,t)=7P(rt) (1<i<m+1),
DaX(rt) = rmH -l R, (1< Ja] < m);
(i) DPPi(rt) = O(<» >~ || Xljgj4s) (1B S m+2 1),
DPRa() = O(< » >= 11D X || o) (18] < m+2  [al).

Next we shall carry out the estimates for functions of the type
Yi(r,t) = 1 H-(mH x50 4)  0<i<m,

which is appeared as a part of the integrand in the integral operators.

LEMMA 5.2. For all X(r,t) € A,

(511)  DYi(r,t) = O(< 7 >~=D=Cr 0D |2 ) (o] <i+2),

PROOF: When > 1, it is easy to see that (5.10) holds. So, let 0 < » < 1. In this

case, it suffices to show
(5.12) DYi(rt) = OIX|lrys)  (lal <3 +2).

We divide the proof into three steps.
STEP I: |a| = 0.
By Lemma 5.1 (2), we have
Yi(r,t) =m0 X (2, 8) (2= ("D X (, 1))
=Prni(rt)(Pra(r, 1)) 71,
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where Po(r,t) = X(r,t). Hence we use Lemma 5.1 (iz) to obtain (5.12).

STeEP II: 1< |l <i41.

By Leibniz’ rule, we have
(23] .
(5.13) D3 DYi(rt) =Y CDEHpMHi=(mn pl paa xa(y 1),
i1=0
Now we divide this sum into three parts to estimate them.

Case1: l4+a;=0.

In this case, we have
CODal(?1+i-(m+1)JX‘(r,t) — r1+i—(m+1).—a,X.(r,t)
= m—i+a1("’t)(Pm+1("')t))‘_l

= O(||X[lm+2)-

Casem: 1<l4+a;<1.

By the chain rule,we have

l4+aq
DIDF X*(r,t) = +Zc,,x' *nt) D G, H.D”_X('r t),

o€l i=1

where 8 = (I, a3), C, is a universal constant and

Tup ={o € (Z})*: ZUJ B, o; # 0}.
So, each term of sum in (5.13) satisfying 1 < !+ a; < i has the following estimate:

k
pitizlmat)e=(ea=Dyo=k(r ) T D9 X (v, 1)
i=1 '
=Lm- $+|a|(7‘1t) m+1 (T t)HRa,("t
=O(”‘X”:n+2)'
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Caseun l4+oa; =141,
In this case, we have |a| =i+ 1 and
Co, 7'+~ (m+1) pes poa x4, 4)

| k

=Ca1,'.1+t'"(m+1)l Z Ck.x‘_k(?,t) Z Ca ]:[ D”’.X(?,t).
k=1

06'1'1..« j=1

(5.14)

When i =m and k = 1, we have
2mFV(A=) x4=1(3 1) D71 X (7, 1)
=D X(r,1)(Prsa(r, )"
=0([|Xl7n+2)-
Proceeding as in Case II, we easily deal with the other case. Hence, from (5.14),

we get

piHi=(mt)s pex e (n,8) = O(||1 X || 42)-

Combining these estimates, it follows from (5.13) that (5.12) also holds in this

step.

STeP III: |a| =1+ 2.

we note that D°Y;(r,t) with |8] = i + 1 are represented by Pj(r,t) (1< j <
m+1) and R,(»?) (|o| < i+1). By virtue of Lemma 5.1 (i), it follows from the
representations of D?Y;(r,t) that (5.12) holds for any « € Z with | = i + 2.
This completes the proof of Proposition 5.2.

REMARK 5.3. We set
Ay ={X € B"* 3R x [0,00)) : DiX(0,t)=0 (0<i<m)},

where k € Z.. Then we easily obtain an analogue to Lemma 5.2:
For all X(r,1t) € Ay,

DeYi(r,t) = O(< » >(m=D=(m)0-) x| Y ol Si+k+2.
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Indeed, it follows from (5.10) that P; € B™+*+2={(R x [0,0)) (1 <4 < m+1) and
R, € B™**+2-12l(R x [0,0)) (1 < |&| < m) for all X € Ay. Hence, we obtain the
estimates for Y;(p, ) up to order i+ k + 2.

For X(r,t) € A, set
Qi(r,t) =< r >™ V' Y(rt) (0<i<m).

Corresponding to (A.1), we consider the following assumption:

(A.2) 3> 2—;—:2

COROLLARY 5.4. Let (A.2) hold. Then for all X(r,t) € A,
DeQi(nt) = O(< 7 >7? || X|lpys)  (lo] i+ 2).

In particular, Qo(r,t) =0O(<r>"3 [ X |1 t2)-

ProoF: Notice that D¥(< » >(m~1)) = O(< » >(™=1)*) for any positive integer
k. It follows from Lemma 5.2 that
DoQi(r ) = O(< 7 >PDr g p >=m=d=lm =) 310 )
= O(< 7 >7HHm D 1 X17 ).

Since (A2) implies that —2s +m + 1 < —2 and s > 2, the desired result follows.

5.3 Proof of (5.2)
The aim of this section is to show the following proposition. As we have

already pointed out in Subsection 5.2, (5.2) follows from this proposition.

ProrosiTION 5.5. Let (A.2) hold. Then for all X(r,t) € A,
() D@, X(r,t) = O(||X||7.+5);
(ii) D".(),X(r,t) = O(”X”;n+2);
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(i) D%, X(r,t) = O(|| X[l m42),
where |a| < m + 2.

Proor: Here we shall prove only (i). Because one can get (ii) and (ii) from (5.8)
and (5.9) in a similar fashion. By (5.1), it suffices to show (z) for » > 0.

SteP I: || = 0.
First, for X(r,t) € A, set

0,X(r,t) =

2<T>(m_1)'/ Qm 717T)d7-

It follows from Corollary 5.4 that Qum(yi,7) = O(< r >~2 ||X||2,+,). Hence,
O(xr,t) = O(||X||7ns2)-
Notice that DiDy¢™ (i, 7t —7) =0 (0<j<m—2)and that

--m!(—2r)"‘, 1= 1’

DP™iDg™ (yymt — 7) = {
—m!(2r)™, i=2.
Integrating by parts m times in (5.7), we have

&,X(rt) = 0,X(r,t) - 0,X(—r1)
== a [ oSBT x )y

(5.15) Tl <7 >m1m 1 =

0 m m
< (35 32)" Deb™ (o1t = ).

Next we shall carry out the estimate for the last term. Since ¢(p,7,7) is a
. . ' 1 . .
polynomial of degree 2m in p, we find that (5--(9(—9—)’”¢m(p, r,t — 1) is even in p.
p Op |
Hence, the region of the integration in the last term becomes

{(p,7) €ER X [0,00): 0< 7 <, |11] < p <72} By writing

(L Lymgm (o mt —7) = 3 Gip=a+ Digm(pyrt - 7)

dp 2p =

and setting

1 t R F] .
Li(rt) = / dr [ Qj(p,7)D:Dig™(p,7,t — 7)dp,

m~-1 .m
<r> T 0 |'71|
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it follows from (5.15) that

(5.16) 8,X(r,t) - {0,X(r,t) - 0,X(~-n,t)} = i C; L;(»,1).

i=0

By Lemma 4.1 (%), there exists a polynomial 9;(c) such that

i m m-—j— t—7—
DDig™(p,myt = 7) = rimoivlgy (T2 E),

SO

pm—i-l  pt s t—r—p
L(rt)= — [ 4 : (=T Pygp,
) = Frsmr [ 4 [ @sto (T

. t—71— . . .
Notice that ___%___p = O(1) for |y1| £ p £ 2. Since 9; is a polynomial, we have

pm—i=-1 t 73
(5.17) Ii(rt) = 2—;;-_—1‘/; dr o Qj(p,7)dp.

It follows from Corollary 5.4 that
O(<p>7*IX|lfn42)s 1S5 <m,
Qi(P) T) = -3 .
O(<p > IX|ltys), 5 =0.

Hence, from (5.17), we have

X t va )
O(H—%ﬂz/ df/ <p>"tdp), 1<j<m,
[yal .

X1 t 72 :
O(M"iz-/ dr/ < p>"%dp), 7=0.
T 0 [v1l

To continue the argument, we need the lemma below which is easily proved if we

I,-('r,t) =

change the variablesas { =7+ p, n=7—p.

Lemma 5.6.

() / dr‘/;l < p>=2dp=0(r);
(ii) / drfw <p>"*dp=0(1).

By this lemma, we conclude I;(r,t) = O(||X||2, ;). This completes the proof
of () for | = 0.
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STeP II: 1< |al < m+2.

Since
18 a1 <p>"‘ -1
m( _2m — = DJ
2p3p) ( ( X(P’T))) Z-;)C QJ(P,T),
if we set
1 ¢ Y3 ..
. S ip. m -
Ki(t) = Zrsmmrym | [ DiQie 1D punt = )

then it follows from (5.6) that
(5.18) $,X(nt)=>_ CjKj(r1).
ji=0

Notice that for X(r,t) € A, DiQ,- (p,7) is even in p. By virtue of Corollary 5.4,
DiQ;(p,7) € B*(R x [0,00). Therefore, proceeding as in the proof of Proposition

4.2, we obtain
DeKj(r,t) = O(lIX|l;ny2)  for 1<[o] <m+2.

This completes the proof of (3).

REMARK 5.7. In the proof above, we use two representations of ¢,X(r,1): (5.16)
and (5.18). A crucial difference between them consists in the region of the inte-
gration. . Although it seems that the case 71 < 0 is not discussed explicitly, the
integral operators introduced in [2] correspond to (5.16) from this point of view.
(See [2], p.368, (3.9).) When we intend to estimate &, X (r,t) itself, we have to use
(6.16) in order to apply Lemma 5.6 (i3). But (5.16) is inadequate to estimate its
derivatives. In fact, if we carry it out following [2], some terms of the fourth order'
derivatives may be unbounded when 4, < 0. However, the sum of such unbounded

terms is bounded. But this method requires to compute the coefficients of such
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terms and to cancel them each other. To avoid such computations, we used (5.18)

in Step Il in the proof of Proposition 5.5.

REMARK 5.8. Even if we do not assume (A.1), we can get the estimate of $, X (r,t)
with s > 2 in the region R = {(p,7): 0<7<¢, [m|<p <7}
Indeed, (5.16) can be rewritten as

m—-J -1

Ij(",t)—z—*;m—_
o= [ aotorryipan).

~ Hence, it follows from Corollary 5.4 and Lemma 5.6 that I;(r,t) = O(||X|]%,..,).

/ 7 Qo(p, 7)dpdr

5.4 Proof of (5.3)
By writing

5;5— ™(p*™*1G(p, 7)) = Z C; Di(p** G(p, 7)),

it follows from (5.4) that

m C' t Ya . . "
L, w)(rt) = . ey [ ar [ DGl )8 (ot = )
j=0 71

We recall the proof of Proposition 3.2 in order to show (5.3). Then we find that

it suffices to prove the following:

(5.19) Di(p**7G(p, 7)) € C*(R x [0, 0)),
(5.20) D, L(uy, u;)(r,t) € C°(R x [0, 00)),
(5.21) DPHE(U,V)(rt) € CO(R x [0, 00)).

Since U, V € A for (U,V) € T, we can apply Corollary 5.4 to p*7G(p, ) to get
(5.19). It follows from (5.19) that L(uy,u;)(r,t) € C*(R x [0,00)). This implies
(5.20). By (5.2), (5.21) holds. This completes the proof of Proposition 3.1.
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APPENDIX
In this Appendix, we shall study the problem (E*) in three space dimensions.

Instead of (H), we consider the following system of integral equations (H*):
U(r,t) =Ur,t) + rD,L(-g, —Y-)(r,t),

uvvu

) _)(7’t)7

»’ oy
where U%(r,t) = rul(r,t), VO(r,t) = ru0(r,), and L(u1,us)(r,t) is given in

(2.2) with m = 0. Solving the problem (E*) with » = 3 is equivalent to finding

(%)
V(rt) = V°(r,t) +rD, L(

a solution of (H*) belonging to I' with m = 0. So, the propositions below are

essential.

ProPoSITION A.l. Suppose that f € C*(R) and g € C*(R) are even functions.
Then the problem below admits a unique global C*-solution u®(r,t):

{ Ugy — Upp — gu, =0 for (r,t) €R x [0, 00),
u(r,0) = f(r), wi(r,0)=g(r) for »€R,

where f and g are the same functions as in (E*).

In addition, if 79 < oo, then U® € Ty, V° € T'; and
T2 = O(m0),  IV°l]2 = O(mo),

where 79 is the same number as in the Main Theorem.

ProrosITION A.2. Suppose that p, 29 > 3. Then for W = (U, V) €T,
Z;(W)€eT; and

1Z:(W)llz = OV +1IVIIZ*) (i=1,2),
U v

- uvv, _
where E1(U, V) = 'rDtL(-:, -T—), E(U,V) = 'rD,L(-T—, -r—)

Proceeding as in Section 3, we obtain the solution of (H*) which belongs to T'.

This implies that the assertion of the Main Theorem is valid,if n = 3 and k = 0.
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