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ON GLOBAL WEAK SOLUTIONS
OF THE NONSTATIONARY TWO-PHASE
STOKES FLOW

Yoshikazu Giga! and Shuji Takahashi?

Abstract. A global-in-time weak solution of the nonstationary two-phase Stokes
flow is constructed for arbitrary given initial domains (under periodic boundary condition)
when two viscosities are close. Our solution tracks the evolution of the interface after it
develops singularities. The theory of viscosity solutions is adapted to solve the interface

equation. Surface tension effects are ignored here.

.. Key words. global solutions, two-phase Stokes system, interface equation, gen-

eralized evolution, upper semicontinuous convexification
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1. Introduction. This paper studies the dynamics of the interface (free bound-
ary) of two immiscible incompressible viscous fluids with same constant density, say one.
We are interested in slow motions so that each fluid velocity satisfies the Stokes equations
with different viscosities. The interface is assumed to move with the fluid velocities. No
surface tension on the interface is considered in this paper.

Let vy be the viscosities of each fluid. Let Q4 (t) the disjoint open sets in a bounded
open rectangle R(C R™(n 2> 2)) occupied with the fluids of viscosities vi at time ¢,

respectively. The complement of the union of Q,(t) and Q_() is called the interface and
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denoted by I'(t). To write down the equation we assume that the interface I'(t) is a smooth
“hypersurface so that I'(t) is the boundary between Q. (t) and Q_(t). Let uy = uy (¢, 2) and
w3 = w1(t,z) denote the velocities and pressures of fluids with viscosities v, respectively.
The motion of the fluids determines the dynamics of the interface. Let V = V(¢,2) denote
the speed of I'(t) at z € I'(t) in the normal direction n from Q. (t) to 2_(t). We consider

an interface equation for I'(¢):
(1.1) V=24 n on T(t) withinitial data Q+(0)= Q4o

cbupled with the incompressible Stokes system:

(1.2) Beus —viAug +Vre =V - fx, in (0,T) x Qu(t),
(1.3) V.ug =0, in (0,T) x Qa(t),
(1.4) uy =u_, on T(t),

(1.5) Ty(ug,m4) n="T_(u,x_)+m, on I(t),

(1.6) ux(0,2) = 0, | in 04(0),

where Ty (us, 7+ ) := vs D(uz) — w1 I denotes the siress tensors with

Ouk  Hut
D(u) = (Di(w)) = 31:; B

Here 0 < v < vy < 00,0 < T < o0 and f = (f;;(,2))(4,7 = 1,-++ ,n). The initial
velocities are assumed to be zero for simplicity.

Our goal is to construct global weak solutions of the two-phase Stokes system (1.1)-
(1.6) for arbitary given initial domains 4o and external forces fi under the assumption
that v; and v. are close. Here we impose periodic boundary conditions to avoid tech-
- nical difficulties. Although it is possible to construct local solutions (cf. [De2]), there is
an intrinsic difficulty to construct global solutions since the interface I'(t) may develop
singularities in a finite time.

We first introduce a weak formulation of the transport equation (1.1). Since the
boundary of our domain Q.4 (¢) may not be regular, we consider a generalized evolution of

(1.1) through a level set of an auxiliary function. This idea goes back to [ESou). Recently,
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the level set approach is extended to other equations including the mean curvature flow
equations (cf. [ES], [CGG1]). However, our velocity field u is merely continuous, so one
-cannot apply these known theories directly to our setting. We are forced to extend the usual
definition of generalized evolutions to (1.1)(cf. [ESou]). It turns out that our generalized
evolution uniquely exists for any initial domains and any continuous velocity .

Using generalized evolutions of (1.1), we next introduce a step function v to give an
weak formulation of (1.2)-(1.6). The region occupied with high (resp. low) viscous fluid
corresponds to the place where v takes the value v (resp. v_). The interface corresponds
to a jump discontinuity of ». The velocity u is defined by » = u4 on 2, and u = u_ on
0., and also the pressure = is defined in the same manner. The system (1.2) and (1.5) is

formally equivalent to
(L.7) =V -(vD(u)+Vx=V-f, in (0,T)x T,

where T is the torus obtained by idevntifying each ends of R. The condition (1.5) is implicit
in (1.7). The condition (1.4) is automatic if u is assumed to be continuous. We thus obtain
an weak formulation of (1.1)-(1.6).

To construct a solution we seek a fixed point of the mapping defined as follows. For
a continuous function v we solve (1.1) with 24 = v and find generalized evolutions Q3.
Let v = v, be a step function with ¥ = 1 on QY and v = (v4 + v_)/2 outside QY.
We next solve (1.7) with V- = 0 and %(0,2) = 0, and obtain a mapping S : v — .
Unfortunately S is not continuous, so Leray-Schauder’s fixed point theory does not apply.
We extend mapping S to an upper semi-continuous convex set-valued(mapping so that we
apply Kakutani’s fixed point theory. To apply Kakutani’s theory we need a compactness
which follows from a priori I? estimates (for large p) for the Stokes system (1.7) and
V-u = 0 with discontinuous viscosity. A perturbation argument similar to [Cam] and [GY]
is applied here. To get the L? estimates for large p we need to assume that (v, —v.)/v,
is sufficiently small. '

In [GGI] and [GY] global solutions for the interface equations coupled with other
equations are studied in different contexts. |

There are related free boundary problems for one-phase incompressible viscous fluid

motion. Solonnikov extensively studied the evolution of the free boundary when the initial
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surface is a connected boundary of a bounded domain. He constructed a unique local
smooth solution for & = 0 in [Sol 5] and ¢ > 0 in [Sol 6], where ¢ is the surface tension. If
the data is close to some equilibrium state, he showed that his solution can be extended
globally in time; see [Sol 1,2,3] for ¢ > 0 and [Sol 4] for o« = 0.

The same problem is studied when the domain is occupied with fluid like an ocean
with finite depth whose top is the free boundary. Local existence is established by Beale
[Be 2] and Allain [Al] for & > 0 and by Beale [Bel] for o = 0. Global-in-time existence
of smooth solution is established by Beale [Be 2] for ¢ > 0 and Sylvester [Sy] for o = 0.
Note that the case o = 0 is more difficult for establishing global existence because o > 0
gives some regularizing effect.

For the two-phase Navier-Stokes system, using a priori estimates in [Del], Denisova
[De2] constructed a local solution with or without the surface tension. Tanaka [Tana)
proved a global existence for o > 0 when the initial surface is close to some equilibrium
state. | ,

Our problem (1.1)-(1.6) is regarded as the two-phase Stokes system with no surface
tension. The only difference between our problem and the two-phase Navier-Stokes system
mentioned above is that our equations for the fluid motion are not the Navier-Stokes
equations but the Stokes equations. So far even to our problem no global smooth solutions
are constructed for nontrivial initial data. |

Finally we point out that Kohn and Lipton [KL] discussed homogenization problem
for the two—phaseyNavier—Stokes flow with no surface tension in a formal level.

We note that two-phase problem for compressible viscous fluid is extensively studied

by Tani. We refer to [Tani 1,2,3].

This work was done while the second author was a graduate student in the Department
of Mathematics, Hokkaido University. The work of the first author was partially supported
by the Inamori Foundation.

We are grateful to Professor Hitoshi Ishii and Professor Hisashi Okamoto for criticism

of solutions of the transport equations.

2. Interface equations. We consider the motion of interfaces with a given
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speed under periodic boundary conditions. For a; > 0 (i = 1,-:- ,n) let R be a bounded

rectangle in R™ of the form
R={(z1,"*2,) €ER™ 0< 2; S a;, 1< i< n}.

We identify faces z; = 0 and z; = o; (1 < 7 < n) of R to get an n-dimensional flat torus
T. A motion of interfaces in R under periodic boundary conditions is interpreted as that
in T. We consider T rather than R™ for technical convenience because T is compact and
has no boundary. The periodic boundary condition is important because it is often used
in numerical experiments.

Let 4 and Q.. be disjoint open setsin M = [0, 00) X T. Let I denote the complement
of the union of O and 2_ in M. Physically, I'() is called an interface at time ¢ bounding
two phases Q1 (t) of fluids. Here W () denotes the cross-section of W C M at time ¢, i.e.,

W(t) = {z € T;(t,z) e W}.

Suppose that I'(t) is a smooth hypersurface and let n denote the unit normal vector field
‘pointing from Q,(t) to Q_(t). Let V = V(t,z) denote the speed of I'(¢) at z € I'(t) in
the direction n. Suppose that u : Q — R™ is a continuous vector field, i.e., u € Cc(Q)
where @ = (0,T) x T (0 < T < o) and that Q denotes the closure of Q in M. Here and
hereafter we do not distinguish the space of real, fector or tensor valued functions. The

equation for I'(t) we consider here is
(2.1) V=u-n, on TI(?),

where - denotes the standard inner product in R™.

If u(t, ) is Lipschitz continuous in 2 (uniformly in ), one can construct a unique short
time classical solution for a given smooth initial data I'(0) by a method of characteristics.
In the periodic case a unique global-in-time weak solution is constructed in [GGI] by a
level set approach developed by Y.-G. Chen, Giga and Goto [CGG1] and Evans and Spruck
(ES]; see also [ESou]. However, if u is merely continuous, classical solutions may not exist
even for a short time and they are not uniquely determined by the initial data even if

they exist. The level set approach in [GGI] does not apply to this case so we are forced to
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extend the approach. By the way in [CGG2] we actually need to assume a uniform bound
on the gradient of T in [CGG2, (1.6)] and of w in [CGG2, (2.13)] although it is not written
there.

Largest and smallest solutions. Let u € C(Q) and a € C(T). Wesay ¥ : Q — R is

a subsolution of

(2.2) Bet(u- V=0, inQ,
(2.3) C (0,2) = afe),

if 9 is a viscosity subsolution of (2.2) on Q and ¥.(0,z) = a(z), where h, denotes the

lower semicontinuous envelope of h : I — R, i.e.,

he(y) = lellrg inf{h(z);|z —y| <e, z€ I}, yeT.

If —1 is a subsolution of (2.2)-(2.3) with —¢(0,2) = —a(z), we say ¥ is a supersolution of
(2.2)-(2.3). If 9 is both super- and subsolution of (2.2)-(2.3), we simply say ¢ is a solution
of (2.2)-(2.3). For a general theory of viscosity solutions see [CIL].

As well known there is a comparison theorem on solutions provided that |Vu| is
uniformly bounded. However, for general « € G(Q) there is no uniqueness of solutions of
(2.2)-(2.3). We thus consider largest and smallest solutions. Let A (resp. o) be a solution of
(2.2)-(2.3). We say A (resp. o) is a largest (resp. smallest) solution if A > ¢ (resp. o < 9)
for all other solutions 9 of (2.2)-(2.3).

PROPOSITION 2.1. (i) Suppose that v is a viscosity sub-(super)solution of (2.2) on Q,
where u € C(Q). Then ¥ is also a viscosity sub-(super)solution of

(2.4) | $e— L|V§| =0
(25) (resp. 0+ L|VY| = 0)
on Q with I = supg [u|.

(1i) Suppose that ¥ is a viscosity super-(sub)solution of (2.4) (resp. (2.5)). Then 9 is also
a viscosity super-(sub)solution of (2.2) on Q.
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Proof.  We only present the proof of (i) when % is a viscosity subsolution of (2.2)
because the remaining three cases can be proved similarly. Suppose that ¢ € C?(Q) and
(to,zo) € Q satisfy

max($ — ¢) = (¥ — {)(to, 20)-

Since ¢ is a viscosity subsolution of (2.2),
Ct + (‘ll. * V)C s 0 at (to, zo).
The Schwarz inequality now yields

CG— LIV <G+ (v- V(<0 at (o, 20),

so 9 is a viscosity subsolution of (2.4) on Q. N

LEMMA 2.2. Suppose that v € C(Q) and a € C(T). There are unique largest and smallest
solutions A and o of (2.2)-(2.3) which are bounded on every compact set in Q. Moreover,

A and o are expressed as

(2.6) A(t,z) = sup{%(¢,z); ¥ is a subsolution of (2.2)-(2.3)},
(2.7)- o(t,z) = inf{¥(¢, 2); 9 is a supersolution of (2.2)-(2.3)}.

Proof.  Let A denote the right hand side of (2.6). As well known there is a unique
viscosity solution %% (resp. ¥~) of (2.4) (resp. (2.5)) with (2.3). By Proposition 2.1 ¢+
and 9~ are, respectively, super- and subsolution of (2.2)-(2.3). Also any subsolution % of
(2.2)-(2.3) is a subsolution of (2.4)-(2.3) so a comparison theorem for (2.4) yields ¥ < ¢+.
By Perron’s method (cf. [Ish]) we see A is a solution of (2.2)-(2.3) with

P <ASYT

Since 9% is continuous on @, A is bounded on every compact set in Q. The solution A is

a unique largest solution A because otherwise there would exist a solution ¢ of (2.2)-(2.3)
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which is not smaller than A and this contradicts the definition of A. We thus proved all

statements on A = A. The proof for o is completely parallel, so is omitted. N

LEMMA 2.3 (Uniqueness of level sets). Let A and o be, resp‘ectively, the largest and
smallest solutions of (2.2)-(2.3). Let

(2.8) Q4 ={(t,2) € [0,T) x T; ou(t,2) > 0},
(2.9) Q_ ={(t,2) €[0,T) x T; A*(¢,=) < 0},

where A* = —(—2).. The set Q. (resp. f)_) is completely determined by the initial data
Q4(0) (resp. ©_(0)) and u, and is independent of choice of a.

Proof.  Suppose that a; € C(T) (i = 1,2) satisfies
04(0) = {z € T; a;i(z) > 0}.

Let o; denote the smallest solution of (2.2)-(2.3) with a = a;. We first take § € C(R)
(strictly) increasing with 8(0) = 0 and a; < 9(a\2). Such a function 8, of course, exists (cf.
[CGG1, Lemma 7.2]). Since the equation (2.2) is geometric, ¢ = 6(c;) is a solution of
(2.2)-(2.3) with o= 8(az) (cf. [CGG1, Theorem 5.2] or [CGG2, Theorem 2.3]). Moreover
¢ is the smallest solution of (2.2)-(2.3) with a = 8(a;) since § and 6~ preserve the order
in R.

We next observe that oy < ¢. Indeed, ¥ = min(oy, ¢) is a supersolution of (2.2)-(2.3)
with a = a; (cf. [CGG1, Proposition 2.2]). If oy < ¢ were not true, there would exist
(t,2) € Q such that ¥(¢,2) < o1(¢,z). This contradicts the representation (2.7) of the
smallest solution ¢y.

The inequality o1 < @ yields

{(t,2); o1a(t, 2) > 0F C {(t, 2); 02 (¢, 2) > O}
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If we choose 8 so that a; < 6(a;), the other side inclusion also holds, so Q4 is
completely determined by ,(0).
The proof for (1_ is parallel, so is omitted. N

Remark. Evans and Souganidis [ESou, Theorem 7.1] proved the uniqueness of level

sets in R™ when the equation (2.2) is
(2.10) u + H(z,Vu) =0,

where H : R® x R* — R is uniformly Lipschitz, and positively homogeneous of degree
one in the second variable. In this case there is no need to consider largest and smallest
solutions because solutions of (2.10) with (2.3) are unique by comparison. The proof giveh
there is different from those in [CGG1, 2] and does not seem to apply to second order
equations. Of course the proof in [CGG1,2] does apply to second order equations.

Generalized evolution. Let Q4 (resp. £2_) be an open sets in M. We say Q.. (resp.
Q_) is a + (resp. —) generalized evolution with speed u € C(Q) and initial data Q. (0)
(resp. 2_(0)) on interval [0,7’) if there is the smallest (resp. largest) solution o (resp. A)
of (2.2)-(2.3) with some a € C(T) satisfying (2.8) (zesp. (2.9)).

Note that each level set of solutions of (2.2)-(2.3) independently moves by (2.1) at
least formally. The £ depends on the orientation of the interface.

For a given open set Q49 in T there is a € C(T) satisfying Q40 = {z;a(z) > 0}, so
Lemmas 2.2 and 2.3 yield:

THEOREM 2.4. For a given open set Q.o (resp. Q_o) in T there is a unique + (resp. —)
generalized evolution Q. (resp. _) with speed u € C(Q) and initial data Q+(0) = Q4o
on [0,T). If Q4 and Q_¢ are disjoint, so are Q. and Q_.

THEOREM 2.5 (Stability). Let Q. ; be the + generalized evolution with speed u; € C(Q)
and initial data 4;(0) = Q40 on [0,T), where j =1,2,--+ and Q = (0,T) x T. Suppose
that T < co and u; — u in C(Q) as j — oo. Let 0, be the + generalized evolution on
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[0,T) with speed v and Q..(0) = Q4. Let K be a compact set in Q.. Then K is also

contained in Q; for sufficiently large j. The same holds for — evolution.

Proof.  Let o; be the smallest solution of
Ye+(uj - V)P =0, $(0,2)=a(z)€ C(T)

with Q40 = {z;a(z) > 0}. By the stability result of Barles and Perthame [BP, Appendix]

the function

e(t,z) :=lim.o;(t,2) := Jlirr.}o inf{o;(s,9);|t — 3| < e, |y — 2| < ¢}
elo
is a viscosity supersolution of (2.2) on Q since u; — win C(Q). Let L be a constant such
that supg |u;| < L for all j. We take a continuous solution ¢ (resp. ¥~) of (2.4) (zesp.
(2.5)) with (2.3). Asin the proof of Lemma 2.2, we have 9~ < o; < 9. This implies that
P~ < p <Pt on [0,T) x T, so we have ¢,(0, z) = a(z). Therefore ¢ is a supersolution of
(2.2)-(2.3). Let o be the smallest solution of (2.2)-(2.3) so that ¢ > ¢ by (2.7). For any
compact set K C Q.,. there is § > 0 such that infx o, = § since o, is lower semicontinuous.
Since ¢ > o and K is compact we see infx oje 2 §/2 for sufficiently large j’. This implies

K C §1; for large j. The proof for — evolution is parallel, so is omitted. B

3. Global existence of weak solutions. We introduce a weak formulation
of the problem (1.1)-(1.6) on T. Let Q4 be two disjoint open sets in [0,T) x T. Let v
be a step function such that v = vy in Q4 and v = (v +v_)/2 outside 2, U Q_ where
0 <wv. <v+. Let f be a tensor field on Q = (0,T) x T such that f = f4 on Q.. For
given Qi we say vector field u is a weak solution of (1.2)-(1.5) in Q if v € C(Q) with
Vu € LY(Q) (for some 1 < ¢ < oo ) and it solves

(3.1) u—V-WwD)+Vr=V-f+V.g, V-u=0, in Q=(0,T)xT,

in the sense of distribution with some = and g whose support spt g is contained in ' =
Q\(Q+ U Q). By LP(Q) we mean the space of all periodic (in space) function f on
(0,T) x R™ with period a = (@1,--- ,a,) such that flo,ryxr € LP((0,T) x R).

10



If the Lebesgue measure of the interface I is zero, then (3.1) yields (1.2)-(1.3) by
interpreting v = uz in Qu. If {I(f)}i>0 is a smooth family of smooth surfaces, the

boundary condition (1.5) is contained in (3.1). The condition (1.4) is automatic since

v € C(Q).

We now state our main result in this paper.

THEOREM 3.1. Let p > 2(n + 1). Assume that Q4q are two disjoint open sets in T and
that f € L?(Q) is a tensor field. Then there exists a positive constant § = §(n,p) such
that if

Vy — Vo

(3.2) < 6

Vi

then there exists a weak solution u € C(Q) with Vu € L?(Q) of (1.2)-(1.5) with (1.6) for
generalized evolutions Q1 C Q with initial data Q4o such that the speed of 4. equals u.
Moreover g in (3.1) can be taken as an element of L?((0,T,) x T) for finite Ty < T. Here
T is allowed to be infinte.

4. Upper semicontinuous convexification. This section establishes a crucial
abstract-theory for (set-valued) mappings so that we apply Kakutani’s fixed point theory.

For this purpose we extend a mapping to an upper semicontinuous convex set-valued
mapping.

For a given subset A of a vector space X let coA denote the convex hull of 4, i.e.,

cod={tz+(1-t)y;z, ye 4, 0<t <1}

Let X and Y be a normed space and a Banach space equipped with norms || - [|x and

|| - lly s respectively. For a set-valued mapping S : X — 2¥ we define S, : X — 2 by

Se(w) = J{S(whillu—wllx <e}cY

11



for v € X and ¢ > 0. Here 2Y denotes the family of all subsets of Y. We introduce another
set-valued mapping S : X — 2Y defined by
S(u) = ﬂ coS.(u), u€X,
>0
where B denotes the closure of B C Y. In this paper we call S upper semicontinuous

convezification of S since it has the following properties;

LEMMaA 4.1. (i) For each u € X the set S(u) is closed and convex inY.
(ii) The mapping S is upper semicontinuous. In other words, if u; — w in X, v; € S(u;)
and v; — v in Y, then v € S(u).

(iil) If S(u) is nonempty for allu € X, so is S.

Proof. (i) Clearly, S(u) is closed. Since the closure of a convex set is convex and
the intersection of a family of convex sets is still convex, we see S(u) is convex.

(ii) Suppose that v ¢ S(u). Then there would exist § > 0 such that
v ¢ As(u) 1= coSs(u).

Since As(u) is closed, there would exist k such that j > k implies that v; ¢ As(u). Since
u; — w we may asssume that ||u; —u||, < /2 for j > k by taking k larger. By the
definition of S, we see

Aﬁ(u) 2> A&/Z(ui)v jZk.

This inclusion now would imply v; ¢ Ag/5(uy), ie., v; ¢ S(u;) for j 2 k, which leads a
contradiction.
(iil) Since S.(w) containes S(u), so does S(u). N

We have introduced the upper semicontinuous convexification so that we apply Kaku-
tani’s fixed point theory. We state an easy consequence of this fixed point theory for later

use.

ProrosiTiON 4.2. Let K be a convex compact subset of a Banach space X and let
S : X — 2K C 2% be a nonempty set-valued mapping. Let S be the upper semi-

continuous convexification of S. Then S has a fixed point ¥ € K N S(%).
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Proof. Since K is convex and closed, values of S are contained in K. By Lemma
4.1 we see S is an upper semicontinuous set-valued mapping X — 2% with nonefnpty
closed convex values. The existence of a fixed point of S now follows from Kakutani’s fixed

point theorem [AF]. N

5. Stokes equations with discontinuous coefficients.

Let us recall anisotropic Sobolev spaces of fractional orders (cf. [Ya, Example 1.1 and
Section 3] and [Tri, Section 2.13]) though our notation differs from them. For 1 < p < oo
and 0 < s < o0, let H}'* = H2?*(R x R™) denote

Hy® ={f € P(R x R"); [Ifllggor = 1777, )" Ffllza(mocmn) < 00}

with (7,€) = [{1 + |€]* + (1 + 2/¢]> + [€]* + 472)/2}/2]*/2. Here (Ff)(r,¢) denotes the
Fourier transform of f(¢,z) on R x R™ 3 (¢,z). The multiplier (7,¢) is actually the unique

positive root ¢ of

e e R A [{E

For a domain D in R™t! let H}**(D) denote the space of all f € LP(D) which can be
extended to an element f of H2*. The space H}*?*(D) is equipped with the norm

”f”H;"'(D) = inf{”f”H;,:.; flo = £}

Let H}'?*(Q) denote the space of all periodic (in space) functions f defined on (0, T) x R™

with the period @ = (e, ++ , &) such that

fleo.ryxr € Hy?*((0,T) x R).

The space H;'**(Q) is equipped with the norm

7]

mp2(Q) = g (o,r)xm)-

We shall write H}}/Z'I(Q) simply by H,(Q). We begin with an a priori estimates for the

heat equation.
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LEMMA 5.1. Let 0<T < o0 and Q@ = (0,T) x T. Let 2<p < oo and let F € L?(Q) be a
vector field. Then there exists a unique solution v € H,(Q) of

u, —Au=V-F, in Q,

"‘[t:o = 0'

Moreover there is a constant Cy; = Cy(n,p) such that
llella, 0y < CillFllzs(q)-

The restriction 2 < p guarantees that « € H,(Q) has a trace at ¢ = 0. However if we

interpret u|;=o = 0 in a suitable way, the restriction p > 2 is weakened as p > 1.

Proof. The uniqueness is standard. For example, multiplying » with u, — Au =0
and integrating in space by parts yields a differential inequality which implies « = 0.

We extend u and F periodically outside R so that u solves
u —Au=V-F in (0,T) x R™.
The solution u is expressed as
wta)= [ [ (Vo) o2 =) Flw) duas,

where g(t,2) = (47t)~™/? exp(—|z|?/2) is the heat kernel. Since F is periodic with period

a = (ajy, - ,a,), we observe that
t
u(t,z) = Z v(t,z — o), v(t,z) = / /(Vg)(t — s,z —y) - F(y) dyds,
oEZ™ 0 JR
where ca = (011, ,0na;). Note that

||u“7'£,(Q) < gz:" “'v(-, * aa)||H;/"’((0,T)xR)) < “leH;/"’(D)

with D = (0,T) x R™. By Mikhlin’s lemma (cf. [MS]) we see

”v”H;ﬁJ(D) < Cl“F”L’(Q)

with Cy = C1(n,p). These two inequalities yield Lemma 5.1. N

We apply Lemma 5.1 and a perturbation argument (cf. [Cam], [GY]) to the Stokes

system with discontiuous coefficients:
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PROPOSITION 5.2. Assume that 0 < T € oo and 2 < p < co. Assume that v € L*®(Q)

satisfies
(5.1) O<vo<v<uy,

with some constants vi. Let f € L?(Q) be a tensor field. Then there exists a positive

constant § = §(n,p) such that

Vy — V.
+ <$

(5.2)
Vi

implies that the Stokes system

u —V-(vD(x)+Vxr=V-f V-u=0, in Q,
(5.3) '

u|t=0 = 0’

has a unique solution u € H,(Q) (with some function ) satisfying

C,
(5.4) I|’4|I1{,(Q) < Z”f”LP(Q)

with Cz = Cz(’n,p).

Proof. ~ Let P be the projection of L?(T) to L2(T) associated with the Helmholtz

decomposition

IP(T) = I2(T) ® {Vx € L*(T); = € I*(T) },
LZ(T)={ve I’(T); V-u=0in T }.

Since T has no boundary, P commutes with partial derivatives on T. Applying P to the
first equation of (5.3) yields

(5.5) u — V- (PvD(u)) =V - (Pf).
Here Pf is a tensor field defined by

(Pf)i; =(Pf5)i  1<4ij<n
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for a tensor field f and f; represents a vector field defined by f; = (fij)1<i<a. From (5.5)

it follows
(5.6) u —vpAu=V-P(f + (v — v;)D(u))

since V.u = 0. .
We shall solve (5.6) with u|;=o = 0 by a successive approximation. Let uj;; be a

solution of

Oiujt1 —viAujpy =V - P(f + (v — vy ) D(wy)),
(5.7)

%jt1le=0 = 0,

for j > 1 and let u; = 0. Since P is bounded from LP(T) to LE(T) and ||D(u)||zr(0) <
2Co||u|ln,(q) (cf. Appendix, Lemma A.1(vi)), it follows from (5.1) that

IP(f + (v = v4)D(u;))llz2(@) < Cfllz2(o) + 2Co(ve — vo)||u]l2,(0))-

The bound C of P here is actually independent of T. Indeed, note that Pu = u — Vq with
Ag =V -uin T. Extend g and u periodically outside R so that Aqg = V - u is regarded
as an equation on R™. As in the proof of Lemma 5.1, applying Mikhlin’s lemma to the

integral representation of Vg we obtain

IVdallzr(r) < C'llullzr(r)
“with C' = C'(n, p).

Applying Lemma 5.1 with a change of a variable s = ¢/vy to (5.7), we now obtain

C]_C Ve — V-
(5.8) ”u)'-}-l”'np(q) < —V+—”f||z,p(q) + C"_——_V+ ”“:'”u,(Q)’

C” = 200 C1 C

We thus observe that u; € H,(Q) for all j > 1. Choose § such that C"§ < 1/2. Since the
equation (5.7) is linear in ;4,1 and u;, the difference wj1 = ujyq — u; solves

Oewj41 — vy Bwjpr = V- P((v — v4)D(w;)), in Q,

wi+1‘|t=0 = 0.
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As in deriving (5.8) applying Lemma 5.1 we observe, by (5.2), that

C” vy —

”w1+1”7¢ H(Q) S s - ”wi”u,(q)

oy

< Sllwillx,(e)

[ 3%

for j > 2. This implies that {u;} is a Cauchy sequence in H,(Q). The limit » of {u;}
solves (5.6) with u|¢=o = 0. The estimate (5.8) yields '

01

llellae, (q) € ”f“LP(Q) + "”“”%,(Q)

We now obtain (5.4). If u solves (5.6), then V -4 = 0 since P commutes with partial
derivatives. We have thus constructed a solution v € H,(Q) of (5.3) with (5.4) under
(5.2). The uniqueness of solutions follows from (5.4). N

6. Proof of Theorem 3.1. Assume that 0 < T' < o0. Foru € C(Q)let Qx C Q
be generalized evolutions with speed u and initial data Q4. Let v = v, be a step function
such that v = vy in Q4 and v = (v4 +v-)/2 outside 24, UQ_ with 0 < v_ < vy4. Assume
that f € L?(Q). If positive constant § is chosen as in Proposition 5.2, then there is a

unique solution % of (5.3) for v = v, such that

%€ K ={ueH,(Q); ”u”’H,(Q) “f”L’(Q)}

We define a mapping S : C(@) — 2K by S(u) := {@}. If p > 2(n + 1), the inclusion

M,(Q) € C*(Q)

for p = 1/2(n+1) —1/pis continuous (see Appendix) and Ascoli-Arzela’s theorem implies
that K is compact in Banach space C(Q) since T < co. Unfortunately Leray-Schauder’s
fixed point theory does not apply to S since S may not be continuous. We consider the

upper semicontinuous convexification S of S in Section 4.

LEMMA 6.1. Let S be the upper semicontinuous convexification of S. If v € S(u),
then v is a weak solution of (1.2)-(1.5) with (1.6) for generalized evolutions Q1. with speed
u and the initial data Q3o Moreover g in (3.1) belongs to L?(Q).
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Proof. By the definition of S, if v € S(u), then for each k = 1,2,---, there is a

sequence {v¥,}_; converging to v in C(Q) such that v%, € co Sy x(%), i.e., v

. as

{
o =3 arkak, {@f)}=S(d), =Lm,k),

j=m

with some A7 and v} € C(Q) such that

l |
YAk =1, A 20, |l -l < 1k,
j=m

k

m

is expressed

for all k > 1. By a diagonal argument there are a sequence u; converging to u in C(Q)

and AT, -+, A{™ with

L
dAr=1, AP0
j=m

such that .
vm =) A d, {i;}=S(y)
j=m

converges to v in C(Q) as m — co. By the definition of S, 4; solves
B — V - (vu, D(d3)) + Vi; = V- f, in Q,
V-.4; =0, in Q,
ijlieg = 0,

with some #;. Multiplying A7 and adding from m to {,, we see

Otvm — V- (uD(vm)) + VA, =V - f+ V. .gn, inQ,

(6.1) Vevm=0, inQ,

vmlt:O = 0’

with
Lm :
— m s
T = E AT T3,
j=m

L '
gm = Y AP (va; —vu)D(d;).
j=m
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Since K is convex and bounded, the sequence {v,,} is bounded in H,(Q). We thus
observe that D(v,,) — D(v) weakly in LP(Q) since v, — v in C(Q). Since 4; € K, the
sequence {gm} is bounded in L?(Q). Taking a subsequence if necessary, g,, — g weakly
in L?(Q) for some g € L?(Q). Letting m — oo in (6.1) yields

Ov -V -(ryD(v))+Vxer=V-f+V-g, inQ,
V.v=0, in Q,

vlt:O = 0’

for some =.

It remains to prove that spt g C Q\(Q4 UR_). Let C be a compact set in Q4 UQ_.
Since u; — u in C(Q), we see, by Theorem 2.5, Vy; = vy on C for sufficiently large 7. This
implies that g; = 0 on C for sufficiently large j. Since g; — g weakly in L?(Q) and C can
be taken as an arbitrary ball in Q4 UQ_, we conclude that g=0on Q. UQ_. X

HT < ooand p>2(n+1), K is compact and convex in X = C(Q). By Proposition
4.2 § has a fixed point » € K NS(u). By Lemma 6.1 this u is a desired weak solution in
Theorem 3.1.

To complete the proof of Theorem 3.1 it remains to construct a global solution in
(0,00). For 0 < T < oo we write Q by Qr, K by K7 and S by Sy to emphasize the
dependence of T. For Ty < T3 < +++ < T} — oo let ug; be a fixed point in Kr, NS, (ur,).
Since § in Lemmé. 5.2 is independent of time for each T' < oo, the restrictions {#;} of
{ur;} on t < T are bounded in Kz C H,(Qr) for sufficiently large i. Since the inclusion
Hp(Qr) C C(Qr) is compact for p > 2(n + 1) and T < oo, a diagonal argument yields a
subsequence {i;:} and w € C((0, 00) x T) satisfying

(6.2) 4 — w in C(Qr).

Since @y € Sr(@#) C C(Qr) and since the graph of Sz : C(Qr) — 26(@7) is closed
in C(Qr) x C(Q7), (6.2) implies w|q, € Sr(w|g,) C C(Qr). Since T is arbitrary, this
yields a desired global solution in (0,c0). N
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7. Appendix. We list a couple of properties of anisotropic Sobolev spaces for

the reader’s convenience since such spaces are less familiar than isotropic ones.

LeMMA A.l. (i) For 0 < s < 1 the space Hp**(R™*1) is isomorphic to the complex
interpolation space [LP(R™+1), H-*(R™*1)], as Banach spaces.

(ii) The norm |]fHH;: is equivalent to the norm

fllze + 11V Fllze + [0:fllz-

(i) Let D be a domafn in R™*! of the form (tg,%1) x © with smoothly bounded domain
{2 in R™. There is a continuous linear operator e from H}?(D) to H}*(R™*!) such that
ef=fon D.

(iv) Hy*(D) = [L*(D), H;*(D)]..

(v) For p > 2(n + 1) the space H;/Z’I(Q) is continuously embedded in C*(Q) with p =
1/2(n +1) —1/p. '

(vi) There is a constant Cy = Co(n,p) such that

Ou .
”0_2'” L Collulln, ) forall ueHy,(Q),5=1,---,n.
7 Lr(Q)

Proof. (i) For f € H}*(R™*!) we set
Af =F U1, &)’ FF.

The operator A is closed in LP(R™1) with the domain D(A) = H*(R™*!). By Mikhlin’s
lemma the operator norm in L? of the pure imaginary power A% is bounded by a constant

multiple of e7l¥| for some ¥ > 0. A standard argument (see e.g. [GS, Section 6]) yields
Hy#(R™1) = D(4*) = [IP(R™Y), B2 (R™H)),.
(i) We observe through Mikhlin’s lemma that

l1Afllzs < C1I(0: — A + 1) ]|z
< C10:fllzs + 1V fllze + [ Fllze)
S C”Af”LP
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(i) We may assume t; = 0. As well-known there is a continuous extension e, :

HX(Q) - HZ(R™). For f € H}?(D) we set

fit,2) = { (af)(~t2) for (t,2) € (~t1,0) x R™
,z) = (erf)(2ty —t,2) for (¢,=2) € (¢1,2¢;) x R™

so that f is defined on (—t;,2¢;) x R™. We then take ¢ € C°((—t1,2t1) x R™) so that
¢ =1 on D. By the characterization of H,'*> norm in (ii) we observe that the operator
ef := ¢f is continuous from H2*(D) to Hy*(R™*1). Clearly ef = f on D.

(iv) Interpolating e : H}*(D) — H}2(R™*1) and e : LP(D) — LP(R™*1), we observe

that e is a bounded linear operator
e : [17(D), BX(D)], — [EP(R™), HI(R1)], = H3H(R™1),

Since the restriction » : H;'z‘(R”“) — H;'z‘(D) is continuous, there is a continuous
inclusion from [L?(D), H2*(D)], to H4*(D).

Interpolating = : H}*(R™*!) — H?(D) and r : I?(R™*!) — L?(D), we observe
that H?'?*(D) is continuously included in [L? (D), H,*(D)), since r is suzjective and the
topology of H}**(D) is strongest such that » is continuous. This proves the identity of
(iv). |

(v) We take D = (0,7T) x § such that Q contains the closed rectangle R. For f €
H;lz’il(Q) the mapping

j:f~flp

is continuous from H;/z'l(Q) to H;/Z’I(D) since D is bounded.

Note that H}*(D) C H(D) by (ii), where H}(D) denotes an isotropic L? Sobolev
space of order one. By (iv) we observe that H;IZ’I(D) C H;/Z(D) since

H,/*(D) = [L2(D), H} (D))
(cf. [Tx, 4.3.1]). The Sobolev inequality implies

HY*(D) c c*(D)
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with g = 1/2(n + 1) — 1/p provided that p > 2(n + 1) (see [Tr, p.327, 4.6.1]). Thus
H;/ 2’I(D) is continuously embedded in C*(D). The mapping j now gives a continuous

mapping
HY/(Q) - C#(D)

such that
if=f on(0,T)xR.

This implies that the inclusion

H,/*(Q) c c*(@)

is continuous. N

(vi) For u € H,(Q) let v € HE/®* be an extension of u such that

||v||H;/=.1 < 2|[u]l,0)-

By Mikhlin’s lemma we have

fu
5.l

< Clvllgarsa, §=1,-+-,n
i LP(Q) ?

with C = C(n,p). These two inequalities yield (vi). N
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