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§ 1. Introduction

This paper is inspired by Masani-Wiener’s work ([8]) of the non-linear prediction
problem of a discrete time strictly stationary process. The purpose is to resolve this
unsettled problem by applying the theory of KM;O-Langevin equations.

In a series of papers ([{11]-[22],(3],[4],[25]), we have developed the theory of KMO-
Langevin equations describing the time evolution of one-dimensional weakly stationary pro-
cesses with reflection positivity for both the discrete and continuous time cases. The first
motivation was to find the mathematical structure behind significant Kubo’s fluctuation-
dissipation theorem in non-equilibrium statistical physics ([5]). We have manifested a
mathematical structure of the fluctuation-dissipation theorem by deriving the Kubo noise
which is the random force causing the fluctuation for the classical or quantum station-
ary dynamics. As the consequence of the research, we have obtained not only a unified
mathematical embodiment of the fluctuation-dissipation theorem, but also elucidated the

mathematical structure of Alder-Wainwright effect, which indicates the phenomena that
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the correlation functions of weakly stationary processes have a long-time tail behaviour
(o< t77,p > 0) ([1],[18],(3],[4],[25])-

In the course of the project above, we have grasped a philosophy—the fluctuation-
dissipation principle~as a guiding principle for the attitude of research in applying pure
mathematics to applied science ([23]). By using the so-called innovation method, we have
in [21] developed the theory of KM,;0-Langevin equations with finite delay drift term for
the multi-dimensional weakly stationary time series. Some relations which hold between
both the delay and fluctuation coefficients in KM,O-Langevin equations play important
roles in this theory. In the field of systems, control and information engineerings, they
have been known as LD-algorithm for the one-dimensional case and LWWR-algorithm
for the multi-dimensional case in the model fitting of AR-Langevin equations with finite
degree ([6],[2],[29],[33]). A fundamental feature of the theory of KM, 0-Langevin equations
lies in a recognition that such algorithms can be comprehended as a kind of fluctuation-
dissipation theorem from our fluctuation-dissipation principle. As the application of the
theory of KM, O-Langevin equations to data analysis, we are going to develop a new project
of the stationary, causal and prediction analysis ([27],[26],[28]).

Furthermore we have applied in [24] the theory of KM,O-Langevin equations to the
linear prediction problem for the multi-dimensional weakly stationary time series and given
a refinement of Wiener-Masani’s work in [31], [32] and [7] by obtaining computable algo-
rithms for the linear predictor. The results in [24] are complementary to this paper, as
will be explained.

Let X = (X(n);n € Z) be a real-valued strictly stationary time series on a probability
space (Q, B, P) with mean zero. We shall impose the following two hypotheses which are
the same as in [8]:

(H.1) X is finite, i.c., there ezists a positive constant C > 0 such that |X(n)(w)| < C
for any n € Z and almost all w € Q; ‘

(H.2) For any distinct integers ny,na,- -+ ,n4 (k € N) the spectrum of the distribution
function of the k-dimensional random variable *(X(ny), X(nz),--- ,X(ns)) has positive
Lebesgue measure.

The non-linear predictor X (v) of the future X(v), v > 0, on the basis of the present
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and past X(1),1 <0, is defined by
X () = E(X()|e(X(1);1 < 0)).

Masani and Wiener ([8]) have obtained a representation for the non-linear predictor

as follows:
(1'1) E(X(V)IU(X(Z);I < 0)) = 1,,’,;_’,2' Qn (X(O)) X(-1),--- ,X(—mn)),

where, for each n € N, m,, is a nonnegative integer depending on n, and Q, is a real
polynomial in m,, + 1 variables whose coefficients can be theoretically calculated in terms
of the moments of the time series X.

However, as Kallianpur has given some comments in [30], the representation (1.1)
of the non-linear predictor lacks computable algorithm which is fit for the application
to applied science, because the determination of the coefficients of the polynomials @,
involves the calculation of the determinants of matrices of different sizes, coming from
their method of Shmidt’s orthogonalization. On the other hand, Masani and Wiener
have suggested in [8] that certain computable algorithm for the non-linear predictor may
be obtained by means of the linear predictor for a suitably defined, infinite-dimensional,
weakly stationary time series.

Following their suggestion, we shall derive an R*°-valued weakly stationary time series
X = (X¥(n);n € Z) and consider the d, + 1-dimensional subprocesses X @) = (X(D(n);n e
Z) generated by the first dg + 1-components of X'. We remark that d; = 0, d, is increasing
to co as ¢ — oo and xM = x, According to the theory of KM,O-Langevin equations
([21]), for each ¢ € N, the linear predictor for the d, + 1-dimensional subprocess x9)
can be calculated from the KM,O-Langevin data £LD(X(?) which, corresponding to the
fluctuation-dissipation theorem, is obtained from the computable algorithm in terms of
the correlation function of X(9, By obtaining a new algorithm computing the KXM,O-
Langevin data £LD(X(?) from the KM,0-Langevin data £LD(X"1) (¢ = 2,3,---), we
can practically solve the non-linear prediction problem for the original time series X,
because the non-linear predictor for X can be obtained as the limit as q — oo of the first

component of the linear predictors for X (9),



Now we shall explain the contents of this paper. In §2, according to [21] and [27],
we shall recall and rearrange the theory of KM,0-Langevin equations for a d-dimensional
local and weakly stationary time series Z = (Z(n);|n| < N), where d, N are fixed natural
numbers. In particular, we shall introduce the KM;O-Langevin data £LD(Z) associated
with the time series Z which consists of the triplet of the forward and backward KXM,O-
Langevin delay functions, the forward and backward KM;O-Langevin partial correlation
functions, and the forward and backward KM,O-Langevin fluctuation functions. The
KM,0-Langevin data £'D(Z), together with the forward and backward KM,O-Langevin
forces, will determine the forward and backward KM;O-Langevin equations describing the
time evolution of the time series Z. We can obtain a concrete expression for the linear
predictor for the time series Z in texms of the KM, O-Langevin data £LD(Z). Furthermore,
associated with a d-dimensional weakly stationary timé series Z = (Z(n);n € Z), we can

construct the KM;O-Langevin data £LD(Z).

$3 will develop the theory of the KM;O-Langevin equations and obtain a new formula
between the KM;0-Langevin data £LD(Z) and the KM;O-Langevin data LD(Y), where
the time series Y is a d(!)-dimensional local and weakly stationary time series generated

by the first d(1)-components of the series Z 1< dV) < d).

In the last section, we shall return to the real-valued strictly stationary time series
X ='(X (n);n € Z) with mean zero satisfying conditions (H.1) and (H.2). By modifying
the idea in Masani and Wiener ([8]), we shall derive an R*-valued weakly stationary time
series (X = (X(n);n € Z)) and consider the d, + l-dimensional subprocesses X (@ =
(X(9)(n);n € Z) generated by the first d, + l-components of X. We remark that the first
components of X(%)(n) are equal to X(n) (q € N,n € Z) and the construction of the time
series X9 with dimension d, + 1 is fit for the application to data analysis. Applying the
results in §3 to these time series X (q), we shall obtain an algorithm computing the KM,0-
Langevin data LD(XD) from the KM,0-Langevin data LX) (¢ =2,3,--). Thus

the non-linear prediction problem for the original real valued strictly stationary time series
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X can be practically solved as follows:
B(X)|o(X)1 < 0)
(1.2) =the first component of I{I:_I’noo i Q+(X("))(N +v,N;N - k)X(‘I)(—k),
' k=0

where, for each g € N, the M(dy + 1; R)-valued function Q. (X(q))(-, *;%) is called the for-
ward prediction function associated with the time series X9 in the theory of the KM,0-
Langevin equations, which can be recusively calculated from the KM;0-Langevin data
LD(X). By using the results in [24], furthermore, we can theoretically obtain an algo-
rithm for the limit as N' — oo of the forward prediction functions Q.. (X (Q))(N +v, N; N—Fk)
for any fixed q,v € N, k € N*.

§ 2. The theory of KM,0-Langevin equations

We shall recall the theory of KM;O-Langevin equations from [21], [27].

(2.1] Let d and N be any natural numbers. Let Z = (Z(n);|n| < N) be any d-
dirﬁensional real-valued local and weakly stationary time series on a probability space

(€, B, P) with covariance matrix function RZ:
(2.1) RZ(n) = E(2(n) '2(0)) (In| < N).

Then we define, for each n € N,1 < n < N, two block Toeplitz matrices T} (Z),T,7 (Z) €
M(nd;R) by

r%(0) RZ(x1) ... RZ(x(n-1))
Z (1) Z Z(s(n—
222) ri(2) - R (:4:1) R .(0) R R (:t(. 2))
RZ(¥(n-1)) RZ(F(n-2)) ... RZ(0)
It is to be noted that
(2.3) ‘RZ(n)=R%(~n)  (ln| < N),
(2.4) T (2) = Ty (2) = R%(0).

In this subsection, we treat the case where the following condition holds:
(2.5) T1(Z),T;(Z2) € GL(nd;R) (1<n<N).
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We remark that condition (2.5) is equivalent to
(2.6) {Z;(n);1 < j < d,|n| < N} is linearly independent in L*(Q, B, P),

where Z(n) = *(Z1(n),:-- ,Zd(n)j.

For any d-dimensional square-integrable stocastic process Y = (Y (n);l < n < r) with
a discrete parameter space defined on the probability space (22,8, P) (I,r € Z,l < r), we
define, for any m,n € Z,l < m < n < 7, a real closed subspace L%, (Y) of L*(Q, B, P) by

(2.7) L. (Y) = the closed linear hull of {Y;(k);1 < j < d,m < k < n}.

According to the method of innovation, we introduce the d-dimensional forward (resp.
backward) KM;O-Langevin force ¥*(Z) = (v*(Z)(n);0 < n < N) (resp. v~ (Z) =
(v~ (Z)(m); —N < m < 0)) as follows:

(2.84) vH(2)(r) = Z(n) = Prp-szy2(n) (0<n< N,
(2.8_) v (Z)(m) = Z(m) — Ppo _ 7)%(m) (—N <m<0),

where £51(2) = £3(Z) = {0}. |

For each n € N*,0 < n < N, let V*(Z)(n) (resp. V=(Z)(n)) be the covariance
matrix of v*(Z)(n) (resp. v~(Z)(—n)). We call the function V*(Z)(-) (zesp. V=(Z)(-))
the forward (resp. backward) KM;O-Langevin fluctuation function. The following causal
reation holds among Z, »*(Z) and v~ (2):

CausaL RELATION ([21],{27]).

(2.9) vt (Z)(0) = v~ (Z)(0) = Z(0).

(2101)  BQH(Z2)(£m) v (2)(£n)) = 6maVE(Z)(n) (0 <myn < N).
(2114) £3(2) = L3(»*(2)) (0 <n<A).

(2.11_) | L0.(Z)=L0,(v"(Z) (0<a<N).
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Let the system £D(Z) of M(d;R) be the KM, O-Langevin data associated with the

process Z:

‘CD(Z) = {7+(Z)(n’k)17— (z)("1k)s 6+(Z)(m),6'(Z)(m),V"'(Z)(l),V'(Z)(l);
k,mneN,1<k<n<N,1<m<NIeN,0<IL<N}

We know that Z satisfies the forward (resp. backward) KM,O-Langevin equation (2.12,)
(resp. (2.12_)):

KM;0-LANGEVIN EQUATIONS ([21],[27]).

(2.124) Z(£n) = —-ni:-yi(Z)(n,k)Z(:I:k) —§5(2)(n)Z2(0) +vE(Z2)(xn) (1< n < N).

k=1

In the sequal we adopt a convention to make the summation running the empty set 0.
We call the function y*(Z)(-,*) (zresp. ¥~ (Z)(-,*)) the forward (resp. backward) KM,O-
Langevin delay function associated with the process Z. The function §*(Z)(-) (resp.
67 (Z)(-)) is said to be the forward (resp. backward) KM;O-Langevin partial correlation

function associated with the process Z.

REMARK 2.1. The forward KM, O-Langevin equation (2.12, ) is a discrete analogue to the
(e, 8,7, 6)-Langevin equation derived by T. Miyoshi ([9],[10]).

Concerning the relation between the Toeplitz matrices and the KM;O-Langevin fluc-

tuation functions, we can use the KM, 0-Langevin equations to see that
n—1

(2.134) det T3 (Z) = [[ det VE(Z)(k) (1 <n<N).
k=0

It follows from (2.5) and (2.13..) that

(2.14) V*(Z)(n), V™ (2)(n) € GL(;R) (0 <= < N).

The fluctuation-dissipation theorem (FDT) stated in § 1 is the following:
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FDT ([6],[2],[29),[33),[21],[27]). Foranyn,keN,1<k<n< N,

(2155) 7E(Z)(n,k) = 72(2)(n - 1,k — 1) + 65(Z)(n)77(Z)(n — 1,n — k — 1);

(2.16x) VE(Z)(n) = (I - §(Z)(n)67(Z)(n))V*(Z)(n - 1);
(2.17) §7(2)(m)VF(2)(n — 1) = V™ (Z)(n — 1) '§¥(Z)(n);
(2.18) §7(2)(n)VF(2)(n) = V™ (Z)(n) *6*(2)(n),

where we put
(2.19) 7+(Z)(m,0) = §*(B)(m) and 7~ (B)(m,0)=6~(Z)m) (1<m <)
The relations (2.161) and (2.17) in FDT come from the following relation:

BERG’S RELATION ([29],(33],[21],[27]). Foranyn € N,1<n < N,

n—1 n—-1

(2.20) S @) k)RE (R + 1) = 3 RZ (k + 1)t~ (Z)(n, k).

k=0 k=0

FDT implies that both the KM,0O-Langevin delay and fluctuation functions can be
recursively calculated from the KM;O-Langevin partial correlation functions. On the
other hand, the latter can be obtained from the correlation function RZ by the following

formulae:

KM;O-LANGEVIN PARTIAL CORRELATION FUNcTIONs ([6],[2],(29],(83],(21],[27]). For
anyn€N,1<n<N,

k=0

(2.211) 6%(Z)(n) = - (RZ (£n) + n}:j +E5(Z)(n -1, k)RZ (£(k+ 1)) VF(Z)(n—-1)".

For any m,n € N*,0 < n < m < N, we define Py (Z)(m,n), P_(Z)(m,n) and
e.,.(Z)(m, n), e._(.Z)(m,n) by

(2.224) Py(Z)(m,n) = E(Z(£m) v (Z)(£n))VE(Z)(n) /2
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and

(2.23:)  ex(Z)(m,n) = B((Z(m) — Py z,2(m)) “(Z(m) = Pry 2 Z(m))),
(223-) e (Z)(m,n) = B((Z(~m) — Pys_7y2(~m)) "(Z(~m) = Po_,7,7(~m)).

We call the function Py (Z)(-,*) (resp. P-(Z)(+,*)) the forward (resp. backward) prediction
function and the function ey (Z)(-,*) (resp. e—(Z)(:,*)) the forward (resp. backward)

prediction error function. Then we know

PrEDICTION FORMULAE ([21],[27]). (i) Foranym,n€eN*",0<n<m <N,

Q24)  Pygym)= Y Pi(D)m V(AN (B)R)
k=0
(2.24.) P,o (gyZ(-m) = ip_(Z)(m, KV~ (2)(k)~Y 20 (Z)(=F).
k=0

(ii) Forany m,n e N*,0<n<m< N,

(2.25+) P n(zy5(m) = Z% Q+(Z)(m, n; k) Z(k);
(2.25_) P (zyZ(-m)= ; Q- (Z)(m,n; k) Z(—F).

Here the M(d;R)-valued prediction functions Pi(Z)(+,*) and Q+(Z)(:,*;x) can be
determined by the following algorithms: '

PrEDICTION ALGomriTHMS ([21],[27]). (i) Forany m,keN*,0<k<m <N,
VE(Z)(k)M? if m=k
(2.264) Py(Z)(m, k) = i - .
=ik ¥ (2)(m, ) PL(2)( k) i m2k+1
(i1) For any myn,k e N*,0<k<n<m<N,

(2272)  Qu(B)mmE)= 3 7E(B)mDQw(Z)( k) — v (Z)(m, k).

I=n+1

Finally the prediction error functions can be calculated by the following formulae:
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PREDICTION ERROR FoRMULAE ([21],[27]). (i) Foramym,neN*,0<n<m<N,
(2.282) ex(Z)(m,n) = Y Pu(Z)(m,k) Ps(Z)(m,k).
k=n+1

(ii) In particular, foranyn € N,1<n < N,

(2.29) ex(Z)(n,n —1) = (I - §%(Z)(n)67(Z)(n)) --- (I - 6%(2)(1)6%(2)(1) RZ (0).

[2.2]) Let Z =(Z(n);n € Z) be any d-dimensional real-valued weakly stationary time
series on a probanility space (2, B, P) with covariance function RZ  In this subsection, we

treat the case where the following condition holds:
(2.30) {Z;(n);1 < j < d,n € Z} is linearly independent in L*(, B, P),

where Z(n) = *(Z1(n),--- , Za(n)).

By restricting the time parameter space, we have a d-dimensional real-valued local and
weakly stationary time series Zy = (Z(n);|n| < N) (N € N). It then can be seen that
the system {LD(Zx) ; N € N} of the KM;0-Langevin data LD(Zy) (N € N) satisfies

the following consistency condition:
75 (Zn41)(n k) = 75(Zn)(n, k) (1<k<n<N);
§5(Zv41)(n) = 85(Zx)(n) (1<n<N);
VE(ZNn41)(n) =V*(ZN)(n) (0<n<N).
Therefore, we can construct a KM, O-Langevin data LD(Z) associated with the process

Z: .
LD(Z) = {7*(2)(n,k),6i(2)(m), Vi(Z)(l);k,m,n €Nk <n,leN}

§3 A new formula for the KM,O0-Langevin data
Let d, d1), d(), N be any natural numbers such that d = d(!) + d(®) and let Z =
(Z(n);[n| < N) be any d-dimensional local and weakly stationary time series satisfying

condition (2.6). We divide the components of Z(n) into two blocks Y (n) and W(n), i.e.

Y(n)
(3.1) Z(n) = W) (In| < NV),

10



where Y(n) = *(Z1(n),:++ , Z3»(n)) and W(n) =*(Z40)41(n),*++ y Zgy pa»(n)). It is to
be noted that ¥ = (Y (n); |n] < N) (resp. W = (W(n); |n| < N)is a d{)-dimensional (resp.
d(®)-dimensional) weakly stationary time series satisfying condition (2.6).

In this section, we discuss how the KM;O-langevin data associated with Z is calculated

by those associated with ¥ and W. We define the mutual correlation function RYW o1y
and W:

(32) RYW (n) = B(Y (n) ‘W(0)) (ln] < N).

Let LD(Z) (xesp. LD(Y) and L'D(W)) be the KM,0-Langevin data associated with
Z(resp. Y and W). We divide the components of matrices v*(Z)(n, k) and §*(Z)(n)
into four blocks 7;’;(2)(71., k) and qu(Z)(n), for p,g € N,1 < p,g < 2,1ie.

7]:.*;._(2)(77': k) 7;3:2(2)("" k) )

*(Z)(n, k) =
T@E (72*1(2)(n,k) 732(Z)(n, k)

and
53(2)(n) 55’2(2)(7&))
§(2)(n) = ,
) (651(2)(71) 853(2)(m)
where 7§:q(Z)(n,k) = ((7i(z)(n'k))‘i)d(r—l)+1_<_;_<_a(r—1)+d(r),d(«—1)+15,'5d(s—1)+d(s) with

d®) = 0 and §E(Z)(n) = 7%,(2)(n, 0).
Moreover, we divide the components of v*(Z)(n) into two blocks v*(Z)i(n) and

V% (Z)3(n), i.e.
V*‘(Z)l(n))

vE(Z)(n) =
(2)n) (Vi(z)z(n)

where v%(2)1(n) = *(v(2)(n)," - ,¥jiy(Z2)(n)) and v*(2)s(n) = (V30), (D)), -+,
v:lt(,)_l_d(,)(Z)(n)). Then, for any n € N,1 < n < N, the KM,O-Langevin equations (2.124)

for Z are represented as follows:

@) (k) A5(2)(n k) [ Y(£R)
(3.3+) Z(kn)=-) (.,;1 (Z)(n, k) 75(2)(n, k)) (W(ik))

k=1
11



(51*1(2)(10 53(2)(11)) (Y(O)) (V*(Z)l(ﬁ:n))
~ + :
55:(2)(n) 65:(2Z)(n) ) \ W(0) v*(Z)s(%n)

By noting (3.1), we have

(3.42) Y(n) == 3 A(B)(m KV (£K) — 3 7i5(Z)(m, KYW ()
k=1 k=1
— 65 (2)(n)Y(0) — 85(2)(m)W(0) + v (Z)s (n);
(3.51) W(kn)=— 3 1E(2)(nK)Y (£k) = > 15 (Z)(n, K)W (k)
k=1 k=1

= 855(2)()Y (0) - 85(Z)(m)W(0) + v*(Z)s(n).

We shall obtain other formulae, different from (2.21.), by which the KM, O-Langevin
partial correlation functions §*(Z)(-) and §(Z)(-) are recursively calculated from LD(Y),
LD(W) and RYW together with (2.154). For this purpose, we define B+ (Y |W)(l, k),
B~ (Y|W)(l,k), B*(W|Y)(l,k) and B-(W|Y)(l,k) by

k-2
(3.6x) BEX|W)(LkE) = RY W (x0)+ 3 R¥W (2(1 - k 4§ + 1)'yF(W)(k - 1,5)

j=0

and

k-2 :
3.72)  BEWIY)(LE) = RPVY (£0) + 3 RWY ((1 - k4§ + 1)) F(¥)(k - 1, 5)

j=0

for any k,l e N*,1<kE< N, 0<I<LN.

THEOREM 3.1. Foranyn € N,1<n < N,

§FE(X)(n)VF)(n ~1) 0
* n) =
§%(Z)(n) {( 0 5i(W)(n)V*(W)(n—1))
RS - 0 BE(Y|W)(k +1,n) -1
g», (Z)( 1,k)(Bi(le)(k+1,n) 0 )}V*(Z)(n 7%
where
(3.8) 7H(2)(4,5) =1 and ¥~ (Z2)(,5)=I (0<j<N).
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ProoF: We prove the plus part. We shall rewrite the first term F of the right-hand side
of the plus part of (2.21,4) for any fixed n € N,1<n < N:

n—2
F=—(RZ(£n)+ 3 v*(Z)(n~1,k)RZ (£(k+1))).
k=0
We divide the components of matrix F into four blocks F, for p,g € N,;1 < p,¢ < 2, i.e.
(Fu Fn)
F = ,
Fan P

where Fpq = ((F)ii)d(r—1)+15;_<_d(r—1)+d(r),d(s—1)+15554(:71)+d(¢)'
At first we rewrite the (1,1)-block Fi; of F as follows:

B = ~(RY (1) + 3 7@ = LEY (b + 1) + 39 (2)n — 1, DAY (b4 ).
k=0 k=0

We shall rewrite the second term of the equation above; by using equation (2.12_), we see

from (2.10_) and (2.11_) that

n—2

3 (B (n - 1,R)RY (k+1)
k=0
= nz_: 711(Z)(n — LE)E(Y (k — n + 2)'Y (—n + 1))

= Z—: T(Z)(n = 1, k) B(Y (k — n + 2)}(— n‘; 7~ (¥)(n - 1,7)Y (=)

+ 3 (B — 1) EF (k = n+ 2)'= (¥)(~(n — 1))
k=0

n—2n-2

S 27;(Z)(n ~LE)RY (k= 2+ 5+ 2)'y~ (Y)(n — 1,5)

n—2n-2

==> > (&)~ LEEY ()Y (n—j - 2))'y (¥)(n—1,5)

k=0 j=0

=3 B(- Y (D)~ LY RV (- § - )7~ (F)(m - 1,5).

13



On the other hand, by using equation (3.4.), we see from (2.10,) and (2.11,) that

B((- 3 #(Z)(n - 1, Y (#) ¥ (n — 5 - 2))
k=0

n—2

=B(Y(n—1)'Y(n —j = 2)) + B((}_ v(2)(n — L, )W (K))*Y (n — j — 2))
) k=0
— B+ (Z)(n = 1)¥ (n—j - 2))
=RY(j+1)+ ”Z +45(2)(n -1, k) RWY (k —n+j +2).

k=0
Further, by virtue of Berg’s relation (2.20), we see

n—-2

3 %4(2)(n —1,R)RY (R + 1)
k=0

=Y 7 (¥)(n -1, k)RY (k +1)
. k=0

+3° N 44 2)n - LERYY (k= n+ 5 + 2y~ (¥)(n — 1, 7).

J=0 k=0

According to the definition of B¥(W|Y)(-,*), we see from (2.20..) that

Fa == (R (1) + 37+ @)(n ~ 1, 7)RY (k + 1))
k=0

-3 (D=1 B) (R (k4 1)+ 3 RY (bont i 24 (V) (n—1,))
k=0 : j=0
)V (V) (m—1) = 3 74(Z)(n — 1, K)BHWIY)(k + 1, m).
k=0

Therefore, according to (3.8), we get

@  Fu=8§¥)n)V (¥)n-1)- nz—:'rfz(z)(n = LE)BF(W[Y)(k + 1, 7).

k=0
Secondly, we rewrite the (2,1)-block Fy; of F as follows:
n—2 n—-2
Py = —(RWY(n) +3 " %(2) (=1, H)RY (k+1) + 3 14(2) (-1, k)RWY(k+1)).
k=0 k=0

14



We shall rewrite the second term of the equation above; by using equation (2.12_), we see

from (2.10-) and (2.11_) that
n—-2 y
> 1h(Z)(n—1,k)RT (k+1)
k=0
n—-2 n—2
= E(- ) vh(Z)(n - 1L, RY ()Y (n—j—2))'v" (¥)(n~1,5).
j =0 k=0
On the other hand, by using equation (3.5;), we have from (2.10) and (2.114) that

B((~ 3 (2)(n - 1, Y (k)Y (n — 5 - 2))
k=0

k=0

n—2
=AY (i 4+ 1)+ Y 3(2)n - LKRYY (k—n+j+2).
Therefore, we obtain

B == (R () + 30 B7Y (k4 15 (¥)(n — 1,5))
k=0

-3 (B -1,8) (RWY(k+1>+n}_j BWY (k—ntj+2)'y™ (Y)(n—1,5))-
k

=0 3=0

According to the definition of B+(W|Y)(-, ) in (3.7,) and (3.8), we get

® Fp = —gv;(zm ~ 1L, K)BH(WIY)(k +1,m).
Similarly, we can show —
() Fip= - gvﬁ(z)(n ~ 1L, K)BH(Y|W)(k+1,n)
and ) |
(@)  Fn =8 W)@V (W)n-1)- gvﬁ(z)(n - LB (Y[W)(k +1,m)

Thus we can conclude from (a), (b), (c) and (d) that the plus part holds. In the same way,
the minus part is proved. (QE.D.)
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As stated in §2, V*(Z)(:) and V= (Z)(-) are recursively calculated from §*(Z)(-) and
§7(Z)(-) by (2.16+). However, we can obtain other formulae for the KM;O-Langevin

fluctuation functions V*(Z)(+), similar to Theorem 3.1.

THEOREM 3.2. Foranyn € N,0<n < N,

V*(Z)(n) = (Vi (Z’)(n) V*(;’)(n))
. ) 0 BF(Y|W)(k, n+1)
+,§7'(Z)(n,n k) (B*(WlY)(k,n+1) 0 ) '

PROOF: We divide the components of matrices V*(Z)(n) into four blocks V;‘E(Z)(n) for
7,9€N,1<p,g<2ie.

Vii(2)(n) Vi (Z)(n)>

VE(Z2)(n) =
@) (Vz*l(z)(n) V55(2)(n)

+ — +
where qu(Z)(n) - ((V (Z)('”'))ii)a(p-1)+15;54(p-1)+d(r),a(s—1)+15,'5.1(s—1)+d(:)'
We prove only the plus part, because the minus part is proved in the same way. By

using equation (3.44) for Z , it follows from (2.10+) and (2.11,.) that

Vit(2)(n) =E(w*(Z)1(n)Y (n)) + E(V*(Z)l(n)‘(i: 111(2)(n, k)Y (k)))
k=0

+ B (ZR(m) (X 1 (B)(m KW (R)))

=B(v(2)1(n)'Y (n)).

Further, by using equation (2.12;) for Y and noting (2.10,) and (2.11,) that

Vii(2)(n) =E(v*(Z)1(n)'(- i 7 (¥)(n, K)Y (K)) + E(v(Z)a(n)'v* (¥)(n))
k=0

= E(H(2)1(n)'v* (¥ )(n)).
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By using equation (3.44) for Z , we see that

Vi1(2)(n) =E(Y (n)'v* (Y)(n)) + E((i 111(Z2)(n, k)Y (k))'v* (Y)(n))
k=0

+ (S () (m W () (¥)(m)

n—1

=VHE)(n) + Y 1H(2)(n, R)E(W (k) v (Y)(n)).

k=0

On the other hand, by using equation (2.124) for Y,

Vi (Z)(n) =V*(Y)(n) + D 42(Z)(n, n = DE(W (n — 1) v*(Y)(n))

=1

=V*(¥)(n) + 3 7(2)(n,n ~ DE(W (n —~ 1)*¥ (n))
=1

+ Y 1@ = DEW (n =)D v+ (X )(n,5)Y (4)))
=1 i=0

—VHF)m) + 3 7 (2)(mn — DEVY (1)

1=1

@ - ) S RV (- nt ) (V) ).

=1 ji=0

Therefore, according to the definition of B~ (W[Y)(:,*) in (3.7_) and (3.8),

n

(a) Vii(2)(n) = V*(¥)(n) + 3 15(2)(nn = DB~ (WIY)(k, 2 + 1),

k=0

In the same way as in V;1(Z)(n), it follows from (3.4;), (3.54), (2.104), (2.114) and
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(2.12,) that

V31(2)(n) =E(v*(2):(n)'Y ()
=E(v*(2):(n)"'v(Y)(n))

n-—1

=EB(W(n)'v* (Y)(n)) + Y 75:(2)(n, k) B(W (R)'v* (¥)(n))

k=0

=RWY(0)+§RWY(n—z)*7+<Y)(n, z)+i7;;(zxn,n- nRWY (-
=0 {=1

+ 3 B~ ) 3R (1= nt )7 () ).
Therefore, according to the ldeﬁnition of B~ (W|Y)(+,*) in (3.7-) and (3.8),
(b) Vi(Z)(n) =) 135(2)(n,n — k) B~ (W|Y)(k,n +1).

k=0

Similarly, we obtain

(c) Vi(Z)(n) = > 4 (2)(n,n — k) B~ (Y|W)(k,n + 1)
k=0
and
(d) Vii(2)(n) = V*H(Z)(n) + D 71(Z)(myn — k) B~ (YW)(k,n +1).
' k=0

Thus we can conclude from (a), (b), (c) and (d) that the plus part holds. (Q.E.D.)

§4 The non-linear prediction problem

Let X = (X(n);jn € Z) be 2 one-dimensional strictly stationary time series on a
probability space (2, B, P) with mean zero. Moreover we impose the same hypotheses as
in Masani-Wiener|[8]:

(H.1) X is finite;

(H.2) for any distinct integers (n1,--- ,n3) the spectra of the distribution functions of

the k-dimensional random variable *(X(n1),- -+ ,X(ns)) have positive Lebesgue measure.

18



For any subset A of L2(2, B, P), we denote by [A] the closed subspace of L?(Q, B, P),
generated by all elements of A.
To obtain the non-linear predictor X(v) = E(X(v)|oc(X(1);1 < 0)) is reduced to
| getting a projection of X(v) (v € N) as follows:

LEMMA 4.1(MAsANI-WIENER[8]).

(i) E(X(W)|o(X(1)1<0)) =Ppo_X(v) (v€EN),
where
M2 o =1L ][ X(na)*im €N",pr €Ny € Z(0 <k < m)ymg < -+ < < 0.
k=0 '

(11) {1’ H X(nk)pl;m € N‘,p}, € Nynk € Z(O < k < m),no < oo <np < 0} is
k=0

linearly independent in L*(Q, B, P).

We shall obtain certain computable algorithm for X (v). For that purpose, we shall

show the following lemma.

LEMMA 4.2.

EX(W)o(X(1);1<0))=Pxo_X(v) (ve€N), |
where

K:Eoo = [H X(n—k)m‘ —E(H X(n_k)Ph);m €N",n<0,po €N,px € N‘(l <k< m)]
k=0 k=0 .

ProoF: By Lemma 4.1(i), what we need to prove is that Py X(v) = Pxo X(v) for
any v € N. Namely, it is to be shown that Py gxo X(v) = 0 for any v € N, because

19



it can be seen that X% c M?%__. Forany v e M° _,

(Pre oxo  X(¥),¥) =(Paco_oxe X(v),% — E(¥)) + (Pao_oxe  X(v), E(¥))
=E($)(Pmo_oxe _X(¥),1) by¢—E(¥) ekl
=B(¢)(X(v),1) byleM’_ oK’
=0, |

where (¢1,02) = E(¢1 *¢2). Therefore, we see that Ppo _oxe X(v) = 0. Thus, we can
conclude that Lemma 4.2 holds. (Q.E.D.)

For the purpose of parametrizing the infinite-dimensional subspace X2 _ , we define a

subset A of {0,1,2,---}N" by

A= {p = (po,p1,p2,"+*) €{0,1,2,---}N";pp > 1 and there exists m € N* such that

Pm F 0,00 =0(k > m +1)}.

For any p € A, a one-dimensional strictly stationary time series pp = (pp(n);n € Z) is

introduced by

pp(n) = [] X(n - k)P
k=0

and we set

G={pp; peA}

We shall oxder the elements of G to arrange them in a sequence {y;;j € N*}. For each
g € N, we define a subset A, of A and a subset G(9) of G by

Ay ={p=(po,p1,**) €Ajg=D (k+1)-pu} and G = {p, ; pc A,}.

k=0

Then we have the disjoint union

a=Jaw.

gE€N
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Now we shall order the elements of G. For any ¢p € G and pp € G(9), we say that ®p
precedes @y if and only if ¢ < ¢’ or ¢ = ¢' and in addition, there exists ko € N* such that
pr = p3(0 < k < ko — 1) and px, > p;, - Then we have

G= {QOJ;J € N.}

and
G = {¢d,_1+1a Pde_1421°° " Sod,},
where _ .
d, = the number of { U G(’)} -1
r=1
and

(Sod,_1+1(n), ‘Pd,_1+2(n), *tty Sod,(n))
=(X(n)?, X(n)?*X(n ~1),--- , X (n)X(n — g+ 2)).

For example,

(dla dz,ds, d‘!) = (0) 11 3: 6)
and

(S?O(n), 901(71.), Soz(n), 998(77‘)) 504(71), 305(77')1 903('"‘))
=(X(n), X(n)*, X(n)*, X(n) X (n - 1), X (n)*, X (n)* X (n — 1), X (n) X (n — 2)).

By using the system G = {p;;j € N*}, we define X9 = (X@(n);n € Z) and Y@ =
(Y@(n);n € ) by
o(n) — E(po(n))

X0 (n) = p1(n) — ;E(‘Pl(n))

va,(n) — E(pa,(n))
and
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Pd,1+1(n) — E(pa,_,+1(n))

Y@(n) = P, 1+2(n) — .E(S"d.-x+z(n))

pa,(n) — E(p4,(n))

Then, by virtue of Lemma 4.1(ii), we have the following lemma.

LeMMmAa 4.3.

(1) ForanyqeN, X @jsa dg + 1 -dimensional weakly stationary time series

satisfying condition (2.30).

G) XxM=x.
N S (O
(i) XD(n)= ( Y@(n) ) (g=2,3,-+").
) (U Unx ) =x2,
N=0g=1

We shall show how the non-linear predictor of X is expressed by using the linear
predictor of X(9,

THEOREM 4.1. For any v > 0,

E(X(v)le(X(1);1<0))

N
=the first component of Jl\fi.m. (Z Q+(X(q))(N +vy,N;N — k)X(q)(—k)) .
k=0

1g— o0
ProoF: By Lemmas 4.2 and 4.3(iv), we have

B(X@)le(X(1):1<0) = fim P, X()

o N(‘X(’)

=the first component of l.i.m. P

N.g—oo L&N(X"’)X(q)(”)'
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By applying the prediction formula (2.25;) to the time series X (9 we have

Peo yxyX () =U(-M)P e XWX W +)

N
=U(-N) (3] Qu(XO) N +, N; k)X (E))

k=0

=fj Q+(X<q))(N +v, N; k) XO(k — IV)

k=0
N
= Qi (XD)N + v, N; N - k) X(O(~k),
k=0

where U(—N) is a unitary operator from £ (X(9) to L2 3 (X9) such that U(—N)X(9)(n)
= X{9(n — N) (0 < n < N). Therefore, we get Theorem 4.1. (Q.E.D.)

We shall explain the structure of alogrithm computing the coefficients Q. (X (@) (., %; %)
(g € N) in Theorem 4.1. Let LD(X?) (resp. LD(X™V) and LD(YP)) be the KM,0-
Langevin data associated with XD (zesp. X(¢7V and Y(9). By (2.27,),

m-—1

(41)  Qu(XDN(m,nsk) = Y +H(XDY(m, DQs(X D)1, n;k) — v*(X D) (m, k),
I=n+1

which implies that, for each fixed g € N, Qi(X(q))(-, *; %) can be calculated from E’D(X(q)).
By virtue of FDT, L'D(X(‘I)) can be recursively calculated from the KM,O-Langevin
partial correlation functions 6*(X(q))(-). By applying Theorem 3.1 to the time series
- X9, we obtain an algorithm computing §% (X9)(:) in Theorem 4.2. The crux is that the
6*(:((“))(-) can be calculated from £D(X(V), £LD(Y?) and RXUTVY® (¢=2,3,---).
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THEOREM 4.2. For any n,q € N,2 < gq,

§%(XD)(n)
(&) F X (n-1) 0
- { ( 0 6*(Y("’)(n)V’*‘(Y“”)(n—1))

n-1

= > (X D) (n—1,k).
k=0

0 B*(X(q"l)ly(q))(k+1,n) “ .
. (_Bﬂ:(Y(q)lx(q—l))(k_l_l’n) 0 ) }V:F(,X N(n—1)"1,

where

HXD)G,5) =1 and v~ (X)G,7) =1 (FeN).

REMARK 4.1. We shall give a comment concerning the global behavior of the prediction
functions Qi(X(q))(N +v,N; N —k) as N — oo in order to complement the representation
for the non-linear predictor in Theorem 4.1. For that purpose, we need the following

stronger condition (H.3) than (H.2), besides (H.1):
(H.3) For each ¢ € N, the process X9 has the speciral density matriz function
A(XDY(6) defined on [—x, ) such that

(4.2) C log(det(A(XD))) € LY (—, 7).

By Theorems 4.2, 5.1 and 5.2 in [24], we find that, for each g € N, the following limits

exist:

(432) C Va(E) = lim V(XD (m);

(442) 1(XP)(k) = lim 72 (XD)(n,n—k) (kN
(4.54) P (XD)(k) = lim Pi(XN(n,n—k) (keN*).

Moreover they satisfy the following recursive relations: for any k € N,
| P4(X(D)(0) = Vi (x)"”
(4.6:&) ’k—l .
Pu(XD)(k) = - T 25 v (X D) (k — D PL(XD) (1)
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Finally, by virtue of Theorem 6.5 in [24], we can theoretically obtain the algorithms

for the limits as N — oo of the prediction functions Qi(X(q))(N +v,N; N — k) for any
q,v € Nk € N* : the limits

(4.71) Qx(XD)(v, k) = lim Qu(XV)(N +v,N;N —k)

exist and they satisfy the following recursive relations:

(4.8) Qx(XD) (v, k) = Vi“, 1£(XD)(v - DQL(XD)(1, k) — v£(XD) (v + k).
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