A note on the classification of
non-singular flows with
transverse similarity structures

Toshiyuki Nishimori

Series §116. June 1991



§ 89:
f 90:
f91:
H'92:

§ 93:

i 94:

i 95:

i 96:
f9o7:

f 98:

f 99:

f 100:

§ 101:

§102:

§ 103:

i 104:

f 105:

f106:

§107:
f 108:
f 109:
ff 110:
f111:

b 112:
§113:

§ 114
§ 115:

HOKKAIDO UNIVERSITY
PREPRINT SERIES IN MATHEMATICS

Y. Giga, 8. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving properties for
singular degenerate parabolic equations on unbounded domains, 32 pages. 1990.

A. Arai, Improper Bogoliubov transformations and insta,bih'ty‘of embedded eigenvalues, 47 pages. 1990.

K. Sugano, On bicommutators of modules over H-separable extension rings 11, 9 pages. 1990.

T. Nakazi, Homogeneous polynomials and invariant subspaces in the polydiscs, 17 pages. 1890.

T. Nakazi, K. Takahashi, Homogoneous polynomials and invariant subspaces in the polydiscs 11, 10 pages.
1990.

A. Arai, A theorem on essential self-adjointness with application to Hamiltonians in non-relativistic quan-
tum field theory, 23 pages. 1990.

Y. Okabe, A. Inoue, On the exponential decay of the correlation functions for KMO-Langevin equations,
13 pages. 1990. v | ‘

T. Sano, Y. Watatani, Angles between two subfactors, 62 pages. 1990.

S. Ninomiya, The Fourier-Sato transformation of pure sheaves, 22 pages. 1990.

Y. Okabe, A. Inoue, The theory of KM;O-Langevin equations and its applications to data analysis (II):
Causal analysis (1), 51 pages. 1990.

J. Lawrynowicz, S. Koshi and O. Suzuki, Dualities generated by the generalised Hurwitz problem and
variation of the Yang-Mills field, 17 pages. 1991.

R. Agemi, K. Kubota and H. Takamura, On certain integral equations related to nonlinear wave equations,
52 pages. 1991.

S. Izumiya, Geometric'singula.rities for Hamilton-Jacobi equation, 13 pages. 1991.

S. Izumiya, Legendrian singularities and first order differential equations, 16 pages. 1991.

A. Munemasa, Y. Watatani, Orthogonal pairs of *-subalgebras and association schemes, 11 pages. 1991.

A. Arai, O. Ogurisu, Meromorphic N = 2 Wess-Zumino supersymmetric quantum mechanics, 27 pages.
1991.

H. Takamura., Global existence of classical solutions to nonlinear wave equations with spherical symmetry
for small data with noncompact support in three space dimensions, 14 pages. 1991.

R. Agemi, Blow-up of solutions to nonlinear wave equations in two space dimensions, 11 pages. 1991.

T. Nakazi, Extremal problems in H?, 13 pages. 1991.

T. Nakazi, p-dilations and hypo-Dirichlet algebras, 15 pages. 1991.

A. Arai, An abstract sum formula and its applications to special functions, 25 pages. 1991.

Y.-G. Chen, Y. Giga and S. Goto, Analysis toward snow crystal growth, 18 pages. 1991.

T. Hibi, M. Wakay@ma, A g-analogue of Capelli’s identity for GL(2), 7 pages. 1991.

T. Nishimori, A qualitative theory of similarity pseudogroups and an analogy of Sacksteder’s theorem, 13
pages. 1991.

K. Matsuda, An analogy of the theorem of Hector and Duminy, 10 pages. 1991.

S. Takahashi, On a regularity criterion uo to the boundary for weak solutions of the Navier-Stokes equa-
tions, 23 pages. 1991.

T. Nakazi, Sum of two inner functions and exposed points in H?, 18 pages. 1991.

A. Arai, De Rham operators, Laplacians, and Dirac operators on topological vector spaces, 27 pages. 1991.



A note on the classification of non-singular flows

with transverse similarity structures

TosHIYUKI NISHIMORI

§1. Introduction

The purpose of this paper is to classify non-singular flows with transverse similarity struc-
tures satisfying certain auxiliary conditions. We consider such flows as foliations with
transverse simﬂarity structures and the classification is done in this view point. A motiva-
tion for this study is as follows. In Nishimori [7], the author investigated the qualitative
properties of foliations with transverse similarity structures and gave an analogy of Sack-
steder’s theorem (in Sacksteder [8]) on codimension one foliations. Furthermore for such
foliations, Matsuda [6] gave an analogy of a theorem of Hector and Duminy (in Hector [5]
and in Cantwell and Conlon [1]) on codimension one foliations. So we are interested in
concrete examples of foliations with transverse similarity structures.

~ Here we give the definition of foliations with transverse similarity structures. A codi-
mension q C* foliation F of a C* manifold M has a transverse similarity structure if there
exists an open covering {U; };cr of M, a family {h; : U; — R%};c1 of C™ submersions such
that (1) Fly, = {h;’l(t)}tehi(U‘.), and (2) for each ¢,j € I with U; NU; # 0, there exists a

similarity transformation 7;; : R? — R satisfying
i © (hilwinuy) = hjloiny; .

We call 8 = {U;, h;,v;i} a transverse aimildrity structure of F.

By starting from one of such submersions h;’s, we can construct the analytic con-
tinuation and obtain a C® submersion D : M — RY, where M is thg universal cover-
ing of M. We call D a developing map of the foliation F with the similarity structure
6 = {U;, hi,vj:}. Asis well known (see Godbillon [4] for example), there exists a homo-
morphism & : 7(M) — Sim(q) such that D oy = &(y) o D for all ¥ € =y (M), where



Sim(q) is the group of similarity transformations of R9. In this paper, we work in the
oriented category for the simplicity. So we suppose that v;;’s are orientation preserving,
that is, v;; € Sim4(g).

If the dimension of such F is zero, the triple (M, F,{U;, h;, v;:}) is a similarity man-
ifold, which are classified by Fried [2] in the case where M is closed. If the dimension
‘of such F is one, the triple can be considered as a non-singular flow with a transverse
similarity structure. In a sense, our result may be considered as a generalization of that
of Fried [2].

The plan of this paper is as follows. In §2, we quote the results of Fried [2] on closed
similarity manifold in a formulation which is convenient for our purpose. In §3, we give
examples of non-singular flows with transverse similarity structures, which will make up
the classification list. In §4,nwe describe the auxiliary conditions and state our main result
(Theorem 4.5) on the classification. In §5, we prdve Theorem 4.5. We work in the C*®

category, and hereafter we omit the term C*°.



§2. The classification of closed oriented similarity manifolds due to Fried

In this section, we quote the results in Fried [2] in a somewhat modified form which is
convenient for the later application.

Let N be a connected closed oriented similarity manifold of dimension ¢ 2 1, and
D : N — RY an orientation présexving developing map of N, where N and RY are naturally
oriented. The following theorem is the crucial result of Fried, which makes the classification

possible.

THEOREM 2.1. (Fried [2]) (1) If ¢ =1, then D is a diffeomorphism onto its image D(ﬁ)
and one of the following cases occurs:

(i) D(N)=R, |

(ii) D(N)=]a,00[ or | —oo,a] forsomeacR .

(2) If ¢ = 2, then D is a covering map onto its image D(N) and one of the following cases
occurs:

() D(¥)=mrs,

(ii) D(N)=R?—{a} forsomea € RY.

(Note that D is a diffeomorphism onto its image except the case (ii) with ¢ = 2.)

We call N Euclidean if D(J\~7 ) = RY, and radiant otherwise. When N is radiant, we
may suppose that a in Theorem 2.1 coincides with the origin 0 of R? by modifyiﬁg the
developing map D.

In order to state the classification result, we define the isomorphisms between closed

oriented similarity manifolds as follows.

DEFINITION 2.2: Let N; and N, be closed oriented similarity manifolds.” We say that Ny
is isomorphic to N if there is an orientation preserving homeomorphism g : Ny — N3 such
that, if D, : N — R is an orientation preserving developing map and g : Ni— N, isa
lift of g, then Dyo03g: N; — R is an orientation preserving develdping map. We call such
g : Ny — N, an isomorphism. (Note that such g becomes automatically a real analytic

diffeomorphism.)



We give examples of closed oriented similarity manifolds, which will form the classifi-

cation list of Fried [2].

ExAMPLE 2.3: Let I be a lattice group of R? and denote by N¥(T) the Euclidean closed
oriented similarity manifold obtained as the quotient RY/T. Clearly N%T;) and N4(T';)
are isomorphic if and only if there exists an orientation preserving similarity transformation

- g :R?— R? such that gT';g~ ! =T,.

EXAMPLE 2.4: Take » € ]0,1] and define a map m, : R —» R by m,(z) = rz for all
z € R. Denote by N'(r,+) (respectively N1(r, —1)) the radiant closed oriented similarity
‘manifold obtained as the quotient of the interval ]0,00[ (respectively | — co,0[) by the
cyclic group generated by m,. Clearly N'(»,+) and N'(s,—) are not isomorphic for all
7,8 €]0,1[. f r # s, then N'(7,+) and N(s,+) (zespectively N'(r,—) and Nl(s,—)) are

not isomorphic.

EXAMPLE 2.5: Suppose that ¢ = 2 and identify R? with C. Consider the exponential
map exp : C — C — 0 and the oriented similarity structure § = exp* 6y on C induced
from the canonical oriented similarity structure 6y of C — {0} by the map exp. Then a
homeomorphism g : C — C is an automorphism of oriented similarity manifold (C, 6)
if and only if g is a translation (since exp(z + &) = exp(z) - exp(a)). Hence a lattice
group I of C = R? acts on (C,0) as an automorphism group, and determines a radiant
closed oriented similé.rity manifold N?(expT) as the quotient. Note that N2(exp I'y) and
N?(expT,) are isomorphic if and only if I'; = T'5.

EXAMPLE 2.6: Suppose that ¢ 2 3. Let K be a finite orientation preserving isometry
group of the standard sphere S77* such that the quotient S?~1/K is a manifold. (See
Wolf [9] for the classification of such K ) Take an orientation preserving similarity trans-
formation v : R? — R such that ¥(0) = 0 and ||y(2)|| < [|2|| if # # 0. (We call such «
contracting.) Denote by (v) the cyclic group generated by 7. Let G be the group generated
by KU{‘}} (that is, G = K X (7)). Denote by N¢(K % (v)) the radiant closed oriented sim-
ilarity manifold obtained as the quotient of RY — {0} by G. Note that N9(K; x (y,)) and
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N9(K3 % (v2)) are isomorphic if and only if there exists an orientation preserving similarity
transformation g : R? — R such that g(0) = 0 and gG1g~ ' = G4, where G = K1 % (71)
and G2 = K % (7). |

Now we can state the classification result.

THEOREM 2.7. (Fried [2]). Let N be a connected closed oriented similarity manifold.
(I) If N is Euclidean, then N is isomorphic to N9(T') for some lattice group I' of RY.
(II) Suppose that N is radiant.

(i) If g =1, then N is isomorphic to N(»,+) or N'(r,—) for some r € ]0,1][.

(ii) If ¢ = 2, then N is isomorphic to N*(expT') for some lattice group T of C.

(iii) If ¢ 2 3, then N is isomorphic to N9(K % (v)) for some K and .

One can easily classify the automorphisms g : N — N. But we omit the details.

§3. Examples of non-singular flows with transverse similarity structures

In this and the next sections, we are going to classify non-singular flows ¢ : M x R — M
with transverse similarity structures under certain conditions. We treat only oriented
underlying manifolds M. Hence such flows have the natural transverse orientation. We

begin by describing the isomorphism between such flows.

DEFINITION 3.1: Let M; and M, be closed oriented manifolds of dimension n 2 2 and
¢1 and ¢, non-singular flows with transverse similarity structures. We say that ¢, is
isomorphic to ¢y if there exists an orientation preserving diffeomorphism f : My — M,
such that

(1) for all # € M, there exists an orientation preserving homeomorphism a : R — R with

Fodi(z,t) = ¢2(f(2),(t)) forallt € R,

(2) if U is an open subset of M, and a submersion h : U — R"~! is compatible with the
transverse similarity structure of ¢,, then ho f: f~1(U) —» R™ ! is compatible with the

transverse similarity structure of ¢;.



Wé call such f : My — M, an isomorphism between ¢; and ¢a.

Our intention is the classification of ﬁon-singula.r flows with transverse similarity struc-

tures up to the above isomorphisms. Now we give examples.

ExAMPLE 3.2: Suspension flows. Let N be a closed oriented similarity manifold of dimen-

sion n—1 and g : N — N an automorphism of N. Consider a Z-action on N x R defined

by

n-(z,t)=(g"(2),t —n) forn €Z and (2,t) € N x R.

Since the vector field 8/9t on N x R is preserved by this action, it induces a vector field X
on the quotient manifold M of N x R by this action. Furthermore this action preserves the
transverse similarity structure of §/8t induced from the similarity structure of N. Hence
the vector field X generates a non-singular flow ¢ : M x R — M with a natural transverse
similarity structure. We call (v 4) := ¢ the suspension flow of N by g. Note that ¢, 4,)
and ¢(n,,q,) are isomorphic if and only if there exits an isomorphism h : N; — N, such

that the diagram

]\rl___g_’__,]y1

J ]
Ny — N,

g2

commutes.

ExAMPLE 3.3: Circle bundle flows. Let N be a closed orientéd similarity manifold, and
§ = (M,w,N) an oriented circle bundle. Let ¢ : M x R — M be a non-singular flow
such that the orbits of ¢ are the fibers of ¢, band the natural orientation of an orbit of
¢ coincides with that as a fiber of {. Then the similarity structure of N determines a
transverse similarity structure of ¢. We call ¢, := ¢ a circle bundle flow over N. Note that -

the circle bundle flows ¢, and ¢,, are isomorphic if and only if there exists an orientation
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preserving bundle isomorphism

!
My, — M,

R

N, — N,
h

such that A : Ny — N, is an isomorphism. If £ is a trivial bundle, then the circle bundle

flow ¢¢ is isomorphic to the suspension flow ¢ q)-

We can generalize the circle bundle flows as follows. Let N be a closed oriented
similarity manifold of dimension 2. Then N is diffeomorphic to T'? and any Seifert bundle
M over N has a non-singular flow ¢ : M x R — M with a transverse similarity structure

in the similar way as circle bundles.

ExaMPLE 3.4: Contraction flows. For n 2 2, take an orientation preserving contracting
similarity automorphism g : R®*~! — R"~! with g(0) = 0, and define a map f : R* — R"
by ‘

f(z,t) = (g(=), rt) for zc¢R*! and t R,

where » > 0 means the similitude ratio of g. Then f is an orientation preserving similarity

transformation of R™. Consider a vector field X on M := R™ — {0} defined by
_ ] I —_—
X(z,t) = |l(2,t)| - m for (z,t) e R*"* xR —{(0,0)} = M.

Note that X is a non-singular vector field with the transverse similarity structure induced
from the canonical similarity structure of R®~! by the submersion h : M — R™! defined
by ,

h(z,t)=2 for (z,t) cR"* x R—{(0,0)} =M.

Since f|M is an automorphism of X, we have a vector field X on the quotient manifold
M of M by the cyclic group generated by f|{M. Then X generates a non-singular flow
¢ : M x R — M with the transverse similarity structure induced from that of X. We call
b, := ¢ a contraction flow. Clearly ¢, has exactly two closed orbits and M is diffeomorphic

to S1x 8§™~1. The subset N := (R™~1—{0}) x {0} of M is invariant by f|M, and submersed
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onto a submanifold N of M. Since N is transverse to ¢, it is a closed similarity manifold.
If n =3, then N is isomorphic to N?(expT), where I' = {pz +q-2xv/—1:p,q € Z} and z

is any complex number such that
g(2) = (expz)-2  for z € C=R2

If n 2 4, then N is isomorphic to N »~1({id} x (g)). Note that ¢,, and @,, are isomorphic
if and only if there exists an orientation preserving similarity antomorphism & : R*~! —

R"~! such that ho giohl=g,.

EXAMPLE 3.5: Generalized contraction flows. We consider the case n = 2 in Example 3.4.
Then there exists uniquely » € ]0,1[ such that g(z) = r« for all z € R, that is, g = m,.
We see that N is isomorphic to the disjoint union N'(»,+)U N(»,—). Take v € N and
consider the v-fold covering = : M — M such that 7~1(N) has 2v connected components.
The lift ¢(,,) of ¢, by 7 is naturally a non-singular flow with a transverse similarity
structure. We call ¢(,,,) a generalized contraction flow. Note that @(»;v) has exactly 2v
closed orbits and M is diffeomorphic to T2, Clearly é(»v) and ¢(, .x) are isomorphic if and

only if » = s and v = p.



§4. Statement of the results

In this section, we give a classification of non-singular C*° flows with transverse similarity
structures satisfying certain conditions. We begin by giving definitions, which are needed
in order to describe the conditions. Let M be a closed oriented manifold of dimension = 2

and ¢ : M x R — M a non-singular flow with a transverse similarity structure.

DEFINITION 4.1: A submanifold N of M is a closed transversal to ¢ if N is a codimension

one closed submanifold and N is transverse to ¢.

REMARK 4.2: Since a closed transversal N to ¢ has the canonical similarity structure
induced from the transverse similarity structure of ¢, we can find N in the classification

table of the closed similarity manifolds (due to Fried [2]) described in §2. This is the

starting point of our research.

REMARK 4.3: All the suspension flows ¢(w ) in Example 3.2, all the contraction flows
¢4 in Example 3.4, and all the generalized contraction flows ¢(,,,) in Example 3.5 have
closed transversals. On the other hand, some circle bundle flows ¢, in Example 3.3 have
no closed transversal. For example, take a circle bundle £ = (M, =, Np) such that Ny is a
closed oriented similarity manifold of dimension 2 (which implies that Ny is diffeomorphic
to the 2-torus Tz), and the Euler number eu(¢) of £ is not zero. Then the circle bundle flow
¢¢ has no closed transversal. For, otherwise, the restriction x|y : N — N is a covering
map, whefe N is a closed transversal to ¢. Since the induced bundle (7|n)*¢ has a section,

its Euler number eu((=|x)*£) is zero. This implies that eu(¢) = 0, a contradiction.

DEFINITION 4.4: Suppose that N has a closed transversal N. We say that the pair (¢, N)
has the lifting property if, for any continuous map c: [a,b] — N, any number 7 € R — {0}
and any compact codimension one submanifold T of M such that ¢(c(a),7) € IntT and T
is transverse to ¢, there exists b* €a,b] and a continuous mﬁ.p H:[a,b"] xJ - M (where
J=[0,7]if 7 > 0 and J = [r,0] if 7 < 0) such that

1) H(s,0) =c(s) for all s € [a, b*],

(2) H(a,t) = ¢(c(0),t) forallt € J,

9



(3)  H(s} xJ)Cd({c(s)} xR)  for all 5 € [a,b*],
(4)  H([e,b"] x{r}) C T,

(5) if b* < b, then H(b*,7) € 8T'.

We call H a lift-homotopy of ¢|{.(a)} x[0,] along c and T'.

Now we can state the result of classification, which is the main result of this paper.

THEOREM 4.5. Let M be a closed oriented C*® manifold of dimension n 2 2 and ¢ a
non-singular C*™ flow with a transverse structure. Suppose that ¢ has a closed transversal
N and the pair (¢, N) has the lifting property. Then ¢ is isomorphic to ( 1) the suspension
flow ¢(n,4) for some closed similarity manifold N and some C* automorphism g of N, (2)
the contraction flow ¢, for some contracting similarity transformation g : R*~! — R~

or (3) the generalized contraction flow @(,,,) for somer > 0 and v € N (in the case n = 2).

REMARK 4.6: When n = 3, the concept of a transverse similarity structure to a non-
singular flow coincides with that of a transverse complex affine structure. Ghys [3] treated

this case, independently and without our auxiliary conditions.

10



$§5. The proof of Theorem 4.5

Let M be a connected closed oriented manifold of dimension n 2 2and ¢ : M xR - M
a non-singular flow with a transverse similarity structure. Suppose that ¢ has a closed
transversal N and the pair (¢, N) has the lifting property. We may suppose that N is
connected. |

Here we recall the usual notations. Let 2 € M. We call O(2) := {¢(2,t) : t € R}
the orbit of z and O (z) := {@(z,t) : t > 0} (respectively O~ () := {¢(=,t) : t < 0})
the positive (respectively negative) semi-orbit of z. We call Lt (2) := ﬂ,>o{¢(z;t) 1t 21}

(respectively L™ (z) := Nr<o{d(e,t) : t < 7}) the w-limit set (respectively a-limit set) of
z. For a subset A of M, we call Sat(4) := {#(=,t) : ¢ € A,t € R} the saturation of A. It
is well known that Lt (z), L™ (z) and Sat(A) are invariant (that is, the union of a family
of orbits of ¢).

Now we divide the situation into the following two cases:

CaseI. Oft(z)NN#£0 forallze N.

Case II. O*(2g)NN =0 for some o € N.

First consider Case I. For z € N, let g(z) be the first intersecting point of O*(z)
with N. Then the obtained map g: N — N is an immersion. Hence the image g(N) is a
compact open subset of N. Since N is Hausdorff and connected, it follows that g(N) = N,
which implies that Sat(N) = M. Furthermore we see that g : N — N isan a.utomori)hism
of the closed oriented similarity manifold N, and that ¢ is isomorphic to the suspension
flow ¢(N,9).'

Hereafter we consider Case II. Note that the w-limit set L*(2¢) of 2o is compact,

connected, non-empty and invariant, and that the saturation Sat(N) of N is an open

subset of M.
LEMMA 5.1.  L*(2¢) C 0Sat(N) := Sat(N) — Sat(N).

PrOOF: It is clear that L1 (z¢) C Sat(IN). Suppose that there exists a point y € L¥(2¢) N
Sat(N). Since y € Sat(N), there exists 2 € N and ¢ € R such that y = ¢(z,t). Since

L+ (o) is invariant and y € L*(2), it follows that # € L™ (zo). Hence the positive semi-

11



orbit O%(z¢) must intersect N infinitely many times, which contradicts the assumption

Ot (z9) N N = 0. Hence LT (z9) NSat(N) =0. O

Let ¢ : N — M the inclusion map, and = : M — M and xx : N — N the universal
covering maps. We can construct a developing map D : M — R™ 1! of the non-singular

flow ¢ with the transverse similarity structure in a natural way. We have the following

diagram:
~ ~ D
N M —— R"!
er xl
N — M

]

We are going to take three compact disks T' C M, TcMandTC R™1, and six
points y,z € IntT, 7,7 € IntT and 3,7 € IntT. First take a point z € L*(z9) C M.
Choose a point Z7 € #~1(z) C M and put Z = D(Z) € R*1. Second take a sufficiently
small compact (n — 1)-disk T in M such that 7 € Int T and T is transverse to the lift
" $:M xR Mof¢. Put T ==(T) (C M) and T = D(T) (C R™"1). We may suppose
that 1r|f : T — T and le : T — T are diffeomorphisms. Then T’ and T are compact disks.
Furthermore z € Int T and 7 € Int 7. Last we take the points y, ¥ and ¥ as follows. Since
z € L*(20), there exists 7 > 0 with y := ¢(z0,7) € Int T. Put § = (x]z)"*(y) € Int T and
¥=D(7) cntT.

" Definea curve w : [0, 7] = M by w(t) = ¢(=o,t) forallt € [0, 7], and let & : [0,7] — M
be the lift of w with &(7) = 7. Put Zp = &(0). Note that D(Z¢) = D(¥) = ¥ because the
points zo and ¥ are on the same orbit of the flow ¢. Since Z; € 7~ 1(2g), there exists an

immersion 7: N — M such that Zo € 7(V) and the diagram

commutes. Choose a point Zx € 771(Zy).

12



Since the similarity structure of N comes from the transverse similarity structure of
¢, the composition Dy := Dv': N-oR"lisa developing map of N. By Theorem 2.1, the
map Dy : N — Dy (N) is a covering map and the image Dn(NY) is one of the following:

(a) the whole R™~1,

(b) R*~! deleted a point (n — 1 = 2),

(c) a connected component of R deleted a point.

This implies that the intersection IntT N Dy(N) is diffeomorphic to (a) an open disk,
(b) a punctured open disk of dimension n — 1 2 2, or (c) an open interval. Note that

Int T N Dy(N) is path-connected.
LEMMA 5.2. %= D(Z) ¢ Dn(N).

ProOF: We suppose that z € DN(]V ) and will bring out a contradiction. Since IntT N
'Dn(N) is path-connected and the points § and 7 belong to Int T N Dy(N), we can take a
curve ¢ : [0,1] — Int TN Dy (V) such that §(0) = yand ¢(1) = 2. Since Dy : N — Dy(N)

is a covering map and
D (&) = D(En) = D(Z0) = D(F) = § = A0),

there exists uniquely a continuous map &y : [0,1] — N such that Dy&y = € and Sy (0) =

zn. Put c._:: wnen ¢ [0,1] — N . Then it follows that
c(0) = mnen(0) = an(ZN) = 7d(Zn) = ®(Z0) = 20 = é(20,0) = w(0).

Since the pair (¢, N) has the lifting property, there exists b* € ]0,1] and a lift-homotopy
H :[0,6%] x [0,7] = M of @|{s,}x[0,r] along c and T. Then H(0,7) = w(r) = ¢(20,7) = .
Let H : [0,5%] x [0,7] — M be the lift of H with H(0,7) = 7.

Since H(0,7) = &(r) and for all £ € [0, 7],

xH(0,t) = H(0,t) = w(t) = n@(t),

the unique path lifting property of covering maps implies that H (0,¢) = @(t) for all
t € [0,7]. Hence H(0,0) = &(0) = %o = ién(0). Next note that xH(s,0) = H(s,0) =
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¢(s) = mncn(s) = wicn(s) for all s € [0,%]. By the unique path lifting property, it follows
that H(s,0) = icn(s) for all s € [0,5*]. Note that H({s} x [0,7]) is contained in some
orbit of . This implies that

DH(s,7) = DH(s,0) = Dicn(s) = Dycn(s) =2(s) € Int 7.

Hence H(s,7) € IntT and H(s,7) € IntT for all s € [0,b*]. Therefore b* = 1 and
H(1,7) = z. It follows that 2 = H(1,7) € O*(c(1)) C Sat(N), which contradicts Lemma
5.1. O

By Lemma 5.2 and Theorem 2.1, we conclude that NV is radiant, and thatif n —1 > 2
then Dy(N)=R"!, andif n — 1 =1 then Dn(N)=]—00,%] or |2, +o0].

LeMMA 5.3. If n—1 2 2, then Sat(N)NT =T — {z}. fn—1=1, then Sat(N)NT is a

connected component of T — {z}.

Proor: We treat only the case n—1 g 2 and omit the proof for the case n—1 = 1. It is clear
that Sat(N) NT C T — {z}. Conversely take w € T — {2} and put & = (w|z) }(w) € T
and W = D(w) € T. Choose a curve ¢ : [0,1] — IntT — {Z} such that ¢(0) = 7 and
(1) = @. By the similar argument as in Lemma 5.2, we see that w € Sat(N). Therefore
T —{z} C Sat(N). O

By Lemma 5.3, we see that the orbit O(2) of z is proper, which implies that L*(z) C
O(z) — O(z). Furthermore, we have the following.

LeMMA 5.4. The orbit O(z) is a closed orbit.

PrOOF: Consider the case n—1 2 2. Suppose that O(z) is not a closed orbit. Then there
exists a point z; € L1(2)(C O(z) — O(z) C L*(20)). Take a sufficiently small (n—1)-disk
Ty in M such that z; € Int T} and T3 is transverse to ¢. Since Lemma 5.3 is valid for 21,
it follows that Sat(N) N Ty = Ty — {z1}. This implies that O(z) cannot approach z;, a

contradiction. This argument is valid for the case n — 1 =1, too. O
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LeMMA 5.5. L*(zo) = O(z).

ProOF: By Lemmas 5.3 and 5.4, we can conclude that L*(z¢) is the union of some isolated

closed orbits. Since L+ (o) is connected, it follows that L*(zo) = O(z). O

Now consider the holonomy g along the closed orbit O(z). Since Lt (zq) = O(z), the
similarity transformation g of R™~! must be contracting. We can take a compact tubular
neighborhood W of O(z) such that W is transverse to ‘dJ. Then the closed oriented
similarity manifold 8W is isomorphic to N(g) := (R*~1 —{0})/(g), where (g) is the cyclic
group generated by g. Note that if n —1 = 1 then N(g) = N*(r,—) U N*(r,+) (where
» €]0,1] is the similitude ratio of g), that if n — 1 =2 then N(g) = N?(expT') (where we
take ap € C with g(z) = exp(ag)z and let T' = { p- g +v-27y/~1 : p,v € Z}), and that
if n—12 3 then N(g) = N*~1({id} x (g))-

LEMMA 5.6. For all 2 € N, the positive semi-orbit O* (z) intersects W exactly once.

ProoF: Clearly any orbit of ¢ intersects 8W at most once. Since L*(zo) = O(z), the
positive semi-orbit O% (2g) intersects 6W. We may suppose that y = ¢(zo,7) € IW. Take
a point ¢ € N arbitrarily and consider a curve ¢ : [0,1] — N such that ¢(0) = 2o and
c(1) = z. By the lifting property of (¢, N'), we can lift ¢|{2,}x[0,-] along c and §W. This
implies that Ot (z)NdW #£6. O

For ¢ € N, denote by f(z) the intersecting point of O%(z) and 6W. Since the subset
f(N) := {f(z) : « € N} of W is connected, open and closed, it is one of the connected
component of OW. If n—1 2 2, then f(N ) = OW. Furthermore the obtained map
f: N F(N)(C OW) is an isomorphism between the closed oriented similarity manifolds
N and f(N). Therefore N is isomorphic to N(g). |

Now repeat the same argument as above for the negative side of N. Then L~ (z0)is a
closed orbit of ¢ and its holonomy k is expanding ih this case. Furthermore the contracting
similarity transformation A=t : R®~! — R™~! determines the transverse similarity struc-

ture of the boundary dV of a small compact tubular neighborhood V' of L~(z¢). Since
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one of the connected components of §V is isomorphic to N, it follows that A~! = g. If

n —1 2 2, then we have the following decomposition of M:
M=VU(N x[-1,1)UW.

By using this decomposition, we see that ¢ is isomorphic to the contraction flow ¢,.

If n —1=1, then we see that ¢ has exactly an even number of closed orbits, whose
holonomies are g or g7!. Furthermore we have the similar decomposition as in the case
n —1 2 2. Thus we see that ¢ is isomorphic to the generalized contraction flow P(») for

some » > 0 and v € Z. This completes the proof of Theorem 4.5.
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