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ON A REGULARITY CRITERION UP TO THE BOUNDARY
~ FOR WEAK SOLUTIONS
OF THE NAVIER-STOKES EQUATIONS

Shuji Takahashi

‘Department of Mathematics
Hokkaido University
Sapporo 060 J a.pb.n

Abstract. We are concerned with the behavior of weak solutions of the Navier-Stokes
system around possible singularities on the boundary. We show that a weak solution

locally belonging to some Lebesgue space cannot blowup there.

1. Introduction

We consider the Navier-Stokes equations:

((uy — Au+(u-V)u+ V¢ =0, in @ =Q x (-T,0),
Veu=0, in Q,
(1.1) ¢ |
| w2, =T) = uo(2), on {2,
( #|on =0,

where {2 is a domain in R*(n > 2) with smooth boundary 89, 0 < T < oo; u = (uf),

and ¢ denote the unknown velocity and pressure, respectively, while ug = (ui)’, is a



given initial velocity. Here external force is assumed to be zero for simp]icity.r Leray [Le]

and Hopf [Ho] constructed global weak solutions in the class
(1.2) w€ L¥*(Q) and Vue L**(Q)

for ug € L*(2) where LP%(Q) := LU(~T,0; L?(Q)). It is also known that a weak solution

satisfying (1.2) moreover belongs to the class
(1.3) | Vu,¢ € LI'"0(Q) for all 1 < rg,r} < 0o with n/rg +2/7h =n

for a large class of domains including smoothly bounded domains provided that initial data
is slightly regular (cf. Giga and Sohr [GS], Sohr and von Wahl [SW]). Serrin [Se] gave a
local interior regularity criterion and Struwe [St] extended Serrin’s result (cf. Takahashi
[Ta]). They proved that the weak solution u of (1.1) in the class (1.2) is in L°'*°(Q') and
regular in the space variables provided that u € LP9(Q) for some p, ¢ such that

(1.4) n/p+2/g<1, n<p< oo,

where Q' = Q' x (-T1",0), @ is relatively compact in  and 0 < T' < T. When Q= R™,
this was proved by Fabes, Jones and Riviere [FJR] (See also von Wahl [Wal]).

Although global versions of Serrin-Struwe’s results are available (cf. Giga [Gi], Sohr
[So]), there seems no literature on a local version up to the boundary. Our goal is to give
a local regularity criterion up to the boundary of Serrin-Struwe type. To avoid technical
complexity in this l;aper we assume that the boundary 91 is flat near a possible blowup
point zg € 8). By translating variables we may assume that 2y = 0. We take R so small
that 2 N Bg(0) is flat. Here BR(O) denotes the ball centered at 0 with redius R. We
prove among other results in this' paper that if the weak solution u of (1.1) in the class

(1.2) and (1.3) in Q N Qg satisfies v € LP(Q N Qgr) with
(1.5) n/p+2/g=1, n<p< oo,

then
u € L*°(Q N Qr:),
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where Qr = Br(0) x (—R?,0), R? < T and R' < R. However, we are not sure whether the
boundedness of u in space-time would imply the smoothness of  up to the boundary in the
space variables, while it is true on the interior probrem (cf. [Se]). Concerning the interior
regularity problem, the vorticity equation has been fully used (cf. Serrin [Se], Struwe [St]
and Takahashi [Ta]). Unfortunately, the vorticity equation dose not apply to the regularity
problem up to the bouhdary, because we cannot specify the boundary value of the vorticify
w = curlu locally. Hence we are forced to analize (1.1) directly. When we localize the
velocity, there arises a problem since the localized velocity is no longer solenoidal. We
overcome this difficulty by applying Bogovski’s lemma which gives a solution of V- v = f
with zero boundary conditions (cf. Bogovski [Bol],[Bo2] and Borchers and Sohr [BS]). To

carry out this idea we refine his result on the support of .

2. Main theorem ‘
We denote Q} = B x (—R?,0), Bf = {= € R"| |2| < R,z, > 0} and IP9(Q}) =
LI(—R?,0; L*(B})). | |

We say u in the class
(2.1) u € L»*(QL), Vue L**(Q})

is a weak solution of
u— Au+ (- V)u+ Vo =0, in QF,
(2:2) - Veu=0, in QF,
Uy, =0 =0, |

if it holds

(2.3) // (‘Pt-l—Ago)-udzdt:/ (w-V)u-pdedt
Qx o Q%

for all p = (¢*)2,; € C°(QF) with V - ¢ = 0 as well as

V- u=0,
ulzn:O = 0.
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Here Cg°(Q) is the space of smooth functions with compact support in Q. There is a scalar

distribution ¢ on Q} such that
Véo=—-u+Auv—(u-V)u

holds in the sense of distribution. Such ¢ is uniquely determined by u up to additive
functions of ¢ and called the pressure associated with .
We do not distinguish the spaces of vector and scalar valued functions unless it causes

confusion. We now state our main result in this paper.

THEOREM 2.1. Suppose that u is a weak solution of (2.2) in the class (2.1) and that ¢ is

the pressure associated with u. Let (u, ) be moreover in the class

(2.4) Vau, ¢ € L"°”"’(Q3§) for all 1 < 7o, 7y < oo with ;7-1- + rl’ = n.
0 7o

(a) Assume that 1< p,q < oo satisfiesn/p+2/g=1andp>n. Ifu e L?9(Q}), then

°E L°°’°°(Q1';/8).

(b) There exists a positive constant £ = &(n) < 1 such that HuHL,.,oo(Q;) < € implies that
u € L°°’°°(Q$/8).

We shall prove Theorem 2.1 in Section 5.

3. Localization

In this section we localize the weak solution u of (2.2) and get the linearized Navier-
Stokes system for the modified localized weak solution.

We denote Eg = {z € R*| |2| < R,z, > 0}. We first assume that R = 1 for
simplicity. We cut off the weak solution u of (2.2) and the pressure ¢ on Qf/z to obtain

~ higher regularity in Qf/z. We set

u=uyp and p=¢v

4



where ¥ € C§° (31'F x (—1,0]) satisfies
v=1 in Bi*’/zx( 1/4,0].

Then (%, p) satisfies

( U — Au+ (u-V)u+ Vp = ¢Vy + ((u, ), in QF,
V-u=u- -V, in’Q'f,
(3.1) 4
u(z,-1) =0, on Bi*’
\ ﬂlanzo = 0’

where

¢(2,9) = Yeu + ulgp — 2V(u - V) + (u - Vi)u.

However u may not satisfy the incompressibility condition V - % = 0. We recover this
condition with Bogovski’s lemma. To state it we prepare some function spaces:
Let D be a bounded domain in R®. Let H?"(D) be the completion of Co° (D) with

respect to the norm |- |;,, where |f|}, = 3 ||[Vef||?. Here we denote
lal<i

«_ [ 0\ d \*
v —(321) (55:) '

for a multi-index @ = (@1, -+ ,an), @] =01+ -+ + @, and ||f||] = / |f|"dz. We also

denote the support of f by supp f. We write V; = 59— and also 51mp1y write ||V f|[T =
L1

v

al=j

LEMMA 3.1. Assume that D is a bounded Lipschitz domain in R® and that T' is an open
subset on §D. For any j = 0,1,2,---, and any » € (1, 00), there exist a bounded linear
operator K = K;, : H)"(D) — H*'"(D)* and _positive constants C = C(n, j,», D)

. and C' = C'(n,r, D) with the following properties:

() V-Kf=f forall f e H"(D) with / fde =0,
D
(b) [IVIPEFf|, < C||Vif|l, forall f € HI"(D),

5



(¢) suppKfC DUT if suppfC DUT, B
(d) For f € L(D), we can define Ko,(V;f) € L'(D) (¢ = 1,--- ,n) such that V -
K,.(Vif) = Vif for f € HY"(D) and that

”Kﬂ.r(vif)nr < Cl”er for all f € LT(D)- |

REMARK:
(1) The restriction of K on Cg°(D) is independent of j and ».
(2) If D is starshaped with respect to some ball, i.e., if there is a ball B C D such that

D={ta:+(1—t)y[:c€D, y € B, t €0,1]},

then the positive constants C and C' depend on D through the diameter of D and B.

For the proof of Lemma 3.1 (¢) we prepare a lemma on a starshaped domain. For any

subset U we denote by U the closure of U in R™.

LEMMA 3.2, Let D be a bounded domain starshaped with respect to a closed ball B C D.
Suppose that F is a subset in D and that B' is a closed ball contained in the ’};terior of
B. Then there exists a subset Fg: in D such that

(i) Fs DF,

(i) Fp: is starshaped with respect to B',
(i) Fp NOD=FnNAD.

Proor oF LEMMA 3.2: We set

(3.2) Fpi:={sz+(1-38)yeD|z€B',ye F,0<s<1}.

Fp: satisfies (i) and (ii). We prove (iii). For any set U C R™ and any element z € R*, we
~ denote by (U;z) a convex hull spanned by U and :

(U;e)={sz+(1—-38)2|z€U, 0<s<1}.
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We see Fgr = {sz+ (1 —s)y | z € By € F,0 < s <1} = {(By)| y € F}. We
also see (B';y0) C D for yo € D and (B';31) NID = {y:1} for 31 € 8D. It thus holds
{(B;9)lye F}ndD=FNOD. &

REMARK: We need to use B' instead of B to get (iii). Indeed Fg N 8D may not be

contained in F N 8D where Fp is defined in a similar way to Fp, since (B;y) N (8D\{y})
may not be empty for some y € §D. See FIG.1.

FIG. 1

PROOF OF LEMMA 3.1: Proofs of (a), (b) and (d) are found in [BS, Theorem 2.4]. We
prove (c). We first assume that D is starshaped with respect to a closed ball B C D. As
in Bogovski {Bol], [Bo2] or Borchers and Sohr [BS], we define K on Cg§°(D) by

(3.3) Kf(z) = /D 6= 9)f(v) dy,

where

6z )= (== [ Ty +ia -y

and h € C§°(B') satisfies | h de =1. Here B’ is a closed ball in the interior of B.
, .



We see supp K f is contained in the convex hull spanned by supp f and B’. Indeed,
for a bounded set F we denote by Fg: the convex hull spanned by F and B’ such as in
(3.2). Let z € D, y € Fand t > 1. Since 2 = t Y y+t(z—y)+(1 - t‘l)‘y, we see
¥+ t(z — y) € B' implies « € Fg: by the starshapedness of Fg:. We set F =supp f and
z € supp K f. The definition (3.3) yields y + t(z — y) € B' It thus holds supp Kf C Fgp..
Applymg Lemma 3.2 implies supp Kf NdD C Fg.NOD = F N JD.

When D is a general bounded Lipschitz domain, we can decompose D to finite star-
shaped domains with respect to a ball by partition of unity (See [Ma, Section 1.1.9.]).

Lemma 3.1 (c) is clear if we follow the decomposition in [BS, Theorem 24]. 1

We apply Lemma 3.1 to (3.1) with K = K; 5, f=V-%, D=D, and T = I';, where
Dp := BR\ Rz and T'r:= {2 € R*; R/2 < |z| < R, 2, = 0} for R > 0. We set

w=K(V-%) and v=%—w.
Since « = 0 on {2 € R™;z, = 0}, using Stokes’ theorem we have

V-’Tid:::/' z- - do

+
8B},

= V’-udz=0.

+
BJ/:

D,

Here T’ and o denote the unit outer normal vector and the areal element of BBI /20 T€-
spectively. Lemma 3.1 (a) yields V - v = 0. Since V - (-,¢) = u - V(-,t) € Hy*(D,) for
a.e. t, w(+,t) € HY*(D,). Integrating w and Vw over z and t we see by Lemma 3.1 (b)

w € L¥*(Dy x (=1,0)) and Vw € L**(D; x (-1,0)).

By the definition of 9, supp V - %(-,t) C D; UT;. Lemma 3.1 (c) 1mp11es supp w(-,t) C
D, UT, which yields w(-,¢) = 0 on 0D \I'; with its a.ll derivatives. Then we can extend
w outside of Dy by zero smoothly. We can also verify w(e,—1) = 0. Moreover, by the
parallel argument on the class (2.4), we now conclude that v is in the class

‘ v € L**(R% x (<1,0) and Vv e I**(R™ x (-1,0)),
(3.4) '

! 2
Vv € L™ (R} x (—1,0)) for all 7,7} € (1,00) with 'ri + S =n
. 0 0



and satisfies the linearized Navier-Stokes equations:

(v — Av+ (v V)v+ Vp=h, in R% x (-1,0),
V.v=0, in R x (—1,0),
(3.5) »
v(e,-1) =0, on RY,
\ vlz,.,:ﬂ = 0’

where R} = {¢ ¢ R* | 2, > 0} and

(3.6) b=V — v+ Aw— (u- Vyw+ ((u,9).

4. A priori estimates

This section establishes a priori estimates for the Stokes equations :

(w—Av+Vp=F  inR® x(=T,0),

Vev=0, in R x (=T,0),
(4.1) J
v(z,—T) = 0, on RY,
\ vlan___o = 07

with function f in some Lebesgue space. We apply the estimates to the modified localized
solution v of the linearized Navier-Stokes system (3.5), where 0 < T < oo.
Let 1 < 7,7 < co. We say v in the class

(4.2) ve L' (R% x (—T,0)) with Vve L™ (R® x (-T,0))

is a weak solution of (4.1) if it holds

0 _ )
/ / (—pe — Ap) -vdadt = / fpdadt
-TJRY -1 JRr} _

~ forall p = (p*); € CP(RY x [T, 0)) with V- ¢ = 0 as well as
V.v=0,
'vla,,,:ﬂ =0.
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Note that for the weak solution v defined as above, there is a scalar distribution p on
R% x (—T,0) such that
7 Vp = f — Vg -+ Av

holds in the sense of distribution. Such p is uniquely determined by v up to additive
functions of ¢ and called the pressure associated with v.
In what follows, we write

&(p,q) =

Qe

n
—+
p

In this section we suppress R} x (—T, 0) in norms and function spaces, which are simply

written as L%, C'* and so on.

LeEMMA 4.1. (Giga and Sohr, [GS]) Let 1 < £,f' < oo. Then for every f € L""(Ri X
(—T,0)) there exists a unique solution (v,Vp) of (4.1) satisfying

lloelle.e + 11920l + [ Vollee < Ollfle,e

with C = C(n, £, ).
* We note that weak solutions of (4.1) are unique in the class (4.2). The proof is, as

‘usual, based on the existence of solutions of the dual proBlem (Lemma 4.1). We state next

lemma without the proof:

LeMMA 4.2. Let1 < r,7',7 < co. Suppose that v is a weak solution of (4.1) with f =0
in the class (4.2). Then v = 0.

We need another type a priori estimates.
~ LEMMA 4.3. Suppose that 1 < 3,',a < co. Let 7,7 satisfy

(B<y<oo, B'<7 <00,
(4.3) .

£(8,8") = &(v,7") + 1.
’ 10



Then for every f € LP#" there exists a unique solution v of (4.1) in the class v € L'
with Vv € L' satisfying )
“V’vH'y"Y' < C”f”ﬁ:ﬂl

with C = C(n,3,8';7,7')-

ProoF: Since the uniqueﬁess of weak solutions of (4.1) in the class (4.2) is given by
Lemma 4.2, the weak solution is represented uniquely with the Stokes operator. Ukai [Uk,

Theorem 3.1] showed that for 1 <g<p<oo
1Vu(-, )]l < CE =72 Juollq

with & = 27 (¢t —p7 1) for the solution u of the Stokes system with zero external force
and initial value ug on a halfspace (In fact this estimate holds for 1 < ¢ < p < ). We
can prbve Lemma 4.3 by applying the Ha.rdyFLittlewood-Sobolev inequality in the time
variable (cf. Takahashi [Ta, Section 4}).

We next apply the above lemmas to the linearized Navier-Stokes equations:
(v, — Av+(b-V)v+ Vp=h, in R} x (-T,0),
V.v =0, . in R} x (-T,0),

(4.4) <
v(z,-T) =0, on RY,

{/v|=ﬂn=o =0,

with irregular coefficient b € L?*? for p,q > 1 satisfying £(p, ¢) = 1 and function h in some
Lebesgue space.

Let 1 <7 <ooandlet 1< £ f,r,r < oo satisfy
(4.5) 1/r=1/L—1/p, 1/v' =1/8 —1/q.
““For h € I** and b € LP9, we say v in the class

(4.6) ve I’ with VoelL™

11



is a weak solution of (4.4) if it holds - . _—

- /:l/l;n(—gat—Aga)-vdzdt=/_:n(h—(b-V)v)-godzdt,

for any ¢ = (¢*)7-; € CP(R? x [-T,0)) with V - ¢ =0 as well as
V.v=0,
’vl,,n:o =0.

In the same way as in (4.1), we define in (4.4) the pressure p associated with v: ,

Vp=h—v+Av—(b- V).

PROPOSITION 4.1. Assume that 1 < p, q < oo satisfies n/p+2/g=1. Let1 < »,¢' 0, <
oo satisfy (4.5) and let 1 < # < co. Suppose that h € L' and b € LP9. Assume that v
is a weak solution of (4.4) in the class (4.6) and that p is the pressure associated with v.
Then there exist positive constants ¢ = &(n,{,£',p) <1 and C; = Cy(n,¢, £, p) such that
[16]lp,q < € implies

@) (1Vollns < Cllhllser,

(B)  IVellee < Cillhllg,e:

if moreover 1 < { < n, it also hofds

(¢) IVl < Ci|lh||g,e for 1 < m < oo with 1/m = 1/£€—1/n.

PROOF: We first note that {(7,7') = £(m,£'),r» < m,+' > £, in particular, (r, ') = (m, £)

if (p, q) = (n, o0).

(a) Since (8,8',7,7') = (4, £,r,+") satisfies (4.3), applying Lemma 4.3 and Holder’s
inequality with (4.5) yields

1Vl re < C(1[Bllp, gl Vol ,r + |[R],00)-

Since ||Vv||, .+ < 00, setting & = (2C)~! implies (a).
~ (b) Lemma 4.1 and Hélder’s inequality yield

Vol < C(I1Bllp,ql[V0]ls,20 + |[Rl2,20)-

12



The estimate (a) yields (b).
(c) Setting (3,8',7,7") = (£,£,m, '), as in (a), we have

1Vllm,ee < C(|[bllp,ql[Vollr,e + [[2]]e,e7)-

The estimate (a) yields (c). B

We next get parallel results to Proposition 4.1 without the regularity assumptions on

v in (4.6) by an approximate argument.

THEOREM 4.1. Assume thatn > 3 orp > n. Let 1 < p,q < oo satisfy n/p+2/q = 1.
Let 1 < »,#',£,£' < oo satisfy (4.5). Let 1 < 6,0',6 < co satisfy

2
E+—=n, L<0<n, 6 > 2,
(4.7) 0 ¢ -1
’ 1 1 1
g 6 =n

" Suppose that h € LY*', b € I?9 and that v is a weak solution of (4.4) in the class
v€ L*® and Vve L¥?
(4.8) o '
ve L% and Vve L%
with the pressure p. If
»>0 and »' >¢,

then v is in the c1a_ss'

VweL™

and the conclusions of Proposition 4.1 hold.

ProoF: We prove only the estimate (a) in Proposition 4.1 since (&) automatically yields
(b) and (c). Since the mapping h — v is linear we may assume that h € Cg°(R? x(-T, 0)).
We approximate b by b, € Cg° such that

by »b in LPY,

ku“p,q < M“b”p,q (M > 0)-

13



There exists a smooth solution v, of the approximate equations:-

( O;v — Avy + (bh . V)’Uk +Vpr=h, in R:_ X (—T, 0),

V. v =0, . in R} x (-T,0),
(4.9) S | | |
(2, —T) =0, on R%,

\ vklz,,::ﬂ =0

in the class (4.8) with the pressure px (The existence of solutions is shown by Solonnikov
[Sol, Theorem 4.1 and Theorem 9.1] when n = 3. His method applies to an arbitrary
dimension n > 2 (cf. von Wahl [Wa2))). |

We first show that there exists a weak limit of some subsequence vy such that Vg,
weakly converges in L. Let 1 < £5,£, < oo satisfy 1/ = 1/6 + 1/p and 1/£, =
1/8' + 1/q. The assumptions » > 8, #' > 0' and (4.5) implies £ > £y and £ > £,. Since
h € L4* is compactly supported, we see h € L!¢+%e. Proposition 4.1 (a) yields

(4.10) | [[Vvxllo,er < Cllhleg,ee -
By Sobolev’s inequality we see
(4.11) llvalls o < C'lIRlleo,e,-

Since 1 <'0’9'10’ < oo, L%?" and L%* are respectively the dual spaces of L¢*¢" and

Lo ", where 6*,6" and 6* are the dual numbers, respectively. By the estimates (4.10)-

(4.11) there exist a subsequence {k'} and 7 € L% with V& € L% such that

Vv — V¥ weakly in L%

o~ a4 . 3 9!
v — ¥ weakly in L%9',

We next show that v is a weak solution of (4.4). It is clear that V-7 = 0. By the
~“ definition of (4.9) it holds ’

< —pr — Ap,vpe >=< h — (b - V)ka', e >

14



for any ¢ € C§°(R% x [-T,0)) with V - o = 0. Here
. ,
<f,g>:=/ f - g dezdt.
-1 Jmr2

Letting k' — oo yields -

< =t —Ap,vp > — < —Pi _A‘P’;;>a

< (l;_y Vo, o> =< (b-V)v,0>.
We next prove that v}, —o = 0. We consider the Banach space
W={ve Lé'o';V'v e 1%}
equipped with the norm |[v|; 5. + ||Vv||s,6:. We set
Wo = {v € W;v|s, =0 = 0}

.Since W is reflexive and Wy is strongly closed in W, Mazur’s theorem (cf. Yosida [Yo,
Theorem 11 in Sect.l, Chap.5]) implies that Wy is weakly closed in W. Since vy — 7
weakly in W and v € Wy, we conclude ¥ € Wy. Therefore v satisfies (4.4) in the sense of
distribution. ‘

We now obtain the desired estimate for 7. Applying Lemma 4.3 to (4.9) yields

Vorllyye < C(bx - V)vrllg,pe + [[R]g.50)

with (4.3). Since by, h € Cg°, we see ||Vug||g,s0 < 0o implies ||Vuvy||y,4+ < co. Repeating
this a.rgumeht with Vo, € L% yields Vv, € L% forall § € a < oo and ¢ < o' < co.

Applying Proposition 4.1 (a) we see
(4.12) HVvk:”,.,,.: S Cl”h”t’ll.

. ~ . ¢ . . L . . .
Since Vv — V% weakly in L%® and since the norm in L™ is lower semicontinuous with

"~ respect to this topology, sending k' — oo yields

IVall,re < Cullfle,e
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We observe that ¥ = v by the uniqueness for solutions of (4.4) in the class (4.8) (by
arranging |||,,, smaller if necessary). Let v; and v, be weak solutions of (4.4) in the class

(4.8). We set V = v; — v5. Then Lemma 4.3 yields
IVV1lo,6: < CliBlly,gl YV [lo,6:-

This implies V' = 0 if [[b]|,,4 < (20)!. The proof is now complete. B

We next estimate the minor terms h. We denote fllp.q0.0 = [1fllze.a(q) and ||f]|p.q ==

£ llzeam x(-1,0))-

PROPOSITION 4.2. Suppose that u in the class (2.1) is a weak solution of (2.2) in QF
with the pressure ¢ and that (u,¢) is moreover in the class (24). Let 1 < p,q <
satisfy n/p+2/q=1. Let 1 < £,£',7,7' < oo satisfy (4.5). Assume that h is as in (3.6),
v € IP(QY) N L (QF), Vu € L4 (Q}) and ¢ € L4 (Q?). Then it holds

[Blleer < Clllull, v +11Vally i gt + 161l 07)

with C = C(n,»,',p, Q7).

Proor: We recall

h=¢VY —w + Aw— (u- V)w+ ((u,9),
w = K(V - uy),
((u,¥) = deu + vAyp — 2V(Vg - u) + (u - Vo)u,
¥ € (B x (-1,0).

We here suppress the subscripts j and » since K , is independent of j and » on C§° (D).

We first calculate w;. Since V - u = 0, we see w = K(u-V4). It holds
wy = 0, K (u - Vo)
= K(u- V) + K(u; - V).

16



The equations (2.2) yield
K(u - VY) = K(Vy: (Au— (u-V)u — V¢)).
Here the above two equalities are justified by Lemma 3;1 (d) and
ug € Ll(—l', 0; H-17(B})) for éome 1 <9< oo,
which is given by

(- V)ue L} (~1,0; H-1"(B})) for some v; = ¥1(7o),
Avw € L*(-1,0; H~V%(By})),
V¢ € L'(~1,0; H-1"2(B})) for some v, = v2(0)
(See the assumption (2.4). We have applied Sobolev’s inequality to Vu in (2.4) for some

70 € (1,n) since u|s, =0 = 0 (cf. [Zi, Corollary 4.5.3])). Here H~17(BJ) is the dual space
of H,}’7‘(Bi") for 4* satisfying 1/y + 1/4* = 1. Since K is linear, we thus rewrite & as

follows:
h=hy+hs+hs+hy
‘where
b =3 K(V(9Vid)) — K(gpAY) + 6V,
i=1
hy = En: K(V;(v ' Vi9)) - 2”: KW'V, V;9) + (v - Vi)u,
i,j=1 ii=1
h3=—](u-V)K(u-V¢), J
he=—K(u- V)= 3 K(V(VVi) + 3 K(V;4V;V:9)
ij= ij=1
—AK(u-V¢) + :b,; + uAyp — 2V (u - v¢)f
Here V; = 0%. We note that supp V¢ C D;. Applying Lemma 3.1 (d) on D = D yields

[1h1llze(my) = llRallzepy) < CllgliLepsy
lIh2|ze(ry) = l|R2llzep,) < Cll Jul®l|pegy)-
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Applying Lemma 3.1 -(b) and -(d) yields
hallLemn)y = llhallpepy) + [beullemty < ClIVUll s+

Here C = C({,v) and estimates of lower derivatives are given by Poincaré’s inequality.

Holder’s inequality yields
lhzlleer < Cllull, 4,0 llell; 4o 0%

The term hg can be also estimated as above. I

5. Proof of Theorem 2.1.

In this section we denote ||f]l,,, = ||f”Lp,g(|R1x(_R2,o)) and ||fllp,q,@ = ||fl|Lr.e(Q)-

We first prove Theorem 2.1 when n > 3 or p > n.

We observe that the class (3.4) is included in the class (4.8). Let 1 < s < n and set »
such that 1/r =1/s—1/n. I ||u||p,q,Q; < e for e = &(n,p, £,£', R) given as in Proposition
4.1, applying Theorem 4.1 and Proposition 4.2 to (3.5), we obtain

IVollree +1IVOllm e +11pllm, e

(5.1) < O(IVaully,r g + 1Vull, 4 o1 + 181100 01)

with C' = C(n,p,s,', R) where the other exponents are the same as in Proposition 4.1.
We have here applied Sobolev’s inequality to Vp and u since p = ¢ has compact support
and u satisfies u|,,=0 = 0 (cf. [Zi, Corollary 4.5.3]). We note that 1 < £ < n and
E(ryr') = E(m, £') = &(s,7') — 1 = £(£,£') — 1. We use (5.1) inductively. In the similar way

to the definition of (v, p) in Section 3, we set

v; = up; — K(V - wy;) and pi = dY;

where

"/’J' € Cgo(B;, X (_‘RJZ’O])
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satisfies ¥; = 1 in B;H x (—R%,;,0]. Here R; := (1/2+ 1/27)R. We also set

1

1/rj41=1/r; —1/n,
1/t =1/rj31+1/p,
1/¢ =1/ +1/q.

We apply Lemma 3.1 on D = Dg;. We see v; = u and p; = ¢ on Q;Hl since ¥; = 1 and
K(V - uy;) = 0 there. Then

”?"”p,q,q;;j <Ej
for ¢; = ¢j(n,p,r;,*', R;) implies
”VuHrj+1v1',Q;j+l + “V’u’”l,'+lvl',Q$j+1 + H¢”[i+1’tl,qz‘i+1
< IV gt + IVl p00 + lPs 0000

where C; = Cj(n,p,rj,r';R,-) and 1 < 7j,£; < n. For any 2 < &' < 0o, we set #' = o and

7y such that n/ry + 2/a’ = n. The assumption (2.4) implies
Vue L™*(Q%)
Since £(£y,¢') = £(rl,’a') =n, it also holds
Vau,¢ € IY(QF)).

Weseel < 71 < n < 7, < 0o. And setting o' > 2p/n we also see 1 < £,_; < n <

£, < co. We set ¢ = min(ey,*** ,€n—1). Here € depends only on n,p,a' and R. Since
||u||p,q,qz < ¢ implies ||u||p’q1Q;. <e¢jforall j=1,---,n— 1, the induction yields
J
(5.2) Vue I'™*(Qf,,) and Vu, g€ L™ (Q%/,)
- with
. no d 1 1 + 1 2
n = and — = -+ - — —
o — L, no p na’



provided that ||u||, 0,@% < €. We see by Sobolev’s inequality

(5.3) u € I®(Qf,,).

By the LP-L4 estimates for the Stokes operator, it holds

(5.4) ~ le™ ™ a]lpe(ra) < Ct™™* |a||zrmn) for 1< » < oo

Here e~*4 denotes the semi-group of the Stokes operator A on the upper half space (See
[BM, Proposition 4.1]). Applying (5.4) to (3.5) and using Young’s inequality in the time
variable, we obtain

19]lo0,0 < C(I[wV2]5,50 + ||B]]5,60)

for 1 < 6,6 < oo such that n/6+2/6' < 2. Proposition 4.2 and (5.2)-(5.3) with (6,6') =
(L, #') yield

(5.5) u € L®°(QF /s)

provided that Hqu,q’Q; < €.
When p = n = 2 we can get (5.3) only with Proposition 4.1 and 4.2. Indeed, the class
(3.4) implies

(5.6) : Vo, pe L* forall1< £,£ < oo with % + %. =1.

For any 2 < o < oo we set (o, £y) such that 1/fp =1 —1/a’ and 1/¢) = 1 — 1/£,. Then
Proposition 4.1, 4.2 and (5.6) with (¢,£') = (£o,£,) yield (5.1) for (s,r,',m) given by
s =1Ly, 1/r =1/ty —1/2, r =o' and m = r. We see (5.2) holds for n = p = 2. We now
also get (5.5) when n = p = 2.

We can show that ¢ is independent. of R. Indeed, we rescale the weak solution u of

(2.2) in Q} and the pressure ¢ around (0,0) with
{ ux(2,t) = Au(dz, A%),
L da(z,t) = A2¢(Az, A%)
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for A > 0. Then (uy, ) satisfies (2.2) in QI';/A and

HuAHp,q,Q;/A = Hu”p,q,QK

for n/p+2/q =1. We see
(1) |lurll, g01 < ¢ implies up € L' (Qy5)
is equivalent to
(2) ||u||1'p,q,Q; < ¢! implies u € L°°'°°(Q;/8).
If p > n, that is, if ¢ < 0o, we can remove the smallness condition on . Indeed, let
0 < t° < R?/4. Let 2° be on the flat boundary and «! be in the interior of the upper half
“ball, that is,

2% € B;/z N{z € R*|z, =0} and =2'E€ Bj-;/z'

Then the assumption v € LP9(Q3) with ¢ < oo implies that for any € > 0 there exists
R, >0 such that

(5.7) 1l q,0%, (a0.00) < &
(5-8) v l]u||P,§1QR¢ (alito) < E’
where

Qi(2°,1°) = BE(2°) x (¢° — R%,19),
Qr(z*,t°) = Bg(=!) x (t° — R%,t%),
B3 (2°) = {z € R*|z, > 0, |z — 2°| < R},

Ba(z}) = {z ¢ R*| |! — #| < R}.

It is known that (5.8) leads to u € L°°’°°(QR¢/4(zl,t°)) (cf. Strawe [St] and Takahashi
[Ta]). Since ¢ does not depend on radius R, (5.7) implies u € L”'”(ch/s(zo,to)). A

covering argument yields u € L= (Q} /8)- 1

REMARK: Derivative estimates (5.2) are also valid in Theorem 2.1.
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