An analogy of the theorem of Hector and Duminy

Kouichi Matsuda

Series #112. April 1991

HOKKAIDO UNIVERSITY

PREPRINT SERIES IN MATHEMATICS

- #84: T. Morimoto, Generalized Spencer cohomology groups and quasi-regular bases, 19 pages. 1990.
- # 85: T. Morimoto, Théorème de Cartan-Kähler dans une classe de fonctions formelles Gevrey, 6 pages. 1990.
- # 86: A. Arai, Diffusive behavior of an electron interacting with a quantized radiation field, 57 pages. 1990.
- # 87: A. Inoue, The Alder-Wainwright effect for stationary processes with reflection positivity (II), 30 pages.

 1990.
- # 88: Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, 32 pages. 1990.
- #89: A. Arai, Improper Bogoliubov transformations and instability of embedded eigenvalues, 47 pages. 1990.
- # 90: K. Sugano, On bicommutators of modules over H-separable extension rings II, 9 pages. 1990.
- # 91: T. Nakazi, Homogeneous polynomials and invariant subspaces in the polydiscs, 17 pages. 1990.
- # 92: T. Nakazi, K. Takahashi, Homogoneous polynomials and invariant subspaces in the polydiscs Π, 10 pages. 1990.
- # 93: A. Arai, A theorem on essential self-adjointness with application to Hamiltonians in non-relativistic quantum field theory, 23 pages. 1990.
- # 94: Y. Okabe, A. Inoue, On the exponential decay of the correlation functions for KMO-Langevin equations, 13 pages. 1990.
- # 95: T. Sano, Y. Watatani, Angles between two subfactors, 62 pages. 1990.
- # 96: S. Ninomiya, The Fourier-Sato transformation of pure sheaves, 22 pages. 1990.
- # 97: Y. Okabe, A. Inoue, The theory of KM₂O-Langevin equations and its applications to data analysis (II): Causal analysis (1), 51 pages. 1990.
- # 98: J. Lawrynowicz, S. Koshi and O. Suzuki, Dualities generated by the generalised Hurwitz problem and variation of the Yang-Mills field, 17 pages. 1991.
- # 99: R. Agemi, K. Kubota and H. Takamura, On certain integral equations related to nonlinear wave equations, 52 pages. 1991.
- # 100: S. Izumiya, Geometric singularities for Hamilton-Jacobi equation, 13 pages. 1991.
- # 101: S. Izumiya, Legendrian singularities and first order differential equations, 16 pages. 1991.
- # 102: A. Munemasa, Y. Watatani, Orthogonal pairs of *-subalgebras and association schemes, 11 pages. 1991.
- \sharp 103: A. Arai, O. Ogurisu, Meromorphic N=2 Wess-Zumino supersymmetric quantum mechanics, 27 pages. 1991.
- # 104: H. Takamura, Global existence of classical solutions to nonlinear wave equations with spherical symmetry for small data with noncompact support in three space dimensions, 14 pages. 1991.
- # 105: R. Agemi, Blow-up of solutions to nonlinear wave equations in two space dimensions, 11 pages. 1991.
- \sharp 106: T. Nakazi, Extremal problems in H^p , 13 pages. 1991.
- # 107: T. Nakazi, ρ-dilations and hypo-Dirichlet algebras, 15 pages. 1991.
- # 108: A. Arai, An abstract sum formula and its applications to special functions, 25 pages. 1991.
- # 109: Y.-G. Chen, Y. Giga and S. Goto, Analysis toward snow crystal growth, 18 pages. 1991.
- # 110: T. Hibi, M. Wakayama, A q-analogue of Capelli's identity for GL(2), 7 pages. 1991.
- # 111: T. Nishimori, A qualitative theory of similarity pseudogroups and an analogy of Sacksteder's theorem, 13 pages. 1991.

words with Γ_0 as alphabet, that is, $W(\Gamma_0) = \coprod_{n=0}^{\infty} (\Gamma_0)^n$, where $(\Gamma_0)^n$ means *n*-direct products of Γ_0 and $(\Gamma_0)^0$ the empty word (). This set $W(\Gamma_0)$ is useful to treat the pseudogroup $\langle \Gamma_0 \rangle$, because

PROPOSITION 2.3. ([5], Proposition 2.6) Define the map $\Phi: W(\Gamma_0) \to \Gamma = \langle \Gamma_0 \rangle$ by $\Phi((\)) = \mathrm{id}_{\mathbf{R}^g}$ for the empty word () and $\Phi(w) = h_m \circ \cdots \circ h_1$ for a word $w = (h_m, \ldots, h_1)$. Then this map Φ is surjective.

For a word $w=(h_m,\ldots,h_1)\in W(\Gamma_0)$, we put $g_w=\Phi(w)=h_m\circ\cdots\circ h_1$. Note that for the *inverse word* $w^{-1}=(h_1^{-1},\ldots,h_m^{-1})$ of $w,\,g_w^{-1}=g_{w^{-1}}=\Phi(w^{-1})=h_1^{-1}\circ\cdots\circ h_m^{-1}$.

DEFINITION 2.4. Let $x_0 \in \mathbb{R}^q$. The Γ -orbit of x_0 is the set $\Gamma(x_0) = \{ g(x) \mid g \in \Gamma, x \in D(g) \}$.

For every $x_0 \in \mathbb{R}^q$, the topological type of the Γ -orbit $\Gamma(x_0) \subset \mathbb{R}^q$ is classified into the following three types (for example see [1]):

- (1) $\Gamma(x_0)$ is discrete; in this case $\Gamma(x_0)$ is called a *proper* orbit.
- (2) The closure $\overline{\Gamma(x_0)}$ of $\Gamma(x_0)$ in \mathbb{R}^q has non-empty interior; in this case $\Gamma(x_0)$ is called a *locally dense* orbit.
- (3) Neither (1) nor (2), that is, the closure $\overline{\Gamma(x_0)}$ is a perfect set with empty interior; in this case $\Gamma(x_0)$ is called a *exceptional* orbit.

To investigate the structure of the closure of a Γ-orbit is an important problem.

For q=1 (in our situation, Γ is a pseudogroup of local affine transformations of \mathbf{R}), but more generally, for pseudogroups of local diffeomorphisms of class C^r ($r \geq 0$) of \mathbf{R} , we can get following notion.

DEFINITION 2.5. The orbit $\Gamma(x_0)$ of $x_0 \in \mathbb{R}$ is called *semiproper* if for every $x \in \Gamma(x_0)$, there exists an open interval $J \subset R$ such that x is a boundary point of J and $J \cap \Gamma(x_0) = \emptyset$. Therefore a semiproper orbit is either proper type or exceptional type.

PROPOSITION 2.6. Suppose q=1. Then the orbit $\Gamma(x_0)$ $(x_0\in\mathbf{R})$ is exceptional type if

and only if for some (and thus any) $x \in \Gamma(x_0)$, there exists a compact neighborhood I_x of x in \mathbb{R} such that $\overline{\Gamma(x_0)} \cap I_x$ is a Cantor set. Furthermore, if $\Gamma(x_0)$ is a semiproper orbit of exceptional type, then for every $x \in \Gamma(x_0)$, x is a semi-isolated point of a Cantor set $\overline{\Gamma(x_0)} \cap I_x$.

For semiproper orbits, following theorems are important (compare with theorems in introduction):

THEOREM 2.7.(Sacksteder [6]) Suppose that q = 1 and $\Gamma(x_0)$ is a nonproper semiproper orbit. Then there exists $x \in \overline{\Gamma(x_0)}$ and $g \in \Gamma$ such that $x \in D(g)$, g(x) = x and g is a contraction to x, that is, the derivative g'(x) at x is less than 1.

THEOREM 2.8.(Hector [4], Duminy (unpublished, but see Cantwell-Conlon [3])) Suppose that q=1 and $\Gamma(x_0)$ is a nonproper semiproper orbit. Then there exists $g \in \Gamma$ such that $x_0 \in D(g)$, $g(x_0) = x_0$ and g is a contraction to x_0 .

To consider analogies of these theorems for $q \geq 2$, Nishimori introduced the following notion as somewhat semiproperness of Γ -orbits.

DEFINITION 2.9. ([5], Definition 3.2) Let $x_0 \in \mathbb{R}^q$. We say that the Γ -orbit $\Gamma(x_0)$ of x_0 is with bubbles if for each $x \in \Gamma(x_0)$, there exists a non-empty, bounded, convex open subset B_x (called a bubble at x) of \mathbb{R}^q satisfying the following three properties:

- (a) $x \in \partial B_x$, where ∂B_x denotes the boundary of B_x .
- (b) If $x_1, x_2 \in \Gamma(x_0)$ and $x_1 \neq x_2$, then $B_{x_1} \cap B_{x_2} = \emptyset$.
- (c) If $h \in \Gamma_0$ and $x \in D(h) \cap \Gamma(x_0)$ satisfying $h(x) \neq x$, then $\overline{h}(B_x) = B_{h(x)}$, where \overline{h} is the extension of h.

EXAMPLE. Let D^q be the unit disk in \mathbb{R}^q , $x_0 \in \partial D^q = S^{q-1}$ and D_1, \ldots, D_n mutually disjoint disks contained in D^q and $\partial D_1 \ni x_0$. Let h_i $(i = 1, \ldots, n)$ be a unique similarity transformation which maps the unit disk D^q to the disk D_i and after suitable restriction of the domain of h_i to a bounded, convex open neighborhood of D^q , the ranges of h_i are

mutually disjoint. (Clearly each h_i is a contraction.) And for special choice, $h_1(x_0) = x_0$. Now we obtain a pseudogroup $\Gamma = \langle \Gamma_0 \rangle \subset \Gamma_{q,+}^{\text{sim}}$, where $\Gamma_0 = \{h_1, \ldots, h_n, h_1^{-1}, \ldots, h_n^{-1}\}$. Then the Γ -orbit $\Gamma(x_0)$ is with bubbles and the closure $\overline{\Gamma(x_0)}$ is a Cantor set in \mathbb{R}^q . Furthermore h_1 is a contraction to $x_0 \in \Gamma(x_0)$. This construction is closely related to that of exceptional minimal sets of Markov type for q = 1 (see Cantwell-Conlon [2]).

Hereafter, we consider the following situation.

Let $\Gamma_0 \subset \Gamma_{q,+}^{\text{sim},*}$ be a finite, symmetric subset, $\Gamma = \langle \Gamma_0 \rangle$ and $\mathbf{z}_0 \in \mathbf{R}^q$ satisfying the following two properties:

- (S1) There exists a constant $\varepsilon > 0$ such that the distance $\operatorname{dist}(\Gamma(x_0), \bigcup_{h \in \Gamma_0} \partial D(h))$ is greater than ε .
- (S2) The Γ -orbit $\Gamma(x_0)$ of x_0 is nonproper and with bubbles $\{B_x\}_{x\in\Gamma(x_0)}$. Here, an orbit $\Gamma(x_0)$ is nonproper if for every $x\in\Gamma(x_0)$, the closure $\overline{\Gamma(x_0)\setminus\{x\}}$ of $\Gamma(x_0)\setminus\{x\}$ contains x.

Remark that if $x \in \Gamma(x_0) \cap D(h)$ for some $h \in \Gamma_0$, then by (S1), $U(x;\varepsilon) \subset D(h)$, where $U(x;\varepsilon)$ denotes the ε -neighborhood of x.

Then an analogy of Sacksteder's theorem is as following.

THEOREM 2.10. (Nishimori [5], Theorem 3.3) Let Γ be the pseudogroup generated by a finite, symmetric subset Γ_0 of $\Gamma_{q,+}^{\text{sim},*}$ and $z_0 \in \mathbb{R}^q$ satisfying the assumptions (S1) and (S2). Then there exist $g \in \Gamma$ and $z \in \overline{\Gamma(z_0)}$ such that $z \in D(g)$, g(z) = z and g is a contraction, that is, the similitude ratio of g is less than 1.

We prove, in the rest of this paper, the following result which is a weak version of an analogy of the theorem of Hector-Duminy.

THEOREM 2.11. Let Γ be the pseudogroup generated by a finite, symmetric subset Γ_0 of $\Gamma_{q,+}^{\sin,*}$ and $x_0 \in \mathbb{R}^q$ satisfying the assumptions (S1) and (S2). Then there exists $g \in \Gamma$ such that $x_0 \in D(g)$, $g(x_0) = x_0$ and g is not the identity of D(g).

REMARK. Therefore, such g is possibly a rotation at x_0 . We do not know whether there

exists an example that all elements of Γ which fixes x_0 are rotation at x_0 .

3. The proof of Theorem 2.11

Let Γ be the pseudogroup generated by a finite, symmetric subset Γ_0 of $\Gamma_{q,+}^{\text{sim},*}$ and $x_0 \in \mathbb{R}^q$ satisfying the assumptions (S1) and (S2). Let $\{B_x\}_{x \in \Gamma(x_0)}$ be bubbles of $\Gamma(x_0)$.

At first, we prepare some notions which play an important role in the proof of theorem 2.11.

DEFINITION 3.1. (1) For a word $w \in W(\Gamma_0)$, |w| denotes the word length of w, that is, |w| = 0 for the empty word w = () and |w| = m for $w = (h_m, \ldots, h_1)$.

(2) For $x, y \in \mathbb{R}^q$ with $y \in \Gamma(x)$, put

$$d_{\Gamma_0}(\boldsymbol{x},y) = \min\{ \ |w| \ | \ w \in W(\Gamma_0), \ \boldsymbol{x} \in D(g_w) \ ext{and} \ \ g_w(\boldsymbol{x}) = y \ \}.$$

Then d_{Γ_0} is a natural distance on the orbit $\Gamma(x)$.

DEFINITION 3.2. Let $x, y \in \mathbb{R}^q$. A word $w \in W(\Gamma_0)$ is called a short-cut at x to y if $x \in D(g_w), g_w(x) = y$ and $|w| = d_{\Gamma_0}(x, y)$.

Remark that if $w=(h_m,\ldots,h_1)\in W(\Gamma_0)$ is a short-cut at x to y, then the inverse word $w^{-1}=(h_1^{-1},\ldots,h_m^{-1})$ of w is a short-cut at y to x and for every $k=1,\ldots,m-1$, the word $w_k=(h_k,\ldots,h_1)$ is a short-cut at x to $g_{w_k}(x)=h_k\circ\cdots\circ h_1(x)$.

Following three lemmas are fundamental and for the proofs, see Nishimori [5].

LEMMA 3.3. ([5], Lemma 4.3) Let $x \in \Gamma(x_0)$ and $w = (h_m, \ldots, h_1) \in W(\Gamma_0)$ be a short-cut at x. Then $\overline{g}_w(B_x) = B_{g_w(x)}$, where $g_w = h_m \circ \cdots \circ h_1$ and \overline{g}_w is the extension of g_w (in the sense of section 2). Therefore the similitude ratio of g_w is the ratio of the diameters of bubbles, $\dim(B_{g_w(x)})/\dim(B_x)$. In particular, if $D(g_w) \supset U(x;r)$, then

$$g_w(U\left(oldsymbol{x};oldsymbol{r}
ight)) = U\left(g_w(oldsymbol{x});oldsymbol{r}\cdotrac{\mathrm{diam}(B_{g_w(oldsymbol{x})})}{\mathrm{diam}(B_{oldsymbol{x}})}
ight).$$

LEMMA 3.4. ([5], Lemma 4.4, 4.5) (1) The union $\bigcup_{x \in \Gamma(x_0)} B_x$ of bubbles is a bounded subset of \mathbb{R}^q .

(2) Total volume $\sum_{x \in \Gamma(x_0)} \operatorname{vol}(B_x)$ of bubbles is bounded. So $\sum_{x \in \Gamma(x_0)} (\operatorname{diam}(B_x))^q$ is also bounded.

LEMMA 3.5. (The short-cut theorem. [5], Lemma 4.7) Let $w \in W(\Gamma_0)$ be a short-cut at x_0 . Then

$$U\left(oldsymbol{x_0}; arepsilon \cdot rac{\mathrm{diam}(B_{oldsymbol{x_0}})}{\delta}
ight) \subset D(g_w),$$

where $\delta = \sup \{ \operatorname{diam}(B_y) \mid y \in \Gamma(x_0) \}.$

For the proof of our theorem, following argument is essentially due to Hector [4, Théorème CIII 1] in the case of q = 1.

Put $\Delta = \{ y \in \Gamma(x_0) \mid \operatorname{diam}(B_y) \geq \operatorname{diam}(B_{x_0}) \}$, then by lemma 3.4, it is a non-empty, finite subset of $\Gamma(x_0)$ which contains x_0 . Since the pseudogroup Γ is finitely generated and Δ is finite, so there exists a non-negative integer $N = \sup \{ d_{\Gamma_0}(x,y) \mid x,y \in \Delta \}$.

LEMMA 3.6. There exists $\varepsilon' > 0$ such that

- (1) $\varepsilon/3 \ge \varepsilon' > 0$,
- $(2) \quad d_{\Gamma_0}(x_0,z) > N \text{ for each } z \in U\left(x_0; \varepsilon' \cdot \operatorname{diam}(B_{x_0})/\delta\right) \text{ with } z \in \Gamma(x_0) \setminus \{x_0\} \ .$ Therefore $z \notin \Delta$.

PROOF. Since Γ is finitely generated, the set $\{y \in \Gamma(x_0) \mid d_{\Gamma_0}(x_0, y) \leq N \}$ is finite. By assumption, the orbit $\Gamma(x_0)$ is nonproper, so we can take $\varepsilon' > 0$ satisfying (1) and (2). \square

Hereafter we assume that

 $(\sharp) \qquad \text{for each } g \in \Gamma \text{ which fixes } x_0, \ g \text{ is the identity on } D(g)$

and deduce a contradiction.

LEMMA 3.7. Let $\varepsilon' > 0$ be a constant as in lemma 3.6 and $z \in U(x_0; \varepsilon' \cdot \operatorname{diam}(B_{x_0})/\delta)$ with $z \in \Gamma(x_0) \setminus \{x_0\}$. Let $w \in W(\Gamma_0)$ be a short-cut at x_0 to z. Then $x_0 \in D(g_w^{-1})$ and w^{-1} is a short-cut at x_0 to $g_w^{-1}(x_0)$.

PROOF. Note that the word length $|w|=d_{\Gamma_0}(z,x_0)>N$. By assumption, $w^{-1}\in W(\Gamma_0)$ is a short-cut at z to x_0 .

We write $w^{-1}=(h_m,\ldots,h_1)$ $(m\geq 1,\ h_i\in\Gamma_0)$, and put $w_k^{-1}=(h_k,\ldots,h_1)$ and $g_k=g_{w_k^{-1}}=g_{w_k}^{-1}=h_k\circ\cdots\circ h_1$ for $k=1,2,\ldots,m$. And, for convention, $w_0^{-1}=($) (the empty word) and $g_0=g_{w_0^{-1}}=\operatorname{id}_{\mathbf{R}^g}$. Then w_k^{-1} is a short-cut at z to $g_k(z)$ for $k=0,1,\ldots,m$.

We prove the following assertions by induction on k = 0, 1, ..., m:

$$(\mathbf{A})_{k} \; : \; U\left(oldsymbol{x_0}; arepsilon' \cdot rac{\mathrm{diam}(B_{oldsymbol{x_0}})}{\delta}
ight) \subset D(g_{k}).$$

$$(B)_k$$
: The word w_k^{-1} is a short-cut at x_0 to $g_k(x_0)$.

For k = 0, all assertions are trivial.

Assume that the assertions $(A)_k$ and $(B)_k$ hold true for $k \ge 0$. By the special choice of $z \in U(x_0; \varepsilon' \cdot \operatorname{diam}(B_{x_0})/\delta)$ and $(A)_k$,

$$egin{aligned} g_{\pmb{k}}(\pmb{z}) &\in g_{\pmb{k}} \left(U\left(\pmb{x}_0; \pmb{arepsilon'} \cdot rac{\operatorname{diam}(B_{\pmb{x}_0})}{\delta}
ight)
ight) \ &= U\left(g_{\pmb{k}}(\pmb{x}_0); \pmb{arepsilon'} \cdot \left(rac{\operatorname{diam}(B_{\pmb{x}_0})}{\delta}
ight) \cdot \left(rac{\operatorname{diam}(B_{g_{\pmb{k}}(\pmb{x}_0)})}{\operatorname{diam}(B_{\pmb{x}_0})}
ight)
ight) \ &= U\left(g_{\pmb{k}}(\pmb{x}_0); \pmb{arepsilon'} \cdot rac{\operatorname{diam}(B_{g_{\pmb{k}}(\pmb{x}_0)})}{\delta}
ight) \ &\subset U\left(g_{\pmb{k}}(\pmb{x}_0); \pmb{arepsilon'}
ight). \end{aligned}$$

Since $g_k(z) \in D(h_{k+1}) \cap \Gamma(x_0)$, $U(g_k(z); \varepsilon) \subset D(h_{k+1})$ by (S1). Therefore

$$egin{aligned} g_{\pmb{k}} \left(U\left(m{x_0}; m{arepsilon'} \cdot rac{\mathrm{diam}(B_{m{x_0}})}{\delta}
ight)
ight) \subset U\left(g_{\pmb{k}}(m{x_0}); m{arepsilon'}
ight) \ &\subset U\left(g_{\pmb{k}}(m{z}); m{arepsilon}
ight) \ &\subset D(h_{\pmb{k}+1}) \end{aligned}$$

Then $U(x_0; \varepsilon' \cdot \operatorname{diam}(B_{x_0})/\delta) \subset D(h_{k+1} \circ g_k) = D(g_{k+1})$. This establishes the assertion $(A)_{k+1}$.

For next, we take a short-cut $\xi \in W(\Gamma_0)$ at x_0 to $g_{k+1}(x_0)$. Then $g_{\xi}^{-1} \circ g_{k+1}(x_0) = x_0$, so $g_{\xi} = g_{k+1}$ on $D(g_{\xi}) \cap D(g_{k+1})$ by assumption (\sharp) .

Since w_{k+1}^{-1} is a short-cut at z, then $z \in D(g_{k+1})$ and by lemma 3.5 and the choice of ε' , $z \in U(x_0; \varepsilon' \cdot \operatorname{diam}(B_{x_0})/\delta) \subset D(g_{\ell})$. Therefore $z \in D(g_{\ell}) \cap D(g_{k+1})$.

By the definition of a short-cut,

$$|w_{k+1}^{-1}| = d_{\Gamma_0}(z, g_{k+1}(z)) \le |\xi| = d_{\Gamma_0}(x_0, g_{k+1}(x_0)) \le |w_{k+1}^{-1}|,$$

so $|w_{k+1}^{-1}| = d_{\Gamma_0}(x_0, g_{k+1}(x_0))$, that is, w_{k+1}^{-1} is a short-cut at x_0 to $g_{k+1}(x_0)$. This establishes the assertion $(B)_{k+1}$.

Now consider k = m, this completes the proof.

Remark that $g_w^{-1}(x_0)\notin \Delta$. This is because $d_{\Gamma_0}(x_0,g_w^{-1}(x_0))=|w^{-1}|=d_{\Gamma_0}(x_0,z)>N$.

By lemma 3.7, the word w^{-1} is a short-cut at $z \notin \Delta$ to $x_0 \in \Delta$, furthermore, that at $x_0 \in \Delta$ to $g_w^{-1}(x_0) \notin \Delta$. Then, by lemma 3.3, the similitude ratio of g_w^{-1} is

$$\frac{\operatorname{diam}(B_{x_0})}{\operatorname{diam}(B_z)} = \frac{\operatorname{diam}(B_{g_w^{-1}(x_0)})}{\operatorname{diam}(B_{x_0})}.$$

But the definition of the set Δ yields

$$1 < \frac{\operatorname{diam}(B_{\boldsymbol{x}_0})}{\operatorname{diam}(B_{\boldsymbol{z}})} = \frac{\operatorname{diam}(B_{\boldsymbol{g}_{\boldsymbol{w}}^{-1}(\boldsymbol{x}_0)})}{\operatorname{diam}(B_{\boldsymbol{x}_0})} < 1,$$

a contradiction. This completes the proof of theorem 2.11.

References

- [1]. N. CAMACHO AND A. LINS NETO, "Geometric theory of foliations," Birkhäuser Boston, Inc., Boston, Mass., 1985.
- [2]. J. CANTWELL AND L. CONLON, Foliations and subshifts, Tôhoku Math. J. (2) 40 (1988), 165-187.

- [3]. ______, Endsets of exceptional leaves: a theorem of G. Duminy, an account, informal notes (1989).
- [4]. G. HECTOR, Sur un théorème de structure des feuilletages de codimension un, thesis, Université Louis Pasteur, Strasbourg (1972).
- [5]. T. NISHIMORI, A qualitative theory of similarity pseudogroups and an analogy of Sack-steder's theorem, to appear.
- [6]. R. SACKSTEDER, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79-102.

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060
Japan