An analogy of the theorem of ,
- Hector and Duminy o

Kouichi Matsuda

Series {112. April 1991



i 84:
i 85:
i 86:
i 87:

i 88:

i 89:
f 90:
f 91:
f92:

f 93:

i 94:

f 95:
i 96:
f97:

i 98:

199:

§ 100:
§ 101:
§ 102:
f 103:

i 104:

f 105:
i 106:
f107:-
i 108:
§ 109:
§ 110:
f111:

HOKKAIDO UNIVERSITY
PREPRINT SERIES IN MATHEMATICS

T. Morimoto, Generalized Spencer cohomology groups and quasi-regular bases, 19 pages. 1990.

T. Morimoto, Théoréme de Cartan-Kahler dans une classe de fonctions formelles Gevrey, 6 pages. 1990.

A. Arai, Diffusive behavior of an electron interacting with a quantized radiation field, 57 pages. 1990.

A. Inoue, The Alder-Wainwright effect for stationary processes with reflection positivity (II), 30 pages.
1990. 7

Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving properties for
singular degenerate parabolic equations on unbounded domains, 32 pages. 1990.

A. Aral, Imprbper Bogoliubov transformations and instability of embedded eigenvalues, 47 pages. 1990.

K. Sugano, On bicommutators of modules over H-separable extension rings II, 9 pages. 1990.

T. Nakazi, Homogeneous polynomials and invariant subspaces in the polydiscs, 17 pages. 1990.

T. Nakazi, K. Takahashi, Homogoneous polynonﬂals and invariant subspaces in the polydiscs II, 10 pages.
1990. '

A. Araj, A theorem on essential self-adjointness with application to Hamiltonians in non-relativistic quan-
tum field theory, 23 pages. 1990. , A

Y. Okabe, A. Inoue, On the exponential decay of the correlation functions for KMO-Langevin equations,
13 pages. 1990. :

T. Sano, Y. Watatani, Angles between two subfacfors, 62 pages. 1990.

S. Ninomiya, The Fourier-Sato transformatioﬁ of pure sheaves, 22 pages. 1990.

Y. Okabe, A. Inoue, The theory of KM;O-Langevin equations and its applications to data analysis (I1):
Causal analysis (1), 51 pages. 1990. ’

J. Lawrynowicz, S. Koshi and O. Suzuki, Dualities generated by the generalised Hurwitz problem and
variation of the Yang-Mills field, 17 pages. 1991.

R. Agemi, K. Kubota and H. Takamura, On certain integral equations related to nonlinear wave equations,
52 pages. 1991.

3. Izumiya, Geometric singularities for Hamilton-Jacobi equation, 13 pages. 1991.

S. Izumiya, Legendrian singularities and first order differential equations, 16 pages. 1991,

A. Munemasa, Y. Watatani, Orthogonal pairs of *-subalgebras and association schemes, 11 pages. 1991.

A. Arai, O. Ogurisu, Meromorphic N = 2 Wess-Zumino supersymmetric quantum mechanics, 27 pages.
1991.

H. Takamura, Global existence of cléssical solutions to nonlinear wave equations with spherical symmetry
for small data with noncompact support in three space dimensions, 14 pages. 1991.

R. Agemi, Blow-up of solutions to nonlinear wave equations in two space dimensions, 11 pages. 1991,

T. Nakazi, Extremal problems in H?, 13 pages. 1991.

T. Nakazi, p-dilations and hypo-Dirichlet a.lgébras, 15 pages. 1991.

A. Arai, An abstract sum formula and its applications to special functions, 25 pages. 1991.

Y.-G. Chen, Y. Giga and S. Goto, Analysis toward snow crystal growth, 18 pages. 1991.

T. Hibi, M. Wakayama, A g-analogue of Capelli’s identity for GL{2), 7 pages. 1991.

T. Nishimori, A qualitative theory of similarity pseudogroups and an analogy of Sacksteder’s theorem, 13
pages. 1991.



words with T as alphabet, that is, W(T'o) = [[22 ((To)", where (['¢)" means n-direct
products of T'q and (T'¢)° the empty word ( ). This set W (L) is useful to treat the

pseudogroup (T'¢), because

ProrositioN 2.3. ([5], Proposition 2.6) Define the map & : W(Iy) — T' = (Ty) by
®(( )) = idrs for the empty word ( ) and ®(w) = hp o -+ ohy for a word w =
(Amy...,h1). Then this map ® is surjective.

For a word w = (hm, ..., k1) € W(T'o), we put g, = ®(w) = h,, 0 --- o hy. Note that

for the inverse word w™! = (h{%,... h;!) of w, g1 = gy-1 = $(w ) =h;lo --- ohL.

DEFINITION 2.4. Let 29 € R?. The T-orbit of zg is the set T'(2) = { g(z) |g €T, =z €

D(g) }.

For every zo € R?, the topological type of the I'-orbit I'(z) C RY is classified into
the following three types (for example see [1]):

(1) T(zo) is discrete; in this case I'(z) is called a proper orbit.

(2) The closure I'(zq) of I'(zo) in R? has non-empty interior; in this case I‘(a:o) is
called a locally dense orbit.

(8) Neither (1) nor (2), that is, the closure '(z) is a perfect set with empty interior;
in this case I'(zg) is called a ezceptional orbit. _

To investigate the structure of the closure of a I'-orbit is an important problem.

For ¢ = 1 (in our situation, I' is a pseudogroup of local affine transformations of R),
but more generally, for pseudogroups of local diffeomorphisms of class C* (» > 0) of R,

we can get following notion.

DEFINITION 2.5. The orbit I'(2z¢) of 2o € R is called semiproper if for every z € I‘(zo),
there exists an open interval J C R such that 2 is a boundary point of J and J ﬂI‘(aeo) =

Therefore a semiproper orbit is either proper type or exceptional type.

PROPOSITION 2.6. Suppose ¢ = 1. Then the orbit I'(zq) (2o € R) is exceptional type if
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and only if for some (and thus any) z € I'(2o), there exists a compact neighborhood I, of
@ in R such that I'(xq) N I, is a Cantor set. Furthermore, if I'(zo) is a semiproper orbit
of exceptional type, then for every z € I'(2g), @ is a semi-isolated point of a Cantor set

I‘(Zo) n Ia,.

For semiproper orbits, following theorems are important (compare with theorems in

introduction):

THEOREM 2.7.(Sacksteder [8]) Suppose that ¢ = 1 and I'(z,) is 2 nonproper semiproper
orbit. Then there exists ¢ € I'(zo) and g € T such that z € D(g), g(z) =z and gisa

contraction to #, that is, the derivative g'(z) at @ is less than 1.

THEOREM 2.8.(Hector [4], Duminy (unpublished, but see Cantwell-Conlon [3])) Suppose
that ¢ = 1 and I'(zo) is 2 nonproper semiproper orbit. Then there exists g € T’ such that

2o € D(g), g(z0) = 2o and g is a contraction to zo.

To consider analogies of these theorems for ¢ > 2, Nishimori introduced the following

notion as somewhat semiproperness of I'-orbits.

DEFINITION 2.9. ([5], Definition 3.2) Let zo € R4. We say that the T-orbit I'(20) of 29 is
with bubbles if for each z € T'(zo), there exists a non-empty, bounded, convex open subset
B, (called a bubble at ) of R satisfying the following three properties:

(a) z € 0B,, where 8 B, denotes the boundary of B,.

(b) Ifey,z,€ I‘(zo)_and 21 # @3, then B,l‘ NB,, =0.

(c) HheTjand 2 .E D(h) NI(zo) satisfying h(z) # #, then A(B,) = By (s), where

% is the extension of A.

ExaMPLE. Let D? be the unit disk in RY, 29 € D7 = S9! and Dy, ..., D, mutually
disjoint disks contained in DY and 8D; > zg. Let h; (i =1,...,n) be a unique similarity
transformation which maps the unit disk D? to the disk D; and after suitable restriction

- of the domain of h; to a bounded, convex open neighborhood of D4, the ranges of h; are
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mutually disjoint. (Clearly each h; is a contraction.) And for special choice, ‘hlr(zo) = z9.
Now we obtain a pseudogroup I' = (Ty) C I‘Zi,’_‘;, where Tg = {h1,...,hn, A%, ..., Bt}
Then the T-orbit I'(z) is with bubbles and the closure I'(zp) is a Cantor set in R? =
Furthermore h, is a contraction to 29 € I'(zg). This construction is closely‘related to that

of exceptional minimal sets of Markov type for g = 1 (see Cantwell-Conlon [2]).

Hereafter, we consider the following situation.

Let Ty C I‘:iﬂ’* be a finite, symfnetric subset, T' = (T'g) and zo € R satisfying the
following two properties:

(S1)  There exists a constant € > 0 such that the distance dist(T'(20), U ¢, 0D (R))
is greater than e. v o .

(S2)  The I'-orbit I'(2q) of #g is nonproper and with bubbles {B.},cr(a,)-
Here, an orbit I'(zg) is nonproper if for every = € I'(zq), the closure T(2o) \ {2} of T'(20) \
{z} contains 2. o

Remark that if z € I'(2¢) N D(h) for some h € Ty, then by (S1), U (=;¢) C D(h),
where U (2;¢) denotes the e-neighborhood of . |

Then an analogy of Sacksteder’s theorem is as following.

THEOREM 2.10. (Nishimori [5], Theorem 3.3) Let I' be the pseudogroup generated by
a finite, symmetric subset Ty of I‘:i,‘i'* and z9 € RY satisfying the assumptions (S1) and
(S2). Then there exist g € T' and z € T'(2o) such that z € D(g), g(z) = z and g is a

contraction, that is, the similitude ratio of g is less than 1.

We prove, in the rest of this papei, the following result which is a weak version of an

analogy of the theorem of Hector-Duminy.

TaEOREM 2.11. Let T be the pseudogroup generated by a finite, symmetric subset I'g of
I‘:iﬁ’* and 29 € R? satisfying the assumptions (S1) and (S2). Then there exists g € T such
that zg € D(g), g(®0) = 2o and g is not the identity of D(g).

REMARK. Therefore, such g is possibly a rotation at zo.' We do not know whether there
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exists an example that all elements of I' which fixes @¢ are rotation at zg.

'3. The proof of Theorem 2.11

Let T be the pseudogroup generated by a finite, symmetric subset T'y of I‘SIm ™ and
2o € R7 satisfying the assumptions (S1) and (S2). Let {Bs}ser(es) be bubbles of I'(zp).
At first, we prepare some notions which play an important role in the proof of theorem

2.11.

DEFINITION 3.1. (1) For a word w € W(T'¢), |w| denotes the word length of w, that is,
|w| = 0 for the empty word w = ( ) and |w| = m for w = (A, .. . hy).
(2) For z,y € R? with y € I'(z), put

dro(z,y) mln{ |w| | w e W(PO), z € D(gw) and gw(z) = y }

Then dr, is a natural distance on the orbit I'(z).

DEFINITION 3.2. Let 2,y € R%. A word w € W(Iy) is called a short-cut at = to y if
ze D(gw)a gw(z) =y and ,wl = dl"o(z)y)‘

Remark that if w = (hp,..., k1) € W(Ty) is a short-cut at  to y, then the inverse
word w™! = (h7%,..., k1) of w is a short-cut at y to = and for every k = 1,. ,m 1,
the word wj = (hg,...,h;) is a short-cut at « to Juwi(2) = hg o -+ ohy(2).

Following three lemmas are fundamental and for the proofs, see Nishimori [5].

LemMA 3.3. ([5], Lemma 4.3) Let 2 € T'(29) and w = (hu,...,h;) € W (o) be a
short-cut at 2. Then g,,(Ba) = By, (a), Where g,, = hyp 0 -+ o by and g, Is the extension
of g,, (in the sense of Section 2). Therefore the similitude ratio of gw Is the ratio of the
diameters of bubb]éé, diam(B,, (,))/diam(B,). In particular, if D(gw) D U (=;7), then

di&m(Bg,.(a)))

gu(U(z;7)) =T (gw(“’)" diam(B,)

6



LeMMa 3.4. ([5], Lemma 4.4, 4.5) (1) The union Uzcr(s,)B= of bubbles is a bounded
subset of RY. '

(2) Total volume Zael‘(mo') vol(B;) of bubbles is bounded. So 3, cr(,,)(diam(B,))? is - -
also bounded. '

LEMMA 3.5. (The short-cut theorem. [5], Lemma 4.7) Let w € W(T¢) be a short-cut at

zo. Then
U (zo;e . dJ._a'_m.S(‘..-BO_O)) C D(gw),

where § = sup{ diam(B,) | y € T'(=0) }.

For the proof of our theorem, following argument is essentially due to Hector [4,
Théoréme CIII 1] in the casé of g=1.

Put A = {y € I'(2¢) | diam(B,) 2 diam(B,,) }, then by lemma 3.4, it is a non-empty,
finite subset of I'(2¢) which contains 2¢. Since the pseudogroup T is finitely generated and

A is finite, so there exists a non-negative integer N = sup{ dr,(z,%) | 2,y € A }.

LeMMA 3.6. There exists €' > 0 such that

(1) e/3z2¢ >0,

(2) dry(z0,2) > N for each z € U (zo;¢' -diam(B,,) /6) with z € T'(zo) \ {20} .
Therefore z ¢ A.

PROOF. Since I' is finitely generated, the set { y € T'(2o) | dry(20,y) £ NV } is finite. By

assumption, the orbit I'(zo) is nonproper, so we can take ¢' > 0 satisfying (1) and (2).
. ,

Hereafter we assume that
1) for each g € ' which fixes z¢, g is the identity on D(g)

and deduce a contradiction.



LemMMA 3.7. Let €' > 0 be a constant as in lemma 3.6 and z € U (zo; €’ - diam(B,,) /6)
with z € T(29) \ {2¢}. Let w € W(Lo) be a short-cut at zg to z. Then zg € D(gz1) and

,w—l

is a short-cut at zg to g, '(zo).
PRroOOF. Note that the word length |w| = dr,(z,20) > N. By assumption, w~1! € W(T)
is a short-cut at z to zq.

We write w™! = (hp,..., k1) (m 2 1, h; € Ty), and put wyl = (ka,...,h;) and
gk = gy-1 = Jor =hgo <+ ohy fork=1,2,...,m. And, for convention, wy! = ( )
(the empty word) and go = Ju;t = idrs. Then w, ' is a short-cut at z to gr(z) for

k=0,1,... m.

We prove the following assertions by induction on k = 0, 1,...,m:
diam(B,

(A : v (zo;e' : ﬁ%——“)) C D(gx).

(B : The word w; ' is a short-cut at zg to gr(20)-

For k = 0, all assertions are trivial.
Assume that the assertions (A), and (B)j hold true for k > 0. By the special choice
of z € U (zo;¢' - diam(B,,) /6) and (A),

o) € (U (zo;e' . w—)))

0 (e ({2m(B)) . (domte))

di B
=U (gk(zo);e' , diam( 69k(=°o)))

C U (gw(=0);¢").

Since 91(2) € D(hi+1) NT(20), U (gu(2);€) C D(hay1) by (S1). Therefore

gk (U (zo;ﬁ' : %)) - U(gk(zo);€')
C U (gu(2);¢€)
C D(hx+1)




Then U (2o; ¢’ - diam(B,,) /8) C D(his1 0 gx) = D(gr+1). This establishes the assertion
(A)r+1 | |

For next, we take a short-cut £ € W(I'o) at 2 to gx+1(z0). Then ge"1 ogr+1(20) = 2o, - _’
50 g¢ = gr+1 on D(g¢) N D(gr+1) by assumption (§). ‘ ‘

Since '“’1:-41-1 is a short-cut at z, then z € D(gr41) and by lemma 3.5 and the choice of
e', z € U (wo; €' - diam(Ba,) /8) C D(ge). Therefore z € D(g¢) N D(gh+1)-

By the definition of a short-cut, ’ |

|w;j1| = dro(l,9k+1(z)) = |5l = dr.,(zo,gk+1(2o)) < [w,:_:l )

so Iw;_:1| = dr,(20,gr+1(%0)), that is, 'w;_:l is a short-cut at :pd to g;,+1(_zo). This
~ establishes the assertion (B)iy1.

Now consider k = m, this completes the proof. O

Remark that g;'(20) ¢ A. This is because dry(20,9;(20)) = |w™?| = dr,(20,2) >
N. '

By lemma 3.7, the word w™! is a short-cut at z ¢ A to 2o € A, furthermore, that at
29 € A to g;'(zo) ¢ A. Then, by lemma 3.3; the similitude ratio of g1 is

diam(B,,) _ diam(BgS’(ﬂo))
diam(B,) = diam(B,,)

But the definition of the set A yields

diam(B,,) _ diam(B, s ,,))

1< Fom(B,) = dam(B.)

a contradiction. This completes the proof of theorem 2.11.
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