The Fourier-Sato Transformation
of Pure Sheaves

Syoiti Ninomiya

Series §96. December 1990



HOKKAIDO UNIVERSITY
PREPRINT SERIES IN MATHEMATICS

f 67: D.Cerveau, T. Suwa, Determinacy of complex analytic foliation germs without integrating factors, 13 pages
1990.

f| 68: T. Nakazi, Szegd’s theorem on a bidisc, 21 pages. 1990.

§ 69: P. Aviles, Y. Giga, Variational integrals on mappings of bounded variation and their lower semicontinuity, 55
pages. 1990.

§ 70: Y. Giga, S. Goto, Motion of hypersurfaces and geometric equations, 10 pages. 1990.

§ 71: K. Kiyohara, Compact Liouville surfaces, 38 pages. 1990.

f 72: A. Arai, An asymptotic analysis and its application to the nonrelativistic limit of the Pauli-Fierz and a
spin-boson model, 37 pages. 1990.

{ 73: K. Sugano, On bicommutators of modules over H-separable extension rings, 6 pages. 1990.

§ 74: A. Kishimoto, A weak approximate innerness for abelian actions on C*-algebras, 14 pages. 1990.

f 75: A. Kishimoto, Actions of finite groups on certain inductive limit C*-algebras, 32 pages. 1990.

§ 76: A. Arai, I. Mitoma, De Rham-Hodge-Kodaira decomposition in co-dimensions, 35 pages. 1990.

§ 77: S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, 25 pages. 1990

§ 78: G. Ishikawa, Topologically extremal real algebraic surfaces in P? x P! and P! x P! x P!, 36 pages. 1990.

f 79: Q. Ishikawa, Maslov class of an isotropic map-germ arising from one dimensional symplectic reduction, 33
pages. 1990.

} 80: T. Miyake, Y. Maeda, On elliptic cyclopean forms, 18 pages. 1990.

i 81: A. Hayakawa, G. Ishikawa, S. Izumiya and K. Yamaguchi, Classification of generic integral diagrams and first
order ordinary differential equations, 78 pages. 1990.

I 82: T. Nakazi, Absolute values of Toeplitz operators and Hankel operators, 14 pages. 1990.

f 83: T. Nakazi, T. Yamamoto, Weighted norm inequalities and uniform algebras II, 18 pages. 1990.

§ 84: T. Morimoto, Generalized Spencer cohomology groups and quasi-regular bases, 19 pages. 1990.

{f 85: T. Morimoto, Théoréme de Cartan-Kahler dans une classe de fonctions formelles Gevrey, 6 pages. 1990,

§ 86: A. Arai, Diffusive behavior of an electron interacting with a quantized radiation field, 57 pages. 1990.

§ 87: A. Inoue, The Alder-Wainwright effect for stationary processes with reflection positivity (II), 30 pages. 1990

t 88: Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving properties for
singular degenerate parabolic equations on unbounded domains, 32 pages. 1990.

f 89: A. Arai, Improper Bogoliubov transformations and instability of embedded eigenvalues, 47 pages. 1990.

§ 90: K. Sugano, On bicommutators of modules over H-separable extension rings II, 9 pages. 1990.

§ 91: T. Nakazi, Homogeneous polynomials and invariant snbspaces in the polydiscs, 17 pages. 1990.

§ 92: T. Nakazi, K. Takahashi, Homogoneous polynomials and invariant subspaces in the polydiscs I, 10 pages
1990.

# 93: A. Arai, A theorem on essential self-adjointness with application to Hamiltonians in non-relativistic quantum
field theory, 23 pages. 1990.

§ 94: Y. Okabe, A. Inoue, On the exponential decay of the correlation functions for KMO-Langevin equations, 13
pages. 1990.

f 95: T. Sano, Y. Watatani, Angles between two subfactors, 62 pages. 1990.



The Fourier-Sato Transformation of Pure Sheaves

SyolTi NINOMIYA

Dept. of Math., Faculty of Science, University of Tokyo

80. INTRODUCTION.

Kashiwara-Schapira introduced the notion of pure sheaves in {K-S] in
order to calculate the shifts which appear when contact transformations
are applied to sheaves. The purity of a sheaf describes the obstruction for
the prolongment of its sections across critical points of Morse functions
and played an important role in studying R-constructible sheaves and, in
particular, their index theorems (see M. Kashiwara [K] and P. Schapira
and N. Tose [S-T]). Under the assumption of purity, the obstruction is
expressed as cohomology groups, which can be calculated with two mi-
crolocal data, the Lagrangian variety associated to the Morse function
and that of the micro-support of the sheaf. Then we use the inertia index
of three Lagrangian planes. Kashiwara-Schapira studied the functorial
properties of pure sheaves by several fundamental operators in [K-S].
The Fourier-Sato transformation is a geometric counterpart of Fourier
transformation, which is introduced by Sato et al. [S-K-K] when they
constructed the sheaf of microfunctions. The Fourier-Sato transforma-
tion of a conic sheaf on a real vector bundle E is a conic object on the
dual bundle E*. In the category of F,, this transformation is closely
related with the Gauss sum, etc.

In this paper, the author calculates the Fourier-Sato transformation
of pure sheaves. In §4 we have the result and the proof. In §5 as a
corollary of this result, we obtain another proof of the proposition by
Kashiwara-Schapira [K-S2] which asserts that the Fourier-Sato trans-
form of a perverse sheaf is also perverse. J. L. Brylinski proved analogous
propositions in the algebraic category [B, corollaire 7.23] and in the cate-
gory of F4 [B, corollaire 9.11]. The important point of the present paper
is that we use only techniques purely in the real domain. Thus the proof
is independent of the monodromy structure of perverse sheaves.

The author would like to express his sincere thanks to Prof. T. Oshima for his warm
guidance, to Prof. N. Tose for his advice on the direction of study and to Dr. N. Honda

for his advice and encouragement.



§1. NOTATION AND CONVENTIONS.
The following notation is taken from [K-S].

1.0. Throughout this paper, let A be a commutative unitary ring with
finite global dimension, Sh(X) the abelian category of sheaves of A-
modules on a topological space X, D(X) the derived category of Sh(X).
We denote by D*(X) the full subcategory of D(X) consisting of com-
plexes with cohomology bounded from below and by D% X) the full
subcategory of D(X) consisting of complexes with bounded cohomol-
ogy. For an object F of D(X), we denote by F[k] the object obtained
by k-shifts; that is to say H’(F[k]) = H/T*(F) and A%y = (—1)kdpt*.
Sheaves on X are identified with complexes of D(X) which are concen-
trated in degree 0. We use usual notation of derived categories and sheaf
cohomology. Refer to [K-S] for functors, Hom(,), - ®-, fu, £~ %, f1, f,
|z, - B, (-)z, Tz(-,-), T'z(), orientation sheaf or x, relative orientation
sheaf ory,x and constant sheaf M y.

1.1. TX, T*X, Ty X, To X, TX, T*X, Ty X, T4 X
For a C*-real manifold X, TX (resp. T*X) denotes the tangent
(resp. cotangent) bundle to X If Y is a submanifold of X, TyX (resp

TyX ) takes for the normal (resp. conormal) budle to Y. TX T*X
TyX and TYX are defined by

TX = TX\TxX, T*X =T'X\TLX

TyX = Ty X \TyY, TLX =TsX \TLY.
1.2. @y, py
For a C'*°-map between C'°-real manifolds f : Y — X, wy and py are
defined by
Y xT*X
X

Ps wy

4 N
T*Y T*X.
1.3. a

For a vector bundle E — Z, a is an antipodal map in E. If G is a
subset of E, G* is the image of G by this map.

1.4. Micro-support
We recall the definition of micro-support for sheaves.
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DEFINITION ([K-S]). Let X be a C*-real manifold and F an object
of D*(X). Then the micro-support of F, denoted SS(F), is a subset of
T*X defined as follows.

Let U be an open subset of T*X. Then

UNSS(F)=10

{ for any real C'*°-function ¢ on X,
(xl;d¢($1)) eU imp]ies (RF{¢(Z)2¢(“)}(.¢))$1 = 0.

1.5. DY(X;Q)

Consider the same situation as above. Let 2 be a subset of T*X.
Then S() is the set of arrows in Dt (X), given as follows. f: F — G
belongs to S(Q) if there exists a distinguished triangle

H
+1
/ AN
Fr L g
which satisfies
SS(H)NQ = 0.

The set S(Q) is a multiplicative system of D¥(X). Then D*(X;Q) is
defined as the localization of D*(X) with respect to S(£2).

§2. THE FOURIER-SATO TRANSFORMATION.

2.1. We recall the definition of the Fourier-Sato transformaion from [K-
S]. The notion of Fourier-Sato transformation is due to Sato-Kashiwara-
Kawai ([S-K-K]) although they defined it for sphere bundles. Let
E 5 Z be a real vector budle with finite fibre dimension over a lo-
cally compact topological space Z and DY . (E) be the full subcategory
of D% (E) consisting of complexes whose cohomology groups are locally
constant on any half-line of E. Let E* 5 Z be a dual vector bundle

of E. Set

DY ={(z,y) € Ex E*| <2,y >2 0},

D™ ={(z,y) € E X E*| < z,y >20}.

Consider the diagram



E* D* E.

For an object F of D} . (E), we define the Fourier-Sato transform F"
of F by

F» = Rp2, RTp+(pi ' F) = Rpay(p7 ' F)p-.

2.2. micro-support of F*

Let (2) be a coordinate system of Z, (z,z) that of E and (z,z; (,{) the
associated coordinate system of T*E. Let (z,y) be a coordinate system
of E* and (z,y; (,n) the associated coordinate system of T*E* for which
the canonical pairing between E and E* is given by

<z,y>= Emiyi

)

and for which the canonical 1-forms of T*E and T*E* are given respec-
tively by
wg =< (,dz >+ < €,dz >

and
wpr =< (,dz >+ <n,dy >.

Then the canonical isomorphism
®p:T*E = T*E*

is defined by
(z’w;Caé.) — (z’£;<7_$)'

Under the above situation, we have

THEOREM 2.2.1([K-S, THEOREM 5.1.4}).
SS(F™) = ®g(SS(F)).

2.3. Another proposition from [K-S].
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PROPOSITION 2.3.1. Let Y be a real C*°-manifold and E a real vector
space with finite dimension. Let G be a closed convex cone (not neces-
sarily proper) in E with0 € G. Set X =Y x FEand Xg =Y X Eg. Here
E¢ is the space E endowed with G-topology (see [K-S] for definition).
Let ¢ be the natural continuous map

¢: X — Xg.

Then following claims hold.

(a) For F € Ob(D1(X)), SS(F) is contained in T*Y x (E x G°%) if
and only if the morphism ¢ 'R ¢, F — F is an isomorphism.

(b) For F € Ob(D*(X)), we have

'R F=F in DHX;T*Y x (E x Int G°%)).

83. PURE SHEAVES.
We recall the definition of pure sheaves from [K-S].

3.1. Inertia index 7(A1, Az, A3)

Let (E, o) be a real symplectic finite dimensional vector space; i.e. 0 is
a non-degenerate skew symmetric bilinear form on the finite dimensional
R-vector space E. Let p be a linear subspace of E. Set

pt = {x € Elo(z,y)=0 for Vy € p}.
Then p is called Lagrangian if pL = p, involutive if p1 C p and isotropic
if pL D p.

DEFINITION 3.1.1([K-S]). Let Ay, A2, A3 be Lagrangian planes of E.
Here the quadratic form @ on Ay @ A2 @ A3 is defined by

Q($1)$27$3) = 0($1,$2) + U($2,$3) + 0'(.'1:3,-'131),

for (z1,%2,23) € A\1 ® A2 @ A3. Then the index Tg(A1, A2, A3) is defined
as the signature of @), that is the difference of the number of positive
eigenvalues and that of negative eigenvalues of Q.

3.2. Properties of the inertia index

In the following part of this paper, we write 7 for 7g if there is no fear
of confusion. Let p be an isotropic subspace of E and ) a subset of E.
Then A? is defined by

A = ((ANp™) +p)/p.
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PROPOSITION 3.2.1([K-S, PROPOSITION 7.1.2]). Let A; be Lagrangian
planes of E. Then we have following statements.

(i) For all s € Gg,
T(/\la )‘27 /\3) - Sgn(s)T()‘s(l), /\8(2), /\3(3))
holds.
(ii) If p is a subspace and satisfies
p C (/\1 N /\2) + (Az n /\3) + (/\3 N /\1),
then we have
(A1, A2, As) = 7B (A], AS, X9).
In particular if
AN (A2 4+ A2) C (A1 NA2) + (A1 N Az)
holds, we have
7'()\1, >\2, )\3) =0.

3.3. Definition of pure sheaves

Let X be a C°-real manifold, = the projection T*X — X, A a
Lagrangian submanifold of T*X, ¢ a real function on X and Yy =
{(z,dé(z));z € X}. For any point p in T*X, T,T*X has a canonical
structure of symplectic vector space. Then three Lagrangian planes in
T,T*X are defined by

X (p) = Tp(r ™ n(p)),
A(p) = TpA

and

Ap(p) = TpYs.
DEFINITION 3.3.1. Under the above situation, we say that ¢ is transver-
sal to A at p if ¢(w(p)) = 0 and if Yy and A intersect transversally at p.

LEMMA 3.3.2. Let A be a Lagrangian submanifold of T*X, p a point
of A and F an object of D¥(X). Assume that in a neighborhood of p,

SS(F) C A holds. Let ¢ be a real function on X and transversal to A
at p. Let j be a number which satisfies

1. .
J= §(d1mX + dim( Ao (p) N Ax(p))) mod Z.
Then the cohomology group
JtiTe(p) :
Hy 520y (Fx)
does not depend on ¢ where

76(p) = T(Xo(P): A (P), A4(P))-
After these preparations, we can define pure sheaves.
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DEFINITION 3.3.3([K-S]). Let A be a Lagrangian submanifold of T*X,
p € A, and F € Ob(D+(X)). We assume SS(F) C A in a neighborhood

of p. If we have, for a real function ¢ transversal to A at p and A-
module M,

M, forj=—d+ }dimX + 374(p);

J _
H{$I¢(z)§0}(f)"(”) - { 0, otherwise

with 74(p) = T(Xo(p), Aa(p), A¢(p)), then we say that F is pure of
type M with shift d along A at p.

3.4. Properties of pure sheaves
We recall properties of pure sheaves from [K-S].

PROPOSITION 3.4.1 ([K-S, PROPOSITION 7.2.8, 7.2.9]).

(i) Let A be a Lagrangian submanifold of T*X, p a point of A and F
an object of D®(X). Assume that F is pure of type M with shift d
along A at p and that Ext’(M,A) =0 (j #0). Then RHom(F,Ay) is
pure of type Hom(M, A) with shift —d along A* at p®.

(ii) Let A; be a Lagrangian submanifold of T*X;, p; a point of A;
and F; an object of D*(X;). Assume that F; is pure of type M; with
shift d; along Aj at p; (j = 1,2). Let q; be the j-th projection on
X1 X Xz.

(a) If Tor;(My,M,;) = 0 for V5 # 0, then a t A éq;lfz is pure of
type My ® M, with shift d; + dy along Ay X A at (p1,p2).

(b) If Ext!(My, M) = 0 for Vj # 0, then RHom(q; ' F1,¢; ' Fa) is
pure of type Hom(M;, M>) with shift do — dy along A X Ay at (p},p2).

Let f:Y — X be a C°®-map between C°°-manifolds.

THEOREM 3.4.2 ([K-S, THEOREM 7.3.1]). Let A be a Lagrangian sub-
manifold of T*Y, p a point of Y X T*X and G an object of D*(Y).

Assume:

(i) f is proper over supp(G),

(ii) ps is transversal to A at p and wfp;l(A) is isomorphic to a sub-
maanifold Ay of T*X,

(iii) p7*(SS(9)) Nw} 'ws(p) C {p},

(iv) G is pure of type M with shift d along A at ps(p).

Then Ay is a Lagrangian submanifold and R f.(G) is pure of type M
with shift d' along Ay at w¢(p) where

d—d= }z-(dimX ~dim Y)—%T(Ao(m(p)), (o)), prw st (Mo f(p))))-
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THEOREM 3.4.3 ([K-S, THEOREM 7.3.3]). f, X, Y are the same as
those of Theorem 3.4.2. Let A be a Lagrangian submanifold of T*X, p
a point of Y X A and F an object of DY(X). Assume:

(i) f is non-characteristic for F,

(ii) wy is transversal to A at p and pfw;I(A) is isomorphic to a
submanifold Ay of T*Y,

(iii) w7 (SS(F)) N p3 p5(p) C {p},

(iv) F is pure of type M with shift d along A at w s(p).

Then Ao is a Lagrangian submanifold and f~!(F) is pure of type M
with shift d along Ag at ps(p).

THEOREM 3.4.4 ([K-S, COROLLARY 7.3.4]). Let X andY be C'*°-real
manifolds, q, and ¢, the projections from X xY to X andY respectively
and p; and p, the projections from T*(X xY) =T*X xT*Y toT*X
and T*Y respectively. Set p} = pjoa (j =1,2). Let A be a Lagrangian
submanifold of T*(X x Y'), Ay a Lagrangian submanifold of T*Y and
p a point of A. Set py = p2(p) and px = p{(p). Let K be an object of
DY X x Y) and F an object of D¥(Y'). Assume:

(i) p2|a is transversal to Ay at p and p; '(Ay) N A is isomorphic to a
submanifold Ax of T*X by p{,

(ii) K is pure of type M with shift d along A at p,

(iii) F is pure of type N with shift d’ along Ay at py,

(iv) q1 is proper over supp(K) N g5 ' (supp(F)),

(v) (1)~ (p=) N SS(K) C {p},

(vi) (SS(K) T2<Y SS(FH)N(TxX x T*Y) C TxX x IyY holds in a

neighborhood of nx(px).

(vii) Ext!(M, N) = 0 for Vj # 0.

Then R ¢;, RHom(K, ¢;* F) is pure of type Hom(M, N) with shift d"
along Ax at px where

d"=d’—d——%dimY+%T

and

7 = 7(Ao(p), Ar(P); Ao(P%) X Ay (PY))
= T(/\o(py), PZ(/\A(p) n (ptll)_l(AO(pX)))’ )‘AY (pY))

This proposition describes the contact transformation of pure sheaves.
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3.5. Microlocal uniqueness of pure sheaves.

The following fact is important.([K-S]) Let F and G be objects of
D*(X). Assume F is pure of type M with shift d along A at p. Then
G is pure of type M with shift d along A at p if and only if

F=G in D¥X;{p})
holds.
§4. THE FOURIER-SATO TRANSFORMATION OF PURE SHEAVES.

4.1. The Main Theorem.

THEOREM 4.1.1. Let E — Z be an R-vector bundle with finite fibre di-
mension n over a locally compact topological space Z and A a Lagrangian
submanifold of T*E. Let F € Ob(D} . (E)) and p € A. Assume F

conic

is pure of type M with shift d along A at p. Then the Fourier-Sato
transform F” of F is pure of type M with shift d' along A* at p* where

p* = @E(P),
A* = @E(A)7

and

d=d-21 -;-T(/\O(P), 35 (Mo(p*)), A (P)).

PROOF: Identify Z with the zero sections of E and E*. Set

E=E\Z, E*=E*\2Z,
S = E/R*, §*=E*/RY,
Dg = {(z,y) € E X E*| < z,y >=0},

D, ={(z,y) € E X E*| <,y >2 0},

Ds = {(z,y) € § x §*| < =,y >2 0},

D .=Dg x (E*xE),
EFE E*xFE A
Z

D . =Ds x (S*xE).
SE SxS* zZ
z

First we give three lemmas.



LEMMA 4.1.2. Consider the diagram

E*xXE « % D,
Z E
P12 Pi1
v N
E* 81 E 83
ATt
P21
° i
*x E D .
roo Sy E e Dy
P22
g y
S* 82 S s4
AN /
P32 P31
S*x S « % Ds.
Z

Then for an arbitrary object F of DY, (1077), we have

conic

Fre = (R AF)Y).

Here for F € Ob(DZ, . (E)) and G € Ob(D*(S)), F° and g5 are
defined by

F"* =Rp12,RTp,pui ' F
E
G"® = Rps2. RTpspa1'G.
PROOF OF LEMMA 4.1.2: Since RTp,(-) = Riz,i5(-) , we have

(4.1.2.1)
f;l((Rfl*}—)As) = f2_1 R'p32* f{'rD,sp;]1 R’fl*j:
= f; ' Rpsz, Riz,i3p51 R f1.F.

From the fact that s, is a topological submersion of codimension 1, we
get, by Poincaré-Verdier duality theorem,

(41.2.2) pi'RfI,FQor

. 1] = Rso, sipat R .
(S*xE)/(S'xS)[] 52451031 R f1.F
zZ zZ
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Now we remark that the following part of the diagram in Lemma 4.1.2
is a Cartesian diagram.

SE
132 184

5*>Z<S+—’i— Dg

S*>Z<E(———z—i——Do

From (4.1.2.1),(4.1.2.2) and this fact, we deduce

(4.1.2.3) FHRf{LFM) @or [1]

(S* X E)/(S* X S)
Z Z

=f3 ' Rpsz, Ris,iy Rsz.s5p3; R f1,F
=fy ' Rpsa, Riz. Rsa,ipshps; R f1,F
=fs ' Rpsa, Rsgy Rigginshpai R fi F
=f5" Rpaz, Rinuiyshps' R f1,.F.

Since p3; is a topological submersion of codimension (n — 1),

(4.1.2.4) 3t R f1.F ® or(sexsy/sin — 11 = pa; R f1,.F .
A

Remarking that s; is a topological submersion and that the diagram

P21 °
N )

82 Jrfl

S P31 S

e

S*

N X

<__

S*

N X

is a Cartesian diagram, we have, by (4.1.2.3) and (4.1.2.4),

(4.1.2.5)

FHRAF)) @ or [n]

(S*xE)/S
A
=f3 ' Rpaz, Riz,iyshphy R f1,F
=f5 ' Rpaa, Rizaipsy Rsgupyn F
=f; ' Rpag, Rigipph F @ or

] .

(S* X E)/(S* X S)
V4 Z

11



Now s; is a topological submersion of codimension 1 and the diagram

Exo* (—'il_" .Do
zZ
u] =]
S*XE 4——12_"D °
4 SE

is Cartesian. Thus we have from (4.1.2.5),

FHRAF) ) @or [n]

E*xE)/S

=f; ' Rpaz, Rigyiy Rs1,8ipy F
=f; ' Rpa2, Ria, Rsaiysipn F
=f2—1 Rp22, Rsi. Ril*izlsllp!ﬂ}-
=f3 'R fo, Rp12, Riy,iysippn F
=R pi2, Ri1,i1p11 F = (*).

Since py; is a topological submersion of codimension n, we have, more-
over,

(*) =R pi2, Rzl*hpn F®or (E~><E)/E[n]
_Rplz*RFD pllf@ (E*XE)/E[n]
=FN° ® o [n] .

(E‘XE)/E

Then we have

f{l((Rfl*f)AS) — .7:'/\0'

12



LEMMA 4.1.3. Consider the diagram

E* >Z< E — ]13 Do
P12 Pit
N N
E* i E is
? / p!h
P21
g2 E* x .E‘? «— Jb DE&
A
P22 ' L
I 7
E* g E i
AN /"
P32 P31
B*xE 5 D

Then for an arbitrary object F of D} . (E),

conic
(g7 F)"e
+1

N N
9597 ' Rq1,RTzF — 95 - (F")

is a distinguished triangle where q; is the natural projection E 2,z
and go the natural projection E* =, Z.

PROOF OF LEMMA 4.1.3: Remark that if ; is an open inclusion, 3’
coincides with :~!. Now g1, g2, %1, %2, 73 and 74 are open inclusions.

Taking into account of the fact that diagrams

E*XE(—‘JI—‘ Do
A
11JV ial
° J2
E*xXE «————— D .
Z EFE



and

are Cartesian diagrams, we have by Poincaré-Verdier duality theorem

(4.1.3.1)
(97 F)"° = Rpia, RPDEPﬁlgfl}—
= Rpi2, Rjr.ipii 91 ' F
= Rpi2, Rij1.j111 'Poi g1 ' F
= Rpi2, Rj1.1575p21 97 ' F
= Rp12*i!1 Rjz*j!zpi-llgl_lf
= g3 Rpoa, Rjouionsy' 97 F
= 93 Rpoay Rinudaty ‘o5 F
= g3 Rpa2, Rja,isihpsl F
= g3 Rpaz, Rijz.iyizpsy F
= g7 " Rpaa,iy Rjs,jsps1 F
= g5 ' Rpa2uiz RTpgpsy F
= g5 Rps2, Rizuty RLpypy F
=97  Rps,RT o RTpypy F.

z
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Apply the functor g; ' Rpse, RTp,, to the distinguished triangle

—1
R PE‘ x5P31 F
VA
+1
/ N
RT g+ x{0}Ps1 F — Pl F.
Z

Then combinig this with (4.1.3.1), we get the distinguished triangle

(g7t F)Ne
+1
v AN
9595 ' Rq1,RTzF — 95 (FM.

LEMMA 4.1.4. Let (z) be a coordinate system of Z, (z) that of S and
(y) that of S*. Define two inclusions i1 : S* X S — S* xS and

12 : Dg — S§* X S as they embed Z into the diagonal set of Z x Z; i.e.

§* x 53 (z2,9) =5 ((22),(9)) € 5™ x S
Ds > (z;z,y) R ((z;2),(z;y)) € S* x S.

Consider the diagram

S*x§ &£ — O Dg
Z
P2 ,l iz P1
i1
* D2 * 1
S* — xS ——s

Then for an arbitrary object F of D% (S) , we have

~ ~ —1 .
R‘p2*R’FD5p1 f@ﬂ(s;xs)/(stxs)[—dlmZ]
z
=Rp2, RTpspy' F
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(ie. FS @ or(ge sy (5o x|~ dim Z] = Rpa, RTpypy ' F).
z

PROOF OF LEMMA 4.1.4: Remark that p; is a topological submersion of
codimension (n—1) and that p; a topological submersion of codimension
(n — 1+ dim Z). Then by Poincaré-Verdier duality theorem, we get
~ ~ _1
Rp2, RIpsp1 F ®or(sexsysin —1]
z

=Rz, Rlp;p1 F
=R p2, Rig,i3iipy F
=R p2, Ris,i5iipy ' F ® or(sex5)/5[n — 1+ dim Z].

From this, we deduce

~ ~ =1 .
Rp2*RFDsp1 f®o—r(S‘XS)/(S*XS)[_d1mZ]
z

=R 2, Ris,isiipr ' F
=Rp;, Riy, Risg,ipp ' F
=Rps, Riz.igp; ' F
=R ps, RFDspl_lf.

|

Now we enter into the Proof of Tléeogem 4.1.1.

1. Proof in the case that pe ANT*E.
Since p* ¢ SS(¢; ' Rq1, RT'2zF) in this case, we have an isomorphism

(4.1.1.1) G 2 g7 (F) in DHE; {p))

by Lemma 4.1.3.
Define

bs=wf, p.-f-_ll(p)
As =y p; (M),

using the notation in Lemma 4.1.2. It is known by [K-S, Proposition
5.1.1], that an object F of DF(E) belongs to Ob(DY, . (E)) if and only
if SS(F) is contained in Sg where Sg is the characteristic variety of
the Euler vector field on E; i.e. Sg = {(2,2;(,£) € T*E| < z,£ >= 0}
where (z, ) is a coordinate system of E with the fibre coordinate system
(z) and its dual coordinate system((,¢). Then we may regard A as a

Lagrangian submanifold of T*S, and this coincides with Ag. Since p is

in T*E, F coincides with ¢! F in a neighborhood of m(p). Consequently
g7 ! F is pure with shift d along A at p.

16



CrLaM 1. R fi,9] ' F is pure of type M with shift d along As at pg.

PROOF OF CLAIM 1: Let G € Ob(D*(S)), and assume f;'G is pure
with shift d along A at p. We have an isomorphism

GG F im DY(E; {p)).
Then by Proposition 2.3.1 we have an isomorphism
G=Rfigr F in D¥(S;{ps})
Remark that pure sheaves are micro-locally unique (see 3.5). Therefore it

is enough to show that if G € Ob(D*(S)) is pure with shift d along As

at ps, fi'G is pure with shift d along A at p. Since E L, 5isa
projection, fi is non-characteristic for . Now since wy, is smooth, wy,
is transversal to p;ll (A) at the point py = p}'ll (p). Remark that py, is
an injection and @y, (po) = ps. Now we have

prwrt(As) = A
and

@7 1(S8(G)) N p7lps (o) C {Po}-

Then it follows from Theorem 3.4.3 (the theorem of inverse image of
pure sheaves) that f7'G is pure with shift d along A at p. I

CramM 2. If G € Ob(D*(S)) is pure of type M with shift d along Ag
at ps, then GM° is pure of type M with shift d' along A% at p% where

ps = ®s(ps)
5= ®s(As)

and

d=d-D+ gr(xo(m, 851 (Ao (r)), A (p))-

This claim is essential. The proof depends on the fact that considered
on S, Fourier-Sato transformation is a contact transformation. This
claim is proved by use of Proposition 3.4.4 (the proposition of contact
transformation of pure sheaves).

Proor ofF CLAIM 2: Consider the following diagram and that of
Lemma 4.1.4.

17



T*(S* x S)
7 1 N
T*s* Ax =T, (8" x §) TS

Here Dgs is embedded into S* x S in the same way as Lemma 4.1.4; i.e.
the base space Z of Dg is embedded into the diagonal of Z X Z in S* x S.
Set

Ds = {(z,y) € §* x S| < 2,y >=0}.

Here () is the fibre coordinate system of S and (y) its dual coordinate
system. Remark that

I (S* x §) =T% (S* x S)
Dgs

and

Rp2, RTpspy'G = Rpz, RHom(4, ,p1'd).
S

In the following part, we show that the conditions in Proposition 3.4.4
are satisfied. Let (z) be a coordinate system of Z, (z,() its associated
coordinate system of T*Z, (z,z) a homogeneous coordinate system of S,
(z,2; ¢, €) its associated homogeneous coordinate system of TS5, (z,y)

the dual of (z,z) and (z,y;(,n) the dual of (z,z;(, ). We have
(z,:¢,m) €T™S* <= |y|=1,In| #0,<y,n>=0

and
(21,22,$,y;C1,C2,§,77)€T*5 (S* XS):AK
S
{21:z2,|$|=|y|=1,Cl+@=07
deR\{0} st. ¢=ty,n=tz.

Since Claim 2 is a local statement, we may take a neighborhood g

of pg in T*S and may restrict Ag to Qg, A% to ®5(Qs) and Ax to
$5(Ns)* X s. From now on, we work in the situation under this re-
striction. Thus we have the equivalence

(21,Z2»$,y§ C13C2)£777) € AI{
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{2’1 =Zg,|.’1,‘| =|y| :1741 +62:0,
Jte Rt st. (=ty, n=tz.

Then
r1lag : Ak — Qs

is a diffeomorphism. In fact
1 IAK ((27 Z2,Z,Y; Ca _C, tya t.’l))) = (Z, Z; C,ty)

and

(TIIAK)hl((Za ] C’ 6)) = (27 Z,Z, I%I: C’ _C3 67 lflx)

The map
TolAx t Ak — B5(Qs)

is also diffeomorphic. Let pss = (r1|a, ) " (ps). Then ri|s, is transver-
sal to A at pgs since ri|y, and r§|,, are diffeomorphic. Moreover we
have

rlax((r1la) 7 (As)) = @s(As)

and _AQD is pure with shift %codimgtxg Dg along Ag. It is clear
s
that ro is proper on supp(AIo) ) O riY(supp(G)). Thus we can apply
S
Proposition 3.4.4 to this situation. Then RPQ*RHOIH(A_B ,PT1G) is
S

pure with shift d" along A% at p% where
g g al pg

1 . ° 1 .. 1
d'=d- §cod1m5*sts - -2—d1m5+ 57

:d——%n—dimZ—i——;—'r
and

T =1(Ao(ps), @5 (Mo (P%)), Aas (Ps))-

By Proposition 3.2.1 (ii), we have

T = T(/\O(p), (1);71(/\0(])*)), /\A(p))
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Now, from Lemma 4.1.4, we deduce
GMNS|—dim Z) =Rp,, RTp,p; '@
=Rps, RHom(_A_B ,p71G).
S

Finally we have Claim 2. §
From Claim 1 and Claim 2 we get the following claim.

(R f1,97  F)NS  is pure of type M with shift
n 1 _ N
d=d- ) + '2“7'()\0(17)> (I’EI(AO(P )); Aa(p))

along A% at pg.

From Lemma 4.1.2 we have

(gl—-lf)/\o — f;l(R’fl*gl_lf)AS-

Since f; is a projection, we can apply Theorem 3.4.3. Then we find out
(g7 ' F)N° is pure of type M with shift d' along A* at p*. Considering the
last statement, (4.1.1.1) and the microlocal uniqueness of pure sheaves
(see 3.5), we find g, '(F*) is pure of type M with shift d’ along A* at p*.
Now F” coincides with g, '(F”) in a neighborhood of 7(p*) because
p* € T*E*. Therefore F” is pure of type M with shift d’' along A* at p*.
Thus the proof of the theorem is finished in the case of p € T*E.

2. Proof in the case that p € T*E \ T*E.
Define F' € Ob(D*(E X R?)) as follows.

Remark

SS(F') = SS(F) x T{;R x TrR.
Then, from Proposition 3.4.1 (ii), it follows that F' is pure of type M
with shift d +  along A x T{, R x TgR at (p,(0;1),(1;0)). Now we can
apply the above result. Then we have F' N is pure with shift

1 n+2 1 - *
d'"=d+ 2”2 T §TE§R2(AO(pI)> & (Mo(27)), A (p))
zZ

along A* x TgR x T,

{0} at (p*,(1;0),(0;1)) where

pl = (p’ (0; 1)7 (17 0))7
A= A x T{)R x TgR,

and
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p" = @pxre(p).
z
By Proposition 3.2.1 (ii), we have
TE'xRZ(/\O(p’)7 Ql—«jiRz(’\O(pl*)L ’\A'(pl))
z z

=r5(ho(®), T3 (Ao(p")), M (p)).
Then

Lm0 85 Ca ) M)

Since F'" = F* B Zg B Z 4y[~1], it follows from Proposition 3.4.1 (ii)
that F” is pure with shift

d',=d+

d— g + %T(Ao(p), &' (Mo(p*)), Aa(p))

along A* at p*. Thus the proof of Theorem 4.1.1 is completed. }

§5. APPLICATION.

As a corollary of Theorem 4.1.1, we prove that the Fourier-Sato trans-
formation of perverse sheaves with n-shifts are also perverse.

5.1 Perverse Sheaves.

We do not recall here the definition of stratification, constructible
sheaves and perverse sheaves. Refer to [K-S] and [G-M] for these def-
initions. We denote by D&_ (X)) the subcategory of D*(X) consisting
of C-constructible complexes. For a complex manifold X, we denote by
X®R_ the real underlying manifold of X.

5.2 Perverse Sheaves and Pure Sheaves.
First we have the following theorem from [K-S] which describes the
relation between perverse sheaves and pure sheaves.

THEOREM 5.2.1 ([K-S, THEOREM 9.5.2]). Let X be a complex man-
ifold, F be an object of D%._ (X) and A = SS(F). Then the following
conditions are equivalent.

(a) F is a perverse sheaf.

(b) At any point of the non-singular locus Arey of A, F is pure with
shift 0.

5.3 Fourier-Sato transformation of perverse sheaves.
Let X be a complex vector budle with finite fibre dimension n. When
we apply the Fourier-Sato transformation to objects of D7 (X), we re-

gard X as X® and the objects as those of D¥(XR).
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THEOREM 5.3.1. For an arbitrary object F of D& _ (X), F is perverse
if and only if F*[n] is perverse.

This proposition was proved by Kashiwara-Schapira [K-S2] and anal-
ogous propositions in the algebraic category and in the category of F,
were proved by J. L. Brylinsky in [B, corollaire 7.23 and corollaire 9.11}.
We give a different proof by use of Theorem 4.1.1.

PROOF: Assume F is perverse. Set A = SS(F). Let p be a point of
Arey. By Theorem 5.2.1, F is pure with shift 0 along A at p. Since F is
perverse, we can regard A as Ty X where Y is a smooth submanifold of
X ([K-S]). Thus we deduce from Theorem 4.1.1 that F”" is pure with
shift d along A* = ®x= (T3 X) at p* = ®x=(p) where

d= —2?” + %T(Ao(p), ®3e (Xo(p*)), A1z x(p))-

By Proposition 3.2.1 (ii), we have

7(Xo(p), q)}}' (Ao(p™)), A1y x(p)) = 0.
From Theorem 5.2.1 again, it follows that F*[n] is perverse. vice versa. B
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