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ON INTERIOR REGULARITY CRITERIA FOR WEAK SOLUTIONS
OF THE NAVIER-STOKES EQUATIONS

Suust TAKAHASHI

Department of Mathematics
Hokkaido University
Sapporo 060 Japan

Abstract. We are concerned with the behavior of weak solutions of the Navier-
Stokes equations near possible singularities. We shall show that if a weak solu-
tion is in some Lebesgue space or small in some Lorentz space locally, it does
not blowup there. Our basic idea is to estimate integral formulas for vorticity

which satisfies parabolic equations.

1. Introduction
This paper studies local interior regularity criteria for weak solutions of the Navier-

Stokes equations:

(1.1) uy—Au+(u-V)u+Ve=0 inQ
(1.2) Vou=0 inQ
(1.3) ulog = 0, u(z,0) = u,,

where Q@ = 2 x (0,7T), Q is a domain in R*(n > 3) with smooth boundary, 0 < T < oo;u =
(u')2, and ¢ denote, respectively, unknown velocity and pressure, while ug = (uf,)?:l is
a given initial velocity. Here external force is assumed to be zero for simplicity. For every
ug € L%(Q) satisfying compatibility conditions, a global weak solution was constructed by

Leray [9] (when Q = R®) and Hopf [6]. Their solutions are known to satisfy

(1.4) u € L2*(Q) and Vu € L**(Q)



where

I79(Q) = L%(0, T; L* ().

However, the regularity of their weak solutions is not known unless n = 2 although some
partial regularity is proved for n = 3 (see [2] and references therein).

Serrin [14] gave a nice local interior regularity criterion (cf. [12]). Let us recall
his result. He proved among other results, that a weak solution u satisfying (1.4) is in

L>®*°(Qgr/2) and regular in space variables provided that u satisfies » € L?*?(Qg) with
(1.5) n/p+2/g<1, n<p< oo
Here Qr = Qr(zo,t0) is a parabolic ball centered at (zo,%0) € Q:

Qr(zo,t0) = {(2,t) € R® x R; 2 € Br(zo),—R? <t —tp < 0}

such that Qr C Q where Bg(zo) = {z € R*; |2 — 20| < R}.

Recently Struwe [16] refined Serrin’s result allowing the case
(16) nfp+2/g=1,n<p< oo

The global version is known by Sohr [15] or Giga [4] when p < co. Indeed, if u € L?9(Q)
solves the initial-boundary problem of the Navier-Stokes equations (1.1)-(1.3) with (1.5)
or (1.6), u is regular in space-time up to boundary.

Our goal is to give a new interior regularity criterion for (1.1)-(1.2). We prove among
other results, that there is € > 0 such that
(1.7) sup |u(z,t)| < e(to—t)"Y? for — R +tp <t <t

2€BR(20)

implies v € L**(Qpg/;). Here ¢ is independent of », R and (zo,t0). In other words
(z0,%0) can not be a blowup point if (1.7) holds. Similar result is known for a semilinear
heat equation

w — Au—|uff"lu=0 for p>1

by Giga-Kohn [5]. Our basic idea is estimating integral formulas for vorticity w = curl «.

This idea goes back to Serrin [14]. Struwe’s proof is based on an energy method. However,



the uniqueness of the limit of approximate solutions is not clearly explained in Struwe [16].
We verify the uniqueness. Our approximation argument avoids to use traces of functions
and is simpler than that of Struwe [16]. We here recover his results by Serrin’s method.
This is indicated in Struwe [16] but is not carried out there.

The crucial part of our argument is regularity of solutions of a parabolic system
(1.8) wg — Aw + Vbw =0 in Q

with nonregular coefficient b. We state our main results on (1.8) in Section 2 and results

on Navier-Stokes equations in Section 3 including (1.7) where we use Lorentz spaces.

ACKNOWLEDGEMENT: The author is grateful to Professor Y.Giga who brought this prob-
lem to his attention. The author is also grateful to Professor K.Kubota for his useful

comments.

2. Interior Regularity for Parabolic Equations

We consider a parabolic system
(2.1) wg — Aw+ Vbw =0

in @ = Q x (0,T), where Q is a domain in R® with smooth boundary and 0 < T’ < co.

Here
w=(w}...,w?) with o' = '(2,t) (i=1,...,d),
b(z,t) = (b;'-k(z,t)) for1<i,k<dand 1< j<n,and
(2.2) y d
Vbw = 2;;: E‘Z-;bgik(z,t)w*(z,t)
ji=lk=

i=1

We shall study a regularity of w under minimal regularity assumptions on b. Let
L?9(Q) denote the space of LP(2)-valued L? functions on (0,T). The space LP9(Q) is
equipped with the norm

lullzracay = [ llullznco(®) luscomy = { [ ([ lu(z,t)lpdz)q/p dt}llq-



Here || -||L»(n) denotes the space LP- norm, and [ - |z+(o,T) denotes the time L?- norm

We do not distinguish the spaces of vector and scalar valued functions.

We say w € L%(Q) is a weak solution of (2.1) in @, if it holds

// (pt + Ap + bV p)w dadt =0
Q

for any ¢ € C§°(Q) where C§5°(Q) is the space of smooth functions with compact support
in Q. Here p = (¢*)4, and

ji=1i=1

d
n d
bVp = (Z Zb;‘k 021- goi)
k=1

We now state our main results on interior regularity of weak solutions of (2.1).

THEOREM 2.1.  Assume that 1 < p,q < oo satisfiesn/p+2/q=1.

(i) Suppose that b € LP9(Qr) where Qg is given in Section 1. Assume that w € L*?(Qg)

is a weak solution of (2.1) in Qr. Then there is a positive constant ¢ < 1 such that
1bl|».2(@r) < € implies

(a) w € L=P(Qg/3) for all 2 < B < co when p > n.
(b) w € L*P(Qgy2) for all 2 < a, < co when p = n.
Here ¢ = ¢(n,p,B) if p > n and ¢ = ¢(n,a,B) if p = n.
(ii) Let w € L%?%(Q) be a weak solution of (2.1) in Q.

(a) If p > n and b € L»9Q), then w € L=F(Q') for all B > 2 with Q' = Q' x
(o, T),where Q' is compact in Q and o > 0.

(b) If b € L™°(Q) and ||bl|g»=(q) is sufficiently small, then w € L*#(Q') for all
2<a,B < co.

REMARK: If n/p + 2/q < 1, Ladyzenskaya, Ural’ceva and Solonnikov [8] showed w €

L*** under more regularity assumptions on w than those in Theorem 2.1, where we only

need w € L»?(Qgr). See the remark to the proof in Section 7 (cf. [8] Chap.5, §2).

We recall Lorentz spaces L9 for 1 < g < oo :

L9(0,T) = {f € L*(0,T); [flz o,y < )



where

[flewer = sup s(puft € (0,T);1£(t)| > s})M/7.

Here p denotes the Lebesgue measure on R. Although [f]z((o,r) is not a norm (the
triangle inequality fails to satisfy), there is an equivalent “norm” in L(9)(0,T) provided
that 1 < ¢ < oo (cf. [1]). It thus holds

(2.3) [f + 9lewo,ry £ Cflewory + 9lLwen))
When 0 < T < o0, we see

(2.4) [fler-eco,ry < [Flowory < [flerco.r)

for any ¢ > 0, and that t=1/? ¢ L(®)(0,T). We now write

f(2,0) € 2OQ) i |Ifllzroe) = [ Ifllze@)(®) lwor) < oo

THEOREM 2.2. Assume that 1 < p,q < oo satisfies n/p+2/q =1 and p > n. Suppose
that w € L»?(Qgr) is a weak solution of (2.1) in Qg such that for any 0 < § < R?

(2.5) w € L™P(Bg(2o) x (—R? + to,—8 +1to)) for any 2 < 3 < co.
Then there exists a positive constant € < 1 such that

[bllzr@n) <€

implies

w € L”'ﬁ'(QR/z) for all B' > 2.

Here € = ¢(n,p,B').

We shall prove Theorems 2.1 and 2.2 in Section 7.

3. Interior Regularity for the Navier-Stokes Equations



As applications of Theorems 2.1 and 2.2, we derive some interior regularity results for
weak solutions of the Navier-Stokes equations. Our results extend those of Serrin [14] and
Struwe [16].

In this paper we say u € L»°(Q) with Vu € L*?(Q) is a weak solution of

w—Au+ (v-V)u+ Ve =10
(3.1) { in @
V-u=0
if
// (pe +Ap + (u-V)p)u dedt =0
(3.2) @

//Q(u-V)n dedt =0,

for any ¢ = (p'), € CL(Q) with V - p = 0 and 5 € C§°(Q).

REMARK: If u is a weak solution of (3.1), we see the vorticity w = curl u is a weak
solution of (2.1) with d = n(n —1)/2 where bjo,. is a linear combination of 4. For example,

if n = 3, applying the operator “curl” to (3.1) yields

(3.3) wi — Aw + Vbw = 0 with b}, = o 6 — w*5j.

THEOREM 3.1.  If u is a weak solution of (3.1) in Q with

u € L¥*(Q), Vu € L**(Q) and

{ [ullLre(@) < oo for some p,q such that n/p+2/g=1,n <p< oo

or ||ul|Ln.(q) is sufficiently small,

then
v € L*®(Q') and curlu € L**°(Q")

where Q' is as in Theorem 2.1.

By Serrin’s results in [14], this theorem yields that w is C™ in space variables.)
y )



THEOREM 3.2.  Assume that u is a weak solution of (3.1) in Qg such that
u € L»*(Qgr) and Vu € L**(Qr).

Suppose that 1 < p,q < oo satisfiesn/p+2/q =1 and p > n. Then there exists a positive
constant € = e(n,p) < 1 such that

€
(3.4) [#(B)llLr(Ba(20)) < o — 1)1l for t € (—R?+1to,t0)
implies

v € L*°(Qrss) and curl u€ L*°(Qry/s)-

PROOF THAT THEOREM 2.1 IMPLIES THEOREM 3.1: Applying Theorem 2.1(ii) to (3.3)
we see w € L>°#(Q') for any 8 > 2. Since u € L**(Q) and —Awu = curlu in Q, we obtain
u € L®#(Q?) for any B > 2 by a standard argument (cf. Serrin [14], P193, Step IT ). Asin
Serrin [14], the remark of Theorem 2.1 yields w € L% (Q?®), which implies u € L= (Q*).
Here Q' = @ x (07, T), B €@, o541 >0 for1<i<4and Q' =Q'. &

PROOF THAT THEOREMS 2.1 AND 2.2 tMPLY THEOREM 3.2: The inequality (3.4) yields

for any 0 < § < R?
u € L9 Bgr(zo) x (—R? +19,—6 + 1)) and
v € I"D(Qg) with [|2||zswgy) < &
If ¢ is sufficiently small, applying Theorems 2.1 and 2.2 with w = curlu yields
w € Lw’ﬂ(QR/z) for any 8 > 2.
The proof of Theorem 3.1 now yields

2 € L(Qr/4) and curl u € L°°’°°(QR/4)' N



4. A priori Estimates for Weak Solutions of Linear Parabolic Equations

To prove Theorems 2.1 and 2.2, through Sections 4-6 we shall prepare a priori estimates
for weak solutions of linear parabolic equations with nonregular coefficients in R® x (0, T).
In these sections we suppress R® x (0,7') in norms and function spaces, which are simply
written as L”9, C* and so on.

This section establishes a priori estimates for weak solutions of

v%w—Av+Vbv=F in R" x(0,7T)
(4.1)

v(2,0) =0

with regularity assumptions of v. Here v = (vi){, and F = Vg + h with Vg =
(e, 5297)L, and h = (k). ; b and Vbv are as in (2.2).

i=1 8a;
We say v € L*? is a weak solution of (4.1) if it holds

T T
_/ (pe + Ap + bV p)v dadt = / / Fyp dzdt
o Jmn o Jrr

for any ¢ € CP(R™ x [0,T)) with ¢ = (¢*)L,.

We begin with well known properties of L(P), We here also suppress (0, T') in norms.

LeEMMA 4.1. Suppose that 8 > 0 and 0 < T < oo. It holds
t=% € L(®)(0,T) if and only if 6p < 1.

Moreover [t~%],) =1 iffp=1.

This follows from a direct calculation:

[t = Sgl;f*(#{t €(0,T)| t~° > s})/?

Ti/? if =0,
- { sup 8171/ ifg > 0.
2>T—0

LEMMA 4.2. Suppose that f € L®)(0,T) and g € L(9(0,T). It holds
(1)
[f9lr) < 2[flmlgley i 1/r=1/p+1/q and 1<p,q,r <o



(ii) (weak Young)

[f *9l¢r) < Coalflmyloley if 1/r+1=1/p+1/q and 1< p,q,7 < co.

Ifg € LY(0,T), then it holds
(iii) (Hardy-Littlewood-Sobolev)

[f*g], < Coglflpy)l9le if 14+1/r=1/p+1/q and 1< p,q,r < co.

Here f * g denotes the convolution
T
(Fra)®0 = [ 1t 9g(s) ds.
0

PrOOF: The inequalities (ii) and (iii) are now standard and found for example in [13]
Chap.9, §4. We now prove (i). We may assume that [f];)[g](q) > 0. Set 0 < 8 < 1 as
r = fp, and set A := [;f]a,_)1 [g]gq). Since

it € (0,T);|£g(t)] > s}
[
<uft € (O,THIFO]> )+ pit € (0,7 lg(0)] > Ao},

it holds

- - -8
[£9liry < AVPIFIGE + A H =gt/ 050

1-6

= 2[fl(3)[9l(s25)-

This is the same as (i).

We write

(“2N@) = [ 6 -05) d,

where

G(z,t) = (4xt)~ " 2exp(—|2|? /4t).



It is easy tosee for 1 <l <r < o0

(4.2) [le*2 Fllzrgn) < Ct=™ =D | £l Lywmy
(4.3) le*AV fllz-mn) < Ct—(I/H"(l/l_l/’)/z)”f”L'(m)

where C' = C(n) and Vf = (O%jf);-'zl. We now estimate
t
V() (2,t) = / (=D £)(a, s) ds.

LEMMA 4.3.

(i) Suppose that 1 <1< r < oo and1<!l' < < oo such that
(4.4) % +

There is a positive constant C such that
(@) IV(DOlls»+ < Cliflae

®) IV(Hllsery £ Clifllay-
(ii) Suppose that1 < m < r < oo and 1 < m' <*' < oo such that

(4.5) —+ < -+ 5+

There is a positive constant C' such that
(@) IV(VAllrre < C'l|F|lmme
®) IV(VH)lr iy < Cllfllm,(me)-

REMARK: The constant C (resp. C') depends on n. If the strict inequality holds in (4.4)
(resp. (4.5)), it also depends on a bound on 7". Other than these dependence, C (resp.
C') depends only on exponents through 1/1 — 1/r,#',I' (zesp. 1/m — 1/r,#',m')if I' < #'
(resp. m' < ') or (4.4) (resp. (4.5)) holds with strict inequality. Otherwise C and C’

depends only on n,» and ', and » should be 1 < » < o0.

ProoF:

(i)(a) We divide situations in several cases.

10



Case 1. I' < 7',

Since

t ¢
[ / oz, 8) dsl| 1 (mz) < / 19(22 )|+ (rz) 4%,

(4.2) yields

¢
WV, < C[/; (t — 8) /YD £ | pr ey (8) dale
T
= C[/ H(t - s)(t — &) D2 £ | gy (5) dals
0
with C' = C(n) where H is the Heaviside function. Applying Lemma 4.2(iii) yields
IV (P llrre < C'LHEE 2G| £l

for1/»’ +1=1/a+ 1/l with C' = C'(n,+',l'). Note that one may take 1 < a < co since
I <. Since an(1/1—1/7)/2 <1, Lemma 4.1 implies that [t'”(l/"l/’)/z](a) is finite. We
thus obtain (i)(a).
Case 2. I'=+"and 1/l < 1/r + 2/n.

Applying Young’s inequality instead of Lemma 4.2(iii), the parallel argument to case
1 yields

(4.6) IV ()lrrr < C"Al[Fll22e

with C" = C"(n) and A = [H(t)t~*(1/}-1/")/?]; < oo since 1/1 < 1/r + 2/n.
Case3. 1<r<oo, ' =+"and 1/1=1/r +2/n.
We first assume that 1/»' — 1/» = 2/n. By Sobolev’s inequality, it holds

(4.7) V(e < CUVEV(E) o0

with C = C(n,r) where

n

02
192010y = 3 Il g7 cany

i,j=

11



Applying Calderén-Zygmund’s inequality yields

t
12V (Pl = | / V2AF gy, e
< C'l\fllyr

with C' = C'(n,?'). Since ' =1 = I' we now obtain (i)(a). Although so far we assume
that 1/#' —1/» = 2/n, this restriction can be removed if we use L™" estimate for singular
integral operators (cf. [3]).
The proof of (ii)(a) parallels that of (i)(a) if we use (4.3) instead of (4.2) and Sobolev’s
inequality
V(O < CUVV (e i 1/#' —1/r =1/n

instead of (4.7).
In the case 1 the proof of (i)(b) essentially parallels that of (i)(a) if we use Lemma
4.2(ii) instead of Lemma 4.2(iii). In the cases 2 and 3, applying Hunt’s interpolation to

T |[£1l:@) = [Vl (),

we see (i)(a) yields (i)(b) (cf. Hunt [7]). The proof of (ii)(b) parallels that of (i)(b). N

We next recall uniqueness of solutions of the heat equation. The proof is based on
existence of solutions of the dual problem. A more general version will be proved in Section

5.

LEMMA 4.4. Let v € L>»*(R™ x (0,T)) a weak solution of

{'vt—Av:—-O in R™ x (0,T)
v(z,0) = 0.

Then v = 0.
We now state our main result in this section.

12



PRrOPOSITION 4.1. Let 0 < Ty < o0 and T < Tp. Assume that 1 < p,q < o and
n/p+2/q=1. Assume thatl and l' satisfy 1/l=1/p+ 1/m and 1/U' =1/q+ 1/m' where
2<m<ooand2<m < oo. Let m <»r < oo andm' <» < oo sastisfy (4.5). Suppose
that v € L*? is a weak solution of (4.1) with F = Vg + h and g,h € L*?. Then there
exists a positive constant € such that
(i) |Iblle.q <€ implies
|[vlls.re < C(llgllm,me + |l1,1:)

provided that v € L"";
(i) [|b]|p,(q) < € implies
[ollr,r) < CUlgllm,mey + HRll,ary)

provided that v € L*(2+0) n L") for some o > 0 and that m' > 2, where
C= C(n’T(ly"a ""m’ m')'

Here ¢ = ¢(n,p,?') if p > n and € = ¢(n,r,?') if p = n. The exponent » should be
1<r<o0if(l) (p,g) = (n,00)or (2) m' =+ and 1/m =1/r +1/n.

PRroOF:
(i) Lemma 4.3-(i)(a) and -(ii)(a) yield 3 = V(~Vbv + Vg+h) € L*»?. By Lemma 4.4 we
see ¥ is the unique weak solution v of (4.1) with F = Vg + h. We easily see Lemma
4.3-(1)(a) and -(ii)(a) also yield

ollrpe < Cillbllp,gllv]lrre + Ca(llgllm,me + ||R]l1.20)
where C; = Cy(n,p,') if p > n and C, = Cy(n,r,»')if p=n and
C; = Cz(‘n,To,T, 7‘)m1m,)'

Since v € L™, setting € = (2C)~! we obtain (i).
(i) Lemmas 4.2(i) and 4.3(ii)(b) yield V(Vbv) € L*(2+@), Since L>? is contained in
L*(2t+0) asin (i) we see v = V(—Vbv + Vg + k) € L*? is the unique weak solution of

13



(4.1) with F = Vg + h. The proof parallels (i) if we use Lemma 4.3-(1)(b) and -(ii)(b)
instead of Lemma 4.3-(i)(a) and -(ii)(a), and use Lemma 4.2(i) and (2.3). B

5. Existence and Uniqueness
This section proves the uniqueness of weak solutions of (4.1) with F = 0. Let W

denote the Sobolev space:
W = {p € L**(R" x (0,T)); [lpllwaa < oo}

where

lelidran = llell3 2+ lleell3 2 + 1Vell32 + 11V2el13,2-

Throughout this section we assume that 1 < p,q < oo satisfies n/p + 2/q = 1. We begin

with W2! estimates for solutions of the heat equations.

LEMMA 5.1. Let 0 < To < 0o, T < Tp. Let V(f) be as in Lemma 4.3. It holds
V(f)llwaz < Cllfll2,2 with C = C(n,To)

for all f € L*2,
Since the proof is now standard and given in [8] Chap. 4 §3, we don’t prove here.

LeEMMA 5.2. There is a positive constant C = C(n,p,To) such that

116V @|]2,2 < Clbllp.qllellwan

provided that ¢ € W1 satisfies (2, T) = 0.

Proor: By Holder’s inequality we get
1BV @ll2,2 < [1bllp,ql|Vell,s

14



for
(5.1) 1/2=1/p+1/y and 1/2=1/q+1/6.
Applying Gagliardo-Nirenberg’s inequality (cf. [11]) yields

IVelly < ClIV?¢ll3lIVell3™° with C = C(n,0)

for 0 < 0 <1 such that
n/y=60(-1+n/2)+(1—80)n/2
=—0+n/2

(5.2)

The assumption, restrictons (5.1) and (5.2) on exponents imply
6=n/p and 1/6 =6/2.
Applying the inequality
[ <[ lgl” for 1/k=9/1+(1—-9)/m
yields

IV@llr,s < C|IVZ|8 211Vl 0

< C(IIV?0llz,2 + IVel|2,00)-

This now yields
6V ¢ll2,2 < ClIbllp, oIV ¢ll2,2 + [ Vell2,00)-

The proof is now complete since

IVell2,00 < Cllgllwa

with C = C(n,Ty) for p(z,T) = 0. The last estimate is found in [10]. However it is easily
proved by multiplying A¢ with the equation

pe+Ap=f

and integrating by parts. i

We now state our main result in this section.
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THEOREM 5.1. (Uniqueness) Suppose that v € L*? satisfies (4.1) with F = 0 and 0 <
T < oo. Then there exists a positive constant ¢ depending only on n and p such that

[1b]lp,q < € implies v = 0. If p > n, b € LP*? implies v = 0 without smallness of b.

REMARK: Since the corresponding assertion to Lemma 5.2 is not verified for b € L?(9),

we don’t obtain the uniqueness when b € L?9),
We shall prove the existence of solutions of the dual problem to get the uniqueness.

ProrosiTiON 5.1. (Existence) Let 0 < T < Ty < oo. There is a positive constant ¢
depending only on n,p and Ty such that ||b]|,,, < € implies that for any f € L*? there

exists a weak solution ¢ € W1 of

So‘——Asp-—-szo:f in RnX(O,T)
(5.3) {

¢(z,0) = 0.
ProOF THAT ProproOSITION 5.1 IMPLIES THEOREM 5.1: We may assume that T < 1 by
dividing the interval into subintervals and we first assume that |[b||,,; < €. The equation

(5.3) can be transformed by s = T'—t into a backward parabolic equation with a terminal

data:

ps+Ap+bVp=—f inR* x(0,7)
(5.4)

¢(z,T) =0.

By the definition of weak solutions of (4.1) with F =0, it holds

(5.5) // (pe + Ap +bVp)v dedt =0
R™x(0,T)

for any ¢ € C(R™ x [0,T)). Since C$°(R™ x [0,T)) is dense in W2t N{p € L??; p(2,T) =
0}, by a density argument we see by Lemma 5.2 that (5.5) holds for any ¢ € W2 with
¢(2,T) = 0. Hence applying Proposition 5.1 to (5.4) yields

// vf dedt =0
R™x(0,T)
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for any f € L*?, which implies » = 0.

If p > n and b € L?9, one can divide (0,7) into small subintervals so that the LP¢
norm of b is smaller than € on each subinterval (7};,T;;+1) with 73 = 0. Applying the
uniqueness for small b yields v = 0 on R™ x (0,T2]. We repeat this argument to get v =0
on R™ x (T3,Ts] and so on. We thus end up with v = 0 on R* x (0, 7).

PROOF OF PROPOSITION 5.1: We show that there exists ¢ € W1 satisfying

(5.6) o(2t)= [ (I8G(p))(z,0) ds

where ((p) = f+bV¢p. As is usual we construct ¢ by a successive approximation. We set

Yo = 0 and let Pi+1 (.7 > 0) be

pivs = V(L(gs)) = / =8 ¢(g;) da.

Suppose that p; € W, Then by Lemma 5.2 we obtain

1¢(eidllz2,2 < [Ifll2,2 + ClIbllp,qlles]lwan.

We now apply Lemma 5.1 to get p;41 € W', Since po = 0 € W?! we obtain that
@; € W21 for all § > 0. Since

t
Pit1 — Pj = / et~V (p; — pj_1) ds,
[+]

Lemma 5.1 and Lemma 5.2 yield

lei+1 — @jllwar < Cl6V(p; — pi—1)ll2,2
< C'||bllp.glles — pi-1llwaa  with C' = C'(n, p, To).

This shows that {p;} is a Cauchy sequence in W*! provided that C’||b||»,q < 1. Since
W21 is a Banach space, there exists ¢ € W??! such that ¢; — ¢ in W*! as j — co. By
Lemmas 5.1 and 5.2 the mapping ¢; — ;41 is continuous in W1, so we see the limit

¢ € W21 satisfies (5.6). This means ¢ solves (5.3).
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REMARK: Existence and uniqueness results in this section are also valid if R® x (0,T) is
replaced by Q@ = Q x (0,7) with the Dirichlet boundary condition where £ is bounded.

We state the uniqueness without the proof because we do not use it in our paper.
We say v € L>?(Q) is a weak solution of
vw—Av+Vbv=F in Q
(5.7)
v(2,0) =0, v|sn =0

if

"// (pe + Ap + bV p)v dzdt = // Fo dzdt

Q Q

for any ¢ € C°(Q x [0,T]) with ¢(z,T) = 0.

THEOREM 5.2. Suppose that v € L*?(Q) satisfies (5.7) with F = 0. Then there exists a
positive constant ¢ depending only on n and p such that ||b||1r.«(q) < € implies v = 0. If
p > n, b€ L?%Q) implies v = 0 without smallness of b.

6. Estimates for L? Weak Solutions

This section establishes a priori estimates for a weak solution v € L?? of (4.1) without
assuming additional regularity on v such that v € L™ as in Proposition 4.1. We first
approximate (4.1) by the equations with smooth coefficients. We next apply a priori
estimates in Proposition 4.1 to the approximated equations. Passing to the limit yields
the desired a priori estimate for the solution v € L?? of (4.1) since the solution of (4.1) is

unique by Theorem 5.1.
THEOREM 6.1. The assertion of Proposition 4.1(i) holds without assuming that v € L™"".

ProOF: We first assume that g,h are compactly supported in R® x (0,7"). We introduce
approximate equations for (4.1). We extend b, g and h by zero outside R™ x (0,T’) and set

by := pin * %b, Fy := pyp x *F
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where py/; is Friedrich’s mollifier, i.e.,
p1e(2,t) = kv tp(ke, kt)
with p € C°(R™ x R) supported in |(z,t)] < 1 such that

p>0 and f/ pdedt =1.
B" xR

Here ** denotes the space-time convolution, i.e.,

(f * *g)(2,t) = /_w /p f(z —y,t — 8)g(y, 5) dyds.

Assume that v, € L?? is a weak solution of

vy, — Avy + Vbgvy = F,  in R™ x (0,7)
(6.1)

v,(z,0) = 0.

Since F is in C§° and b, € C*™ is bounded with its all derivatives, v, uniquely exists and
ve € C® N L™ for any »,+' > 2 (cf. [8] Chap. 4 §5. Theorem 5.1 and §14.). Since Fy is
of the form

Fr=Vg +hy with g4 = py/p **g and hy = pyjp * *h

and since

|lgallmme < llgllmmes Mkl < |IRle and [[be]lpq < [Bllp.qs
applying Proposition 4.1(i) yields
(6.2) [vallr.re < Cllgllm,me + [|Als)
with C = C(n,Tp,»,7',m,m'). When » = »' = m = m' = 2, it holds
llvillz,2 < C'(llgllz,2 + |1lr,,1)
with 1/l; =1/p+1/2 and 1/l; =1/q+ 1/2. This now yields

(6.3) lloallz.2 < C°(ligllm,me + l1Rll20)
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where C° depends in addition on bounds on areas of supp g and supp h, since g and A
have compact support. Since 2 < 7,7’ < oo, L™ is the dual of Lebesgue space L™+ with
1/r+1/r. =1, 1/#' +1/7, = 1. The estimates (6.2) and (6.3) yield that there exists a
subsequence {k'} and ¥ € L' N L®? such that vy — ¥ *weakly in L™" and weakly in

L*?, Letting k' — oo in (6.2) and (6.3) yields

(6.4) Wollsrr < CCllgllmme + [[Blle)

(6.5) l[7ll2,2 < C°(llgllm,me + [1Blls)-

We shall show that # is a weak solution of (4.1). The inequality (6.5) yields ¥ € L**. By
the definition of (6.1), it holds

< —pr— D — bV, vt >=< Fpe, ¢ >

for any ¢ € C°(R™ x [0,7)). Here
T
<f, g>= / fg dzdt.
0 B~
Letting &' — oo yields
< i+ Ap, v >—< e+ Ap, v>.

By the definition of Fj, we see

< Frty ¢ >=<Vgir, o>+ < hgr, ¢ >.
Since gy — g in L™™ and hy — hin LM, the right hand side converges to

-<g, Ve>+<h, o>

=< F, ¢>.

If b € L? is compactly supported in R™ x [0,7], bxr — b in L*?2. Since vy — ¥ weakly in

L*? and ||vi]|2,2 are bounded,

< bV, v >—<bVp, 2> as k' — oo.
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This convergence is still valid without assuming that b is compactly supported. We do not
give its proof because it is standard and we shall not apply the case when b doesn’t have
compact support in this paper. We now see ¥ is a weak solution of (4.1), which means

# = v by Theorem 5.1. (When p = n, we set ¢ < €.) The estimate (6.4) now yields

loll.re < Cllgllm,me + l|All11)

provided that g and h are compactly supported. Since C is independent of g and A, this
estimate holds for every g € I™™' and h € L' by a standard density argument. N

7. Proofs of Theorems 2.1 and 2.2

PROOF OF THEOREM 2.1: We see (i) implies (ii). Indeed, b € LP*¥(Q) with ¢ < oo implies
that for any € > 0 and (zq,%0) € Q there exists R, such that ||b|[zs.e(gp,) < & Where
Qr. = Qr.(zo,t0) C Q. Since (i) yields w € L*°#(Qp, 2) for all 2 < § < oo and since Q'
is relatively compact in  x (0,T], by a covering argument it holds that w € L>#(Q') for
all 2 < A3 < 0.

We now prove (i). We may assume that (2q,%0) = (0,0) and R = 1. Indeed, if we
rescale a weak solution w of (2.1) in Qg around (0,0) with

{ wr(z,t) = w(Az, A%)
ba(z,t) = Ab(Az, A%t),

we easily see (wa,by) satisfies (2.1) in Qgr/» and that
”b’\”L”"(Qn/x) = ”b”LP'l(QR)-

(¢) If we obtain that ||br||zra(g,) < €1 implies wg € L®#(Qy/,) for any 2 < B < o
where ¢, = &1(n,p, 8), it follows that |b||zr.e(ge) < €1 implies w € L>#(Qg/2) for any
2 < B < 00. The parallel argument works for (b).

We first cut off w on @/, to obtain higher regularity in Q;/;. We set v = wy where

¥ € CL(By(0) x (—1,0]) with 9 = 1 in By/5(0) x (—1/4,0).
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Then v equals w in Qy/; and v € L**(R™ x (—1,0)) solves

vy — Av + Vbv = F(b,w) in R™ x (-1,0)
(7.1)

v(z,—-1) =0
with F(b,w) = Pyw — 2V(wVY) + wA9p + (bVy)w. Here

d d

_ n 0 ) a B d . n ; _0_
V(wVy) = (;%- w -a:j—qb)) and (bVe)w = (gw j};b,.,, bz, )

i=1 i=1

and both b and w are extended by zero outside B;(0). Applying Theorem 6.1 yields
1vllsre < Clllgllm,me + |[Rll11)
with C = C(n,r,#',m,m', ) provided that ||b]|,q is sufficiently small. Here
(7.2) g=—2wVy and h = w(Y: + A¥) + (bVY)w
and all exponents are the same as in Theorem 6.1. Since
Hgllm,m' < C1||wllmm+ with Cp = Ci(¥) and

Rl < Call@llm,m:  with Cz = Ca(¥,p),
we now obtain
(7.3) ||y, < C'”“’”Lm'm'(ol)

with C' = C'(n,r,7',m,m', ). Since w € L*?(Q;), we get v € L*® for all 2 < B < oo,
which means w € L*2(Q,/,).

We now apply (7.3) inductively. Indeed, we set v; = wy); (j > 1) where
$; € C°(Br,(0) x (—R2,0]) with 4; =1in Bg,,,(0) x (—R},4,0].

Here R; = 1/4+ 1/4°. We see

”w”L"i+1'p(an+l) < ”'”J'”rj+1,ﬁ < Cj”""”L':’"’(ij)
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with G/ = Ci(n,7j,7;11,8,¥;) provided that 2 < 7; < 7j41 < occand 1/7; <1/rj414+1/n.
Here 7;41 should be finite when p = n. Setting ry = 2 yields 1/7;, < 1/24(=1/n)(jo —1).
Since jo > n/2+ 1 implies 1/2 — (jo —1)/n < 1/a for all 2 < a < o0, it holds 1/7;, < 1/c.
We now obtain w € L*#(Qy;4) for all 2 < a < 0o and 2 < B < co. Here a should be finite

when p=n. I

REMARK: When n/p+2/¢g <1 and b € L?%(QRg), since it holds
“‘-"”Lr.v'(qn/,) < C(|bllzracer)l@llzet(@r) + [1@llzmmi(@r))
for2<m<s<r<ooand 2<m' <s <? < oo such that
n/s+2/8 <nfr+2/r'+1—(n/p+2/q) and n/m +2/m' < nfr+2/¥ +1.

By a standard bootstrap argument, we obtain w € L*'*°(Qg/4) without smallness condi-

tions on |[b||zr.e(gx)-

PrROOF OF THEOREM 2.2: Proof of Theorem 2.2 parallels that of Theorem 2.1. We may
again assume that (zo,%0) = (0,0) and R = 1. We denote Qf = B;(0) x (—1,-6) and

denote the norm of f € L"’(")(Ql) (resp. f € L”(")(Q{)) by ||fll»,(zr) (resp. 5||f”,,(,..)).
We see

(7.4) sl Fllecery S A Fllryer)

for any 0 < § < 1. It is easy to see that (2.4) and (2.5) yield

(7.5) w € L=¥)(Q7)

forall 2< 3 <ooand 0 <& <1. We get (7.1) in R® x (-1, —§). We see (7.5) yields
v e IHEO(QD) N I (QY)

forall 2 < r <00, 2 < ? < co and some ¢ > 0. Since p > n, Proposition 4.1(ii) yields

that there exists a positive constant ¢ = ¢(n, p, »') such that ||b]|, (4 < € implies

sllvlle ) < Clsllgllm(me) +5 Rl an)

23



with C = C(n,»,?',m, m'). Recalling (7.2) we see (7.4) yields

6||g”m,(m') < C1||w“m,(m')’

and that applying Lemma 4.2(i) and (7.4) yields

sl|R]l1,ar) < Cal|w||m,(mr)-

Here C; = Ci(¥) and C2 = Cz(¥,p). We see

5”””?.(1') < M“w“mr(m')‘

Since M does not depend on §, it holds

”””r,(r’) < M““’”m,(M')‘

The assumption w € L»%(Q,) yields w € L*(3)(@y). By the parallel induction to the

previous proof and (2.4) we see

w€ L®P(Qqz) forall2< B <oco. N
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