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Motion of hypersurfaces and geometric equations

Dedicated to Professor Noboru Tanaka on his sixtieth birthday

By Yoshikazu GIGAY) and Shun’ichi GOTO?

1. Introduction.

We are concerned with the motion of a hypersurface whose speed locally depends on
the normal vector field and its derivatives. To be specific let I'; denote the hypersurface
expressed as the boundary of a bounded open set D, in R® (n > 2) at time ¢. Let n denote
the unit exterior normal vector field to I'; = 8 D;. It is convenient to extend n to a vector
field (still denoted by n) on a tubular neighborhood of Iy such that n is constant in the
normal direction of I';. Let V = V/(t,z) denote the speed of I'; at # € T'; in the exterior
normal direction. The equation for I'; we consider here is of form

(1.1) V = f(t,z,n(z),Vn(z)) on T,

where f is a given function and V stands for spatial derivatives. Material science provides
a lot of examples of (1.1) where I'; is an interface bounding two phases of materials (see
[2, 11, 12] and references therein). For example if

(1.2) V = —div n,

the hypersurface I'; moves by its mean curvature and (1.2) is known as the mean curva-
ture flow equation. We note that this equation arises as a singular limit of some reaction-

diffusion equations [3,17]. It is also important to consider anisotropic properties of mate-
rials. A typical model (cf. [11, 12]) is

"6011

(1.3) V= 5

where H is convex on R™ and positively homogeneous of degree one and 3 is a function
on a unit sphere $* ! in R®. The equation (1.3) includes (1.2) as a particular example
with H(p) = |p| and B = 0. We remark that in general the right hand side of (1.3) is not
expressed as a functions of curvatures k1, - ,k,—1 of I'y and n. In other words

(1.4) V =g(k1,*+ yKn—1,M)

exclude (1.3), although (1.4) itself is interesting.
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A fundamental analytic question to (1.1) is to construct a global-in-time unique solu-
tion {T;}¢>0 for a given initial data Ty (allowing that I'; becomes empty in a finite time).
There are a couple of approach depending on description of (hyper)surfaces. A classical
approach appeals to a parametrization of I';. For the mean curvature flow equation (1.2)
Huisken [13] constructed a unique smooth solution I'y which shrinks to a point in a finite
time provided that Ty is uniformly convex and C? and that n > 3. A similar result is
proved by Gage and Hamilton {8] when n = 2. Moreover, Grayson [10] proved that any
embedded curve moved by (1.2) never becomes singular unless it shrinks to a point. How-
ever, for n > 3 even embedded surface may develop singularities before it shrinks to a
point. Even when n = 2 such singularities may develop if we consider

(1.5) V=-divn+ec

with some constant instead of (1.2). Angenent (1] constructed a unique solution across
singularities for a class of parabolic equation (1.1) including (1.5) provided that n = 2 (see
also [2]). However, it seems difficult to track the evolution of I'; across singularities by a
parametrization of I'; when n > 3.

To overcome this difficulty one way would be to describe surfaces in a weak sense such
as varifolds in geometric measure theory. For (1.2) Brakke [4] constructed a global varifold
solution for arbitrary initial data. Unfortunately, the uniqueness of such a solution is not
known. Another way is to describe a surface I'; as a level sets of a function » satisfying a
second order evolution equation in R™:

(1.6) 8iu+ F(t,z,Vu,Viu) =0,

where §; = §/8t and V2u denotes the Hessian matrix of » in space variables. This idea is
introduced by Osher and Sethian [18] for a numerical calculation of (1.5) and independently
by Chen and the authors [5]. In [5] we introduced a weak motion for solution T'; of (1.1)
through viscosity solutions of (1.6). We constructed a unigue global weak solution {I';};>0
with arbitrary initial data for a certain class of (1.1) including (1.2), (1.3) and (1.5) (where
H is C? outside the origin and 3 is continuous). Almost at the same time Evans and
Spruck [7] constructed the same solution but only for (1.2). We note that Tso [19] applies
a variant of a level surface approach to (1.4) when —g is the Gauss-Kronecker curvature.
He constructed smooth T, shrinking to a point in a finite time provided that I'g is uniformly
convex and C?. The corresponding result to (1.2) is proved by Huisken [13] as is explained
in the second paragraph.

Our main goal is to clarify the class of equations of form (1.1) to which the level
surface approach in [5] yields a unique global weak solution {I';};>o with a given initial
data. We first derive (1.6) from (1.1). Suppose that « > 0in Dy and v =0 on Iy, If u is
C? and Vu # 0 near T, we see

Vau 1

1.7 =— Yn= ——r0u
(L.7) N - i o

Vu Vu
2., g2, VY VU
(Viu -V u(lvuI ® Ivul)),

where ® denotes a tensor product of vectors in R™. It follows from (1.7) and V' = §,u/|Vu|
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that (1.1) is formally equivalent to (1.6) on I'; with

1 o
(1.8) P(t,2,p,X) = ~|plf(t,2, —p, ~ (X — X ®P)), P= I%I

Here p is a nonzero vector in R* and X is an n x n real symmetric matrix. A direct
calculation shows that F in (1.8) has the scaling invariance

(1.9) F(t,z,Ap,AX + op® p) = AF(t,2,p,X)
forall A>0, c €R, pe R\ {0}, X €8,

where S,, denotes the space of all n x n real symmetric matrices. In [5] F is called geometric
if F satisfies (1.9). In this paper we shall show that every geometric F is of the form (1.8)
with some f and f is (essentially) uniquely determined by F. This shows that the concept
“geometric” is very natural to study the equation (1.1) by our level surface approach. It
will turn out that the results in [5] yields a unique global weak solution {I';}:>0 of (1.1)
with an arbitrary initial data 'y provided that —f is degenerate elliptic, continuous and
grows linearly in Vn, where f is assumed to be independent of z. Our assumptions on f
or F is equivalent to those in [5] when F is independent of ¢, z but simpler than in [5].
This work was done while the second author was a graduate student of the Department
of Mathematics of Hokkaido University. This work is partly supported by the Japan
Ministry of Education, Science and Culture through grant no.01740076 and 01540092.

2. Geometric equations.

The equation (1.6) is called geometric if F is geometric. We observe in this section
that there is roughly an one-to-one correspondence from a geometric equation to (1.1).
Indeed we shall show at least formally that every level surface of a function u moves by
(1.1) for some f if and only if (1.6) is geometric. Moreover, f is uniquely determined by
F.

For p € 5"~ ! we introduce a linear operator @5 from M, into itself defined by
(21) Qi(X) =X - X(ﬁ ®ﬁ)’ X € Mn’

where M,, denotes the space of all n x n real matrices. We note that the right hand side
of (2.1) appears in (1.8).

LEMMA 2.1. (i) The operator Q; is a projection, i.e., Q% = Q.
(ii) Let L; denote a vector subspace of S,, defined by

Ly ={op®p; o € R}.
It holds
(2.2) Sn ﬂ ker Qp' == Lﬁ.
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ProoF: (i) This follows directly from (2.1} if we observe
(2.3) (P®p)P®P) =P @D

(ii) By (2.3) it is clear that L; is contained in the kernel of Q5. It remains to prove that
Q5(X) =0 for X € S, implies X € Ly. For an orthogonal matrix U it follows from the
definition (2.1) that

U Qs X)U = Qu(Y), g=3pU, Y=U"'XU, X€EM,.
We take U so that § = (1,0,---,0) and observe that Q4(Y) = O implies

n
Y=|: 0| with y eR.

Yn

IfY is symmetric, we see y; = 0 for j > 2. Since X € S, implies Y € S, we now conclude
that for X € S, the condition Q;(X) = O implies Y = 3§ ® § which is the same as
X € L;. O

We next introduce a (smooth) vector bundle E over $*~1 of the form
(2.4) E={(5QsX)); pe S, X€S.}.

The bundle E is a subbundle of a trivial bundle $*~! x M,, (but not of $*~! x §,,) and
its fibre dimension equals n(n +1)/2 — 1. Let @ be a bundle map

Q:5"'xS, —E

defined by

Let L be a line bundle over S™~1 of form
(2.5) L={({®X); p€S", X € Ly}.

The bundle L is a subbundle of S*~! x S,,. Since Q is surjective, Lemma 2.1 provides a
characterization of E as a quotient bundle.

LEMMA 2.2. The vector bundle E is isomorphic to the quotient bundle

5"t x $a/L = {(5,[X)); BE 5™, [X] €S0/ Ly}

We now turn to study relation (1.8) of f and F. Since our argument is pointwise in ¢
and z we suppress ¢, z-dependence of f and F in this section. The expression (1.7) of Vn
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shows that our f in (1.1) needs to be defined only on E not whole $S*~! x M,,. We thus
consider the space F of all real valued functions f defined on E. To each f we correspond
a function F on (R™ \ {0}) x S, by (1.8), i.e.,,

1 P
F(p, X) = ~|p|lf(—p, -5 Qp(X)), D=1
o) Py
Let G denote the set of all geometric real valued function F defined on (R™ \ {0}) x S,.

Lemma 2.2 now shows that the concept “geometric” is very natural.
THEOREM 2.3. The mapping f — F is a bijection from F to G.

ProoOF: Let G' be the set of all real valued functions F’ on $*~! x S,, satisfying
(2.6) F'(, X +op®p) = F'(,X) forall ceR, ($X)eS*!xS,.
By (1.9) we see the mapping F' — F defined by

_).(_),—2_

F ,X = F P, P=
(p, X) = |p| F'( 7 )

gives a bijection from G' to G. By the definition (2.5) of L and (2.6) one may identify
F' € G' with a function on $§®~! x S,,/L. By Lemma 2.2 the mapping f — F' defined by

FI(I;’ X) = _f(_p_’ _Qf(X))

gives a bijection from F to G’ since Q7 = Q_;. Since the mapping f — F is a composition
of f— F' and F' — F, it gives a bijection from F to G. O

By Theorem 2.3 we see every level surface of a function » moves by (1.1) for some f
if and only if (1.6) is geometric at least formally, where F is uniquely determined from f

by (1.8).

3. Existence and uniqueness of weak solutions.

We shall clarify the class of hypersurface evolution equations (1.1) to which our theory
of geometric parabolic equations developed in [5] yields a unique global weak solution for
a given initial data. We shall also simplify the assumptions of [5]. We first define a weak
solution {(T'¢, D:)}e>0 of (1.1) through a viscosity solution of (1.6) similarly to [5]. As in
[6] we discuss the case when I'y is compact.

DErFINITION 3.1: Let Dy be a bounded open set and Tp(C R™ \ Dg) be a compact set
containing dDgy. Let {(T'¢, D;)}¢>0 be a family of compact sets and bounded open sets in
R™. Suppose that for some o < 0 there is a viscosity solution u € Co([0,7] x R™) for
(1.6) with (1.8) in (0,00) x R™ such that zero level surface of u(t,-) at time ¢t > 0 equals
T'; and that the set D; where u > 0 is bounded open. If (T, D¢)|:=0 = (Lo, Do), we say
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{(T¢, D¢)}e>0 is a weak solution of (1.1) with initial data (Lo, Do). Here T' > 0 is arbitrary
and v € C,(A) means v — a is continuous and has compact support in A.

Instead of giving a definition of a viscosity solution we just remark that a viscosity
solution is a kind of weak solutions satisfying the comparison principle for nonlinear de-
generate elliptic equations. A fundamental theory is established by Jensen [16] and Ishii
[14] (see also [15] and [6]). Since our F in (1.8) is not continuous at p = 0 even if f is
continuous, we were forced to extend their theory. We here reproduce results on geometric
parabolic equations in [5]. We consider (1.6) in (0, 00) x R™ with F independent of z. The
function F is assumed to satisfy the following conditions.

(FO) F:J = (0,00) x (R®\ {0}) x R® — R is geometric, i.e., F satisfies (1.9).
(F1) F :J — R is continuous.
(F2) F is degenerate elliptic, i.e.,

F(t,5,X) < F(t,p,¥) if X >Y.

(F3) —oo < F,(t,0,0) = F*(t,0,0) < .
(F4) Let T be a positive number. It holds

('—) F,.(t,p, _I) < c_(|pl)
(+) F*(t,p,I) > —ci(|pl)

for all 0 < ¢ < T with some c+(0) € C*[0,00) and ¢o > 0 (depending only on T') such
that c4 (o) > ¢g for all ¢ > 0.
Here I denotes the identity matrix and F, : J — RU {£oo} is the lower semicontinuous
relaxation of F : J — R, i.e,,

F.(z)= liﬂ)'l I ini}' F(w), z=(,p,X)eJ.
€ w-—z|<e
weJ

The function F* is defined by F* = —(—F),.

ProposITION 3.2([5, Theorem 6.8 and 7.1]). Assume that (F0)-(F4).
(i) Let a < 0. For a € C,(R") there is a unique global viscosity solution u, of (1.6) such
that u,(0,z) = a(z) and that u, is in C([0,T) x R™) for every T > 0.
(ii) Let T, denote the zero level surface of u,(t,-) and D; denote the set where u,(t,-) > 0.
The family {(T;, D¢)}¢>0 is uniquely determined by (T'o, Do) and independent of a and
a.

By Theorem 2.3 (F0) is equivalent to the condition that F is expressed as in (1.8)
with f :(0,00) x E — R where F is the bundle defined by (2.4). Proposition 3.2 yields a
unique global solution of (1.1) (cf.[5, Theorem 7.3]).
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PROPOSITION 3.3. Assume that F defined in (1.8) satisfies (F1)-(F4). Suppose that Dy
is a bounded open set and I'y (C R™ \ Dy) is a compact set containg 0 Dg. Then there is
a unique global weak solution {(Ty, D¢)}:>0 of (1.1) with initial data (Lo, Do).

REMARK 3.4: Proposition 3.2 is based on the comparison principle for viscosity solutions
in a bounded domain. It turns out that the proof in [5] of the comparison principle can
be simplified if we appeals to a maximum principle of Crandall and Ishii [6]. We shall give
the simplified proof in our forthcoming paper with Ishii and Sato [9] as well as extensions
to the case when F depends on z and the domain is unbounded.

We seek simple conditions on f so that Proposition 3.3 is applicable to (1.1). For this
purpose we first study conditions (F1)-(F4). It is convenient to introduce

(3.1) M(s) = sup F(s,p,—I), m(s)= inf F(s,p,I).
Ip|<1 lpI<1
p;&—O p#0

LEMMA 3.5. Assume that F satisfies (F0) and (F2).
(i) Fort > 0 it holds

F*(t,0,0) = hm(e sup M(s)), F,.(t,0,0):lim(e mf m(s)).
|[t—s]<e el0 >|0<
>0 s

(i) If M*(t) < oo (resp. m,(t) > —o0), then F*(t,0,0) <0 (F.(t,0,0) > 0).
(iii) If F is independent of t, the following three conditions are equivalent.

(a) F*(0,0) < oo (resp. F.(0,0) > —o0)
(b) M < oo (m > —o0)
() F*(0,0)<0 (F.(0,0)>0).

ProoF: (i) If | X| denotes the operator norm of X € S,,, the estimate |X| < ¢ implies
—el < X <el.
Since F is degenerate elliptic by (F2), we see

I;lllp F(s,p,X) < F(s,p,—¢€l), (s,p,X)€J.
<e

The converse inequality is trivial since | — eI| = . We thus observe that

sup sup F(s,p,X) = sup F(s,p,—€l)=¢ sup F(s,p/e,—I) = eM(s)
lp[<e | X|<e lpl<e lpl<
p#0 p#0 - p#ﬂ



since F is geometric by (F0). This yields the first identity of (i). The second identity is

parallelly proved.

(i1) This follows immediately from (i).

(i) By (i) the condition (b) follows from (a). By (ii) the condition (b) implies (c). Clearly
(c) implies (a) and the proof is now complete. O

We consider a slightly stronger condition than (F1) on the continuity of F in t.
(F1') F:[0,00) x (R* \ {0}) x R®* — R is continuous.

LEMMA 3.6. Assume that F satisfies (F1'). Let M and m be as in (3.1). The condition
(F4—) (resp. (F4+)) is equivalent to

(3.2-) M*(t) < for t>0.

((3.24) m,(t) > —oo for t>0.)

PrOOF: We only prove that (F4—) is equivalent to (3.2—) since the other equivalence is
parallelly proved. The condition (F4—) implies

M(t) < sup c_(|pl) for 0<t<T
pl<1

which yields (3.2—). Since M*(t) is upper semicontinuous, (3.2—) implies that

sup M(t) =cr < oo.
0<t<T

This yields (F4—) since F(t,p,—I) is bounded on
[0,T] x {p € R™ 1< |p| < B}

for every R > 1 by (F1'). O

LEMMA 3.7. Assume that F satisfies (F0), (F1') and (F2).
(i) The conditions (3.2+) imply (F3)-(F4).
(ii) If F is independent of t, then
(3.3) M<oo and m>-o0

is equivalent to (F3)-(F4). Here M and m are defined by (3.1).
Proor: This follows from a combination of Lemmas 3.5 and 3.6. il

We now rewrite our conditions in terms of f when F is of the form (1.8). The condition

(F1') is clearly equivalent to
(fl') f:[0,00) x E — R is continuous, where E is the bundle defined by (2.4).
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The condition (F2) is clearly equivalent to
(f2) f(t,-», _Qﬁ(X)) > f(t,—p, "‘Qﬁ(Y)) for X2>Y,p€ §*~1 and t > 0.
This condition means that —f is degenerate elliptic. By (1.8) and (3.1) we observe that

_I-p®p

M) == Bl o ot o2 =)
(3.4) _—I+p®p
m(s) = — sup p sup f(s,—p, ——).
0<p<l  [p|=1 P

It is easy to see that (3.3) is equivalent to

liml%nfp [iflf1 f(-p, P ®p) > —00
P 7l=
(3.5) I
limsup p sup f(—p, TPOP) ¢ oo
ploO |7]=1 P

This condition (and also (3.3)) is fulfilled if f = f(p, Z) is positively homogeneous of degree
one in Z, where (p,Z) € E, i.e.

(3.6) F(3,AZ) = M\f(5,2) forall A>0.

By Lemma 3.7 Proposition 3.3 deduces the unique existence of global weak solutions under
conditions easier to check.

THEOREM 3.8. Assume that f is independent of ¢ and satisfies (fl') and (f2). Assume
that f satisfies (3.2+) with (3.4) or that f is independent of t and satisfies (3.5). Let Dg be
a bounded open set in R® and let T'y (C R® \ Dg) be a compact set containing § Dg. Then
there is a unique global weak solution {(T'¢, D;)}t>0 of (1.1) with initial data (T'o, Do).

REMARK 3.9: The examples (1.2), (1.3) and (1.5) fulfill all the assumptions of Theorem
3.8; here we assume that H € C*(R™\ {0}) is convex and positively homogeneous of degree
one and that 3 is continuous. Indeed, it is easy to check (f1') and (12) directly. In these
examples f is independent of ¢ and satisfies (3.6). Since (3.6) implies (3.5), our f satisfies
all assumptions of Theorem 3.8.

REMARK 3.10: For the mean curvature flow equation (1.2) Evans and Spruck (7] proved
that the family {T';};>0 of the weak solution {(T';, D¢)}:>0 is determined only by I'q and
is independent of Dy. In other words there is no need to distinguish interior and exterior
bounded by I';. This property holds for more general equation

V = f(t,n,Vn)
with f in Theorem 3.8 provided that
f(t,—-—z—),—Z)—‘:—-f(t,ji,Z), (ﬁ’Z)EE'
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Instead of giving a proof we remark that this fact is easily proved by combining arguments

in [7, 9).
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