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Is A Cantor Set With Positive Measure

ATSURO SANNAMI

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060 Japan

§.0 INTRODUCTION

In this paper, we give an example of a regular Cantor set whose self-difference set is a
Cantor set and, at the same time, has a positive measure. This is a counter example of one of
the questions posed by J.Palis related to homoclinic bifurcation of surface diffeomorphisms.

In [1], Palis—Takens investigated homoclinic bifurcation in the following context. Let M
be a closed 2-dimensional manifold. We say a CT-diffeomorphism ¢ : M — M is persistently
hyperbolic if there is a C™-neighborhood U of ¢ and for every ¥ € U, the non-wandering
set (7)) is a hyperbolic set ( refer [2] for the definition and the notation of terminologies of -
dynamical systems ). Let {¢,}.cr be a 1-parameter family of C?*-diffeomorphisms on M. We
define {¢,.}.er has a homoclinic Q-ezplosion at p = 0 if:

i) For p <0, ¢, is persistently hyperbolic;

ii) For u = 0, the non-wandering set (o) consists of a (closed) hyperbolic set Qo) =
lim,;o 2(¢,) together with a homoclinic orbit of tangency O associated with a fixed
saddle point p, so that Q(¢g) = ﬁ(qSo) U O; the product of the eigenvalues of dgg at p is
different from one in norm;

iii) The separatrices have quadratic tangency along O unfolding generically; O is the only

orbit of tangency between stable and unstable separatrices of periodic orbits of @q.



Let A be a basic set of a diffeomorphism 3 on M. d*(A) ( d*(A) ) denotes the Hausdorff
dimension in the transversal direction of the stable ( unstable ) foliation of the stable ( unstable
) manifold of A ( refer [2] for the precise definition ), and is called the stable ( unstable ) limit
capacily. B denotes the set of valued p > 0 for which ¢, is not persistently hyperbolic.

The result of Palis—Takens is;

THEOREM[1]. Let {¢,; p € R} be a family of diffeomorphisms of M with a homoclinic
Q-explosion at p = 0. Suppose that d*(A) + d“(A) < 1, where A is the basic set of ¢
associated with the homoclinic tangency. Then

L m(BO0,8) _

§-0 é 0

where m denotes Lebesgue measure.

This result states that, in the case of d*(A) + d*(A) < 1, the measure of the parameters
for which bifurcation occurs is relatively small.

For the next step, the case of d*(A)+d*(A) > 1 comes into question. In the proof of the
theorem above, one of the essential point is a question of how two Cantor sets intersect each
other when the one Cantor set is slided. In [3], Palis posed the following questions.

(Q.1) For affine Cantor sets X and Y in the line, is it true that X — Y either has measure zero
or contains intervals ?

(Q.2) Same for regular Cantor sets,

where for two subset X,Y of R,

X-Y={z—-y|zeX,yeY }.
This can be also written as;
X-Y={peR|Xn(p+Y)#¢},

namely, X — Y is the set of parameters for which X and Y intersect when Y is slided.
Cantor set A in R is called affine ( regular or C* for 1 < » < o0 ) if A is defined with

finite number of expanding affine ( C? or C* ) maps, namely;
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DEFINITION. Let A be a Cantor set on a closed interval I. For 1 < » < oo, A is called C” -
Cantor set if there are closed disjoint intervals I;,--- ,I; on I and onto C"~maps f;: I; —» I

for all 1 < i < k such that;
() 1fi(2)>1 Veel,
() A=NZo { Ures foyfosy Fom(D 3
where = = {0 : {1,--- ,2} - {1,--- ,k}} .

Our result in this paper is that there is a counter example of (Q.2), namely;

THEOREM. There exists a C®°-Cantor set A such that
(i) m(A - A) >0,
(ii) A — A is a Cantor set.

One will see in the proof of this theorem that A is constructed very artificially and cannot be
defined as an analytic Cantor set. Therefore, this theorem may not give any clue to (Q.1), i.e.
the affine case. In fact, the affine case seems to have an essential difficulty of these problems.

In the case of d*(A) + d“(A) > 1, for the practical application to homoclinic bifurcation, the

” 4]

problems of “genericity ” or “openness ” may have more importance.

In the following sections 1 and 2, we give the proof of the theorem.

§.1 DEFINITION OF THE CANTOR SETS A(s), I'(s)

First of all, we define two cantor set depending on a sequence of real numbers.

DEFINITION 1. Let I = [21,2,] be a closed interval and A a real number with 0 < A < 1.
We define,

I\ I) = [21,21 + A(22 — 1))
I]_(A;I) = [22 - A(z; - 21),22] .
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DEFINITION 2 ( CANTOR SET A(s) ). Let I° =[0,1] and 8 = (A1, A3, As, ) be a one
sided sequence of real numbers with 0 < A; < 3 for all i > 1. We define the Cantor set A(s)
as follows.

Let I} = Ig(A1;I°), I} = I;(A;I%) and I' = ILUI}. A, denotes the set of all sequences
of 0 and 1 of length n. When 1;“1’5 are defined for all 8 € A, 1, we define;

I;() = IO(’\n;I;_l)
131 = Il(An;I;_l) .
Inductively, we can define I7 for all a € A, and for all » > 0. Define
r=\ r
a€ClA,

and

A(s)zﬂ .

n>0

This is clearly a Cantor set by the definition.
Next, we define another Cantor set I'(s).

DEFINITION 3. Let J = [21,25] and 0 < A < 1. We define,

Jo(A;T) = [21, 21 + A(z3 — 21))]

Ji(A;T) = [z1 ; %2

J2(A; T) = [22 — A(z2 — 21),22] .

21+ 22
2

A A
- 5(22 - 1), + 5(22 — 21))

DEFINITION 4. Let J® = [—1,1] and s = (A1, Az, A3, -- ) be a one sided sequence of real

numbers with 0 < A; < 3 for all i > 1. Let
Jo = Jo(A1;J°)
Ji = J1(A1; %)
I3 = J2(A1;7°)
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and II, denote the set of all sequences of 0,1,2 of length n. When J;‘"l's are defined for all
§ € II,,_,1, we define;

Jro = Jo(An; I371)
Ji = JI(’\ﬁJ:_l)
T2 = D(a; T27Y)

Inductively, we can define J3 for all v € I1,, and for all n > 0. Define
= 7
YEM,

and

INOENBIPAS

n>0

THEOREM 1. Let 8 = (A1, Az, A3, - ) be a sequence of real numbers with 0 < A; < 31; for
all i > 1. Then,
A(s) — A(s) =T(s) .

PROOF:

A@)—A@) = (1) - (1T

n>0 n>0

By a straightforward argument, it can be seen that,

(Nm-(Om=Na-ry.

n>0 n>0 n>0

Therefore, it is enough to show that
r-r=J" Va2>0.

That is easily obtained by the following lemma 1.



LeMmMA 1. For alln >0,
(i) for all a,8 € A, there exists a y € II,, such that
r-p=1

5

(ii) for all v € II,,, there exist a, 3 € A such that

i

Jﬂv

v

n-1.

The following lemma 2 is trivial.

LEMMA 2. Let I = [21,2;] and J = [y1,y2] be two closed intervals. Then, I — J =

[21 —¥Y2,23 — 3/1] .

PROOF OF LEMMA 1:  We prove (i) and (ii) simultaneously by induction.

When n = 0, the statement holds, because I° — I® = J% . Assume that the statement
is valid for n.

In the case of (i): Let a,8 € A, 41 and a = aoy41,8 = Eﬂn+1 for &, € A, and
p41,0n+1 =0 0r 1. Then, by the hypothesis of induction, there exists a ¥ € II,, such that
Is — Ig = Js.

In the case of (ii): Let y € II,,;; and ¥ = Fy,+1 for some ¥ € I, and 4,41 = 0 or 1.
Then, by the hypothesis of induction, there exist &',E € A, such that IE - Ig, = J;Z;‘.

In both cases, it is clear that the statement of lemma 1 is obtained from the following

proposition.

PROPOSITION. Suppose that



for &',,g € A, and y € II,,. Then,

JL‘:I — 12+1 _ 11_:+1
p”

a0 Bl
Jrl = [pit_ pnt _ ol ol
71 a0 Bo al 2%

Jotl — ptl _ pm+4l
2 al A0

PROOF: Let I = [21,22] and Iéi = [y1,¥2)- Then, J-};‘ = [21 — y2, 22 — W]
Since the length of I-:;" and I;’;’. are the same, we denote £, = 23 — 21 = Y2 — ¥1-

By the definition,

I§:1 = [21,21 + An41la)
2 = [23 — Ansaln, 23]
Ig:l = (51,91 + Ant1fa)
7 = (g2 = Ansrln, 9] -

By lemma 2,

I,;.'.:l _ Ig_(—)i-l = [21 - - z\,.+1l,.,z1 -+ ’\n+1£n]
13:1 - Ig‘:-l = [21 — Y2, 21— Y2 + 2An+1£n]
131“ B Ip::l = [22 —y1 — 2An1ln, 22 — 1]

I‘Z’:-l _ 1;—::-1 = {22 — Y2 — /\n+1l,.,zz — Y2 + An+1£n] .
On the other hand, by the definition and (1),

Js:l = [21 — y2,21 — Y2 + 2An414n]

1 1
Jsl“ =[5(2— v+ 22— 91) = Ansaln, 521 — 92 + 22 — y1) + Ansala]

2 =le2 —y1 — 2nialn, 2 — ] -

1 . .
Since 5(21 — y2 + 23 — Y1) = 21 — Y1, the statement is obtained. [



$.2 REGULARITY AND POSITIVITY

The combination of Theorem 1 and the following Theorem 2 yields our main Theorem.

THEOREM 2. There exists a sequence of real numbers s = (A1, Az, As,
for all £ > 1 such that;

(i) A(s) is a C*°—Cantor set,

(ii) m(A(s) - A(s)) > 0,

where m( ) denotes the Lebesgue measure.

In the following, we shall prove this theorem.

Let {r,.}n>0 be a sequence of positive real numbers such that
[o <]
(1) Yo <1,
n=0

We define {1, }n>1 using this {r,}.>0 as follows.

1

Al = 5(1 - ro)
(2) A _1(1_2;?:0?")
It is clear that
1
(3) 0<A <3 Va2x1.
LeMMma 3.
n n+1
Yom=1-3""][x Vr>0.
i=0 i=1

°--)With0<A;<%



PROOF: We prove this lemma by induction. For n = 0, it is the definition of A;

the statement is valid for n.

n+1l n
E = P+ Pnt1
i—=0 i=0

= .E"' +(1—32n42)(1 —Zn)

=1-3n42+3 42 Z"i

i=0
n+1
=1—3hnt2 +3pa(1 - 8" TT 3)
j=1
n+2
prowad 1 —_ 3u+2 H Aj . D
i=1

LEMMA 4.

r=3"(1-3a) [[}i Wm2>0.

ji=o0

where, we assume Ag = 1 for the simplicity of notation.

PROOF: For n = 0, it is the definition of A\;. Forn > 1,

3"(1—3Ans) [T s
;=1

n n+1l
=3" T » - 3~** ] %
j=1 i=t1
n-1 n
=1-> 7)) -(1-Y_7)
ji=1 ji=1

=7, . O

. Assume that



2.1 The positivity of the measure of I'(s).

LEMMA 5. Let {r,}.>0 be a sequence of positive real numbers such that Yo et <1,

and {An}n>1 be the sequence defined by (2). Then, m(I'(s)) >0 .
This lemma is a consequence of the following lemma by applying Lemma 4.

LEMMA 6. Let 8 = (A1,22,As,-:+ ) be a sequence of real numbers such that 0 < A, <
% Vn > 1. Then,

m(D(s)) = 21— 31— 32n) [T 1) -

PROOF: Let w, denotes the length of each interval of J™. For example, wg = 2, wy = 21,

wy = Aawy = 2A1A;. In general, w, = A, w,_1, and,

w,,=2ﬁA,- .
j=1

In each interval of J»~1, there are three intervals of J® and therefore, there are two gaps

in it. The sum of the lengths of these gaps in J*~1 is
Wp_1 — W, .

Since there are 3"~ intervals in J®~1 , the sum of the lengths of the open gaps of the n—th
level is

3" Hwy—q1 — 3w,) .

Therefore, the sum of the lengths of the all open gaps is ,

(= <]

> 8" (wa — Swn )

n=0

=3 3"w,(1 - 3Ans1)
=0

=2 i 3"(1 = 3An11) f[ A . 0

n=0 ji=1

10



2.2 The regularity of A(s).

In the following, we define a sequence {r,}, > 0 ( and so {A\,}.>1 ), and prove that
A(s) is C>.

First of all, we fix a C—function h(t) on [0, 1] with the following properties.
(i) At) >0,
(i) [y h(t)dt=1,
(iii) foralln >0,

gfgh(")(t) =0,

im (™) (1) =
]tlTI?h (t)=0,

where h{™) denotes the n-th derivative of k.

(For example,

e_ﬁ
h(t) = 7———— 0<t<1
fo e_ c(l—')ds
0 t=0,1.

is a such function.)

To define {r, }.>0, we define the following sequences. For each integers n > 0, let
(4) dn = max{Qo:Qh‘ **1qn-1, 1’ sup |h(n)(t)| } .
tefo,1)

Clearly,
1<@p<q1<q25<---

For n > 0, we define,

—(n?+2)
(5) Ta = 4_""_'
qn
Clearly,
1
(6) —>r>r>ra> ..

16

Since », < 4-(n?+2) < 4~(+2) we have,
7 n —_= —,
® L LFTm

11



Therefore, {r,}a>0 satisfy (1). Let {A,}»>1 be a sequence defined by (2) from this {r, }.>0.
By (6) and (7), we can easily see that A, > i— for all » > 1. So, together with (3), we

have,

1 1
- - >1.

We define another sequence of positive real numbers;

_ 3(3ra_1 —27,)
1- E?z_ol i

Since {r,}n>0 is monotonically decreasing and by (7), m, > 0 for all n > 1. Moreover,

Va>1.

n

m, < _______91',,_1
"1 E?;ol £
(9) <10- Pn-—1 .

U® denotes the open interval between I} and I}, namely;
Ut =1°\(pul).
In general, U?~! (a € A,_1) denotes the open interval between I7%; and IZ; in I*~!, namely;
U:_‘l = IZ-I\(I"D UIZ) .

Let £, = {(I2). Then, by the definition,

(10) ln = ’\nln—l ’

(11) L=]]x.
i=1
Let u, = £(U?), and U? = [24, ¥a). Then,

Up =l — 2y,

and
Up = Ya — o -

12



We prove the smoothness of A(s) as follows. We define a non-negative C°—function f(t)

on [0, 1] and define;
o) = [ (£()+)da .

We put;
{ 9o(t) =g(t)  on [0,]
gt) =gt -1+ X)) on [1—Ay,1].
and prove that these go and g, define A(s).

DEFINITION OF f(t). Recall that we have already defined a C=-function h(t) on [0,1). We
define f(t) using this h(t) as follows.
First, note that

because

Uy =Ly — 2ln+1

= Ln(l - 2An+1)

1 L,
—2.2)= 2,
> £,(1 3) 3

Let [2!,,7] be the interval of length %’ in the middle of U2 such that

L, 1 L,
U] = [oa + 5 (tm = )30 = (0 = 2] -
We define f(t) on [0, A{] as follows.
() On U2 ([0, ] (n #1),

!
t—z,

£(t) = mah(—2)  t€ [, 4]

fi¢)=0 otherwise .
(i) On A(s)N[0,A4}, f(t) =0.

In the following, we show that;
(1) 7(t) is a C>®°~function on [0, A,] .
(1) go and g, define A(s).

13



2.3 The smoothness of f(t).

For any p > 0, we define a function f,(t) as follows. Let A) = {a@ = a3+ a, €
Anlas =0} and U = U,5; 4ca0 Us. Note that U = [0, A1]\A(s). Since f(t) is C= on U,
F®)(t) exists for all p > 0 on U. We define,

HA)=fP@) for teU
f(t)=0 otherwise (i.e. t € A(s) ).

In order to show the smoothness of f(t), we prove that;
LEMMA 7. For any p > 0, f, is differentiable at any t € [0, A;] and f,(t) = fp41(2).

Since fo = f, this lemma says that f is C*.
We fix a p > 0. Since f, is differentiable at any ¢t € U, it is enough to show that f, is
differentiable at any t € A(s) N[0, A1]. Clearly, Lemma 7 follows from the following lemma.

LEMMA 8. At anyt € A(s) N[0, )], f, is differentiable and f,(t) = 0.

PROOF: Let g € A(s) N [0,]. Since f(to) =0, it is enough to show that

(12) lim _fg_(_tl =0

t—to t — iy

There are following two cases.
(i) to is an end point of a U™ and ¢ approaches to to in U™.
(ii) otherwise.

In the case (i), (12) is clear because f(¢) = 0 in an neighbourhood of the end points of
-l/?a’:. Therefore, we consider the case (ii). Assume that ¢y < ¢, namely ¢ approaches to ¢y from
the above. The similar argument gives the converse.

We shall show that for any ¢ > 0, there exists a § > 0 such that if t — ¢y < 8, then

t
%Z); <e€.

14



Now let € > 0 be given. Let ng > p + 2 be an integer such that, if n > ny then

10- g+, 4("(P+1)—("—1)2—2) <e€.

Clearly such ng exists.

By the definition of UZ’s, it can be seen that taking § > 0 sufficiently small, if t —t5 < &

then for any U2 with [to,t] N U™ # 0, it holds that n > ng. Because, if it is not the case, ¢,

must be an end point of a UZ with n < ng and this contradicts with the assumption.

If t € A(s), then by the definition of f,, f,(t) = 0. Therefore, we assume that t € U for

somen >ngand x € A,,.

Let £, be the left end point of U—g Clearly, to < t; <t and

f(t) _ f(t)
tito<tit1'

Since f, is differentiable on U™, by the mean value theorem,

() :
L2 < t
o RAOL
= sup |fFO()|
tefal,3L]
= ma(sP* sup KEHI(E)
L, tefo,1]

By (8),(9) and (11), we have, £, = || PR Y (i—)" and m, < 10-7,_;. Therefore,

(13) <10 -7,_; - 37+1. (4»)2+1 . { sup R(P+1)(1)}
tefo,1)}

4-((n-1)"+2)

=10 Pl (47)PHL L L sup R(PFU)(1)}

dn-1 tefo,1]

Since n — 1 > p+ 1, by the definition of g, _1,

(14) <10-37+1. 4n(p+1) | 4—((n-1)"+2)

=10 3pH1 . 4(n(p+1)-(n-1)?-2) .

15
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2.4 go and g, define A(s).
For the proof, we need some lemmas.
LEMMA 9. Foranyn >1and a € A?,
1
F@)dt = -my L, .
vz 3

PROOF: By the definition of f(),

1

Ya t— 2
f(t)dt = mph(——=)dt
Uz =l 3
tn
¢
= m, / h( )t
0 3
1 L
= m,,/ h(s)=-ds
0 3
= %mnln . O
LemMaA 10. Foralln > 1,
L1 =go(ls) .

PROOF:

{n
go(fn) = [ (£(t)+3)dt
0
in
(15) = 3L, + F(t)dt .
0
In [0,£,), f(¢) has positive value only on countable number of open intervals U* such that

Uk c [0,4,). Note that U* C [0,,) fora =a;---ai fandonlyif k> nand ay---a, =

0:--0. Therefore, for k > n, there exist 2*~™ open intervals of U*’s in [0, £,].

16



By lemma 9,

OIS ( fU ‘ f(t)dt)

U’*c[o L.]
— 223 n _m.
(16) = 22"“ - ———3(" L %)
i=n 23 =17
By lemma 3, {; = H 1A = ——(1 E;;ll ;). Therefore, by lemma 4,
(16) = i 2i'”l.(3r;_1 — 27;)
3

i=n

oo 9 i-1 2 i
= 2‘("‘1)i_zn { (5) Py — (5) 1':'}
) 9 n-1 9 k
= 2-(n-1) k]in; { (E) Pan-1— (5) rh}

n-—1
= 2—'("—1) (;) Pr_1

__ Tn-1
- Jn-1
1 n—1
= 5 (1= 3 )t
=lpn_y— 3Anln_y
= ln—l - 3‘1&

Hence by (15), we have,

gﬂ(ln) = ln-—-l .

17



LEmMMA 11. For all ,a’ € A,

[ syae= /1 ) f(t)dt .

PROOF: Since {(I7) = {(IZ,), by the definition of f(t), the statement is clear because f(t +
)=f(t+r2)for0<t< 8% —rt =3 —r2 O

Finally, we prove that,

A =N{U 9,(1)92)° gy} -

n>0 o€cX2

This is obtained from the following lemma 12.

LEMMA 12. Foralln >0 and ax € A,,,

o=, a@)=1I;.

PROOF: We prove this lemma by induction on n.

When n = 0, it suffices to show that;
(16) o) =1° a)=1I.

Since go, g1 are monotonically increasing and I = [0,£4y], I] = [1 — £1, 1], by the definition of
go, g1 and lemma 10, we have
90(0)=0,  go(ts) =1
{91(1—31) =0, g1(1)=1.
This means (16).

Assume that the statement be true for n — 1. What we have to show is that;

(i) go(roa') =74
(#) go(s5F") = %
(i) gi(+71) =72,
(iv) gi(s3") =3 .

18



Let @« = a’a,,. Then, by the hypothesis of induction,

90(152') = I:'_I ’ gl(I‘]'.‘a') = I:'_l .

Namely;
go(rgw) =757, go(8Ga) = 80"
gl(r?a') = r:'—l ’ gl("l‘a') = 82;_1 v
When o, = 0, since 73t = 22, and #2 = #271, (i) is clear. As to (ii), by lemma 10 and
11, we have,
oa
ao(s) = [ (1) + D)
0
r:+1
= / (f(t) +3)dt + / (F(t) + 3)dt
0 |
=+

=24 (e2-2)

=3y .
This proves (ii). The similar argument with g; gives (iii) and (iv).

When o, = 1, since s311 = s2 , and s = s}, (i) is clear. As to (ii), we have,

n41

w5 = [ ) + e

= [ vw+va- [ 7 0+
o Toa

=38y — 4,

=t (2 -2)

=

This proves (ii). The similar argument with g, gives (iii) and (iv). O

Acknowledgement: The author would like to thank J.Palis for his helpful comments.

19



REFERENCES

[1]. J.Palis, F.Takens, Hyperbolicity and the creation of homoclinic orbits, Annals of Math.
125 (1987), 337-374.

[2]. J.Palis, W.de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag (1982).

[3]. J.Palis, Fractional dimension and homoclinic bifurcations, Colloquium — Hokkaido Uni-

versity (October, 1988).

20



