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PREFACE

This volume is intended as the proceedings of Sapporo Symposium on Partial
Differential Equations, held on August 3 through August 5 in 2005 at Faculty of
Science, Hokkaido University.

Sapporo Symposium on PDE has been held annually to present the latest devel-
opments on PDE with a broard spectrum of interests not limited to the methods
of a particular school. Professor Taira Shirota started the symposium more than
25 years ago. Professor K6ji Kubota and Professor Rentaro Agemi made a large
contribution to its organization for many years.

We always thank their significant contribution to the progress of the Sapporo
Symposium on PDE.

T. Ozawa, Y. Giga, S. Jimbo, G. Nakamura,
Y. Tonegawa, and K. Tsutaya
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SMOOTHING - STRICHARTZ ESTIMATES FOR THE
SCHRODINGER EQUATION WITH SMALL MAGNETIC
POTENTIAL

VLADIMIR GEORGIEV, ATANAS STEFANOV AND MIRKO TARULLI

georgiev@dm.unipi.it

1. INTRODUCTION AND STATEMENT OF RESULTS

Let A = (Ay(t,2), -+ ,An(t,z)),2 € R*,n > 3 be a magnetic potential,
such that A;(t,z),j = 1,---,n, are functions, and let the magnetic Lapla-
cian operator be

Ag= (0;+iA))" = A+ 2iAV + idiv(A) - (Y A?)
J J

Our goal is to study the dispersive properties of the corresponding Schrédinger

equation

1) {atu—iAAu:F(t,x), teR, zcR”

u(0,2) = f(z).
In this work, we will be concerned with the Strichartz and smoothing esti-
mates for (1.1), when the vector potential A is small in certain sense. In
fact, we aim at obtaining global scale invariant Strichartz and smoothing
estimates, under appropriate scale invariant smallness assumptions on A.

In the “free” case A = 0, there exists vast literature on the subject.
Introduce the mixed space-time norms

afr \ 1
lullpaz, = (/ (/ Iu(t,a:)l"da:> dt> )
R R”

We say that a pair of exponents (g,r) is Strichartz admissible, if 2 < ¢,r <
00, 2/q+n/r=n/2 and (q,r,n) # (2,00,2). Then, by result of Strichartz,
Ginibre-Velo, and Keel-Tao,

(1.2) e fllpazr < C||fllz2

(1.3) ll/e_“AF(S, )ds||p2 < ClF||parpe
t

(1.4) | [ 5 (s, dslars < CIF oo
0

V.G. and M.T. are partially supported by Research Training Network (RTN) HYKE,
financed by the European Union, contract number : HPRN-CT-2002-00282. A.S. is sup-
ported in part by DMS 0300511.
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where (g, 7) is another Strichartz admissible pair and ¢’ = ¢/(¢ — 1).

On the other hand, the smoothing estimates, were established by Kenig-
Ponce-Vega in the seminal paper, [15], see also Ruiz-Vega’[94]. These were
later extended to more general second order Schrodinger equations in [16].
We state them only for the solutions of the linear problem u; — iAu = 0
with initial data u(0,z) = f(z)

< | fllz2

2—m/2HD1/2 l
e = ULz (jafmam) =

Motivated by the Strichartz estimates and these “local smoothing” norms,
introduce the spaces X}, defined by the norms!

H¢||Xk:( sup ¢2H¢k”L‘t’L;+2k/2Sip2_m/2“¢kHLfL2(|z|~2m)’
q,r)— 49

where ¢ := Pyp¢ is the k** Littlewood-Paley piece of ¢ ( see Section 2.1
below).
Define also the Banach spaces X by the norm

1/2
Iy = <Z|I¢H_2Xk) :
k

It is clear by the elementary properties of Besov spaces, that whenever ¢,r >

2, [llparr S (Ck 19kl Lapr)"? and therefore sup(y)_sur. |9llporr S l14llx-
It is also true (although not as obvious, see Lemma 2.1 below) that

sup 2”m/2HDi/2¢} Sliellx-

L L2 (Je|~2m)

Theorem 1.1. If n > 3, then one can find a positive number € > 0 so that
for any (vector) potential A= A(t,z) satisfying -

[Allpeozn + IV Allpeo e + () 2" SUP | A<kllzee poo fatzm)) < €
there exists C' > 0, such that for any f € S(R"™) and any F(t,z) € S(RxR")
the solution u(t,z) to (1.1) satisfies the estimate

llullx < Cllfllzz + CNE a0

where (g, ) is Strichartz admissible with q # 2. In particular, the solutions
to (1.1) satisfy

sup Nullparr SIfIze + 12 ||Lq' o
L
(g,r)—Str.,q#2 t

1The expressions ¢ — ||o|| x, are not faithful norms, in the sense that may be zero,
even for some ¢ # 0. On the other hand, they satisfy all the other norm requirements and
¢ = (Zx ll¢ell%,)!/? is a norm!
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The main idea behind the proof is to show a global scale invariant esti-
mates for solutions to the linear Schrédinger equation u; — tAu = F with
initial data f in the form

lully < ClI Iz + C minge g gz (1HY| por oo+
(1.5) +2 27 (%, 272 HE 2 2 (g D) 2.

The proof of Theorem 1.1 then proceeds in a standard way.

2. PRELIMINARIES

2.1. Fourier transform and Littlewood-Paley projections. Define the
Fourier transform and its inverse by

:/f(a:)e_zmx'gdm
in

= [ Feremi=sa
in

Introduce a positive, decreasing, smooth away from zero function y : R} —
R, supported in {¢ : 0 < & < 2} and x(§) = 1 for all [¢| < 1. Define
(&) = x(&) — x(2£), which is positive and supported in the annulus 1/2 <
€] < 2. We have that ¢ is smooth and Y,z ¢(27%¢) = 1 for all £ # 0.
In higher dimensions, we slightly abuse the notations and denote a function
with similar properties by the same name, i.e. p(&) = ¢(|¢]), x(z) = x(|z])
etc. Note that for n > 1, y(z) : R® — R! is a smooth function even at zero.

The k** Littlewood-Paley projection is defined as a multiplier type op-
erator by ]5;5‘(5) = @(Q_kf)f(f). Note that the kernel of P is integrable,
smooth and real valued for every k. In particular, it is bounded on every
LP : 1 < p < oo and it commutes with differential operators. Another
helpful observation is that for the differential operator D] defined via the
multiplier |£]°, one has

D Pru = 2ks}5ku

where Py is given by the multiplier ¢(275¢), where 3(&) = @ (£)[€]°.
We also consider Py := ZK,CPI, which essentially restricts the Fourier
transform to frequencies < 2*.

Define also the function ¥(z) = x(z/4) —
support properties as ¢ and ¥(z)p(z) = ¢(z
operators Zy, by Zpf(&) = »(27F&)f(¢). B
and Zy = Py—2+ ...+ Prt1.

Recall the Calderén commutator estimate (see for example the work of Rod-
nianski and Tao, [20])

11Pe; fgllpr < C271V Fllpallgl oy

Xx(4z). Note that ¢ has similar
). Thus, we may also define the
y

the construction, Zy P, = Py
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whenever 1 < r,p,q < oo and 1/r =1/q+ 1/p.
Also of interest will be the properties of products under the action of Pj.
We have that for any two (Schwartz ) functions f,g

Pi(fg) = Z Py (figi-2<.<i42) + symmetric term +
I>k—2

+  Pi(f<k-a9k-1<.<k+1) + symmetric term =
= f<k-agk + [P, f<k-4]9k—1< k41 + symmetric terms

+ Z Pi.(f191-2<.<142) + symmetric term.
1>k—2

In particular, we shall need an appropriate (product like!) expression for
Py(AVu). The main term is clearly when Vu is in high frequency mode,
while A is low frequency. More precisely, according to our considerations
above,

P(AVu) = Acy_gVuy + EF,

2.1) EF = [P, Ack—a]lVuk_1<itr + ZPk (Ar - Vur_o<.<ip2) +
1

+ ZPk(AI—2§-§I+2 V) + Pr(Ak—1<.<kt1 - Vii<k—a)

Note that in terms of L? behavior and Littlewood-Paley theory, one treats
these error terms as if they were in the form (9,A4)u.

2.2. Besov spaces versions of the “local smoothing space”. We show
that the space X introduced earlier is embedded into the “local smoothing
space”.

Lemma 2.1. For every Schwartz function ¢, there is a constant C' = C'(n),
so that

(2.2) sup2™/2 [ DI/26 (1, ) < Calldllx-

L2 L2 (jz|~2m)

Proof. We prove only (2.2). Fix m. We first dispose with the easy case
m/2 D1/2P )

Sup2 “ <=m® L212(jz|~2m)

VVe have by Holder’s mequahty

<

Q_m/2HD1/2P - ‘
<-m® L2L2 (Jol~am) ™

< 2_m“P< m®

L2L2(|z|~2m) ™

< |[Pe-me S Nllz2gonrin-s S Illx-

[2[2n/(n-2)
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For the remaining term, we have that

2—771/2“DI/ZP> qu‘ _2—m/2“D;/2 Z Pkd’”L%L2(|x|~2m) SJ
k>—m

L2L2(Je|~2m)

S22 (27 e) Prdlpare
k>—m
Here, we have replaced || F'|| 12 (|z|~2m) Dy the comparable expression ||o(27™ F||r2.
This will be done frequently (and without much discussions) in the sequel
in order to make use of the Plancherel’s theorem, which is of course valid
only in the global L? space.
To continue, we represent

P27 ) Prd = Pr((277)6 () = [Pry (27 )]0 ().
We basically treat P, as a bounded operator (on every LP space), while

applying the Calderén commutator estimate for the second term. Recall
that by definition by P, = PyZ;. We have

272N 2o a) Pl pare <
k>—m
<y 2—m/22k/2” 02 ™ Zm‘
k>—m

L? L2

+27 2N 2P (p(27 ) Zed) s
k>—m

L2[2
S Y 2PV (0@ ) | o 1 2kl o pns e +
k>—m
1/2
—}—2“m/2 <Z QkHPk 2 m )Zkgb)‘ L2L2> 5

SNl o pznsinmn) + 272 28Nkl Z2 12 (o)) 2 S 1l x-
k

3. ESTIMATES FOR THE BILINEAR FORM Q(F,G)

Introduce the sesquilinear forms

ARG = [ (IAP(E), 60)) paundsct,
s,tit>s

7(F,G) = LL(Gi(t_S)AF(S)a G(t)r2@n)e (t—%—s> dsdt,

Note that the standard Strichartz estimates can be expressed in terms of @)

(31) IQ(F7 G)l < C”F“LZiL;i “GllL?éL:éa
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for all Strichartz pairs (q1,71), (¢2,72)-

Our main goal is to obtain good bilinear estimates for Q7 (F, G;1), which
will be useful later on for the relevant estimates needed for Q(F,G).

Our next lemma provides one possible estimate for Q7 (G, G).

3.1. Estimates in the local smoothing space.

Lemma 3.1. Let G be a Schwartz function and k be an integer. Then there
exists a constant C' depending only on the dimension, so that

R 1/2
sup ( / vam(s+27r|§|2,5>|2so<2-’“5)d5) <

< OY T )G

Here @172(7,5) is meant to denote the space-time Fourier transform of G.

This lemma is essentially a dual version of the “smoothing estimate” of
Kenig-Ponce-Vega and may have appeared in the literature, but we include
its proof for completeness.

Proof. Start with the smoothing estimate, applied to a frequency localized
data Zp f. We have

< Cliflle
Ll igm1 gjaigom1)

Observe that D1/2Z;, = 2¥/27, where 5;;”({:) = f(&)?[}(?“kf) and (&) =
€24 (€).-

By dualizing this inequality, we arrive at

Z o—m/29k/2 /[e—im Zi flGm (t, @) dtdz <

<C Y[l nirs

m-lgls<amtl)

Let for any z : 2™~ ! < |z < 27t G(t,z) = Y27 ™/22k2G,, (t,2). We

/f(m) (/ eitAZ”kG(t,a;)dt> dz <

<O 2 Gl =

have

m~1s|z|sgm+1}

It follows that

\ / "2 ZhG (t, z)dt

2 <¢ Zm: 22972 o(27 " w) G| 2 -
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It is clear that for arbitrary real s, one has

(3.2) < CY 2P (27 0) G o s

/ eitAe_ZWiStZkG(t, )dt

L

since the L? norm on the right is not affected by the unimodular factor
—2mist
e .

We next compute the space Fourier transform of the function
H(z) = [e'®e™'G(t,-)dt. We have

I:I(é-) — c/e—4w2itl§l2 e-2ﬂ-i3tél,2(7_,§)€2WitTdth —
= C/CAT’LQ(T, &)o(2rT — 2ms — 47r2|§|2)d7' = cGA’l,z(s + 27r|§|2,§).

By the Plancherel’s theorem, (3.2) and since ¥ ~ 1 on their supports, we
conclude

R 1/2
sup ([ 16ua(e-+ 2mleP vz o) <
<Cy 2Pl a)G o s
Clearly, if we apply the last inequality to PG, Lemma 3.1 follows. d

Our next lemma gives an alternative representation of Qr(F,G).

Lemma 3.2. We have the relation
(33)  Qr(F,G)= / / F(r +27|€)?,6)G(r + 2n|¢|2,€) T3 (TT)dedr,
RJR

for some ¢ > 0.

The proof of both Lemma 3.3 is straightforward.
By Lemma 3.2 and Holder’s inequality, we have

@R Gl < ([ 1(r + 2P, €) P deT|R(T lar) V2
<([ 16+ 2rIgl P pl2 e T G(T)r) V<
< sup( [ 1B (r +2mi€, O o2~ )de) /* x
xsup( [ 1Gr + 2elel, )Pz €)de)
whence by Lemma 3.1 one gets

Q(Fk, Gi)| < Cu(X 27227 2|| Fil| 2 12 (g X

3.4 irae fa
(34) x (3 27k/%2 /2HGkHL’§L2(|z|~2m))
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The following lemma gives a different representation formula for Q7 (F, G).
This is crucial in proving bilinear estimates, when one factor is in the mixed
Lebesgue spaces, and the other is in the local smoothing space.

Lemma 3.3.

(", G) = / Pl (5=) Tl(o)de = =2, / Pl ()G () de,

2z 2mrz

where F1(z) = el**/(22) F(z) and similarly G*(z) = e~ =P/ G (z).

We state the main result that is the key point in our approach to proof
Theorem 1.1.

3.2. Mixed estimates - one factor is in the local smoothing space,
another one is in the mixed Lebesgue space.

Theorem 3.1. There exists a constant C' = C'(n, @) so that for any integer
k, any F(t,z) € S(R x R") and G(t,z) € S(R x R")

(35)  1Q(F, Gy <C | Y 2227 2 p(27™ ) Fillp2p2 Gkl o -
meZ
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On the isoperimetric inequality for mappings with
remainder term
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In this talk, we concern a sharp version of the classical isoperimetric inequality
for mappings from R? to R>.
First, let us introduce the following function spaces:

2
- I! (R2:R® :/ Vulde / _
W {u e lOC( ) ) R2 | ul a’ + R2 (1 + !x‘z)z x < m b

U

Let IT : S? — R? U {co} denote the stereographic projection from the north pole

and let
1 2 . 0 2
T2y, 23) = ——— 0|es
(x], :C2) 1+ ILU[Z f?l + 1

be its inverse, then the space YW can be written as
W = {u €L, (R*R*) :uolle HI(SZ;R3)}.

Note that by Poincaré inequality, (u,v)yy := Jgz Vu - Vodz defines a scalar product
on W. From now on, we set W :=u — X [p» arepedr € Wior ue W.
Let () denote the oriented volume functional

Q(u) ::/ U Uy, A UgydT
R2

where u,, = :>u and A denotes the vector product in R®.

The followiflg inequality is referred to as the classical isoperimetric inequality for
mappings:
SIQ)P? < / |Vultdz for Vu € W. (1)
R
Here —_y
S = _11'lf -——‘wfRz ] UL 3$
wewQuzo |Qu)|¥
denotes the best (largest) possible value for which the classical isoperimetric inequal-

ity (1) holds true.
By simple calculation, we see the function Uy, € W where

= (32m)'/3

- 0
2 1~ 4
Del) =i mar | 25" ) T



attains the infimum value S for any A > 0 and a = (a;,a;) € R?. Furthermore, if
we set the 7-dimensional manifold

M= {CRU,V1 :ce R\ {0},R€ SO(3),A >0,a € RZ} c W\ {0}

where SO(3) = {R : 3 x 3matrix, R' = R, det(R) = 1}, then by a classification
theorem of Brezis and Coron, we see that this manifold consists of all mappings that
achieve the best isoperimetric constant in (1):

M= {u e W\ {0} : /Rz Vul?dz = S\Q(u)|2/3}.

Now, main theorem in this talk is the following.

Theorem. There exists a positive constant C' > 0 such that
/]Rz Vulde — S|Qu)? > Cd(u, M)?

holds for any u € W. Here d(u, M) denotes the distance of u from M in W;
d(u, M) = inf{||u — vl||yy : v € M}.
In the proof, we follow the argument of Bianchi-Egnell [2] and Bartsch-Weth-
Willem [1], in which the Sobolev inequality with remainder term was studied.
Key points are:

(1) Non-degeneracy of critical manifold (Isobe [3]).

2) Relative compactness of the minimizin sequence for S up to translation and
dilation.

On (1), we set a 6-dimensional submanifold in M
Z:={+RU,,: Re SO(3),A > 0,a € R?}.

Next lemma is equivalent to the fact that Z is a non-degenerate critical manifold
in W of the energy functional

1 2 _
E(u) = §/R2 Vuf'de+2Q(u), weW,

that is,
Tmz = ker D2E(RU,\7a)

holds for any RU,, € Z.



Lemma 1.(Isobe) There exists a constant Cy > 0 such that
[ V0P +4 [ RO oy A bude = Gy [ [VoJds
R? R2 R2

holds for any RUy, € W and any ¢ € W with ¢ L span{RU, ,} & Tar—Z.

On (2), Concentration-Compactness argument of P.Lions applies to
I =inf{—|Q(v)]:v € W,/ , |Vo|?dz =1} < 0,
R
thus we get the next lemma.

Lemma 2. Let (u") C W be any minimizing sequence for I. Then there exist
a, € R? and )\, € Ry such that the new minimizing sequence defined by

._an

() = w ()

is relatively compact in W. In particular, there exists a minimizer for I in W.

From this lemma, we obtain the relative compactness of the minimizing sequence
for S up to translation and dilation. In the proof of Lemma 2, the 2nd Concentration-
Compactness Lemma (CCL II) for the best constant of the isoperimetric inequality
([4]) plays an important role.

Concentration-Compactness Lemma II for the isoperimetric inequality.

Let (v*) C W satisfy the followings:

0 0

o v" — v° weakly in W for some v°,

o |Vo|2dz = p weakly in M(R?), where p is a nonnegative finite Radon mea-
sure on RZ?,

o T — T in D'(R?) for some distribution T, where T™ € D'(R?) is defined as

(o) = /Rz(cpvn)-’uzl Al de, Ve € D(R?).

Then we have T is a finite signed measure on R? and there exist at most countable
set (possibly empty) J, distinct points {z;};e; C R?, nonnegative numbers {y;};es,
real numbers {v;}jes such that

(1) p > [Vo°Pde + Y _p;6s,,
JjeJ



(2) T=T°4+> v;b,, in D'(R?), where T° is defined as T through v°,
jed

(3) Slv;*® < (5 €J),
(4) SIT(R?)]*? < p(R?),

(5) If v° = 0 and p(R?) = S|T(R?)|*?, then card(J) = 1 and there exists some
zo in R? such that T = Oy, pn = SC*36,, for some C € R\ {0}.
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Yoshikazu Giga!, Piotr Rybka?

! Graduate School of Mathematical Sciences, University of Tokyo
Komaba 3-8-1, Tokyo 153-8914, Japan

2 Institute of Applied Mathematics and Mechanics, Warsaw University
ul. Banacha 2, 07-097 Warsaw, Poland

June 29, 2005 rybka@hydra.mimuw.edu.pl

We study the driven crystalline mean curvature flow
V=k,+0 onl(t), ['(0) =Ty, 1)

where V' is the normal velocity of the curve, o is special but non-constant, ' is a rectangle (or a graph
over an interval). For simplicity we assume that the sides of I" are parallel to the coordinate axes and the
origin is the center of symmetry of I'.

We recall the definition of mean curvature .,

Ky = divé 2)

where £(z) = (Vv)(n(z)). This definition is correct if 4 is smooth, but we have good reasons to
consider

v(z1,22) = |z1|yr + |22|7A5 YA, YT > 0. 3)
First we provide the motivation for considering such . Namely, in a system modeling the crystal growth
in vapor (see [GR2] and references therein) I is the boundary of a circular cylinder 2. Moreover, equa-

tion (1) is coupled to the quasi-steady approximation of the diffusion equation for vapor supersaturation
o,

0=Ac in |J R°\Q@), lim o(z)=0">0 4)
0<I<T |z]—o0

Jdo

=V on S(t) = 9Q(t). )

In this system n is the outer normal to ; § = 3(n).

Precisely, the situation we are interested in may be called the onset on singularity: the velocity V is
no longer constant over facets of I' (or 012), i.e. roughly speaking, over its flat portions. Before we study
the full problem, i.e. system (1), (4), (5) for being I the boundary of a cylinder we wish to consider a
simplified setting: I" is a rectangle (or a graph of a function) and ¢ is a fixed function independent of
time. Our choice of v is motivated by the physics of the problem (see e.g. [Ne]). Namely, the normals to
I" should belong to the set of energetically preferred orientations which is the set of normals to the Wulff
shape of ~. Let us recall the definition of the Wulff shape,

W,={zecR*: YneR? |n|=1,z-n<y(n)}.
8!



For ~ given by (3) we notice that W, is a rectangle, i.e.

W,y ={z € R?: [z1] < y(np), 22| < v(na)}-

Thus, if T" a rectangle, then normals to I' belong to the set of non-differentiability points of v and we
cannot any longer take {(z) = Vv(n(z)). This is the reason why we replace V~(n) with the subdiffer-
ential dv(n) which is defined everywhere, because of convexity of . Thus, in addition to (1) we have to
consider a section

§(z) € 0v(n(z)).
Making the right selection of £ is one the major problems, but before solving it let us specify our assump-
tions on o and I'. In [GR1] we proved that if ¢ is a solution to (4)—(5), where (2 is a circular cylinder and
V’s are constant and positive, then o is monotone over each facet (see (6) below). We expect that this

property of solutions to (1), (4), (5) should hold past the singularity formation. This is why we adopt the
assumption

Jiig'—(t,l‘l,l?) >0 forz; >0, +=1,2 (6)
0z;

For simplicity we limit our considerations to ¢ such that
O'(t, —Q?l,IL'Q) :J(t,xl,xz), a(t,zl,—xg):a(t,zl,zz). (7)

As we mentioned we will make our assumption of I' more clear. Namely, we assume that I'(¢)
consists of the sum of four graphs and it is symmetric with respect to the coordinate axes, i.e. I'(t) =
L(dB(t,-))uT(=dB(t,-)) Ul (d(t,-))UT(=d (¢, ), where d¥, @* are Lipschitz continuous functions,
to be specified below and I' ( f) denotes the graph of f. Because of the symmetry assumptions, we further
consider only Sy = I'(d*(t,-)) and Sg = I'(df(t, -)). We will call them facets.

‘We notice that (1) (while taking into account (2)) is the Euler-Lagrange equation of the functionals

£:(6) = %/ divsé — o2dH),  i=A, R
S;
on

Di ={¢ € L™(S;) : divsé € L*(S:), £(z) € 0v(n(2)), Elsins; € dy(np) Ndv(nR)}, i = A, R,

where n; is the normal to .S;.
The idea of considering a variational problem like (VP) appeared first in [BNP1], [GG] and [GR2].
We are now ready to define the notion of solution.
Definition. A solution to (1) is a couple I'(t),£(t)), £ € D, where I'(t) is a (special) Lipschitz curve,
and ¢ is a solution to
Ei(&) = min{&;(¢) : ¢ € D;}, 1= R,A. (VP)

Our goal is to gain precise information about the onset of possible facet bending or breaking. For
this reason we will consider S; having at most three faceted regions, i.e. maximal intervals on which

o — divg€ = const.

holds. Before we consider the rectangle we will look at the case of being I'(¢) a graph. We restrict our
attention to:

@ '(t) =T(d(t,-));

(b) d(t, —z) = d(t,x); §2(¢t, +L) = 0;

(© fB(n) = 7 }Ll,nz}» n = (ng,nz).



(dd(t,z) = Roif 0 < z < lp, d(t,-) is monotone on (ly, 1), d(t,z) = Ry ifl; <z < L.
We are interested in the situation when at the initial time ¢ = 0 the curve ['(0) is as above, i.e. ['(0) =
I'(d(0,-)), £(0) solves (VP) and £(0, z) belongs to the boundary of the subdifferential 9+ (n(z)) for
z € (I, —lo) U (lo,!1). This is the reason why the Euler-Lagrange equation for the single functional £
does not hold on the intervals (—1Iy, —lo), (lo,{1)-

The surface divergence divgé = 7 - gé, (7 is a unit tangent to I") gets a simplified form, from which
we may calculate o. Namely on (=L, L) \ ((—l1, —lo) U (lo, 1)) we have divg¢ = 2&

= Bx1°
The minimization problem (VP) is in fact of obstacle type, hence by the general theory (see [KS])
&, .
0= —=(%1; =0,1. 8
(L) i=0 ®)

This fact allows us to deduce

Proposition 1. Suppose o satisfies (6) and (7). If (d, &) is a solution to (1), |d, (¢, z)| < 1 and it satisfies
(a-d) above, then:

(a) Equation (1) take the form

&:ﬁ%@@+ﬂ¥lonm@]

0
dt =0 On (lo,ll) (9)
R L
Ry ::][U(s) ds + 2y(nr) on [ly,L].
! L-14

1

(b) The velocities satisfy the inequality Rl > Ro > 0 and the following condition holds

lo n L n
o(ly) = ]{)0‘(8) ds + LIORQ’ o(lh) = ]{O’(S) ds — QI:Y—(_%) (TC)

The details will be presented elsewhere, see [GR3]. The very simple form of (9), is the result of
(c) and |d,(¢,z)| < 1. Let us notice that (TC) is a consequence of (8). Moreover in order to solve the
resulting system (9) we need to know the time evolution of /;(¢), ¢ = 0, 1. Fortunately, we may determine
it in advance.

Corollary 1. Let us suppose that the assumptions of Proposition hold. In particular, o is independent
from time, then Iy (t) = loo, 11(t) = l10.

We have now identified all the necessary ingredients to solve (9).

Theorem 1. Let us suppose that I'(0) = I'(d(0, -) and (a)-(d) hold. Then, there exists a local in time
solution of (9).

While local in time existence to a system of ODE’s and its continuous dependence upon data is
obvious, we note that the constraint |d, (¢, z)| < 1 influences the existence time. Propagation of (8) (i.e.
(TC)) is not clear, this is important because we first construct d, then ¢ which is supposed to be a solution
to an obstacle problem. We also stress that d(t, -) is a continuous function due to continuity of d(0, -)
and (TC). For the full proof of this result we refer the reader to [GR3].

We note that this Theorem does not guarantee uniqueness of solutions. This may be proved by
applying the methods of the semigroup theory similar to that used in [FG]. Namely, one can show that
the solution (d, £) we constructed is a solution to the differential inclusion,

i+ 0% (u) 0,

where @ is appropriately chosen. The general theory (see e.g.[Br]) yields uniqueness (and existence too).



Once we understood the graph evolution we may turn our attention to the case of a rectangle. More
precisely, we assume that ['(¢) consists of the sum of four graphs and it is symmetric with respect to the
coordinate axes, i.e. ['(t) = T'(d®(t,-)) UT(=df(t,-)) UT(d* (t,-)) UT (=d"(t,-)). Thus, the evolution
system consists of two sets like (9) for df*(t,-) (defined over [~ L(t), L(t)]) and d™(t,-) (defined over
[—R(t), R(t)]). Each of the functions d, d* is constant over [~ L(t), L(t)] \ ((=1, i) u (1F, 1F%)
(respectively, over [—R(t), R(t)] \ ((—=I&, —I4) U (15,1%). Thus, those systems are coupled by L(t),
R(t),I(t),t=0,1,j = A, R. The details get more complicated.

We are mostly interested in the behavior of solutions on the intervals (lé, l{), j = A, R. We can rely
upon the following result. .

Proposition 2. If xi%(t, z1,22) > 0for z; > 0,7 = 1,2, then function ¢ — [} (¢) is decreasing while
the function ¢ — [ (¢) is increasing, j = R, A.

Thus, in particular we can consider the following data [§(0) = If,, = I3, = 1}(0). Thus we are able
to state our main result.

Theorem 2. Let us suppose that o satisfies (6), (7) and T'(0) is a rectangle with 7§, (0) = 11 (0),i = R, A.
Moreover, we assume that (TC) is satisfied at ¢t = 0. Then, there exists a solution to (1) and (TC) is
satisfied for all ¢ > 0.

This result is proved in [GR3]. Let us stress that (TC) at time ¢ means that at that time instant the
Cahn-Hoffman vector is a solution to obstacle problem (TC). Moreover, by Theorem 2. this property
propagates in time. Unfortunately, the methods of this theorem do not permit us to conclude uniqueness
of solutions. This requires different methods.

We conclude by saying that in our setting facets, which loose their stability bend.
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Boundary blowup solutions to curvature equations

Kazuhiro Takimoto!

1 Introduction

Let ©Q be a bounded domain in R®. We consider the so-called curvature
equations of the form

Hilu] = Sk(k1y .-y 60) = f(uw)g(|Dul) in £, (1)

with the following boundary condition

u(z) = oo as dist(z,09Q) — 0. (2)
Here, for a function u € C%*(Q), k = (k1,...,k,) denotes the principal
curvatures of the graph of the function u, and Sk, k = 1,...,n, denotes the

k-th elementary symmetric function, i.e.,

Sk(K) =D Kiy -+ i,y (3)

where the sum is taken over increasing k-tuples, 1 <13 < i < --- <1 < n.
We study the existence and the asymptotic behavior near 02 of a solution
to (1)-(2).

The family of equations (1), k = 1,...,n contains some well-known and
important equations.

The case k = 1 corresponds to the mean curvature equation;
The case k = 2 corresponds to the scalar curvature equation;

The case k = n corresponds to Gauss curvature equation.

We remark that (1) is a quasilinear equation for & = 1 while it is a fully
non-linear equation for k¥ > 2. In the particular case that k = n, it is
an equation of Monge-Ampere type. It is much harder to analyze fully
non-linear equations, but the study of the classical Dirichlet problem for
curvature equations in the case that 2 < k < n — 1 has been developed in
the last two decades, see for instance [4, 11, 24].

The condition (2) is called the “boundary blowup condition,” and a
solution which satisfies (2) is called a “boundary blowup solution,” a “large
solution,” or an “explosive solution.” The boundary blowup problems arise
from physics, geometry and many branches of mathematics, see for instance

! Department of Mathematics, Fachlty of Science, Hiroshima University
1-3-1, Kagamiyama, Higashi-Hiroshima city, Hiroshima, 739-8526 Japan
e-mail : takimoto@math.sci.hiroshima-u.ac. jp



[12, 19, 21]. The study of such problems for non-linear PDEs starts from
the pioneering work of Bieberbach [3] and Rademacher [21] who considered
Au = €* in two and three dimensional domain respectively. For the case of
semilinear equations, they have been extensively studied (see, for example,
[13, 20] and [2, 6, 15, 16, 17, 19]). The case of quasilinear equations of
divergence type to which the mean curvature equation (k = 1) belongs has
been treated in [1, 7, 9]. The case of Monge-Ampere equations has been
studied in [5, 10, 18]. However, to the best of our knowledge, there are no
results concerning such problems for other fully non-linear PDEs, except for
the work of Salani [22] who considered the case of Hessian equations.
Throughout the article, we assume the following conditions on f and g:

o Let tg € [—00,00). f € C™®(tg,0) is a positive function and satisfies
f'(t) > 0 for all t € (tg, 00).

e If tg > —oo, then f(t) = 0 as t — to + 0; otherwise (i.e., if tg = —00),

/t f(s)ds < oo forallteR. (4)

e g € C™|[0,00) is a positive function.

The first condition assures us that the comparison principle for solutions
to (1) holds. The typical examples of f are f(t) =t (p > 0), to = 0 and
f(t) = et, tg = —00.

In the subsequent two sections, we state our main results.

2 Existence results

We recall the notion of k-convexity. Let @ C R™ be a domain with boundary
0Q € C? For k=1,...,n — 1, we say that Q is k-convez (resp. uniformly
k-convez) if the vector of the principal curvatures of 0Q, &' = (k,..., k] _;),
satisfies S;(k") > 0 (resp. > 0) for j = 1,...,k and for every z € 0Q2. We
note that a C? domain is (n — 1)-convex (resp. uniformly (n — 1)-convex) if
and only if it is convex (resp. strictly convex).

First, we shall establish the existence of a boundary blowup solution to
the curvature equation (1). We focus on the case k > 2, because for k =1

the existence has been already studied in [9].

Theorem 1. Let 2 <k < n —1. We suppose that Q, f and g satisfy the
following conditions.

(A1) Q is a bounded and uniformly k-convex C* domain.

(A2) There exists a constant T > 0 such that g is non-increasing in [T, c00),
and lim;_,o, g(t) = 0.



(A3) Set §(t) = g(t)/t and F(t) = [, f(s)ds. Then

L) 5)
ey

(A4) Set

t Sk
H(t):/o S e (6)

Then lim;_, o, H (t) = co.
(A5) Set o(t) = g(t)(1+ t2)%/2. Then (t) is a convez function in [0,00).
(A6) limsup,_,., ¢ (t)t* < oo.
Then there erists a viscosity solution to (1)-(2).
The strategy of the proof of this theorem is as follows (we refer the read-

ers to [23] for details). We note that comparison principles for viscosity
solutions play important roles.

Step 1.| We show that there exists a classical solution to the Dirichlet
problem

(7)

Hyfun] = f(un)g(|Dunl) in 9,
Up =N on 092,

for every n € N with n > to. It is enough to derive the C?-a priori estimate
for (7) (see [8, 14]).

Step 2.| We prove that lim,, ., u,(=: u) exists and is a viscosity solu-
tion to (1)-(2).

Next we obtain the following non-existence result.

Theorem 2. Let 2 < k <n —1. We define two functions g,h by

n—1 1/k
G(t) = maxg(s), h(t ! (( k )> . (8)

S O= 57 a0

We assume that lim_,e, g(t) = 0. If there exists R > infyeqsup,eq |z — yl
such that

o dt 9
" etz <> 0



then (1)-(2) has no solutions.

Example 1. Let 2 < k£ < n — 1 and p, ¢ be positive constants. Suppose (2
is a bounded and uniformly k-convex C'*° domain. We consider these three
equations:

up
A= ™ "
ePt )
Hkl:’u,] = W mn Q, (11)
erv )
Hk[u] = m in Q. (12)

It follows from Theorem 1 and Theorem 2 that

e The equation (10) has a boundary blowup solution provided p > ¢ and
1<qg<k-—1.

e The equation (11) has a boundary blowup solution provided 1 < ¢ <
k—1.

e The equation (12) does not have any boundary blowup solutions.

Remark 1. Theorem 2 indicates that as far as (10) is concerned, p is
necessarily greater than ¢ in order for a boundary blowup solution to exist.
In this case, our condition (A3) reduces to p > ¢ as well. We conjecture that
(10) has a boundary blowup solution provided we assume only 1 < ¢ < p.

The case k = mn, which corresponds to Gauss curvature equation, is
excluded from Theorem 1. We state the existence result for the case k = n.

Theorem 3. Let Q be a bounded and strictly convex C*° domain, and k =
n. We assume that the condition (A3) is satisfied and that lim sup,_, ., g(t)t <
oo. Then there exists a viscosity solution to (1)-(2).

3 Asymptotic behavior near the boundary

In this section we establish the asymptotic behavior of a boundary blowup
solution near the boundary when the domain is strictly convex. We shall
prove the following.

Theorem 4. Let 1 < k < n— 1. We assume that (A2) and (A3) in
Theorem 1 and the conditions given below are satisfied.

(B1) Q is a bounded and strictly convex C* domain.



(B2) to = —o0, ortg > —oo and fM* is Lipschitz continuous at t.

(B3) There exists a constant T' > 0 such that f is a convex function in
[T', 00).

t
(B4) Set h(t) = ————====. Then there exists a constant o > 0 such

SOTVIT

that h(t)/t* is non-decreasing in (0, c0).

: 9()
B5) lim ———— =
(B5) fim 735
Then there exist positive constants Cy,Cy such that every solution u to (1)-
(2) satisfies

Cy dist(z,09Q) < p(u(z)) < Cydist(z, 09), (13)

where ) is defined by

o0 ds
V() :/t (=Y BEO (14)

We state the idea of the proof. Since € is a bounded and strictly convex
domain with boundary 9Q € C'®, there exist positive numbers R;, Ry with
R < R; satisfying the following condition: for every z € 02, there are two
balls By ., By , whose radii are Ry and Ry respectively such that By, C Q C
By, and 0By, N 0B, , = {z}.

Let vy (resp. v2) be a radially symmetric solution to (1) with v;(z) —
o as dist(z,0B;,) — 0 (resp. v2(z) — oo as dist(z,0B,.) — 0). The
condition (B4) guarantees the existence of vy and v,. By the comparison
principle, we see that

V2 _<_ (7 S (5} in Bl,z- (15)

In view of (15), it suffices to study the asymptotic behavior of the radially
symmetric solution near the boundary. The assertion follows from the claim
that if v = u(|z|) is a radially symmetric solution to (1)-(2) in Bgr(0) with
R > 0, then there exist constants C7,C5 > 0 which are independent of r
such that

Ci(R—r) <¢P(u(r)) < Co(R—r) (16)

when r is near R.

Example 2. Let 1 <k <n -1 and p,q > 0. Suppose 2 is a bounded and
strictly convex C'* domain. Then Theorem 4 implies that



e A boundary blowup solution u to (10) (if it exists) satisfies
C, dist(z, Q)77 < u(z) < Cy dist(z,092) 77 near dQ  (17)
for some constants C,Co > 0, provided p > k and p > gq.

e A boundary blowup solution u to (11) (if it exists) satisfies
u(z) = —%log dist(z,09Q) + O(1) near 09, (18)

provided ¢ > 0.

We state our result concerning the asymptotic behavior of a solution to
(1)-(2) near 0N for the case k = n. We mention that

H(t) = /O peTe +Ss2)(k+2)/2 ds (19)

in this case, and introduce the following condition:

(B6) There exists a constant o > 0 such that H(t)/t* is non-decreasing.

Theorem 5. Let k =n. We assume the conditions (A3), (B1), (B2) and
(B6). Then there ezist positive constants Cy,Cy such that every solution u

to (1)-(2) satisfies
Cy dist(z,00Q) < ¥(u(z)) < Cydist(z,09), (20)
where ¥ is defined by

e ds
0 _/t T (21)

Example 3. Let £ =n and p,q > 0. Suppose €2 is a bounded and strictly
convex C' domain. Then Theorems 3 and 5 implies that

e If p > ¢ > 1, then there exists a boundary blowup solution to (10).
Moreover, the solution u satisfies

C, dist(z,0Q)” 75 < u(z) < Cy dist(z, 9Q) " 72%  near 0 (22)
for some constants Cy,Cy > 0, provided p > n and p > ¢ > 1.

e A boundary blowup solution u to (11) exists and satisfies

u(z) = _q; ! logdist(z,09Q) + O(1) near 092, (23)

provided ¢ > 1.
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THE NAVIER-STOKES EQUATIONS WITH INITIAL
DATA IN UNIFORMLY LOCAL L? SPACES

YUTAKA TERASAWA!

In this talk, we consider the Cauchy problem for the incompressible
homogeneous Navier-Stokes equations with viscosity 1 in R? where d > 2.
The equation is of the form

ur — Au+ (v, V)u+Vp = 0, t>0, z€R?,
(NS) V-u = 0, r € R4,
u(0,2) = wuo(x), r € R

Here u = (u!,u?,--- ,u?) is the unknown velocity vector field and p is
the unknown pressure scalar field.

Our main purpose here is to solve (NS) for initial data which may not
decay at space infinity but not necessarily locally bounded. There are
many works which construct mild solutions of the Navier-Stokes equa-
tions on various function spaces (e.g. [22], [4], [10], [21], [16], [17], [24],
[7], [6], [8], [13], [23], [30], [5]). E. B. Fabes, B. F. Jones and N. M.
Riviere [10], T. Kato [21], Y. Giga and T. Miyakawa [16] constructed
mild solutions of (NS) with initial data in L? space where p is largerthan
the space dimension d. Moreover in [21] and [16], the case p = d is dis-
cussed. However, all functions in L? spaces decay at space infinity when
p is finite. When one considers nondecaying flows at space infinity as we
would like to do, the function space for initial data should be a space of
functions which may not decay at space infinity. The L* space, consid-
ered by J. R. Cannon and G. H. Knightly [4], M. Cannone [6], Y. Giga,
K. Inui and S. Matsui [13] is of course such a kind of function spaces, and
Besov spaces with negative regularity considered by M. Cannone and Y.
Meyer [7], M. Cannone [6], H. Kozono and M. Yamazaki [24], etc. are
such kinds of function spaces too. However there is no work constructing
mild solutions with initial data in uniformly local type spaces, which nat-
urally contain functions which may not decay at space infinity. (For the
definition of uniformly local Triebel-Lizorkin spaces and Besov Spaces,
e.g. [33] ). In this paper, we shall construct the mild solutions of (NS)
with initial data in uniformly local L? spaces where p is grater than or
equal to the space dimension d. The method is quite simlar to that of

E. B. Fabes, B. F. Jones and N. M. Riviere [10], T. Kato [21], Y. Giga

!Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan.
E-mail: yutaka@math.sci.hokudai.ac.jp
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and T. Miyakawa [16] except that we use the convolution type estimate
we newly obain instead of Young’s inequality for for convolutions. Uni-
formly local LP spaces consist of functions which are locally in L? and
its L? norm in any Eucledian ball with radius 1 are uniformly bounded.
When p is finite, they obviously contain functions which does not decay
at space infinity but not necessarily locally bounded.

Uniformly local L spaces were used by J. Ginibre and G. Velo [18] for
complex Ginzburg-Landau equations and used by P G Lemarié-Rieusset
[25], [26] and Y. Taniuchi [31] for the equation of the fluid mechanics.
In his work [25] and [26], Lemarié-Rieusset constructed in the three di-
mensional Euclidean space a suitable weak solution which is local in time
with arbitrary initial data in uniformly local L? space, and furthermore
he constructed a suitable weak solution which is global in time with arbi-
trary initial data in the closure of compactly supported smooth functions
in uniformly local L? space. Y. Taniuchi [31] obtained estimates of 2— D
vorticity equations. However he only considers LY, -L?, _type estimates
of convolution type operators, while we also treat L?, — L!, _type esti-
mates of convolution type operator in which the indices p and ¢ may be
different. Let us be more precise. We consider the equations (NS) with

initial data in L7, space for positive number p and p € [1,00]. When

p is finite, the space L?, (R?) is defined as follows.

uloc,p
(1)

Lo p(R?) = {f € Li,o(RY); || £llz2

uloc,p xeRd

= oup ( /|| () Pdy) ¥ < oo).

For simplicity of notations we set Li‘l’oc,p(Rd) = L*(R?). When p is
finite, the space Lzloc,p naturally contains both the space LP and the

space L. The space L?

uloc,p

also contains all LP-periodic functions, i.e.,
periodic functions which are locally p-th integrable in R?. We include the
parameter p here, since the exisitence time estimate of the mild solutions
can be different if p is different. Moreover varing p, we can reproduce T.
Kato’s global esistence result for small initial data ; More precisely, one
can construct a unique mild solution globally in time if L¢ norm of the
initial data are sufficiently small.

To solve (NS) we convert the equations to the integral equation of the
form

¢
(2) u(t) = e®ug — / et=IAPY - (u @ u)ds.
0

Here e'® is the heat semigroup, P is the Helmholtz projection, and f ®
9 = (figj)i<ij<a is a tensor product of f = (fi, f2,-++,fa) and g =
(91,92, -+ ,9a)- The solution of the integral equation (2) is called the
mild solution of (NS) with initial data ug. The precise meaning and well-
definedness of each term follows from the L?, — L? type estimates of

q
uloc uloc
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convolution type operators which we shall obtain. Now we would like to
state our main results.

Theorem 0.1. (Ezistence and uniqueness)

(i) Let p € (d,00] and p > 0. Then, for all ug € (LY, (R))* so

that V - ug = 0, there exist a positive T* and a unique mild solution

u € L=((0,7%); (L2, )Y N C((0,T%); (L. )?) of (NS) with initial data

uloc uloc,p
ug on (0,T*) x R?. The existence time T* is bounded from below as

TR LT >

= luollrr

uloc,p

[

T*

where v is a positive constant depending only on d and p.
1B
(ii) Let p > 0. For allug € (UpsqL? (Rd)'l “Lﬁloc,p)d so that V-uy = 0,

uloc,p
there exist a positive T* and a mild solution u € L*=((0,T*); (L%},,)*) 0
C((0,T%); (L4, ,)?) of (NS) with initial data uo on (0,7%) x R%. This

solution may be chosen so that for all T € (0,T*) we have

sup 7||u(t,-)||pe < oo, and lim 1 |ju(t,)||p= = 0.

0<t<T =0

With this extra condition on the L* norm, such a solution is unique.
The existence time T™ is estimated from below as

T > min{p*, a},

where « is a positive number satisfying

1
sup 17||euol|p2a <y
0<t<a P

where v ts a positive constant depending only on d.
(iii) Let p > 0. There exists ¢ > 0 such that for all uo € (L%, )?

uloc,p
with [|uol|pa < e, there exist a positive T™ and a unique mild solution
uloc,p

’

u € L=([0,7%); (LY. )N C((0,T%); (L4, ,)?) of (NS) with initial data

uloc,p uloc,p
ug on (0, T*)xR? so that u(0,-) = ug. The existence time T* is estimated
as
T*ip 541> —1
o[ e

uloc,p

Y

where v ts a positive constant depending only on d.

H. Koch and D. Tataru [23] showed that for any given T' > 0, one can
construct a local mild solution of (NS) which exists at least until time
T if the bro™! norm of the initial data is sufficiently small. Especially,
they constructed local mild solutions for any initial data in vmo™!. They
also showed that one can construct global mild solutions for small initial
data in BMO™'. The definitions of bmo™!, vmo™! and BMO™! are the
following. For f € S'(R™) we set
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1 R2 %
f 1= sup <——/ / etAf Y 2dtdy> .
H ||BMOT ©ER™ 0<R2<T |B($7R)| B(z,R) Jo I ( )|

Then

BMO™' = {feS'®R");|fllsmo-r = |Ifllpmoz < oo},
bmo™" = {f € S'(R"); || fllomo-1 := A Barorr < oo},
vmo™ = {f € bm0—15¥_1% A Brozr = 0}.
The inclusion relations of L%, bmo™", vmo™! and BMO~! are as fol-

lows.

Ly, C vmo™ " if p > d,
Ly, C bmo™ ' if p > d,
L ¢ BMO™L.

Related to mild solutions constructed by H. Koch and D. Tataru [23], H.
Miura [29] showed some uniqueness theorems of mild solutions of (NS).

A].thou h our function Spaces LP When d < p < +OO are Contained lIl
g uloc,p — =
P

bmo~', our results are useful since the definition of L7,  is very simple
and it obviously contains some functions which may have singularities
and may not decay at space infinity. Moreover, the convergences of mild
solutions to initial data when time goes to zero are relatively simple in our
case. For describing the convergences of mild solutions to initial data,

we define the subspace L7,  as the colsure of the space of bounded
P

uniformly continuous functions BUC(R?) in the space L?, . i.e.,
3) £2,,e, = BUCRY) " Piees.

Remark that the subspace £, (R?) is the space BUC(R?). The space

uloc,p
“loc,p 18 useful since we can show that the solutions converge to the

initial data in L7, , norm if the initial data belong to L7, . .

have the following theorem.

In fact, we

Theorem 0.2. (Convergence to initial data)
(i) Let p € (d,o0] and p > 0. Let u € L®((0,T); (LE, . )*) be a unique

uloc,p
mild solution with initial data uy € Liloc’p. Then, for any compact set
K C RY, we have

(4) lim [[u(t) — uo||zr(x) = 0

t—=0
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holds. Moreover,

5) fim (8) ~ ol = 0

holds if and only if uo € L7, .

(ii) Let p > 0. Let u be a unique mild solution in L°°((0,T); (L%, )%
which satisﬁest%u(t) € L=((0,T); (L>)4), limt_,ot%llu(t)llpo = 0. Then,
(6) lim [[u(?) — uol|pax) = 0

holds. Moreover, under the above condition,

) fim fu(t) — woll,_, = 0

holds if and only if ug € L%, ,.

One of the keys to our results is LZ!oc,p‘LZloc,p estimate we newly obtain,
which we will show in the following theorem. We say that a function is

radial decreasing if it is radial symmetric and nonincreasing.

Theorem 0.3.
Let 1 < ¢ < p < oo. Let F(z), H(z) be two real-valued functions in R?
and let |F(z)| < H(z) hold. Furthermore, assume that H is a bounded,
integrable and radial decreasing function in R?.

We set Fip(z) = t—g+mF(x/t%) fort > 0, m > 0. Then, for any
function g € LY, (R?), we can define pointwise

uloc,p

Fun#9(0) = [ Funla = v)alu)ds
R
Furthermore we have the estimate

Ci||H Col|H||,
(8) ||Ft,m*g|[Lp S ( 1|| Hl 2” H

foe = Vet g f=5)

)”gHLq )

uloc,p

where r is the number satisfying % = % -+ % — 1, and Cy, Cy are positive
constants depending only on d.

Let us state the outline of the proof of this theorem. By rescaling, we
may assume that p = 1. To obtain this estimate, we decompose R? into
countable cubes whose centers are lattice points, 1.e.,

1

Rd - UkGZdS(k7 —2"),

where S(z,0) := {y ; maxi<i<a|yi — =] < 0}. We can decompose any
measurable function f in R? into

f(z) = Z xs(ky%)(:c)f(:v), a.e. z € RY,
kezd

where y4(z) is the characteristic function of a subset A in R%. We de-
compose both a convolution kernel H and a convoluted function ¢ in this
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way. Here we assume that H and g are both nonnegative. Furthemore,
we assume that H is bounded, integrable, radial symmetric and nonin-
creasing function and ¢ is L, function (We say that a function is radial
decreasing if it is radial symmetric and nonincreasing). Using Young’s in-
equality for convolutions and the relation supp f; * f; C suppfi; + suppfz
when f; * f; is well-defined, we can estimate L?, ~norm of the function
H * g which is proven to be defined pointwise.

This talk is based on a joint work with Mr. Yasunori Maekawa,
Hokkaido University.
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Let o(t,z) be a smooth deformation of a material that involves with
time. The unknown of the problem is a displacement from the reference
configuration, u(t,z) = ¢(¢,z) — . The displacement gradient is then the
matrix G = Vu with components Gy = 9ju’, where the spatial gradient
will be denoted by V or grad. Since we assume that the materials are
isotropic,homogeneous and hyperelastic, the potential energy density is char-
acterized by a stored energy function o = o(ky, ke, K3),Where K1, k9, k3 are
principal invariants of the strain matrix C' = G+ ‘G + G 'G.Thus the motion
for the displacement is governed by a nonlinear system

do
1 Pu—div —= =0 in D,
where D is a domain in R® with smooth boundary dD. It is natural from
(1) that boundary values of displacement u satisfy the condition
do

2 —-n=20 on dD,

where n stands for outer unit normal to dD. We assume initial data for u of
the form

(3) u(0,z) =ef(z), Owu(0,z)=eg(x),

where ¢ > 0 is small and f and ¢ have compact support.
It is known that the linear part Lu of (1) becomes

(4) O*u — 2Au — (¢ — ¢3)grad div u,



where the material constants ¢; and ¢y(¢; > ¢3) correspond to the propaga-
tion speeds of longtudinal and transverse waves,respectively,and are defined
by the Lamé constants A, u;

a=0G+2u)'? o=l

It is known from physical requirement that 4 > 0,3A+2u > 0. The nonlinear
part F(Vu, V2u)of (1) is linear in V?u and the first order terms in Vu can
be written in the form (see [1]),

(5)  digrad(div u)? + dy(grad|rot u|* — 2rot(div u rot u)) + Q(u, Vu).

Here Q(u, Vu) is a linear combination of null forms Qy,,,(d,u?, u*). Thus the
nonlinear system (1) is equivalent to

(6) Lu = F(Vu,V?u)
In 1984,F.John[4] treated radial solutions of the form
(7) u' = zip(t,r), r=|z|.

The nonlinear system (6) reduces to a single second-order equation for 1 of
the form

(8) (9?7,/1 = 62(8377b + 4r~1 r@b) + 7‘_2A(¢, r@rxb)
c? = c 4+ 2dyrd) + dsib,

where A(1,70,¢) = di1(rd.)?* + di2¢(ro,1) + daatp?+ third order terms and
higher. We assume initial data for ¢ of the form

(9) ¥ (0,7) = ep(r), 0p(0,7) = en(r),

where p and 1 have compact support.F.John proved that if the genuine non-
linearity condition d; # 0,then the second derivatives of the solution v for
the initial value problem (8) (9) blow up at a finite time for sufficiently small
€.

We return to the original initial problem (1) (3). In 2000, T.Sideris[5]
and the author[1],[2] proved independently the existence of a unique global
in time small smooth solution to the initial value problem, provided the
genuine nonlinearity condition does not hold, i.e., d; = 0. The author
derived also in [1] the “null condition” for nonlinear term of general type
F(0u,0*u) (Ou = (0, Vu)) from John-Shatah observation and proved then
the condition d; = 0 means the null condition for F(Vu, V*u).There are some
open problems. The first is to show global existence of smooth solutions for



F(0u, 0*u) satisfying the null condition.When an isotropic homogeneous ma-
terial satisfies not necessary hyperelastic, we obtain a more general system
than (1) from Rivlin-Ericksen theorem ([3]). The second is to show global
existence of smooth solutions for this equation, which has almost same non-
linearity as (5) but has not a symmetric property getting energy inequarity
of “higher order”. We can not expect that initial data are always sufficiently
smooth. The third is then to show existence of weak solutions in energy level.

We study now initial-boundary value problem in the exterior or interior
domain of the unit sphere |z| = 1 for the displacement u of the form (7).
The boundary condition (2) reduces to a single first order equation for ¢ of
the form

(1) @0+ (3N + 200 = (B0 + B 0p)  on Jel =1,
where B(t),0,%) = b12t00,1 + byath®>+ third order terms and higher.

We first consider the extrior probrem in D : |z| > 1. Since the displace-
ment u of the form (7) is unbounded, we use a standard method in study of
initial value problem (1) (3). Set

Q = (Dl +&|Vul’ +( - )(div u)?
Q = 26 ‘(Ou)(dyu) — 22 — B)d div .

We then obtain an identity:
3
(11) 0Q+ Y 0;Q; =2"(du)Lu
7=1

We find from(7) and definitions of ¢;, ¢, that @ is equivalent to

et,r) = (rog)* + (rdp)* + 4
and, on the boundary 9D : |z| = 1,

3

> " 2Q; = 0b(c20, + (3¢t — A)) = 2utpdhp.

j=!

Here we use the linear boundary condition ¢}d,v + (3X + 2u)¢ = 0.By in-
tegrating the identity (11) over [0,¢] x D,we find from facts stated above
that

| ety o1y

1 <C (/100 e(0,7)dr + c5(0, 1)2> +2 /Ot dt/D (Ou) Ludz.



Thus,in the case of exterior problem, the energy inequality holds for any
material.

Finally we consider the interior problem in D : || < 1. The equation
02 — 3 (0% +4r=10,4) = 0 in (8) is the wave equation for radial solution in
“five” dimensions. However this equation has “three”dimensional character
in L? sense. By changing the unknown from 1 to r%y, we find that

(13)  r*(07Y — (97 +Ar710))) = OF(r*) — O} (r*) + 2.
Then we obtain an identity similar to (11):
(14) atQ_ + argl = 28,5(?"22/))1_—/(7"277/)),

where L = 92 — 20? + ¢?r=? and

Q = (9(r*y))* + (0 (r*y))* + 2eir?y?
Q1 = —2¢[0(r*)o(ry)

We find by using the linear boundary condition that,on the boudary 9D :
r=1,

Q1 = —2c20ab(0ptp + 200) = 2(\ — 2u)e D).

We assume that
(15) A>2p

We then find by integrating the identity (14) over [0,¢] x [0, 1] that energy
equality holds:

1

/ Qt, ¥)dr + (A — 2p2)ip(t, 1)°

(16) 7o 4 ¢
= / Q(0,7)dr + (A — 2u)(0,1)% + 2/ dt/ Ay (r*¥) L(r*)dr.

0 0 0
We remark that the materials Rubber, Lead, Aluminium, Copper and etc.
satisfy the condition (15) but Glass, Iron, Steel and etc. do not satisfy the
condition (15).

In conclusion, the author’s conjecture is that the initial-boundary value
problem has a unique global radial solution if d; = 0 in the exterior problem
and if A > 2u in the interior problem 7.
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1. INTRODUCTION

In this note we consider asymptotic behavior of solutions to the Cauchy problem

for semilinear systems of wave equations:
Otu; — ¢} Au; = F;(du) in R3 x (0,00), (L.1)

where i = 1,--- N, ¢; > 0, A = Y3_, 02, 0 = (9o,01,02,0s), 9; = 9/dx;,
0o = Oy = 3/t and u(z,t) = (u1(z,t), - ,un(z,t)) is a real-valued unknown

function. Besides, F; € C*(R*") is a given function satisfying
F(0) = VF:(0) = 0.

Our purpose here is to show that there are examples of nonlinearities F' such that
the corresponding equation (1.1) cannot be regarded as a perturbation from the
system of homogeneous wave equations, even if we restrict our attention to small
amplitude solutions. The results presented in the section 2 was obtained by a joint
work with Professors K6ji Kubota and Hideaki Sunagawa, and the results in the
section 3 was done by a joint work with Professor Soichiro Katayama.

We wish to explain the precise meaning of our purpose. Suppose that the Cauchy
problem for (1.1) admits a unique global solution u. We say the equation (1.1) can

be regarded as a perturbation from the system of homogeneous wave equations:
v — c2Av; =0 in R3 x (0,00), (1.2)

if the global solution u tend to the solution v = (vy,--- ,vy) of (1.2) as t — oo.
This kind of asymptotic behavior is well studied in connection with the so-called
nonlinear scattering theory in the energy space. (see, e.g. [19, Chapter 6] and the
references cited therein). Nevertheless, there is another possibility that the effect of
the nonlinearity remains so strong in sufficiently large time that the global solution
u cannot approach to any free solutions. To our knowledge, there are only few
results which suggest that such a phenomenon occurs for nonlinear wave equations
(see e.g. Alinhac [3, 4], Lindblad—Rodnainski [16, 17]). Therefore our main goal

of this note is to show that there exist small amplitude solutions to the Cauchy
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problem for (1.1) with a certain F whose large time behavior might be different
from that of any free solutions.

We conclude this section by recalling a sufficient condition to ensure the small
data global existence for (1.1) when nonlinearity F; is sufficiently smooth. For the
case ¢; = --- = ¢y, such a condition was introduced by Klainerman [11]. We say
F(0u) satisfies the null condition, if and only if the quadratic part of it can be

written as a linear combination of the following null forms

Qo(uj, uk; ei) =(Fruz)(Qeur) — ¢ (V) - (Vug), (1.3)
Qab(uj,uk) :(3auj)(8buk) - (Bbuj)(t?auk) (0 S a < b S 3) (14)

We remark that Christodoulou [5] also established the same result, independently.
Moreover, the global solution u to the Cauchy problem for (1.1) satisfying the null
condition approaches to some free solution (see Kubo-Ohta [14, Section 6]). On
the contrary, the null condition is necessary to ensure small data global existence if
we consider the scalar case, i.e., N = 1. In fact, the blow-up result was obtained by
Alinhac [2].

The null condition is extended to the multiple speeds case (i.e., the speeds
c1, ... ,cn donot necessarily coincide with each other) so that the small data global
existence for (1.1) holds (see Kovalyov [12], Agemi—Yokoyama [1], Yokoyama [21],
Sideris — Tu [18], Kubota — Yokoyama [15], Katayama [7], [8], [9], Katayama —
Yokoyama [10] and so on). For example, in addition to null forms, terms like
(Oqu;)(Opur) with ¢; # ¢ are allowed to be included for the multiple speeds case.
The precise conditions for the multiple speeds case are somewhat complicated, and
we do not go into details here. Instead of this, we shall discuss an extension of the

null condition for the case of the common propagation speeds with N > 2.

2. EXAMPLE, I

This section is concerned with the Cauchy problem for semilinear systems of

wave equations :

{ 8t2u1 - cfAul = Iathlp in R3x (0,00), (21)

OFus — c3Auy = |Opuy |? in R3x (0,00),

where ¢, ¢cg > 0, 1 < p < ¢. First we recall known results concerning the small
data global existence and blowup for the Cauchy problem for (2.1). Yokoyama [21]
proved that when c¢; # cy, the problem admits a unique global smooth solution
when p = ¢ = 2 and the initial data are in C§°(R?) and sufficiently small. On the
other hand, Deng showed in Theorem 3.3 of [6] that if ¢; = ¢, and ¢(p—1) < 2, then,
in general, a classical solution to the problem blows up in finite time however small
the initial data are. It is remarkable that the above condition is valid for p = ¢ = 2.
Recently, Xu [20] proved the blowup result when ¢; # ¢2 and 6(pg—1)/(p+q+2) < 1.
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Thus we see from these results that the feature of the problem (2.1) depend not
only on the exponents p, ¢ but also on the propagation speeds cy, c5.

In order to extend the existence result due to [21] for general p, ¢ > 1, we
consider only radially symmetric solution to the Cauchy problem for (2.1). To be
more specific, we seek solutions to the problem in X x X, where X is defined by

X = {w(z,t) € C(R® x [0,00)) ; there is u(r,t) € X? such that  (2.2)
w(z,t) = u(|z],t) for (z,t) € R® x [0,00) and I 1[1_r+r1OO w(xz,0) =0}
with
X? = {u(r,t) € CYR x [0,00)) ; ru(r,t) € C}*(R x [0,00)),  (2.3)
u(—r,t) = u(r,t) for (r,t) € R x [0,00)}.

Note that X C C*(IR? x [0,00)) N C%((R3 \ {0}) x [0,00)), because O, u(r,t) = 0
for r = 0 if u € X?2. Therefore the solution which we shall obtain is an “almost”
classical solution.

While, we consider the following type of initial condition :
uj(2,0) = fi(lz]), (Gruy)(2,0) = g;(Jz]) for z€eR® (j=1,2), (24)
and introduce a class of the initial data Y as follows:

Y ={(f,9) € C'(R) x C(R) ; rf(r) € C*(R), rg(r) € C'(R), (2.5)
f(=r)=f(r), g(=r) = g(r) for r € R}.

This space is consistent with X? in the sense that the solution v to the Cauchy

problem for the homogeneous wave equation
fv—c*Av=0 in R3x (0,00) (2.6)
belongs to X?, if the initial data (f,g) € Y satisfy such a decay condition as
M(f,9) = sup (1+)"[(f(r), g ()l < oo,
where £ > 0 and

(), gD = 17 )+ (4 ) (] + L9+ r(F (7)) + g’ (7))
Moreover we have the following estimate :
[o(r,)](1+ |r — ct])* < CM(f, 9)
for (r,t) € R x [0, 00), where we put

[o(r, )] = lo(r, )|+ (14 7) Y 105u(r )] +7 > 18%v(r,1)].

la=1 || =2
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In the application we choose x as k1 or k9 which are defined as follows:

Ky =p— ]_, (27)
ko =min(qg—1,q(p—1)) if ¢ # cyor p> 2, (2.8)
ko=¢q(p—1)—1 if ¢g=cpandl<p<2. (2.9)

In addition, if ¢; = ¢5, p = 2 and ¢(p — 1) > 2 holds, then we take such k, as
1 < k2 < ¢ — 1. Then we have the following existence result.
Theorem 2.1. Let 1 < p < ¢ and suppose that

q(p—1) > 2, (2.10)
if c1 = cq, and that

q(p—1)>1, (2.11)

if e1 # e Assume (fj,9;) €Y and My, (fj,9;) <€ for j=1,2 and e > 0.

Then there are positive constants eg and Cy (depending only on c1,co,p and q)
such that for any e with 0 < € < €, there exists uniquely a solution (uj,us) € X x X
of the Cauchy problem (2.1) and (2.4) satisfying

[ur(r, )} (1 + |r — ext])™ + [uz(r, )](1 + |r — e2t])™ < 2Coe, (2.12)
ife1 # eqg orp> 2, and
[ (r, (L + 7+ P37 (14 | — et (2.13)

+luz(r, t)](1 + |r — eat])*? < 2C0e,
ifer = ¢y and 1 < p < 2. Here we denoted uy(x,t) = ui(|z],t), us(z,t) = uz(|z], 1),
and Al*l+ = A% ifa > 0; Al =14 1og A for A > 1.

This result shows that the condition given by [6] is sharp if ¢; = ¢y and that it
can be relaxed if ¢; # cp. But it is still an open question what will happen when
c1 # ¢2, ¢(p— 1) < 1 and the condition given by [20] does not fulfilled.

From now on we denote by (u;,us) the global solution of the Cauchy problem
(2.1) and (2.4) obtained in Theorem 2.1 and assume that 0 < & < 9. Our next
step is to examine the large time behavior of (u1,us). We define 8y, 65 by

gj:Kj—l if01262 , ej:Kj—(l/Q) if(':l#Cz, (214)

where k; and ko are defined by (2.7), (2.8) and (2.9). Since k3 > 1/2 by the
definition and (2.11), we find that there exists uniquely a solution vy € X of (2.6)
with ¢ = ¢, satisfying

s () = v2(ll(es) < CP(1+0)7%  for €20, (2.15)

and |[v2(0)||g(c,) < o0, where C'= C/(c1, ca, p, q) is a positive constant and

Ol = 5 [ (B, + Ve, ) ).
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Now we are in a position to state our main result. Suppose that 8, > 0, i.e., if
¢1 = co, then p > 2; otherwise p > 3/2 (for the remaining case, we refer to [13]).

As an unperturbed system, we choose

{ 02vy — c2Avy = |OvalP in R3 x (0,00), (2.16)

O2vy — c3Avy =0 in R3 x (0,00).
In other words, our proposal is to regard (2.1) as a perturbation from the “modified

free system” (2.16), but in general not from the free system

{ Owy — FAw; =0 in R x (0, 00), (2.17)

Ofwy — 3Aw, =0  in R3 x (0,00).

Theorem 2.2. Assume that p,q and (fj,g;) (7 = 1,2) fulfill the hypotheses of
Theorem 2.1. Suppose that 81 > 0. Then there exists uniquely a solution (v1,vq) €
X x X of (2.16) satisfying (2.15) and

lut(t) = vi(®)||B(e) < CPFTH1+ )77 for t>0. (2.18)

Here 6 is a positive number such that if ¢y # ca, 61 > 0 and ¢ < 2, then § =
61 + max{fs+ (p— 1)(qg — 2),0} ; otherwise § = 01 + 0, where 65 (> 0) is defined by
(2.14) with j = 2. Besides, C' is a constant depending only on cy,cq,p and q.

If we suppose in addition that 63 > 0, then there exists uniquely a solution
(w1, ws) € X X X of (2.17) satisfying

l[v1(8) = w1 ()| ey) < CEP(L+)"" for ¢ > 0. (2.19)

Therefore, combining (2.18) with (2.19), we see that u; tends to w; in the energy
norm as ¢ — 00, hence (2.1) can be regarded simply as a perturbation from the free
system (2.17) in this case.

Therefore, the case §; = 0 is of our special interest. To simplify the situation,

we assume that the initial data are linear in €. Namely,
fi(r) =€p;(r), g;(r)=c;(r) for r€R (2.20)

with (¢;,%;) €Y and My, (¢;j,%;) < 1. Then we have the following.

Theorem 2.3. Let ¢1 = ¢y, p=2 and (2.10) hold. Suppose that (f;,g;) are as in
the above and that

Pa(r) = (rpa(r)) £0 at =m0 (221)

for a positive number ro. Then there are positive numbers C, €1 and to such that
for0<e<e andt >ty we have

Gl (logt) — |lus (OlE(er) < Nl (®)lleer) < lua(0)lle(e,) + Ce? (logt).  (2.22)
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Under the assumptions in Theorem 2.3, it is impossible that u; has a free profile
wy with |[w1(0)]|g(e,) < co. Indeed, if not, then tl_l)rgO 1 () E(er) = llwi(0)]|E(ey)-
Clearly, this contradicts (2.22).

Remark. We can extend the theorems presented in this section to the case where
the nonlinearity of the first equation in (2.1) is replaced by |0;us|P~18;uq or |VuslP.
In addition, we can admit the linear combination of these terms as the nonlinearity
in the theorems except Theorem 2.3, as well.

3. ExawmpLE, II

The aim of this section is to show that the following semilinear system :

6t2u1 - Aul = (81U1)(31U2 - 82’(11) in RS X (0,00), (3 1)
O2uy — Auy = (9quy)(O1us — Gauy) in R3 x (0,00), ‘

cannot be regarded as a perturbation from the free system (2.17). Observe that the
quadratic nonlinearity is of critical order concerning the small data global existence
and blowup due to [6] and that the nonlinearities in (3.1) does not satisfy the null
condition. Therefore it seems hopeless to have a global solution for the problem.
Nevertheless, Alinhac [4] introduced some algebraic condition for (1.1) including
the null condition, and proved the global existence result for (1.1) satisfying his
condition with small initial data

u;(0,z) = ef;(z), (Ou;)(0,z) =eg;(z) for ze€R> (3.2)

The system (3.1) is nothing else an example satisfying the condition, hence the
Cauchy problem (3.1) and (3.2) admits a unique global smooth solution (uy,us).
We underline that he suggests, without any rigorous proof, that his global solutions
does not tends to any solution of the free system in general.

The key of the proof given in [4] is to introduce an auxiliary function w =
O1us — Oyuy. Then we have

8tzw—Aw: ng(w,ul), (33)

where Q12(w,u1) = (d1w)(d2u1) — (92w)(O1u1), which is one of the null forms.

Now, using (3.3), we can rewrite the system (3.1) as
O2uy — Aup = w(O1uy) in R3x (0,00),
A2uy — Auy = w(dyuy) in R3x (0,00), (3.4)
OFw — Aw = Q12(w, uy) in R3x (0,00)
with initial data (3.2) for j = 1,2 and
w(z,0) = ef3(z), (J,w)(z,0) =egs(z) for zeR3. (3.5)
where

fa=01f2—0af1, g3 = 0192 — O291. (3.6)
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Note that the system (3.4) still does not satisfy the null condition, because the first
and second equations in (3.4) are not written in terns of the null forms. While,
the third equation in (3.4) is written in terns of the null form, hence there exists

uniquely a solution vz of (2.6) with ¢ = 1 satisfying
Jim Jlw(t) = va(t)l|py =0 (3.7)

and ||wy(0)||g(1) < oo. Having this in mind, we suppose that (3.4) can be regarded
as a perturbation from

dZvy — Avy = v3 (01v1) in R3 x (0,00),
Ofvy — Avy = w3 (02v1)  in R3 x (0,00), (3.8)
2v3 — Avzg =0 in R3x (0,00).

Actually we have the following result.

Theorem 3.1. For any initial data f1, f2, g1 and go € C§°(R3), there exists
uniquely a solution (v1,vs,v3) of (8.8) satisfying (3.7) and

Jim [ (1) — v (D)l =0 (5= 1,2), (3.9)

where (uy,us) is the solution to the Cauchy problem (3.1) and (5.2).

Finally we state a result which shows that the asymptotic profile of (uy,us) is

actually different from any solutions of the free system.
Theorem 3.2. There exist initial data fi, f2, g1 and gy € C§°(R3) such that
Jim Jlu; (Ol =0 (G=1,2 (3.10)

holds for the solution (uy,us) to the Cauchy problem (3.1) and (3.2).
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AN APPLICATION OF KUBOTA-YOKOYAMA ESTIMATES TO
QUASILINEAR WAVE EQUATIONS WITH CUBIC TERMS IN
EXTERIOR DOMAINS

MAKOTO NAKAMURA (GSIS TOHOKU UNIVERSITY)

m-nakamu@math.is.tohoku.ac.jp

Abstract. Small global solutions for quasilinear wave equations are considered in three
space dimensions in exterior domains. The obstacles are compact with smooth boundary
and the local energy near the obstacles is assumed to decay exponentially with a possible
loss of regularity. The null condition is needed to show global solutions for quadratic
nonlinearities.

1. Introduction. This is a note on the joint work with Jason Metcalfe and Christopher
D. Sogge [31]. We consider the global existence of solutions for quadratic and cubic
quasilinear wave equations with Dirichlet conditions exterior to compact obstacles. The
obstacles are assumed to have smooth boundary and the local energy near the obstacles
is needed to decay exponentially as the time tends to infinity. Strictly mentioned, the
exponential decay rate is not necessary in our argument, but several polynomial decay
rate are required. In this setting, Keel-Smith-Sogge have shown in [18], [19], [20], the
global and almost global solutions for semilinear and quasilinear wave equations for star-
shaped obstacles. Metcalfe-Sogge [34] have shown the global solutions for general obstacles
including star-shaped, nontrapping, or some of trapping obstacles in terms that there is the
local energy decay. They have used the null conditions to show the global solutions which
put restrictions on the interaction of waves of same speeds. In [32], we have considered
the global solutions for the same obstacles in [34], but the null conditions in [34] are
generalized to put restrictions only on the interactions of the waves of same speeds in the
wave equations of the same speeds. We have used the low energy method which appeared
in Sideris-Tu [42] for boundaryless cases to treat such null conditions.

For higher dimensions, Shibata-Tsutsumi have shown in [39, 38] global solutions for
general quadratic nonlinearities in du when the dimensions n > 6. Hayashi has shown
in [8] global solutions in the exterior of a sphere for n > 4 for some restricted class of
quadratic nonlinearities. Metcalfe-Sogge have shown in [33] global solutions for quadratic
quasilinear wave equations exterior of nontrapping obstacles for n > 4.

Let us introduce our obstacles K C R® precisely. We assume that K is compact with
smooth boundary, but not necessarily connected. By scaling, without loss of generality,
we may assume

Kc{zeR®: |z] <1}, 0 € K\oK.
The additional assumption is the exponential local energy decay with a possible loss of
regularity which is described as follows. If u is a solution to
Ou(t,z) =0, (t,z) € Ry x R3\K
(1.1) u(t, ')la;c =0
u(0,-) = f, 9wu(0,-) =g, supp fUsupp g C {R*\K, [z] <4},
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then there must be constants ¢,C' > 0 so that
(1.2) [/ (£, ) |22 werovieol<ay < Ce™ D 110540, ) Iz,

lol<1

where O denotes the D’Alembertian, i.e. 0 = 82 — A, and A denotes the Laplacian, i.e.
A=3T7 8923].. Throughout this paper, we assume this local energy decay estimate for K.

Remark. (1) Lax, Morawetz and Phillips have shown (1.2) without a loss of regularity,
namely |a| = 0 in the RHS, when K is star-shaped in [28] (see also [29, V. Theorem 3.2]).

(2) Morawetz, Ralston and Strauss have shown (1.2) without a loss of regularity (|| = 0)
when K is bounded, connected and nontrapping in [36, (3.1)]. Here if the lengths of all
rays in B1(0)\K are bounded, then waves are not trapped and (1.2) holds without a loss
of regularity. They also treat the multi-dimensional cases. See Melrose [30] for further
results. Ralston [37] has shown that (1.2) could not hold without a loss of regularity when
there are trapped rays.

(3) Tkawa has shown (1.2) with an additional loss of regularity, namely |o| < £ with £ > 1
in the RHS, when K is some kinds of trapping obstacles. He has shown (1.2) with £ =6
when K consists of two disjoint strictly convex bodies in [14], and (1.2) with £ = 2 when
K consists of sufficiently separated several disjoint strictly convex bodies in [15]. Since we
have the standard energy preservation

10’ (£, e @avi) = llw' (0, )l 2 evi),
we can reduce the estimate (1.2) with an additional regularity, |o| < £(> 1), to the estimate
for |a| < 1 with different constants ¢ and C' by the interpolation. Therefore we can treat
the above obstacles by the condition (1.2).
(4) We remark that we do not require exponential decay. The order e~ could be replaced
with (1+1¢)~1=%="™ for § > 0 and m > 0, where we need 1+ ¢ for the integral ability and
m is the number of L we need in our argument.

We consider quadratic and cubic quasilinear systems of the form
O u = F(u,du,0%u), (t,z) € (0,00) x (R¥\K)
(1.3) u(t, )|ox =0
u(0, )= f, Jwu(0, )=y,
where

ﬁ (DclaD027-"aDCD)7 0<ep<---<ep DCIZaE_C%A-

The nonlinear term F = (FI)ISISD is the sum of quadratic and cubic terms which has
the form

F!(u,du,9*u) = B (0u) + Q' (du, 3*u) + R! (u, du, 8*u) + P (u, u)

where
Blouy = > AllRo;u’opu”, Ql(0u,0%u) = > B 0u’ 00",
1<J,K<D 1<J,K<D
0<] k<3 0<74,k,€<3
RI(u,alu,d2 Z (u, 0u)0; A’
1<J<D
0<5,k<3

where C},;](u, ou) = O(|ul?® + |0u|?), and P(u,du) = O(Jul* + |0ul?).
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For energy estimates, we assume symmetry conditions for quasilinear terms
IJK _ pJIK _ plJK [ J JI _ ~I1J
Bk = Bjgt = Bjig s Cik =Cip =C;

To obtain global existence, we also require that the equations satisfy the following null
conditions which only involves the self-interactions of each wave family :

(1.4) Z Hlfjfk =0 whenever &2 =c3(E+&4+¢3), I=1,...,D,
0<j,k<3

(1.5) > Bi{¢i&6 =0 whenever &=cj(f+&+¢3), I=1,...,D.
0<j,k,1<3

A typical example which satisfies (1.4) and (1.5) is given by

(1.6) C((ul)? - +ZC ((0u”)? = cF(Vu')?)

+ Zc;ajuf(afuf ~-dadl), ¢, Cj CleR

(See [18, (1.7), (1.10)].)

We briefly remark on the null condition for the boundaryless case in three space dimen-
sions. John has shown in [16] that the nontrivial solution of single wave equation

Ou = (atll,)2,

which data have the compact support, blows up in finite time. On the other hand,
Christodoulou in [5] and Klainerman in [22] have shown independently the global so-
lutions for small data when the nonlinear term satisfies the null condition. A typical
example of such equation is given by

Ou = a{(0;u)* — (Vu)?}, a€R.

Alinhac has shown in [2] that the null condition is necessary to show the global solutions
when the nonlinear term is quadratic quasilinear excluding u itself. Kovalyov pointed out
in [24] that when we consider the systems of wave equations with different speeds, the
situation become different and the systems tend to have global solutions for small data.
A typical example which has global solutions for small data is given by

{ (8,52 - clA)ul = a(atuz)
(02 — c2A)ug = b(Oruq)?

For further historical sketch, we refer to the section 6 in [25] or [26].

a,bER, 01#02>0.

We refer to compatibility conditions. For the solution u of (1.3), the functions {9} u(0,2)};>0
are called compatible functions. The compatible functions are functions of spatial variables
and 0{u(0, z) are expressed by {05 f}|a|<; and {05 ¢}|a|<j—1- We say that the compatibility
conditions of order s are satisfied if 87u(0,2)|sxc = 0 for all 0 < j < s (See [18, Defini-
tion 9.2]). Additionally, we say that (f,g) € C'* satisfies the compatibility conditions to
infinite order if the compatibility conditions are satisfied to any order s > 0.

We can now state our main result:



4 MAKOTO NAKAMURA (GSIS TOHOKU UNIVERSITY)

Theorem 1.1. Let K be a fized compact obstacle with smooth boundary that satisfies

(1.2). Assume that F(u,du,0*u) and O are as above and that (f,9) € C=(R3*\K) satisfy
the compatibility conditions to infinite order. Then there is a constant € > 0, and an
integer N > 0 so that if

(1.7) > lalozfle+ D @) 1ozl <e
|| <N la|<N-1
then (1.3) has a unique solution u € C* ([0, 00) x R®\K).

2. Pointwise Estimates.
We consider pointwise estimates in this section.
Lemma 2.1. Let F', f and g be any functions.

Let u be a solution to
(82 — A)u(t,z) = F(t,z), (t,z)€[0,00) x R}\K
u(t#”)lxea)c =0
u(0,z) = f(z), 0wu(0,z)=g(z).
Then for any M > 0 and po > 0

21 (+t+lz) Y [FZuta)<C Y 1(@)i0] LM Z%u)(0,2)| s

lo|+u<M Jt+utla|<M4+8

u<po plpo+2, j<1
dy ds
wef [ 2B (s )]

B 1o |+u<M+/ Y
ulpuo+1
wo[ X I rE sl d
la|+u<M+4
u<lpo+1

The following estimates are the special version to treat the inhomogeneity I near the
light cones, which follows from the Huygens principle.

Lemma 2.2. Let F' be any function.
Let u be a solution to
(97 - CI A)u(t,z) = F(t,z), (t,z) € [0,00) x R\K

(t m)'rEBIC =0
u(t,")=0 for t<O0.
Assume
6 Clt
suppF C {(t,z);t > 1V —, 10 < |z| < 10¢pt}.
€1

Then for any M > 0 and po > 0

(2.2)  sup (1+41%) Z |LF Z%u(t,z)| < C sup / |L* Z*F (s,y)|dy
lel<ert/2 pt|a|<M 0SsSEIRNK |+u<M+7
r<po plpo+1
+C sup (L4+s) > IEHO*F (5,9) |2 (i<a)-
Ossst |o|+p<M+3
pu<po
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We also need the following L — L* estimates to treat the inhomogeneity away from the
light cones, which are special (more elementary) version of Kubota-Yokoyama estimates
(see Kubota-Yokoyama [27, Theorem 3.4] for the boundaryless case).

Lemma 2.3. Let F, f and g be any functions.
Let w be a solution to
(0 — AA)u(t,z) = F(t,z), (t,z)€[0,00) x RI\K

u(t,z)|zeaxc =0
u(0,2) = f(z), Owu(0,z) =g(x).

Assume
t
(2.3) suppF C {(t,2);0 <t <2, |z <2} U{(¢,2);]z] < % or |z| > bert }.

Then for any 6 > 0, M > 0 and po > 0, there exists a constant C' = C(0, M, j0, ) such
that

(2.4)
sup (1+4) Y [L*Z2%(La)| <C Y [[((@) 0], (rdn) " Z%u) (0,2)] |z
|z|<ert/2 pt|al< M || <M+7
n< po u<po+1, ]Sl
+C sup ()14 s+[y)t D [LHZOF(s,y)
s>0
yeERP\K |ab<”#%M

+C sup W)L+ s+ ) > [LFOF(s,y)l
5230 lo|+p<M+4
vER\K 1<po
Remark 2.4. The original Kubota-Yokoyama estimates are expressed as follows (see [27,
Theorem 3.4]). Let u be the solution of the problem
(02 = 2A)u! =F!  in (0,00) xR? I=1,---,D,
u!(0,2) = d,uf(0,2) = 0.

Then for any p >0, v >0 and [ =1,---,D, the following estimate hold :

(2:5) (L4 ¢+ le))(1+ [[a] = ert])|u’ (2, 2)]

<CL,  sup  |yl(1+ s+ [y)"TH2u(s,9) | FY(s,9)],
(s,y)eDI(t,x)

where

t
L,=1 for v>0, Lp= (1+10g_}_+-_\§!_4;f_1__>

14 ||z] = crt]

D'(t,2) = {(s,y) e RXR* | 0< s <t, |lz| —cr(t —s)| < |yl < |z +er(t —9)}

no={lo) eRXR 21l 21, [ - ess| < TPl —enl}

2u(s y)_{ (1+ |yl — essD)=# if (s,y) € As, I =1,---,D
P2 = (1 + |y|)1‘/i if (s,y) € ((0,00) X RB)\ (UISJSDAJ) .



6 MAKOTO NAKAMURA (GSIS TOHOKU UNIVERSITY)

3. Sobolev-type Estimates.

We need the following Sobolev inequalities. Boundaryless cases are due to Klainerman-
Sideris [23], Sideris [40], and Hidano-Yokoyama [10]. The following is the exterior domain
analog of the boundaryless cases.

Lemma 3.1. Let ¢ > 0, 0 < 0 < 1/2 be any constants.

For any function u € C$°((0,00) x R3\K) with the Dirichlet condition u|sx = 0, and
any M >0, po > 0

(8.1) (@ et~ a0 D L2 (e <O Y D2 () e

ptla|<M ptla| <M +2
< o plpo+1
+C Y e+ e LFZ2°0eu(t, @)
pt|e|<M+1
w<po

+CO(L+8) Y 1L (8 @) |2 (mg<)-

pw< po
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Small data scattering for a Klein-Gordon
equation with a cubic convolution

Hironobu Sasaki*
Department of Mathematics, Hokkaido University
hisasaki@math.sci.hokudal.ac. jp

Abstract

We consider the scattering problem for the Klein-Gordon equa-
tion with cubic convolution nonlinearity. We give some estimates for
the nonlinearity, and prove the existence of the scattering operator,
which improves the known results in some sense. Our proof is based
on the Strichartz estimates for the inhomogeneous Klein-Gordon
equation.

This paper is concerned with the scattering problem for the nonlinear
Klein-Gordon equation of the form

afu—Au—I—u: F.(u) (1)

in space-time R x R™, where u is a real-valued or a complex-valued unknown
function of (t,z) € R x R*, d; = 0/0t and A is the Laplacian in R™. The

nonlinearity F.,(u) is a cubic convolution term F(u) = (V, * |u|*)u with
Vi(2)] < Cla|™. (2)

Here, 0 < v < n and * denotes the convolution in the space variables. The
term F,(u) is an approximative expression of the nonlocal interaction of
specific elementary particles. Menzala and Strauss started to study this
equation in [1].

In order to treat the scattering problem, we define the scattering oper-
ator for (1). First, we list some notation to give the definition. Let H® be

*Supported by Research Fellowships of the Japan Society for the Promotion of Sci-
ence for Young Scientists.



the usual Sobolev space (1 — A)™*/2Ly(R") and let H*“ be the weighted
Sobolev space (1—A)=*/2 (2)™7 Ly(R"). A Hilbert space X*° is denoted by
H*° @ H*~%7. For a positive number § and a Banach space A, we denote
the set {a € A;|la|A|| < &} by B(6;A). Then the scattering operator is
defined as the mapping S : B(d; X*7) 3 (f-,9-) + (f+,9+) € X*0 if the

following condition holds for some § > 0:

For any (f_,g9_) € B(6; X*7), there uniquely exist a time-global so-
lution uw € C(R; H®) of (1), and data (fy,g+) € X*° such that u(t) ap-
proaches uy(t) in H® as t tends to £oo, where uy(t) are solutions of linear
Klein-Gordon equations whose initial data are (fy,gs), respectively.

We call that “(S, X*7) is well-defined” if we can define the scattering
operator S : B(d; X*7) — X*° for some § > 0.

By Mochizuki [2], it is shown that if n >3, s > 1,y <nand 2 <~y <
25 + 2, then (S, X*°) is well-defined. By using the methods of Mochizuki
and Motai [3] and Strauss [5], we see that if n > 2, s > 1, 4/3 <y < 2
and o > 1/3, then (S, X*7) is well-defined. In view of the condition of o,
there is a jump at v = 2. Our aim of this paper is to fill the gap. By using
the Strichartz estimate for pre-admissible pair (see [4]) and the complex
interpolation method for the weighted Sobolev space (see, e.g., [6]), we
show that (S, X*7) is well-defined if 4/3 < v < 2 and o > (2—+)/2, which

improves the condition above.

In order to state our results, we give notation which will be used in this
paper.

For s € Rand (1/p,1/q) € [0,1]x[0,1], let H} be the Sobolev space (1—
A)=*/2L,(R™). For s € R, we set E*[u](t) = || (u(t), dyu(t))|X*°||. For so €
Rand @ = (1/¢,1/r) € [0,1]x[0,1], L(so, Q) is denoted by L,(R; H°(R")).
Put w = /1 — A and U(t) = exp(=itw). For a Banach space A, B°(R; A) is
the set of all A-valued, continuous and bounded functions on R. Moreover,
if fin B°(R; A) has its derivative, and if 9;f € B°(R; A), then we write
[ € BY(R;A). For s € R, H® denotes B(R; H*) N BY(R; H*~') with the
norm ||u|H®|| = |ju|L(s, (0,1/2))| + ||0:u|L(s — 1,(0,1/2))||. Furthermore,

we set

H? = {u € H*; there exist f,g € S(R") such that
u(t) = costwf + w™ ' sin twg, w ' Gu(t) € H°}.

We call u = u(t,z) a free solution if u € H? for some s € R. For a free



solution ug, u € S(R“) is said to be a wug-solution if

:
u(t) = uo(t) + / it = 7% b)) ar
0 w

For 5,50 € R and @ = (1/q,1/r) € [0,1] x [0, 1], we denote L(sq, @) N H*
and L(so, Q)NH® by Z(s0,s,Q) and Z(so, s, Q), respectively. Define 1/q. =
1/3—¢eand 1/rg=1/2— (14 0)/3n. Assume that 4/3 < v < 2. Then we
can easily show that there exist sufficiently small (y) > 0 and 6(y) € (0,1)
such that

n, 1 1<1 1
2°2 o)’ ) 2 Tog)

P 11
7:2—2{ (s - }
Q) Q )

<

| =

For @ = (1/Ge(y), 1/79(y)), We set

@) =20 2,227}

We are now ready to state our main result.

Theorem 1. Assume thatn >2,4/3<~v<2,0>(2-7)/2,s>1 and
put sy = 8(Qy), Z = Z(sy+s—1,8,Q,), ux(t) = costwfi+ wlsintwf,,
where x denotes either 0,4+ or —. Then there exist some positive numbers
no and n_ satisfying the following properties:

(1) If (fo,90) € B(no; X*7), then there uniquely exist uw € Z and
(fe,94),(f-,9-) € X5° such that u is a uy — solution and we have

lim E°[u —ug](t) = 0. (3)

t—+oo

Moreover, the operators Vi : B(no; X*7) 3 (fo,90) — (fx,9+) € X*°
are well defined, injective and continuous.

(i) If (f-,9-) € B(n—; X*7), there uniquely exist u € Z and (fy,gy) €
X#0 such that u satisfies

ult) =)+ [ TSl =T ) (4)

w

and (3) holds.
Moreover, the scattering operator S : B(n-; X*?) > (f-,g9-) ~
(f+,9+) € X*0 is well defined, injective and continuous.



Sketch of the proof.

In order to prove main theorem, we first show that there exists a unique
solution in L = L(s, +s—1,Q,) if a data u_ in L is sufficiently small.

Lemma 2. Assume that n > 2, 4/3 < v < 2, s > 1. Then there ezists
some 0 > 0 satisfying as follows: Ifuy € B(6; L), then there uniquely exists
u € L such that we have

o) = wo®)+ [ =D puryyar, 5)
I ] < 3ol I, ()
I [ te=n)Putarizis -1, 0./ < ghwltl (@)

From Lemma 2, we see that a mapping
B(6;L)>u_r—uy €L
is well-defined. Therefore, it remains to show that
IU@ILI S ol X (8)
The estimate (8) is given by using the following lemma.

Lemma 3. Assume that n > 2, max(0,1/2 — 1/n) < 1/r < 1/2 and
(n/2—=n/r)/2<1/q<(n/2 —=n/r). Then we have

NUC)FILgLe |l SILFIH*? | (9)
if
+2 .2 1 1
e PR Ch)
and
2 1 1
g > Z]‘ — n(§ — ;)

Lemma 3 can be shown from the complex interpolation method for
the weighted Sobolev space and the Strichartz estimate for the free Klein-
Gordon equation.
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BLOW-UP RESULTS
FOR A REACTION-DIFFUSION SYSTEM

YUSUKE YAMAUCHI
HOKKAIDO UNIVERSITY

yamauchi@math.sci.hokudai.ac.jp

We consider the Cauchy problem for the reaction-diffusion system:

up — Au = |z]|7 uPro? z€ RN, t>0,
vy — Av = |z|72uP20?, zeRN, t>0,
w(z,0) = ug(z) > 0,#0, ze RV,
v(z,0) = vo(z) > 0,20, =€ RN,

where pj, ¢; > 0, 0; > max{—2, =N} (j = 1,2), p1,q2 # 1.

Our aim is to show conditions for the nonexistence of global solutions
of the system (1) in three cases py,q2 < 1, g2 < 1 < py, or p1,q2 > 1.
The conditions are about the relation between the exponents p;, g;, o;,
and the initial data.

There are some papers on the Cauchy problem for semilinear reaction-
diffusion systems. In [1], Escobedo and Herrero proved the existence
and nonexistence of global solutions, so-called the Fujita-type result,
foroy =0y =p1 =¢q =0, pa, q1 > 1, poq; > 1. As an extension of [1],
Mochizuki and Huang [3] showed the Fujita-type result for p; = ¢z = 0,
0<o0; <N(p2—1),0< 0, < N(qg1 — 1), p2, ¢1 > 1, p2g1 > 1. Both of
the results show that the interaction between the unknown functions in
the nonlinear terms determines the behavior of solutions of the system.

In [2], Escobedo and Levine showed an interesting result for o; =
oy = 0, p1, p2, q1, g2 > 0. Under the assumption that p; + ¢ >
p1 + ¢ > 0, they showed that if p; > 1, the solutions of the system
behave like a solution of the single equation u; — Au = uPr+%,

In fact, the same result as [2] holds in our problem, that is, if p; > 1,

the solutions of the system behave like a solution of the single equation



u;—Au = |z|7?uP 9 under the assumption that (py+q,—1)/(02+2) >
(p1+q—1)/(01+2).

The iteration method of [2] is often used to show blow up for reaction-
diffusion systems. However, the method does not seem applicable for
our problem because the nonlinear terms have the variable coefficients
|z|7. We improve the argument in [3] and apply it to our problem. The
argument in [3] is to transform the system of PDEs into the ordinary
differential inequalities. In our problem, multiplying the equation by

negative power of unknown function makes the transformation possible.

For simplicity, let

_ @02 +2)+ (1 - 32)(01 4 2) _ (1 +2)+ (1 —pi)(o2+2)
Q{Pz% - (1 “Pl)(l - ‘b)} ’ 2{P2Q1 - (1 - P1)(1 - %)} '

For a > 0, we define the function spaces:

I, = {w € BC(R™);w(z) >0, llirlninflxlaw(ac) > 0}.
T|—roo
Now, we state our main results.

Theorem 1. Let p; <1, g2 <1 and pags — (1 — p1)(1 — q2) > 0.
(i) If max(«,B) > N/2, then no nontrivial global solutions exist.
(i) If uo € I, (a < 2a) or vy € I, (b < 283), then no global solutions
exist.
(iii) For anyv > 0, there exists large C > 0 such that no global solutions
with uo(z) > Cexp(—v|z|?) exist.

Theorem 2. Let p; > 1, ¢o < 1.
(i) If a > N/2 or p1+ ¢ <14 (2 + 01)/N, then no nontrivial global
solutions exist.
(i) 1 wo € I, (a < max((o1 +2 ~ Ngw)/(pr — 1),
—{a1(o2 +2) + (1 = g2)(01 +2) = p2un N}/{(1 = p1)(1 = g2)}), then no
global solutions exist.
(iil) For anyv > 0, there exists large C > 0 such that no global solutions
with ug(z) > Cexp(—v|z|?) exist.

Theorem 3. Let py > 1, ¢ > 1.
) Ifpr+a <14+ 2+01)/N orpr+q <1+ (2+02)/N, then no



nontrivial global solutions exist.

(ii) Ifup € I, (a < (o1 +2=Naq)/(p1 — 1)) orvo € Iy (b < (0242~
Np2)/(q2 — 1)), then no global solution exist.

(iii) For anyv > 0, there exists large C' > 0 such that no global solutions
with uo(z) > C exp(—v|z|?) eaist.

We can also rewrite the theorems into the way in Escobedo-Levine

2].

Corollary 4. Assume that

2) P1+Q1—1<P2+QZ—1
or+2 T oy+2
and let py <1, o # 1.
(i) If max(a, 3) > N/2, then no nontrivial global solutions exist.
(ii) If 0 < max(a,B) < N/2, then no global solutions exist for large
data.

Corollary 5. Assume (2), and let p; > 1, g2 # 1.
() If pr+q <14 (24 01)/N, then no nontrivial global solutions exist.
(ii) If py+q1 > 14 (24 01)/N, then no global solutions exist for large
data.

Outline of the proof. We give the outline of the proof of Theorem
1 (i). Let a > N/2, and assume that (u,v) are global solutions for (1).
Since p; < 1, ¢ < 1 and pyg; — (1 — p1)(1 — q2) > 0, we can take a
positive constant k > 0 such that (1 — g;)/p2 < k < q1/(1 — py). For

this constant k, we fix positive constants ry, r, > 0 satisfying

o = k?"l,

ry <min{l —p1, p2},

o < l’I]_IIl{l — g2, ql},

N(C.Il - k(l - Pl))
k' )

N(kp; — (1 = ¢2))

o0 < .

k

rio <




For € > 0, define the cut off function

pe(z) = ﬁex})(_l_—ﬁ?—) (la] < &),

0 (|| > e72),
and set

Fi(t) = /R (e 1) pu(@)da,
G.(t) = /R ol 1) . ().

Then we have
o (1—=py)—r
FI(1) > —CieFu(t) + Coe~ FE(1) - GL(t)™

1 Ga(t) 2
o p: (1—gp)—r
GL(t) > —CseGo(t) + Cue™ TE.()M Go(t)™ 2

Y

where C; > 0 (j = 1,2,3,4). Changing variables and using the phase
field argument in [3], we obtain the upper bounds of F.(¢) and G.(t):
(3) Fs(t) S A(Ea”;

Ge(t) < BePr2

where A, B > 0.

Next, we show lower bound of F.(¢)

. We introduce the system of
integral equations associated to (1):

o) = SO0+ [ 5= o) 17uls) ol ds,
v(t) = S(t)vo + /0 S(t—s)| - |2u(s)?v(s)®ds,

where

Then we get

Cs(1+ 1)~ 7% ex s ,
u<x,t>z{5( ~H e (-5)



where C; > 0 (7 =5,6,7) and ¢; > 0. From the definition of F,(t), we
have the lower bound

Cse’s", > Ny
) T (e>73)
Coc™ log(1 + 1), (o= ),

where C; > 0 (j = 8,9). This contradicts the upper bound of F, for
small € > 0.
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Approximation of the Gauss curvature flow by
a three-dimensional crystalline motion *

Takeo K. USHIJIMAT and Hiroki YAGISITA¥

In this paper, we consider an approximation of the Gauss curvature flow
in R? by so-called crystalline algorithm.

1 The Gauss curvature flow

The Gauss curvature flow in R? makes a smooth strictly convez hypersurface
shrink with the outward normal velocity equals to the Gauss curvature with
negative sign. Let us explain more precisely. Let {I'(¢)} be a family of smooth
strictly convex closed hypersurfaces, k1 = k1(P, 1), k2 = k2(P,t), ..., kg—1 =
k4-1(P,t) the principal curvatures of I'(t) at P on I'(t) where we use the sign
convention that the all principal curvatures of the hypersurfaces are positive,
and £ = k(P,t) = K1kg---Kkq—1 the Gauss curvature of I'(¢) at P. We call
['(t) the solution of the Gauss curvature flow if and only if at every points P
on ['(¢), the relation
v(P,t) = —k(P,t)

is satisfied, where v = v(P,t) denotes the outward normal velocity of I'(¢) at
P.

To describe the Gauss curvature flow, we use the support function h(v,t)
of the convex hypersurface I'(¢) which is defined by

h(v,t) = sup{(P,v) | P € T'(1)},

*The authors are partially supported by Grant-in-Aid for Encouragement of Young
Scientists (Ushijima: No. 16740061, Yagisita: No. 16740099).

TFaculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-
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tGraduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba,
Meguro, Tokyo, 153-8914 Japan. (yagisita@ms.u-tokyo.ac.jp)




where v € S% ! is a unit vector and ( , ) denotes the usual inner product
in RY. An intuitive meaning of the support function is the signed distance
from the origin to the tangent hyperplane of I'(¢) at the point where the unit
outward normal vector is v. Using the support function, the Gauss curvature
flow can be described as
oh
(1) D (0,1) = (P,
where P € I'(t) is a point where (P,v) = h(v,t). We note that for all T, € R
(d(T* _ t))l/dsd——l

is a self-similar shrinking solution of (1) for t € (—o0,T%).

We shall consider the evolution of I'() by (1) which starts from the initial
hypersurface T'y. We set Q(t) being the open set enclosed by ['(t). The
existence of its solution until single point extinction was proved in [5] and

[20]:

Theorem 1 If the initial hypersurface Ty is smooth and strictly convez,
then there exists a unique solution T'(t) to the Gauss curvature flow, which
stays smooth and strictly convez. Moreover, the solution converges to a point
within a finite time, say Ty, and this extinction time Ty is given by Ty =
V([oU Q9)/(dV (B*)). Here, V denotes the Lebesque measure on R?¢ and B?
the unit ball {z € R* | |z| < 1}.

2 Crystalline Motion

The main object of this paper is so-called crystalline motion. This motion
was introduced by Taylor [18] and Angenent & Gurtin [2] to analyze crystal
growth mathematically. The most typical crystalline motion in R? makes
each edge of a polygon keep the same direction but move with the normal
speed inversely proportional to its length. Several papers, e.g. [7], (8], [10],
[11], [13], and [21], have shown the convergence of two-dimensional crystalline
motions to curve shortening flows in the plane as the number of the edges
goes to infinity. We particularly note that the results in [9] and [15] have
given the convergence for general curves which are not necessarily convez.
See [1] for the behaviour of convex polygons under crystalline motions in R2.



As for the higher dimensional case, while a motion of a surface by the
crystalline mean curvature was proposed also in [18], Bellettini, Novaga, and
Paolini [3, 4] pointed out that the comparison principle is not valid in general
and so it might not be natural to assume that all points on each side move
with the same normal velocity (some people called it the facets stay facets
ansatz).

In this paper, we introduce a three-dimensional crystalline motion for
conver polyhedra and show its convergence to Gauss curvature flow in R®.
As for the different way of approximation to the Gauss curvature flow, we
mention [12, 14]. Our crystalline motion in R® makes each side of a poly-
hedron move with the normal speed inversely proportional to its area. This
motion is a three-dimensional version of the most typical two-dimensional
one, which was introduced in [18]. Our motion should be said as a motion
of a surface by the crystalline Gauss curvature and we find out that the
comparison principle is available for this motion (see Lemma 3).

The precise definition of our crystalline motion is as follows:

Let W, which represents the anisotropy of the problem and is called the
Whulff shape, be an N-sided convex polyhedron in R? including the origin as
its interior point. We also call W the Wulff polyhedron to emphasize that
the Wulff shape is a polyhedron. Since W is an N-sided convex polyhedron
in R3, there exist N unit vectors vy, 15, ...,vy € S? such that

N
W= ﬂ{P e R’ | (P,u) < ili}, hi = sup{(P,v;) | P € oW}

=1

We call the set I; = W N {P € R® | (P,v;) = h;} i-th side of W and h; the
height from the origin of T;. Weset h=~h= (hi)iz12,.n € RY. We note
that the unit outward normal vector on I'; is v; and the support function of
AW coincide with h; at v = v;. Let A; = A(f‘,-) be the area of T';.

We call that an N-sided convex polyhedron and its boundary I' are a W-
admissible polyhedron and a W -admissible surface, respectively, if and only
if the outward normal vector of the i-th side, say I';, of I' is v; for all 2. For
a W-admissible surface I', the height from the origin A = (hi)i=12,.N € RN
is defined by h; = sup{(P v;) | P € '} and A; = A(T';) denotes the area of
I';. Clearly, W is a W-admissible polyhedron and so 9W is a W-admissible
surface.

Then, a crystalline motion of a W-admissible surface I'(t) is defined by



the system of ordinary differential equations

dhi(t) ~ /L'
2) dt :_th,.(t)’

1<i<N.

We call this flow the W -crystalline flow and a family {T'(¢)} of W-admissible
surfaces which satisfies (2) a solution to the W-crystalline flow. The quantity

A‘?(it) might be regarded as the crystalline Gauss curvature of the i-th side of
I'(t). We note that for all 7, € R

(3(T. — t))V2oW

is a self-similar shrinking solution of (2) for ¢t € (—o0,7}). This self-similar
solution will be used in the comparison argument of the proof of our main
result below.

We can prove the well-posedness of this flow by the classical theorem
of the existence and the uniqueness of the solution of ordinary differential
equations.

Theorem 2 Let W be a convez polyhedron in R3 including the origin as its
interior point, and Ty a W-admissible surface. Then, there ezists a unique
solution T'(t) to W -crystalline flow with ['(0) = To. Moreover, the enclosed
volume vanishes at the mazimal existence time T = V(o U Qg)/(3V(W)) €
(0,+00). Here, Qg is the open set enclosed by T'y and V denotes the three-

dimensional volume.

We also note that the comparison lemma holds for the W-crystalline flow.

Lemma 3 Let W be a convez polyhedron in R3 including the origin as its
interior point, and T'(t) and T'(t) solutions to W-crystalline flow for t €
[0,T). Then, I'(0) C T'(0)UQ(0) implies T'(t) C T(t)UQ(t) for allt € [0,T).
Here, Q(t) is the open set enclosed by T'(t).

3 Mainr result
Now let us consider a sequence of convex polyhedra W* and that of the

Wk-crystalline flows. Here and hereafter, the parameter & € N indicates the
accuracy of the approximation and the larger integer k corresponds to the



better approximation. We note that, for example, N* in (A1) below does not
mean k-th power of N. Our main purpose is to show that this sequence of
crystalline flows converges to the Gauss curvature flow under the assumptions
below. First we assume that

(A1) the Wulff polyhedron W* has N*-sides
and is symmetric with respect to the origin

and the sequence of the Wulff shapes {Wk} converges to the unit ball B® =

{P € R?® | |P| <1} in the Hausdorff distance, namely,

(A2) lim dg(W*, B =0.

k—o0
Here dp(Ai, Az) is the Hausdorff distance between sets A; and A;. We use
the convention of dy(0,0) = 0 and dg(0,A) = dy(A,0) = +oo provided
A # (). Second we assume that

(A3) the initial surface T'¥ is a W¥*-admissible surface

and it converges to a smooth and strictly convex surface I'g:

(A4) lim dy(TE To) = 0.

Let I'(¢) and T, be the solution of (1) which starts from the smooth strictly
convex surface [y and its extinction time, respectively. We set I'(Tp) =
limsr, I'(t) and T'(¢) = () for ¢ > Tp. Let T'*(¢) and T* be the solution of
(2) with W = W* (namely, solution to the W*-crystalline flow) which starts
from ['f and its extinction time, respectively. We set I'*(T*) = limqx T'*(2)
and I'*(t) = () for ¢t > T*. We also set Q(t) = 0 for t > Ty and Q*(¢) = 0 for
t> Tk,

Now our main result is the next theorem:

Theorem 4 Assume (A1), (A2), (A3), and (A4). Then the solution I'*(t)

to the W¥-crystalline flow with the initial surface T*(0) = I'k converges to

the solution T'(t) to (1) with the initial surface T'(0) = [y locally uniformly
lim sup dg(I'*(s),T(s)) = 0.

k— oo 0<s<t

Here Ty is the extinction time of I'(t).



4 Outline of the proof

In this section we explain the outline of the proof of Theorem 4.

We recall the result of K. Ishii and H. M. Soner [15]. They were con-
cerned with the two-dimensional crystalline motion whose Wulff shape is a
regular polygon centered at the origin, and showed its convergence to the
curve shortening flow as the Wulff polygon tends to the unit disc. Their
method, which is a kind of perturbed test function method, works to prove
our theorem. In their case, they used a disc as a test function for the solution
to the curve shortening flow, and then chose a suitable dilation of the Wulff
polygon approximating the disc as one for the solution to the crystalline mo-
tion. In our case, however, a surface has two principal curvatures at each
point. Therefore, we need to use an ellipsoid as a test function to the Gauss
curvature flow, and then choose a W¥*-admissible polyhedron approximat-
ing the ellipsoid in some nice sense. Seeking such a nice polyhedron would
be just a Minkowski problem (see Lemma 9), since this problem concerns
the existence, uniqueness, and stability of convex surfaces with preassigned
Gauss curvature as a function of the outer normal (e.g. [16]). As for the
perturbed test function method, we refer [6]. To our knowledge the first
successful applications of this method to viscosity solutions appeared in this
paper.

Throughout this section, we assume (Al), (A2), (A3), and (A4).

For k € N, let {I'*(¢)}:50 be the solution of the W*-crystalline flow and let
0F(t) be the open set enclosed by I'*(¢). For t > 0, we define semicontinuous
envelopes

Q) = ﬁ cl U (T*(s) U Q*(s)) |,

e>0,NeN |s—t|<e,s>0, k>N

Q)= [J int N 0 (s)
e>0,NeN [s—t|<e,s>0, k>N
Here, for a set A, cl(A) and int(A) mean the closure of A and the interior
of A, respectively. In [17], the properties of the sets like Q(t) and Q(t) are
noted. Let I'(t) be the solution to the equation (1) and Q(t) the open set
which is enclosed by I'(%).



We note that because of h; < 0

Q(ty) C Qty), Qtz) C Qt) and  Q(t;) C Q) for t, >t >0
hold. We set
T = sup{t|Q(t) # 0}, T = sup{t|Q(t) # 0}, and T =sup{t|Q(t) #0}.
By the definition of Q(¢) and Q(t), we have
(3) T > T and cl(Q(t)) C Q(2).
If we prove that
(4) Q(t) C c(Q(t)) and Q(t) € Q(t) for all ¢ € [0,Tp),

which is the result of Lemma 8 below, then we obtain the convergence result.

We show these inclusions (4) by the following steps. First we show that
Q(t) and Q(¢) are are sub and super-solutions, respectively, of (1) in visocosity
sense (Lemma 5 and Lemma 6). Second comparing initial states, we show the
inclusions among 2(0), 2(0), and Q (Lemma 7). Finally, from the Lemmas
5,6, and 7, we obtain the desired inclusions (Lemma 8). The second part is
not difficult. The final part is a rather standard argument. In the fisrt part,
we need a help from the theory of Minkowski problem (Lemma 9).

Lemma 5 Let (Po,t0) € R*x (0, +00) and {O(t) }1e(0,1] be a family of closed
sets with smoothly evolving and strictly convex boundaries. If Py € 0 (te) N
d0(to) and Q(t) C O(t) for all t € (0,to), then the inequality

(5) Vo(Po,to) < —/iO(Po,to)

holds. Here, Vo(Po,to) and ko(Po,to) is the normal velocity and the Gauss
curvature of 00(to) at Py, respectively.

Lemma 6 Let (Py,to) € R®x(0,+00) and {O(t) }1e(0,1] be @ family of closed
sets with smoothly evolving and strictly convex boundaries. If Py € 0Q(to) N
90(to) and int(O(t)) C Q(t) for all t € (0,1o], then the inequality

(6) Vo(Po,to) > —ko(Po, to)

holds. Here, Vo(Po,to) and ko(Po,to) is the normal velocity and the Gauss
curvature of 00(to) at Py, respectively.



Lemma 7 Q(0) C cl(Q) and Qo C Q(0) hold.

Lemma8 T =T = Ty,. Q(t) C cl(Qt)) and Qt) C Q(t) hold for all
t € [0,To).

For positive numbers a and b, we set
E = E(a,b) = {(2,y,2) |az® + by* + z* < 1}.
For this ellipsoid F we have the following lemma.

Lemma 9 Let E be the ellipsoid defined as above. For any k € N, there
uniquely exists a W*-admissible polyhedron E* symmetric with respect to the
origin such that

Af
(7) R (vf) = g
holds for all 1 <1 < N*. Moreover,
(8) lim dg(E*,E) =0
k— o0

holds. Here, v¥ denotes the outward normal vector of the i-th side of Wk,
k¥ (v) Gauss curvature of E at the point where the outward normal vector is
v, AF the area of the i-th side of Wk, A{Ek the area of the i-th side of EF,

respectively.
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Variational method is a useful tool to study nonlinear differential equa-

tions of the form
—Au+ F(z,u) =0,z € Q. (1)

As heterogeneities occur in every natural environment, Eq.(1) has been ex-
tensively studied in case F' is periodic in each component of z. The in-
terested reader may consult [CR] for studying standing pulses of nonlinear
Schrodinger equations and [AJM1-2, RS1-2] for studying connecting orbits
of Allen-Cahn type equation.

A natural extension of periodic function is almost periodic function. Such
a class of functions can be defined as follows:
Definition. (i) A set P is called relatively dense in R if there exists a positive
number p such that every interval of length p contains at least one element
of P. (ii) Let g : R — R be a continuous function. Given ¢ > 0, a positive
number 7 is called an e-period of g if

sup lg(0 +7) —g(0)| <e.

(iii) g is almost periodic if for every € > 0 there exists a relatively dense set
of e-periods of g.

Clearly, periodic functions are trivial examples of almost periodic function.



A simple example of almost periodic function is cos @ + cos+/26. Such a
function is often called quasi-periodic function, which belongs to a subclass
of almost periodic functions. We refer to [F] for more detailed properties of
almost periodic function.

To study the spatially heterogeneous effect, we take a cylindric-shaped
domain defined by Q = {(z1,2)||Z] < g(z1),21 € R}, where g is a posi-
tive almost periodic function and 2 € RV~!. In order to avoid complicated

notation involved in illustration, our attention will be mainly restricted to
s = [[0vuP+a) - [ et 2)

Each critical point of J on H*() is a solution of

(P) Au+u—f(u)y=0

under the homogeneous Neumann boundary conditions. Such a solution can

be viewed as a pulse in a channel.

A simple but interesting example of f(&) is |£[P7!¢. For p € (1, ]ﬂvf—g), we
know from Sobolev inequality that
[ollze+r < Cllollm
For an unbounded domain 2, whether the minimization problem
g Il (3)

veH Q) ||v]|F1 ()
can actually be attained by an element of H!(Q) in general is not known. The
answer of this question is closely related to the critical points of J. Observed
that u = 0 is a local minimum of J. If the Palais-Smale condition holds, the

Mountain Pass Lemma [AR, R1] would imply a critical value 8 defined by

B = inf max J(y(s)),

Y€l s€0,1]



where I' = {y € C([0,1], H*(2))|7(0) = 0 and J(vy(1)) < 0}. It is known
[CT1,CR] that in case g is periodic the Palais-Smale condition does not hold.
Nevertheless, there exists a Palais-Smale sequence which converges to a solu-
tion ug of (P) at critical level 3. Furthermore, it is easy to see that a rescaling
of this function uo assumes the minimum of (3). We note that, for any do-
main (2, if ug is a critical point associated with the mountain pass mini-max
value, the same way of rescaling transfers a solution uq to a minimizer of (3).

If Q is enclosed by a almost periodic function g, the situation become more
delicate. By Bochner’s criterion [B, F], g is almost periodic if and only if the
set of its translates {g(- + s)|s € R} is precompact in the space of continuous
bounded functions on the real line, endowed with L*-norm. Set H(g) = {A|
there exists a sequence of translates of g which converges to A uniformly in
R}. For general almost periodic functions, there are functions in H(g) which
are not translates of g. As an example, if g(§) = cos@ + cos+/20 there is
a sequence {60,,} such that lim,, ., g(0,,) = —2, however ¢g(0) > —2 for all
# € R. This phenome non reflects the theory of almost periodic differential
equations interesting and at the same time difficult.

It is assumed that f satisfies the following conditions:

(f1) f € CY(R,R) and limg_o £ = 0.

(f2) There is a constant ¢; such that | f/(¢)] < e;(1+[€[P~1) where 1 < p < J£2
fN>2and l<p<ooif N=2.
(f3) There is a p > 0 such that 0 < (x4 2) f(f Fly)dy < Ef(E) if € #0.

Theorem 1. Suppose (f1)-(f3) are satisfied, there exist infinite number

1)
3

¢ € (0,00), then for any € > 0 there exists a solution with critical level inside

of solutions to (P). Furthermore, if is an increasing function of ¢ for

the interval (3,5 + ¢].



If g is periodic, Theorem 1 is nothing new, since translates of a solution by
multiple periods are also solutions of (P). In case g is almost periodic but not
periodic, our method provides a way to stress out infinitely many solutions
distingulished by the locations of the pulses. Theorem 1 also indicates that
for some almost periodic (but not periodic) function g, the minimization
problem (3) possesses a minimizer.

The proof of Theorem 1 is based on the investigation of Palais-Smale
sequences generated by negative pseudo-gradient flow. Detailed analysis can
be found in [CT2]. The same methods can be used to deal with a class of

elliptic equations treated in [S1-2].
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