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1 Introduction

Let Ω be a bounded domain in R
n. We consider the so-called curvature

equations of the form

Hk[u] = Sk(κ1, . . . , κn) = f(u)g(|Du|) in Ω, (1)

with the following boundary condition

u(x)→∞ as dist(x, ∂Ω)→ 0. (2)

Here, for a function u ∈ C2(Ω), κ = (κ1, . . . , κn) denotes the principal
curvatures of the graph of the function u, and Sk, k = 1, . . . , n, denotes the
k-th elementary symmetric function, i.e.,

Sk(κ) =
∑

κi1 · · ·κik , (3)

where the sum is taken over increasing k-tuples, 1 ≤ i1 < i2 < · · · < ik ≤ n.
We study the existence and the asymptotic behavior near ∂Ω of a solution
to (1)-(2).

The family of equations (1), k = 1, . . . , n contains some well-known and
important equations.

The case k = 1 corresponds to the mean curvature equation;
The case k = 2 corresponds to the scalar curvature equation;
The case k = n corresponds to Gauss curvature equation.

We remark that (1) is a quasilinear equation for k = 1 while it is a fully
non-linear equation for k ≥ 2. In the particular case that k = n, it is
an equation of Monge-Ampère type. It is much harder to analyze fully
non-linear equations, but the study of the classical Dirichlet problem for
curvature equations in the case that 2 ≤ k ≤ n − 1 has been developed in
the last two decades, see for instance [4, 11, 24].

The condition (2) is called the “boundary blowup condition,” and a
solution which satisfies (2) is called a “boundary blowup solution,” a “large
solution,” or an “explosive solution.” The boundary blowup problems arise
from physics, geometry and many branches of mathematics, see for instance
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[12, 19, 21]. The study of such problems for non-linear PDEs starts from
the pioneering work of Bieberbach [3] and Rademacher [21] who considered
∆u = eu in two and three dimensional domain respectively. For the case of
semilinear equations, they have been extensively studied (see, for example,
[13, 20] and [2, 6, 15, 16, 17, 19]). The case of quasilinear equations of
divergence type to which the mean curvature equation (k = 1) belongs has
been treated in [1, 7, 9]. The case of Monge-Ampère equations has been
studied in [5, 10, 18]. However, to the best of our knowledge, there are no
results concerning such problems for other fully non-linear PDEs, except for
the work of Salani [22] who considered the case of Hessian equations.

Throughout the article, we assume the following conditions on f and g:

• Let t0 ∈ [−∞,∞). f ∈ C∞(t0,∞) is a positive function and satisfies
f ′(t) ≥ 0 for all t ∈ (t0,∞).

• If t0 > −∞, then f(t)→ 0 as t→ t0 + 0; otherwise (i.e., if t0 = −∞),∫ t

−∞
f(s) ds <∞ for all t ∈ R. (4)

• g ∈ C∞[0,∞) is a positive function.

The first condition assures us that the comparison principle for solutions
to (1) holds. The typical examples of f are f(t) = tp (p > 0), t0 = 0 and
f(t) = et, t0 = −∞.

In the subsequent two sections, we state our main results.

2 Existence results

We recall the notion of k-convexity. Let Ω ⊂ R
n be a domain with boundary

∂Ω ∈ C2. For k = 1, . . . , n − 1, we say that Ω is k-convex (resp. uniformly
k-convex) if the vector of the principal curvatures of ∂Ω, κ′ = (κ′1, . . . , κ

′
n−1),

satisfies Sj(κ′) ≥ 0 (resp. > 0) for j = 1, . . . , k and for every x ∈ ∂Ω. We
note that a C2 domain is (n− 1)-convex (resp. uniformly (n− 1)-convex) if
and only if it is convex (resp. strictly convex).

First, we shall establish the existence of a boundary blowup solution to
the curvature equation (1). We focus on the case k ≥ 2, because for k = 1
the existence has been already studied in [9].

Theorem 1. Let 2 ≤ k ≤ n − 1. We suppose that Ω, f and g satisfy the
following conditions.

(A1) Ω is a bounded and uniformly k-convex C∞ domain.

(A2) There exists a constant T > 0 such that g is non-increasing in [T,∞),
and limt→∞ g(t) = 0.



(A3) Set g̃(t) = g(t)/t and F (t) =
∫ t
t0
f(s) ds. Then∫ ∞ dt

g̃−1
(

1
F (t)

) <∞. (5)

(A4) Set

H(t) =
∫ t

0

sk

g(s) (1 + s2)(k+2)/2
ds. (6)

Then limt→∞H(t) =∞.

(A5) Set ϕ(t) = g(t)(1 + t2)k/2. Then ϕ(t) is a convex function in [0,∞).

(A6) lim supt→∞ g′(t)t2 <∞.

Then there exists a viscosity solution to (1)-(2).

The strategy of the proof of this theorem is as follows (we refer the read-
ers to [23] for details). We note that comparison principles for viscosity
solutions play important roles.

Step 1. We show that there exists a classical solution to the Dirichlet
problem {

Hk[un] = f(un)g(|Dun|) in Ω,
un ≡ n on ∂Ω,

(7)

for every n ∈ N with n > t0. It is enough to derive the C2-a priori estimate
for (7) (see [8, 14]).

Step 2. We prove that limn→∞ un(=: u) exists and is a viscosity solu-
tion to (1)-(2).

Next we obtain the following non-existence result.

Theorem 2. Let 2 ≤ k ≤ n− 1. We define two functions ḡ, h̄ by

ḡ(t) = max
s≥t

g(s), h̄(t) =
t√

1 + t2

((
n−1
k

)
ḡ(t)

)1/k

. (8)

We assume that limt→∞ g(t) = 0. If there exists R ≥ infx∈Ω supy∈Ω |x − y|
such that ∫ ∞ dt

h̄−1
(
f(t)1/kR

) <∞, (9)



then (1)-(2) has no solutions.

Example 1. Let 2 ≤ k ≤ n − 1 and p, q be positive constants. Suppose Ω
is a bounded and uniformly k-convex C∞ domain. We consider these three
equations:

Hk[u] =
up

(1 + |Du|2)q/2
in Ω, (10)

Hk[u] =
epu

(1 + |Du|2)q/2
in Ω, (11)

Hk[u] =
epu

eq|Du|
in Ω. (12)

It follows from Theorem 1 and Theorem 2 that

• The equation (10) has a boundary blowup solution provided p > q and
1 ≤ q ≤ k − 1.

• The equation (11) has a boundary blowup solution provided 1 ≤ q ≤
k − 1.

• The equation (12) does not have any boundary blowup solutions.

Remark 1. Theorem 2 indicates that as far as (10) is concerned, p is
necessarily greater than q in order for a boundary blowup solution to exist.
In this case, our condition (A3) reduces to p > q as well. We conjecture that
(10) has a boundary blowup solution provided we assume only 1 ≤ q < p.

The case k = n, which corresponds to Gauss curvature equation, is
excluded from Theorem 1. We state the existence result for the case k = n.

Theorem 3. Let Ω be a bounded and strictly convex C∞ domain, and k =
n. We assume that the condition (A3) is satisfied and that lim supt→∞ g(t)t <
∞. Then there exists a viscosity solution to (1)-(2).

3 Asymptotic behavior near the boundary

In this section we establish the asymptotic behavior of a boundary blowup
solution near the boundary when the domain is strictly convex. We shall
prove the following.

Theorem 4. Let 1 ≤ k ≤ n − 1. We assume that (A2) and (A3) in
Theorem 1 and the conditions given below are satisfied.

(B1) Ω is a bounded and strictly convex C∞ domain.



(B2) t0 = −∞, or t0 > −∞ and f1/k is Lipschitz continuous at t0.

(B3) There exists a constant T ′ > 0 such that f is a convex function in
[T ′,∞).

(B4) Set h(t) =
t

g(t)1/k
√

1 + t2
. Then there exists a constant α > 0 such

that h(t)/tα is non-decreasing in (0,∞).

(B5) lim
t→∞

g(t)
(1 + t2)g′(t)

= 0.

Then there exist positive constants C1, C2 such that every solution u to (1)-
(2) satisfies

C1 dist(x, ∂Ω) ≤ ψ(u(x)) ≤ C2 dist(x, ∂Ω), (13)

where ψ is defined by

ψ(t) =
∫ ∞
t

ds

h−1
(
f(s)1/k

) . (14)

We state the idea of the proof. Since Ω is a bounded and strictly convex
domain with boundary ∂Ω ∈ C∞, there exist positive numbers R1, R2 with
R1 < R2 satisfying the following condition: for every z ∈ ∂Ω, there are two
balls B1,z, B2,z whose radii are R1 and R2 respectively such that B1,z ⊂ Ω ⊂
B2,z and ∂B1,z ∩ ∂B2,z = {z}.

Let v1 (resp. v2) be a radially symmetric solution to (1) with v1(x) →
∞ as dist(x, ∂B1,z) → 0 (resp. v2(x) → ∞ as dist(x, ∂B2,z) → 0). The
condition (B4) guarantees the existence of v1 and v2. By the comparison
principle, we see that

v2 ≤ u ≤ v1 in B1,z. (15)

In view of (15), it suffices to study the asymptotic behavior of the radially
symmetric solution near the boundary. The assertion follows from the claim
that if u = u(|x|) is a radially symmetric solution to (1)-(2) in BR(0) with
R > 0, then there exist constants C1, C2 > 0 which are independent of r
such that

C1(R− r) ≤ ψ(u(r)) ≤ C2(R− r) (16)

when r is near R.

Example 2. Let 1 ≤ k ≤ n− 1 and p, q > 0. Suppose Ω is a bounded and
strictly convex C∞ domain. Then Theorem 4 implies that



• A boundary blowup solution u to (10) (if it exists) satisfies

C1 dist(x, ∂Ω)−
q

p−q ≤ u(x) ≤ C2 dist(x, ∂Ω)−
q

p−q near ∂Ω (17)

for some constants C1, C2 > 0, provided p ≥ k and p > q.

• A boundary blowup solution u to (11) (if it exists) satisfies

u(x) = −q
p

log dist(x, ∂Ω) +O(1) near ∂Ω, (18)

provided q > 0.

We state our result concerning the asymptotic behavior of a solution to
(1)-(2) near ∂Ω for the case k = n. We mention that

H(t) =
∫ t

0

sn

g(s) (1 + s2)(k+2)/2
ds (19)

in this case, and introduce the following condition:

(B6) There exists a constant α > 0 such that H(t)/tα is non-decreasing.

Theorem 5. Let k = n. We assume the conditions (A3), (B1), (B2) and
(B6). Then there exist positive constants C1, C2 such that every solution u
to (1)-(2) satisfies

C1 dist(x, ∂Ω) ≤ Ψ(u(x)) ≤ C2 dist(x, ∂Ω), (20)

where Ψ is defined by

Ψ(t) =
∫ ∞
t

ds

H−1(F (s))
. (21)

Example 3. Let k = n and p, q > 0. Suppose Ω is a bounded and strictly
convex C∞ domain. Then Theorems 3 and 5 implies that

• If p > q ≥ 1, then there exists a boundary blowup solution to (10).
Moreover, the solution u satisfies

C1 dist(x, ∂Ω)−
q−1

p−q+2 ≤ u(x) ≤ C2 dist(x, ∂Ω)−
q−1

p−q+2 near ∂Ω (22)

for some constants C1, C2 > 0, provided p ≥ n and p > q > 1.

• A boundary blowup solution u to (11) exists and satisfies

u(x) = −q − 1
p

log dist(x, ∂Ω) +O(1) near ∂Ω, (23)

provided q > 1.
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