Boundary blowup solutions to curvature equations

Kazuhiro Takimoto!

1 Introduction

Let ©Q be a bounded domain in R"”. We consider the so-called curvature
equations of the form

Hy[u] = Sk(k1,. .., kn) = f(u)g(|Du|) in £, (1)

with the following boundary condition

u(z) — oo as dist(z,9) — 0. (2)
Here, for a function v € C%*(Q), k = (k1,...,K,) denotes the principal
curvatures of the graph of the function u, and Si,k = 1,...,n, denotes the

k-th elementary symmetric function, i.e.,

Sk(k) = Z Kiy *** Kigs (3)

where the sum is taken over increasing k-tuples, 1 <11 <o < --- < i < n.
We study the existence and the asymptotic behavior near 92 of a solution
to (1)-(2).

The family of equations (1), £ =1,...,n contains some well-known and
important equations.

The case k = 1 corresponds to the mean curvature equation,;
The case k = 2 corresponds to the scalar curvature equation,;

The case k = n corresponds to Gauss curvature equation.

We remark that (1) is a quasilinear equation for £ = 1 while it is a fully
non-linear equation for k > 2. In the particular case that & = n, it is
an equation of Monge-Ampere type. It is much harder to analyze fully
non-linear equations, but the study of the classical Dirichlet problem for
curvature equations in the case that 2 < k < n — 1 has been developed in
the last two decades, see for instance [4, 11, 24].

The condition (2) is called the “boundary blowup condition,” and a
solution which satisfies (2) is called a “boundary blowup solution,” a “large
solution,” or an “explosive solution.” The boundary blowup problems arise
from physics, geometry and many branches of mathematics, see for instance
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[12, 19, 21]. The study of such problems for non-linear PDEs starts from
the pioneering work of Bieberbach [3] and Rademacher [21] who considered
Au = e" in two and three dimensional domain respectively. For the case of
semilinear equations, they have been extensively studied (see, for example,
[13, 20] and [2, 6, 15, 16, 17, 19]). The case of quasilinear equations of
divergence type to which the mean curvature equation (k = 1) belongs has
been treated in [1, 7, 9]. The case of Monge-Ampere equations has been
studied in [5, 10, 18]. However, to the best of our knowledge, there are no
results concerning such problems for other fully non-linear PDEs, except for
the work of Salani [22] who considered the case of Hessian equations.
Throughout the article, we assume the following conditions on f and g:

o Let ty € [—00,00). f € C®(ty,0) is a positive function and satisfies
f/(t) >0 for all ¢t € (g, 00).

o If {9 > —o0, then f(t) — 0 as t — to + 0; otherwise (i.e., if tg = —00),

/t f(s)ds < oo forallt eR. (4)

e g€ (C™|0,00) is a positive function.

The first condition assures us that the comparison principle for solutions
to (1) holds. The typical examples of f are f(t) =¥ (p > 0), to = 0 and
ft) =€l tg = —oo.

In the subsequent two sections, we state our main results.

2 Existence results

We recall the notion of k-convexity. Let 2 C R™ be a domain with boundary
00 € C? Fork=1,...,n— 1, we say that Q is k-convex (resp. uniformly
k-convez) if the vector of the principal curvatures of 9Q, k' = (K, ..., K, _1),
satisfies Sj(k’) > 0 (resp. > 0) for j = 1,...,k and for every x € 9Q. We
note that a C? domain is (n — 1)-convex (resp. uniformly (n — 1)-convex) if
and only if it is convex (resp. strictly convex).

First, we shall establish the existence of a boundary blowup solution to
the curvature equation (1). We focus on the case k > 2, because for k = 1

the existence has been already studied in [9].

Theorem 1. Let 2 <k <n—1. We suppose that 0, f and g satisfy the
following conditions.

(A1) Q is a bounded and uniformly k-convex C* domain.

(A2) There exists a constant T > 0 such that g is non-increasing in [T, 00),
and lim; . g(t) = 0.



(A3) Set §(t) = g(t)/t and F(t) = [; f(s)ds. Then

/OOL@Q (5)

7" (#to)

(A4) Set

t gk
H(t) = /0 s (6)

Then limy_.~, H(t) = oo.
(A5) Set p(t) = g(t)(1 + t2)¥/2. Then @(t) is a convex function in [0, c0).
(A6) limsup,_,., ¢ (t)t? < oo.

Then there exists a viscosity solution to (1)-(2).

The strategy of the proof of this theorem is as follows (we refer the read-
ers to [23] for details). We note that comparison principles for viscosity
solutions play important roles.

Step 1.| We show that there exists a classical solution to the Dirichlet
problem

{Hk[uni = f(un)g(|Dun|) in Q, (7)

on 0f2,

Uy =

for every n € N with n > to. It is enough to derive the C2-a priori estimate
for (7) (see [8, 14]).

Step 2.| We prove that lim,,_,o u,(=: u) exists and is a viscosity solu-

tion to (1)-(2).
Next we obtain the following non-existence result.

Theorem 2. Let 2 <k <n—1. We define two functions g, h by

_ + (nfl) 1/k
(t) = maxg(s), h(t) = m(g@)) . )

We assume that limy_.« g(t) = 0. If there exists R > inf,eqsupyeq |7 — ¥
such that

> dt
/ =1 (f(0)1/FR) < 00, 9)



then (1)-(2) has no solutions.

Example 1. Let 2 < k <n — 1 and p, g be positive constants. Suppose {2
is a bounded and uniformly k-convex C*° domain. We consider these three
equations:

uP .
Hiful (11)
U =——"—"—" ;
T+ Dup)”?
e

It follows from Theorem 1 and Theorem 2 that

e The equation (10) has a boundary blowup solution provided p > ¢ and
1<g<k-—1.

e The equation (11) has a boundary blowup solution provided 1 < ¢ <
k—1.

e The equation (12) does not have any boundary blowup solutions.

Remark 1. Theorem 2 indicates that as far as (10) is concerned, p is
necessarily greater than ¢ in order for a boundary blowup solution to exist.
In this case, our condition (A3) reduces to p > q as well. We conjecture that
(10) has a boundary blowup solution provided we assume only 1 < ¢ < p.

The case k = n, which corresponds to Gauss curvature equation, is
excluded from Theorem 1. We state the existence result for the case k = n.

Theorem 3. Let Q2 be a bounded and strictly conver C* domain, and k =
n. We assume that the condition (A3) is satisfied and that lim sup,_, ., g(t)t <
00. Then there exists a viscosity solution to (1)-(2).

3 Asymptotic behavior near the boundary

In this section we establish the asymptotic behavior of a boundary blowup
solution near the boundary when the domain is strictly convex. We shall
prove the following.

Theorem 4. Let1 < k < n—1. We assume that (A2) and (A3) in
Theorem 1 and the conditions given below are satisfied.

(B1) Q is a bounded and strictly convex C*° domain.



(B2) ty = —o0, ortyg > —o0 and /% 4s Lipschitz continuous at to.

(B3) There exists a constant T' > 0 such that f is a convex function in
[T, 0).

t
(B4) Set h(t) = ————=—=. Then there exists a constant o > 0 such

JOTE P

that h(t)/t* is non-decreasing in (0, 00).

: g(t)
B5) lim — 2 —— =
B3 I, T+ )
Then there exist positive constants C1,Co such that every solution u to (1)-
(2) satisfies

Cy dist(z, 0Q) < ¢(u(z)) < Cydist(z, 09), (13)

where 1 is defined by

° ds
¥(t) :/t W (F)VR) (14)

We state the idea of the proof. Since () is a bounded and strictly convex
domain with boundary 02 € C*°, there exist positive numbers Ry, Ry with
Ry < R satisfying the following condition: for every z € 012, there are two
balls B ., B . whose radii are Ry and Ry respectively such that By, C Q C
B2,z and 8B17Z N 83272 = {Z}

Let vy (resp. v2) be a radially symmetric solution to (1) with vy(x) —
oo as dist(x,0B1,,) — 0 (resp. va(z) — oo as dist(x,0B2,) — 0). The
condition (B4) guarantees the existence of v; and vy. By the comparison
principle, we see that

v <u<w; in By,. (15)

In view of (15), it suffices to study the asymptotic behavior of the radially
symmetric solution near the boundary. The assertion follows from the claim
that if v = u(]z|) is a radially symmetric solution to (1)-(2) in Br(0) with
R > 0, then there exist constants C7,Cs > 0 which are independent of r
such that

Ci(R—r71) <tY(u(r) <Co(R—r) (16)

when r is near R.

Example 2. Let 1 <k <n—1 and p,q > 0. Suppose €2 is a bounded and
strictly convex C'°° domain. Then Theorem 4 implies that



e A boundary blowup solution u to (10) (if it exists) satisfies
Cy dist(z, 0Q) 73 < u(z) < Codist(z,0Q) 77 near 0Q  (17)
for some constants C,Cs > 0, provided p > k and p > q.

e A boundary blowup solution u to (11) (if it exists) satisfies
u(x) = _1% log dist(z,0Q2) + O(1) near 012, (18)

provided ¢ > 0.

We state our result concerning the asymptotic behavior of a solution to
(1)-(2) near 09 for the case k = n. We mention that

STL

t
H{t) = /0 RS G

in this case, and introduce the following condition:

(19)

(B6) There exists a constant « > 0 such that H(t)/t* is non-decreasing.

Theorem 5. Let k =n. We assume the conditions (A3), (B1), (B2) and
(B6). Then there exist positive constants C1,Cy such that every solution u
to (1)-(2) satisfies

Cy dist(z, 092) < U(u(z)) < Cydist(z, 09), (20)
where U is defined by

& ds
\Il(t):/t m (21)

Example 3. Let £ = n and p,q > 0. Suppose {2 is a bounded and strictly
convex C*° domain. Then Theorems 3 and 5 implies that

e If p > ¢ > 1, then there exists a boundary blowup solution to (10).
Moreover, the solution u satisfies

—1 —1
C dist(z, 89)7173%2 < wu(z) < Cydist(z, 89)7;‘#? near 90 (22)
for some constants C1,Cy > 0, provided p > n and p > q > 1.
e A boundary blowup solution u to (11) exists and satisfies

u(z) = _a-t log dist(z, 02) + O(1) near 012, (23)
p

provided ¢ > 1.
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