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In this paper, we consider an approximation of the Gauss curvature flow
in R3 by so-called crystalline algorithm.

1 The Gauss curvature flow

The Gauss curvature flow in Rd makes a smooth strictly convex hypersurface
shrink with the outward normal velocity equals to the Gauss curvature with
negative sign. Let us explain more precisely. Let {Γ(t)} be a family of smooth
strictly convex closed hypersurfaces, κ1 = κ1(P, t),κ2 = κ2(P, t), . . . ,κd−1 =
κd−1(P, t) the principal curvatures of Γ(t) at P on Γ(t) where we use the sign
convention that the all principal curvatures of the hypersurfaces are positive,
and κ = κ(P, t) = κ1κ2 · · · κd−1 the Gauss curvature of Γ(t) at P . We call
Γ(t) the solution of the Gauss curvature flow if and only if at every points P
on Γ(t), the relation

v(P, t) = −κ(P, t)
is satisfied, where v = v(P, t) denotes the outward normal velocity of Γ(t) at
P .
To describe the Gauss curvature flow, we use the support function h(ν, t)

of the convex hypersurface Γ(t) which is defined by

h(ν, t) = sup{hP, νi | P ∈ Γ(t)},
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where ν ∈ Sd−1 is a unit vector and h , i denotes the usual inner product
in Rd. An intuitive meaning of the support function is the signed distance
from the origin to the tangent hyperplane of Γ(t) at the point where the unit
outward normal vector is ν. Using the support function, the Gauss curvature
flow can be described as

(1)
∂h

∂t
(ν, t) = −κ(P, t),

where P ∈ Γ(t) is a point where hP, νi = h(ν, t). We note that for all T∗ ∈ R

(d(T∗ − t))1/dSd−1

is a self-similar shrinking solution of (1) for t ∈ (−∞, T∗).
We shall consider the evolution of Γ(t) by (1) which starts from the initial

hypersurface Γ0. We set Ω(t) being the open set enclosed by Γ(t). The
existence of its solution until single point extinction was proved in [5] and
[20]:

Theorem 1 If the initial hypersurface Γ0 is smooth and strictly convex,
then there exists a unique solution Γ(t) to the Gauss curvature flow, which
stays smooth and strictly convex. Moreover, the solution converges to a point
within a finite time, say T0, and this extinction time T0 is given by T0 =
V (Γ0 ∪ Ω0)/(dV (Bd)). Here, V denotes the Lebesgue measure on Rd and Bd
the unit ball {x ∈ Rd | |x| ≤ 1}.

2 Crystalline Motion

The main object of this paper is so-called crystalline motion. This motion
was introduced by Taylor [18] and Angenent & Gurtin [2] to analyze crystal
growth mathematically. The most typical crystalline motion in R2 makes
each edge of a polygon keep the same direction but move with the normal
speed inversely proportional to its length. Several papers, e.g. [7], [8], [10],
[11], [13], and [21], have shown the convergence of two-dimensional crystalline
motions to curve shortening flows in the plane as the number of the edges
goes to infinity. We particularly note that the results in [9] and [15] have
given the convergence for general curves which are not necessarily convex.
See [1] for the behaviour of convex polygons under crystalline motions in R2.
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As for the higher dimensional case, while a motion of a surface by the
crystalline mean curvature was proposed also in [18], Bellettini, Novaga, and
Paolini [3, 4] pointed out that the comparison principle is not valid in general
and so it might not be natural to assume that all points on each side move
with the same normal velocity (some people called it the facets stay facets
ansatz).
In this paper, we introduce a three-dimensional crystalline motion for

convex polyhedra and show its convergence to Gauss curvature flow in R3.
As for the different way of approximation to the Gauss curvature flow, we
mention [12, 14]. Our crystalline motion in R3 makes each side of a poly-
hedron move with the normal speed inversely proportional to its area. This
motion is a three-dimensional version of the most typical two-dimensional
one, which was introduced in [18]. Our motion should be said as a motion
of a surface by the crystalline Gauss curvature and we find out that the
comparison principle is available for this motion (see Lemma 3).
The precise definition of our crystalline motion is as follows:

Let W̃ , which represents the anisotropy of the problem and is called the
Wulff shape, be an N -sided convex polyhedron in R3 including the origin as
its interior point. We also call W̃ the Wulff polyhedron to emphasize that
the Wulff shape is a polyhedron. Since W̃ is an N -sided convex polyhedron
in R3, there exist N unit vectors ν1, ν2, . . . , νN ∈ S2 such that

W̃ =

N\
i=1

{P ∈ R3 | hP, νii ≤ h̃i}, h̃i = sup{hP, νii | P ∈ ∂W̃}.

We call the set Γ̃i = W̃ ∩ {P ∈ R3 | hP, νii = h̃i} i-th side of W̃ and h̃i the
height from the origin of Γ̃i. We set h̃ = h̃ = (h̃i)i=1,2,...,N ∈ RN . We note
that the unit outward normal vector on Γ̃i is νi and the support function of
∂W̃ coincide with h̃i at ν = νi. Let Ãi = A(Γ̃i) be the area of Γ̃i.
We call that an N -sided convex polyhedron and its boundary Γ are a W̃ -

admissible polyhedron and a W̃ -admissible surface, respectively, if and only
if the outward normal vector of the i-th side, say Γi, of Γ is νi for all i. For
a W̃ -admissible surface Γ, the height from the origin h = (hi)i=1,2,...,N ∈ RN
is defined by hi = sup{hP, νii | P ∈ Γ} and Ai = A(Γi) denotes the area of
Γi. Clearly, W̃ is a W̃ -admissible polyhedron and so ∂W̃ is a W̃ -admissible
surface.
Then, a crystalline motion of a W̃ -admissible surface Γ(t) is defined by
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the system of ordinary differential equations

(2)
dhi(t)

dt
= −h̃i

Ãi
Ai(t)

, 1 ≤ i ≤ N.

We call this flow the W̃ -crystalline flow and a family {Γ(t)} of W̃ -admissible
surfaces which satisfies (2) a solution to the W̃ -crystalline flow. The quantity
Ãi
Ai(t)

might be regarded as the crystalline Gauss curvature of the i-th side of

Γ(t). We note that for all T∗ ∈ R

(3(T∗ − t))1/3∂W̃

is a self-similar shrinking solution of (2) for t ∈ (−∞, T∗). This self-similar
solution will be used in the comparison argument of the proof of our main
result below.

We can prove the well-posedness of this flow by the classical theorem
of the existence and the uniqueness of the solution of ordinary differential
equations.

Theorem 2 Let W̃ be a convex polyhedron in R3 including the origin as its
interior point, and Γ0 a W̃ -admissible surface. Then, there exists a unique
solution Γ(t) to W̃ -crystalline flow with Γ(0) = Γ0. Moreover, the enclosed
volume vanishes at the maximal existence time T = V (Γ0 ∪ Ω0)/(3V (W̃ )) ∈
(0,+∞). Here, Ω0 is the open set enclosed by Γ0 and V denotes the three-
dimensional volume.

We also note that the comparison lemma holds for the W̃ -crystalline flow.

Lemma 3 Let W̃ be a convex polyhedron in R3 including the origin as its
interior point, and Γ0(t) and Γ(t) solutions to W̃ -crystalline flow for t ∈
[0, T ). Then, Γ0(0) ⊂ Γ(0)∪Ω(0) implies Γ0(t) ⊂ Γ(t)∪Ω(t) for all t ∈ [0, T ).
Here, Ω(t) is the open set enclosed by Γ(t).

3 Mainr result

Now let us consider a sequence of convex polyhedra W̃ k and that of the
W̃ k-crystalline flows. Here and hereafter, the parameter k ∈ N indicates the
accuracy of the approximation and the larger integer k corresponds to the
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better approximation. We note that, for example, Nk in (A1) below does not
mean k-th power of N . Our main purpose is to show that this sequence of
crystalline flows converges to the Gauss curvature flow under the assumptions
below. First we assume that

(A1)
the Wulff polyhedron W̃ k has Nk-sides
and is symmetric with respect to the origin

and the sequence of the Wulff shapes {W̃ k} converges to the unit ball B3 =
{P ∈ R3 | |P | ≤ 1} in the Hausdorff distance, namely,

(A2) lim
k→∞

dH(W̃
k, B3) = 0.

Here dH(A1, A2) is the Hausdorff distance between sets A1 and A2. We use
the convention of dH(∅, ∅) = 0 and dH(∅, A) = dH(A, ∅) = +∞ provided
A 6= ∅. Second we assume that

(A3) the initial surface Γk0 is a W̃
k-admissible surface

and it converges to a smooth and strictly convex surface Γ0:

(A4) lim
k→∞

dH(Γ
k
0,Γ0) = 0.

Let Γ(t) and T0 be the solution of (1) which starts from the smooth strictly
convex surface Γ0 and its extinction time, respectively. We set Γ(T0) =
limt↑T0 Γ(t) and Γ(t) = ∅ for t > T0. Let Γ

k(t) and T k be the solution of
(2) with W̃ = W̃ k (namely, solution to the W̃ k-crystalline flow) which starts
from Γk0 and its extinction time, respectively. We set Γ

k(T k) = limt↑T k Γ
k(t)

and Γk(t) = ∅ for t > T k. We also set Ω(t) = ∅ for t ≥ T0 and Ωk(t) = ∅ for
t ≥ T k.
Now our main result is the next theorem:

Theorem 4 Assume (A1), (A2), (A3), and (A4). Then the solution Γk(t)
to the W̃ k-crystalline flow with the initial surface Γk(0) = Γk0 converges to
the solution Γ(t) to (1) with the initial surface Γ(0) = Γ0 locally uniformly
in t ∈ [0, T0):

lim
k→∞

sup
0≤s≤t

dH(Γ
k(s),Γ(s)) = 0.

Here T0 is the extinction time of Γ(t).
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4 Outline of the proof

In this section we explain the outline of the proof of Theorem 4.
We recall the result of K. Ishii and H. M. Soner [15]. They were con-

cerned with the two-dimensional crystalline motion whose Wulff shape is a
regular polygon centered at the origin, and showed its convergence to the
curve shortening flow as the Wulff polygon tends to the unit disc. Their
method, which is a kind of perturbed test function method, works to prove
our theorem. In their case, they used a disc as a test function for the solution
to the curve shortening flow, and then chose a suitable dilation of the Wulff
polygon approximating the disc as one for the solution to the crystalline mo-
tion. In our case, however, a surface has two principal curvatures at each
point. Therefore, we need to use an ellipsoid as a test function to the Gauss
curvature flow, and then choose a W̃ k-admissible polyhedron approximat-
ing the ellipsoid in some nice sense. Seeking such a nice polyhedron would
be just a Minkowski problem (see Lemma 9), since this problem concerns
the existence, uniqueness, and stability of convex surfaces with preassigned
Gauss curvature as a function of the outer normal (e.g. [16]). As for the
perturbed test function method, we refer [6]. To our knowledge the first
successful applications of this method to viscosity solutions appeared in this
paper.
Throughout this section, we assume (A1), (A2), (A3), and (A4).
For k ∈ N, let {Γk(t)}t≥0 be the solution of the W̃ k-crystalline flow and let

Ωk(t) be the open set enclosed by Γk(t). For t ≥ 0, we define semicontinuous
envelopes

Ω̂(t) =
\

ε>0,N∈N
cl

⎛⎝ [
|s−t|≤ε,s≥0, k≥N

¡
Γk(s) ∪ Ωk(s)

¢⎞⎠ ,

Ω(t) =
[

ε>0,N∈N
int

⎛⎝ \
|s−t|≤ε,s≥0, k≥N

Ωk(s)

⎞⎠ .
Here, for a set A, cl(A) and int(A) mean the closure of A and the interior
of A, respectively. In [17], the properties of the sets like Ω̂(t) and Ω(t) are
noted. Let Γ(t) be the solution to the equation (1) and Ω(t) the open set
which is enclosed by Γ(t).
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We note that because of ḣi < 0

Ω(t2) ⊂ Ω(t1), Ω(t2) ⊂ Ω(t1) and Ω̂(t2) ⊂ Ω̂(t1) for t2 ≥ t1 ≥ 0

hold. We set

T̂ = sup{t | Ω̂(t) 6= ∅}, T = sup{t |Ω(t) 6= ∅}, and T0 = sup{t |Ω(t) 6= ∅}.

By the definition of Ω̂(t) and Ω(t), we have

(3) T̂ ≥ T and cl(Ω(t)) ⊂ Ω̂(t).

If we prove that

(4) Ω̂(t) ⊂ cl(Ω(t)) and Ω(t) ⊂ Ω(t) for all t ∈ [0, T0),

which is the result of Lemma 8 below, then we obtain the convergence result.
We show these inclusions (4) by the following steps. First we show that

Ω̂(t) and Ω(t) are are sub and super-solutions, respectively, of (1) in visocosity
sense (Lemma 5 and Lemma 6). Second comparing initial states, we show the
inclusions among Ω̂(0), Ω(0), and Ω0 (Lemma 7). Finally, from the Lemmas
5,6, and 7, we obtain the desired inclusions (Lemma 8). The second part is
not difficult. The final part is a rather standard argument. In the fisrt part,
we need a help from the theory of Minkowski problem (Lemma 9).

Lemma 5 Let (P0, t0) ∈ R3×(0,+∞) and {O(t)}t∈(0,t0] be a family of closed
sets with smoothly evolving and strictly convex boundaries. If P0 ∈ ∂Ω̂(t0) ∩
∂O(t0) and Ω̂(t) ⊂ O(t) for all t ∈ (0, t0], then the inequality

(5) VO(P0, t0) ≤ −κO(P0, t0)

holds. Here, VO(P0, t0) and κO(P0, t0) is the normal velocity and the Gauss
curvature of ∂O(t0) at P0, respectively.

Lemma 6 Let (P0, t0) ∈ R3×(0,+∞) and {O(t)}t∈(0,t0] be a family of closed
sets with smoothly evolving and strictly convex boundaries. If P0 ∈ ∂Ω(t0) ∩
∂O(t0) and int(O(t)) ⊂ Ω(t) for all t ∈ (0, t0], then the inequality

(6) VO(P0, t0) ≥ −κO(P0, t0)

holds. Here, VO(P0, t0) and κO(P0, t0) is the normal velocity and the Gauss
curvature of ∂O(t0) at P0, respectively.
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Lemma 7 Ω̂(0) ⊂ cl(Ω0) and Ω0 ⊂ Ω(0) hold.

Lemma 8 T = T̂ = T0. Ω̂(t) ⊂ cl(Ω(t)) and Ω(t) ⊂ Ω(t) hold for all
t ∈ [0, T0).

For positive numbers a and b, we set

E = E(a, b) = {(x, y, z) | ax2 + by2 + z2 ≤ 1}.

For this ellipsoid E we have the following lemma.

Lemma 9 Let E be the ellipsoid defined as above. For any k ∈ N, there
uniquely exists a W̃ k-admissible polyhedron Ek symmetric with respect to the
origin such that

(7) κE(νki ) =
Ãki
AE

k

i

holds for all 1 ≤ i ≤ Nk. Moreover,

(8) lim
k→∞

dH(E
k, E) = 0

holds. Here, νki denotes the outward normal vector of the i-th side of W̃
k,

κE(ν) Gauss curvature of E at the point where the outward normal vector is
ν, Ãki the area of the i-th side of W̃

k, AE
k

i the area of the i-th side of Ek,
respectively.
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