
DRAPEAU THEOREM FOR DIFFERENTIAL SYSTEMS

KAZUHIRO SHIBUYA AND KEIZO YAMAGUCHI

Abstract. Generalizing the theorem for Goursat flags, we will characterize those flags
which are obtained by “Rank 1 Prolongation” from the space of 1 jets for 1 independent
and m dependent variables.

1. Introduction

This paper is concerned with the Drapeau theorem for differential systems. By a
differential system (R,D), we mean a distribution D on a manifold R, i.e., D is a
subbundle of the tangent bundle T (R). The derived system ∂D of D is defined, in terms
of sections, by

∂D = D + [D,D].

where D = Γ(D) denotes the space of sections of D. In general ∂D is obtained as
a subsheaf of the tangent sheaf of R (for the precise argument, see e.g.[Y1], [BCG3]).
Moreover higher derived systems ∂iD are defined successively by

∂iD = ∂(∂i−1D),

where we put ∂0D = D by convention. In this paper, a differential system (R,D) is
called regular if ∂iD are subbundles of T (M) for every i ≥ 1.

We say that (R,D) is an m-flag of length k, if (R,D) is regular and has a derived
length k, i.e., ∂kD = T (R);

D ⊂ ∂D ⊂ · · · ⊂ ∂k−2D ⊂ ∂k−1D ⊂ ∂kD = T (R),

such that rankD = m+1 and rank ∂iD = rank ∂i−1D+m for i = 1, . . . , k. In particular
dimR = (k + 1)m+ 1.

Especially (R,D) is called a Goursat flag (un drapeau de Goursat) of length k when
m = 1. Historically, by Engel, Goursat and Cartan, it is known that a Goursat flag
(R,D) of length k is locally isomorphic, at a generic point, to the canonical system
(Jk(M, 1), Ck) on the k-jet spaces of 1 independent and 1 dependent variable (for the
definition of the canonical system (Jk(M, 1), Ck), see §2). The characterization of the
canonical (contact) systems on jet spaces was given by R. Bryant in [B] for the first
order systems and in [Y1] and [Y2] for higher order systems for n independent and m
dependent variables. However, it was first explicitly exhibited by A.Giaro, A. Kumpera
and C. Ruiz in [GKR] that a Goursat flag of length 3 has singuralities and the research
of singularities of Goursat flags of length k (k ≥ 3) began as in [M1]. To this situation,
R. Montgomery and M. Zhitomirskii constructed the “Monster Goursat manifold” by
successive applications of the “Cartan prolongation of rank 2 distributions [BH]” to a
surface and showed that every germ of a Goursat flag (R,D) of length k appears in
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this “Monster Goursat manifold” in [MZ] , by first exhibitting the following Sandwich
Lemma for (R,D);

D ⊂ ∂D ⊂· · ·⊂ ∂k−2D ⊂∂k−1D⊂ ∂kD = T (R)

∪ ∪ ∪
Ch (D)⊂Ch (∂D)⊂Ch (∂2D)⊂· · ·⊂Ch (∂k−1D)

where Ch (∂iD) is the Cauchy characteristic system of ∂iD and Ch (∂iD) is a subbundle
of ∂i−1D of corank 1 for i = 1, . . . , k−1. Here the Cauchy Characteristic System Ch (C)
of a differential system (R,C) is defined by

Ch (C)(x) = {X ∈ C(x) | Xcdωi ≡ 0 (mod ω1, . . . , ωs) for i = 1, . . . , s},

where C = {ω1 = · · · = ωs = 0 } is defined locally by defining 1-forms {ω1, . . . , ωs}.
Moreover, after [MZ], P.Mormul defined the notion of a special m- flag of length k for
m ≥ 2 to characterize those m-flags which are obtained by successive applications of
the “generalized Cartan prolongation” to the space of 1-jets of 1 independent and m
dependent variables.

The main purpose of this paper is first to clarify the procedure of “Rank 1 Prolonga-
tion” of an arbitrary differential system (R,D) of rank m+ 1, and to give good criteria
for an m-flag of length k to be special,i.e., to be locally isomorphic to the k-th Rank 1
Prolongation (P k(M), Ck) of a manifold M of dimension m+ 1. More precisely we will
show for an m-flag of length k for m ≥ 3;

Corollary 5.8. An m-flag (R,D) of length k for m ≥ 3 is locally isomorphic to
(P k(M), Ck) if and only if ∂k−1D is of Cartan rank 1, and, moreover for m ≥ 4, if
and only if ∂k−1D is of Engel rank 1.

Here, the Cartan rank of (R,C) is the smallest integer ρ such that there exist 1-forms
{π1, . . . , πρ}, which are independent modulo {ω1, . . . , ωs} and satisfy

dα ∧ π1 ∧ · · · ∧ πρ ≡ 0 (mod ω1, . . . , ωs) for ∀α ∈ C⊥ = Γ(C⊥),

where C = {ω1 = · · · = ωs = 0 }. Furthermore the Engel (half) rank of (R,C) is the
smallest integer ρ such that

(dα)ρ+1 ≡ 0 (mod ω1, . . . , ωs) for ∀α ∈ C⊥,

Moreover we will show for an m-flag of length k for m ≥ 2,

Corollary 6.3. An m-flag (R,D) of length k is locally isomorphic to (P k(M), Ck) if
and only if there exists a completely integrable subbundle F of ∂k−1D of corank 1.

For this purpose, we will first review the geometric construction of jet spaces in §2
and clarify the procedure of Rank 1 Prolongation in §3. In §4, we will analyze the notion
of a special m-flag of length k and reestablish the local characterization of (P k(M), Ck)
by utilizing the Realization Lemma [Y1]. In §5 and §6, we will show the above criteria
(the Drapeau Theorem) for an m-flag of length k.
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2. Geometric construction of Jet Spaces

In this section, we will briefly recall the geometric construction of jet bundles in
general, following [Y1] and [Y2], which is our basis for the later considerations.

Let M be a manifold of dimension m + n. Fixing the number n, we form the space
of n-dimensional contact elements to M , i.e., the Grassmann bundle J(M,n) over M
consisting of n-dimensional subspaces of tangent spaces to M . Namely, J(M,n) is
defined by

J(M,n) =
⋃

x∈M

Jx, Jx = Gr(Tx(M), n),

where Gr(Tx(M), n) denotes the Grassmann manifold of n-dimensional subspaces in
Tx(M). Let π : J(M,n) → M be the bundle projection. The canonical system C on
J(M,n) is, by definition, the differential system of codimension m on J(M,n) defined
by

C(u) = π−1
∗ (u) = {v ∈ Tu(J(M,n)) | π∗(v) ∈ u} ⊂ Tu(J(M,n))

π∗−→ Tx(M),

where π(u) = x for u ∈ J(M,n).
Let us describe C in terms of a canonical coordinate system in J(M,n). Let uo ∈

J(M,n). Let (x1, . . . , xn, z
1, . . . , zm) be a coordinate system on a neighborhood U ′ of

xo = π(uo) such that dx1, . . . , dxn are linearly independent when restricted to uo ⊂
Txo(M). We put U = { u ∈ π−1(U ′)|dx1|u, . . . , dxn|u are linearly independent }. Then
U is a neighborhood of uo in J(M,n). Here dzα|u is a linear combination of dxi|u’s,i.e.,
dzα|u =

∑n
i=1 p

α
i (u)dxi|u. Thus, there exist unique functions pα

i on U such that C is
defined on U by the following 1-forms;

$α = dzα −
n∑

i=1

pα
i dxi (α = 1, . . . ,m),

where we identify zα and xi on U ′ with their lifts on U . The system of functions
(xi, z

α, pα
i ) (α = 1, . . . ,m, i = 1, . . . , n) on U is called a canonical coordinate system of

J(M,n) subordinate to (xi, z
α).

(J(M,n), C) is the (geometric) 1-jet space and especially, in case m = 1, is the so-

called contact manifold. Let M , M̂ be manifolds of dimension m+n and ϕ : M → M̂ be
a diffeomorphism. Then ϕ induces the isomorphism ϕ∗ : (J(M,n), C) → (J(M̂, n), Ĉ),

i.e., the differential map ϕ∗ : J(M,n) → J(M̂, n) is a diffeomorphism sending C onto

Ĉ. The reason why the case m = 1 is special is explained by the following theorem of
Bäcklund.

Theorem(Bäcklund) Let M and M̂ be manifolds of dimension m+n. Assume m ≥ 2.

Then, for an isomorphism Φ : (J(M,n), C) → (J(M̂, n), Ĉ), there exists a diffeomor-

phism ϕ : M → M̂ such that Φ = ϕ∗.

The essential part of this theorem is to show that F = Ker π∗ is the covariant system
of (J(M,n), C) for m ≥ 2. Namely an isomorphism Φ sends F onto F̂ = Ker π̂∗ for
m ≥ 2. For the proof, we refer the reader to Theorem 1.4 in [Y2].

In case m = 1, it is a well known fact that the group of isomorphisms of (J(M,n), C),
i.e., the group of contact transformations, is larger than the group of diffeomorphisms
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of M . Therefore, when we consider the geometric 2-jet spaces, the situation differs
according to whether the number m of dependent variables is 1 or greater.

(1) Case m = 1. We should start from a contact manifold (J,C) of dimension 2n+1,
which is locally a space of 1-jet for one dependent variable by Darboux’s theorem. Then
we can construct the geometric second order jet space (L(J), E) as follows: We consider
the Lagrange-Grassmann bundle L(J) over J consisting of all n-dimensional integral
elements of (J,C);

L(J) =
⋃
u∈J

Lu ⊂ J(J, n),

where Lu is the Grassmann manifolds of all Lagrangian (or Legendrian) subspaces of
the symplectic vector space (C(u), d$). Here $ is a local contact form on J . Namely,
v ∈ J(J, n) is an integral element if and only if v ⊂ C(u) and d$|v = 0, where u = π(v).
Let π : L(J) → J be the projection. Then the canonical system E on L(J) is defined by

E(v) = π−1
∗ (v) ⊂ Tv(L(J))

π∗−→ Tu(J),

where π(v) = u for v ∈ L(J). We have ∂E = π−1
∗ (C) and Ch (C) = {0} (cf.[Y1]). Hence

we get Ch (∂E) = Ker π∗, which implies the Bäcklund theorem for (L(J), E) (cf. [Y1]).
Now we put

(J2(M,n), C2) = (L(J(M,n)), E),

where M is a manifold of dimension n+ 1.

(2) Case m ≥ 2. Since F = Ker π∗ is a covariant system of (J(M,n), C), we define
J2(M,n) ⊂ J(J(M,n), n) by

J2(M,n) = {n-dim. integral elements of (J(M,n), C), transversal to F},
C2 is defined as the restriction to J2(M,n) of the canonical system on J(J(M,n), n).

Now the higher order (geometric) jet spaces (Jk+1(M,n), Ck+1) for k ≥ 2 are defined
(simultaneously for all m) by induction on k. Namely, for k ≥ 2, we define Jk+1(M,n) ⊂
J(Jk(M,n), n) and Ck+1 inductively as follows:

Jk+1(M,n) = {n-dim. integral elements of (Jk(M,n), Ck), transversal to Ker (πk
k−1)∗ },

where πk
k−1 : Jk(M,n) → Jk−1(M,n) is the projection. Here we have

Ker (πk
k−1)∗ = Ch (∂Ck),

and Ck+1 is defined as the restriction to Jk+1(M,n) of the canonical system on
J(Jk(M,n), n). Then we have ([Y1],[Y2])

Ck ⊂· · ·⊂ ∂k−2Ck ⊂∂k−1Ck⊂ ∂kCk = T (Jk(M,n))

∪ ∪ ∪
{0} = Ch (Ck)⊂Ch (∂Ck)⊂· · ·⊂Ch (∂k−1Ck)⊂ F

where Ch (∂i+1Ck) is a subbundle of ∂iCk of corank n for i = 0, . . . , k − 2 and, when
m ≥ 2, F is a subbundle of ∂k−1Ck of corank n. The transversality conditions are
expressed as

Ck ∩ F = Ch (∂Ck) for m = 2, Ck ∩ Ch (∂k−1Ck) = Ch (∂Ck) for m = 1
4



By the above diagram together with the rank condition, Jet spaces (Jk(M,n), Ck) can
be characterized as higher order contact manifolds as in [Y1] and [Y2].

Here we observe that, if we drop the transversality condition in our definition of
Jk(M,n) and collect all n-dimensional integral elements, we may have some singularities
in Jk(M,n) in general. However, since every 2-form vanishes on 1-dimensional subspaces,
in case n = 1, the integrability condition for v ∈ J(Jk−1(M, 1), 1) reduces to v ⊂ Ck−1(u)
for u = πk

k−1(v). Hence, in this case, we can safely drop the transversality condition in
the above construction as in the next section, which constitutes the key construction for
the Drapeau theorem in later considerations.

3. Rank 1 Prolongation

Let (R,D) be a differential system, i.e., R is a manifold of dimension s+m+ 1 and

D is a subbundle of T (R) of rank m+ 1. Starting from (R,D), we define (P (R), D̂) as
follows (cf. [BH]):

P (R) =
⋃
x∈R

Px ⊂ J(R, 1),

where

Px = {1-dim. integral elements of (R,D)} = {u ⊂ D(x) | 1-dim. subspaces} ∼= Pm.

Let p : P (R) → R be the projection. We define the canonical system D̂ on P (R) by

D̂(u) = p−1
∗ (u) = {v ∈ Tu(P (R)) | p∗(v) ∈ u} ⊂ Tu(P (R))

p∗−→ Tx(R),

where p(u) = x for u ∈ P (R).

We call (P (R), D̂) the prolongation of rank 1 (or Rank 1 Prolongation for short)

of (R,D). Then P (R) is a manifold of dimension 2m + s + 1 and D̂ is a differential

system of rank m+1. In case (R,D) = (M,T (M)), we have (P (M), D̂) = (J(M, 1), C).
Moreover

J2(M, 1) ⊂ P (J(M, 1)) ⊂ J(J(M, 1), 1)

As for the prolongation of rank 1, we have

Proposition 3.1. Let (R,D) be a differential system of rank m + 1 and let (P (R), D̂)

be the prolongation of rank 1 of (R,D). Then D̂ is of rank m + 1, ∂D̂ = p−1
∗ (D) and

Ch (D̂) is trivial. Moreover, if Ch (D) is trivial, then Ch (∂D̂) is a subbundle of D̂ of
corank 1.

Proof. Let s+m+ 1 be the dimension of R. For x ∈ R, let {$β, θα} (α = 1, · · · ,m+
1 , β = 1, · · · , s) be a coframe on a neighborhood U of x such that

D = {$1 = · · · = $s = 0}.
p−1(U) is covered by m+ 1 open sets Ûi = {v ∈ p−1(U) | θi|v 6= 0} in P (R) :

p−1(U) = Û1 ∪ · · · ∪ Ûm+1.

For v ∈ Ûi, v is a 1-dimensional subspace of Tx(R), x = p(v). Hence, restricting θα to v,
we have

θα|v = pα
i (v)θi|v for α = 1, · · · , ǐ, · · · ,m+ 1

5



where ˇ over a symbol means that symbol is deleted. These pα
i (α = 1, · · · , ǐ, · · · ,m+1)

constitute a fiber coordinate on Ûi.
Now we put

πα
i = θα − pα

i θ
i for α = 1, · · · , ǐ, · · · ,m+ 1.

Then we have

D̂ = {p∗$1 = · · · = p∗$s = πα
i = 0 (α = 1, · · · , ǐ, · · · ,m+ 1)}.

Since d$β, dθα are 2-forms on M , d$β|u = 0, dθα|u = 0 for u ∈ P (R). These imply that

d$β ≡ dθα ≡ 0 (mod $1, . . . , $s, πα
i (α = 1, · · · , ǐ, · · · ,m+ 1)),

where we write $β, θα instead of p∗$β, p∗θα, respectively.

Thus the structure equation for D̂ reads

{
d$β ≡ 0 (mod $1, . . . , $s, πα

i (α = 1, · · · , ǐ, · · · ,m+ 1))
dπα

i ≡ θi ∧ dpα
i (mod $1, . . . , $s, πα

i (α = 1, · · · , ǐ, · · · ,m+ 1))

Therefore

∂D̂ = {$1 = · · · = $s = 0},

Ch (D̂) = {$1 = · · · = $s = πα
i = θi = dpα

i = 0 (α = 1, · · · , ǐ, · · · ,m+ 1)}
These imply that ∂D̂ = p−1

∗ (D) and Ch (D̂) is trivial.

Moreover, if Ch(D) is trivial, it follows that

Ch (∂D̂) = Ch (p−1
∗ (D)) = p−1

∗ (Ch (D)) = Ker p∗

Then, by the very definition of canonical system D̂, it follows that Ch (∂D̂) is a subbundle

of D̂ of corank 1. ¤

This proposition implies that, starting from any differential system (R,D), we can
repeat the procedure of Rank 1 Prolongation. Let (P 1(R), D1) be the prolongation of
rank 1 of (R,D). Then (P k(R), Dk) is defined inductively as the prolongation of rank
1 of (P k−1(R), Dk−1), which is called k-th prolongation of rank 1 of (R,D). Moreover,
starting from a manifold M of dimension m+ 1, we put

(P k(M), Ck) = (P (P k−1(M)), Ĉk−1)

where (P 1(M), C1) = (J(M, 1), C). When m = 1, (P k(M), Ck) are called “monster
Goursat manifolds”in [MZ].

Here we observe that the above proposition also implies

Proposition 3.2. Let (R,D) be an m-flag of length 1, i.e., dimR = 2m+ 1, rankD =
m + 1 and ∂D = T (R). Then the k-th prolongation (P k(R), Dk) of rank 1 of (R,D)
is an m-flag of length k + 1. Namely, Dk satisfies rankDk = m + 1, rank ∂i+1Dk =
rank ∂iDk +m for i = 0, . . . , k and ∂k+1Dk = T (P k(R)).
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Schematically we have the following diagram;

Dk ⊂ ∂Dk ⊂ · · · · · · · · · ⊂ ∂k−1Dk ⊂ ∂kDk ⊂ ∂k+1Dk = T (P k(R))ypk∗

ypk∗

ypk∗

ypk∗

Dk−1 ⊂ · · · · · · · · · ⊂ ∂k−2Dk−1 ⊂ ∂k−1Dk−1 ⊂ ∂kDk−1 = T (P k−1(R))ypk−1∗

ypk−1∗

ypk−1∗

ypk−1∗

...
...

...
...

...

...
...

...
...yp2∗

yp2∗

yp2∗

D1 ⊂ ∂D1 ⊂ ∂2D1 = T (P 1(R))yp1∗

yp1∗

D ⊂ ∂D = T (R)

where pi : P i(R) → P i−1(R) is the projection. Here we note

∂kDk = (pk
0)
−1
∗ (D),

where pk
0 : P k(R) → R is the projection.

4. Special m-Flags of length k

An m- flag (R,D) (m ≥ 2) of length k is called a special m-flag if there exists a
completely integrable subbundle F of ∂k−1D of corank 1, which contains Ch (∂k−1D),
and Ch (∂iD) is a subbundle of ∂i−1D of corank 1 for i = 1, . . . , k− 1, such that Ch (D)
is trivial, i.e., if the following diagram holds for (R,D);

D ⊂ ∂D ⊂· · ·⊂ ∂k−2D ⊂∂k−1D⊂ ∂kD = T (R)

∪ ∪ ∪ ∪
{0} = Ch (D)⊂Ch (∂D)⊂Ch (∂2D)⊂· · ·⊂Ch (∂k−1D)⊂ F

where rank ∂iD = rank ∂i−1D +m for i = 1, . . . , k and rankD = m+ 1.

First, by repeated use of Rank 1 prolongations starting from a manifold M of di-
mension m+ 1, we obtain by Proposition 3.1,

Proposition 4.1. (P k(M), Ck) is a special m-flag of length k.

Conversely, by utilizing the following Realization Lemma, we will show that every
special m- flag of length k is locally isomorphic to (P k(M), Ck).
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Realization Lemma ([Y1;p.122]) Let R and M be manifolds. Assume that the
quadruple (R,D, p,M) satisfies the following conditions:

(i) p is a map of R into M of constant rank.
(ii) D is a differential system on R such that F = Ker p∗ is a subbundle of D of

corank n.
Then there exists a unique map ψ of R into J(M,n) satifying p = π · ψ and D =

ψ−1
∗ (C). Furthermore, let u be any point of R. Then ψ is in fact defined by

ψ(u) = p∗(D(u)) as a point of Gr(Tx(M), n), x = π(u),

and satisfies Ker (ψ∗)u = F (u) ∩ Ch (D)(u).

Theorem 4.2. A special m-flag (R,D) of length k is locally isomorphic to (P k(M), Ck),
where M is a manifold of dimension m+ 1. Especially F is unique for (R,D).

Proof. Let (R,D) be a special m-flag of length k. Matters being of local nature, we
may assume that the leaf space M = R/F of the foliation F defined on R is a manifold
of dimension 2m + 1 so that p : R → M is a submersion and Ker p∗ = F . Putting
p = ψ0, we will define maps ψi : R → P i(M) such that Kerψi

∗ = Ch (∂k−iD) for
i = 1, . . . , k as follows; First, Realization Lemma for the quadruple (R, ∂k−1D, p,M)
gives us the map ψ1 of R into P 1(M) = J(M, 1) such that (ψ1

∗)
−1(C1) = ∂k−1D and

Ker (ψ1)∗ = Ch (∂k−1D). By dimension count, we see that ψ1 is locally a submersion
of R onto P 1(M). ψj : R → P j(M) such that Kerψj

∗ = Ch (∂k−jD) being defined for
j = 1, . . . , i − 1, Realization Lemma for (R, ∂k−iD,ψi−1, P i−1(M)) gives us the map ψi

of R into P i(M) such that (ψi
∗)
−1(Ci) = ∂k−iD and Ker (ψi)∗ = Ch (∂k−iD). Thus,

for i = k, we obtain the map ψk of R into P k(M) such that (ψk
∗)
−1(Ck) = D and

Ker (ψk)∗ = Ch (D) = {0}. Then, by dimension count, ψk is a local isomorphism of
(R,D) onto (P k(M), Ck).

For the uniqueness of F , we first observe that, for a special m-flag (R,D) of length
1, ψ1 is an isomophism of (R,D) onto (J(M, 1), C). In this case, the uniqueness of F
follows from Proposition 1.3 in [Y2], which gives the characterization of the covariant
system F . For a special m-flag (R,D) of length k (k ≥ 2), we consider, locally, the leaf
space J̄ = R/Ch (∂k−1D) by Ch (∂k−1D). Let p̄ : R → J̄ be the projection. On J̄ , we
have differential systems D̄ = ∂k−1D/Ch (∂k−1D) and F̄ = F/Ch (∂k−1D) such that F̄
is a completely integrable subbundle of D̄ of corank 1 and Ch (D̄) is trivial, i.e., (J̄ , D̄)
is a special m-flag of length 1. Then the uniqueness of F = p̄−1

∗ (F̄ ) follows from that of
F̄ . This completes the proof of Theorem. ¤

Remark 4.3. After [MZ], P.Mormul first defined the notion of special m-flags of length k
for m ≥ 2 in a slightly different form in [M2] (cf. Theorem 6.2), generalizing the works
of [KR] or [PR]. The above theorem was first observed by him in Remark 3 [M2].

In view of Theorem 4.2, our task is to characterize the special m-flags among m-flags
of length k, which will be accomplished in the following sections.

8



5. Main Theorem (m ≥ 3)

Let (R,D) be an m-flag of length 1, i.e., R is a manifold of dimension 2m + 1 such
that rankD = m+1 and ∂D = T (R). By definition, (R,D) is a special m-flag (m ≥ 2) if
there exists a completely integrable subbundle F of D of corank 1 and Ch (D) is trivial.
Then, by Relization Lemma, (R,D) is locally isomorphic to (P 1(M), C1) = (J(M, 1), C),
where M = R/F is (locally) the leaf space of the foliatin F on R. In case m = 1, it
is easy to see that a 1-flag of length 1 is a contact manifold of dimension 3. 2-flags of
length 1 have peculiar aspects and were extensively studied in [C] (cf. §6). Now we start
with the following characterization of special m-flags of length 1 for m ≥ 3.

Proposition 5.1. An m-flag (R,D) of length 1 for m ≥ 3 is a special m-flag if and
only if D is of Cartan rank 1.

Here, the Cartan rank of (R,D) is the smallest integer ρ such that there exist 1-forms
{π1, . . . , πρ}, which are independent modulo {η1, . . . , ηm} and satisfy

dα ∧ π1 ∧ · · · ∧ πρ ≡ 0 (mod η1, . . . , ηm) for ∀α ∈ D⊥ = Γ(D⊥),

where D = {η1 = · · · = ηm = 0 }.
Proof of Proposition 5.1. First, assume that (R,D) is special. Then we can take

local defining 1-forms {η1, . . . , ηm, ω}, which are independent at each point, such that

D = {η1 = · · · = ηm = 0}, F = {η1 = · · · = ηm = ω = 0}.
Since F is completely integrable, dηβ ≡ 0 ( mod η1, . . . , ηm, ω) for β = 1, . . . ,m. Hence
there exist 1-forms {$1, . . . , $m} such that

dηβ ≡ ω ∧$β (mod η1, . . . , ηm) for β = 1, . . . ,m.

This implies that D is of Cartan rank 1.
Conversely assume that the Cartan rank of (R,D) is 1. Let us take local defining

1-forms {η1, . . . , ηm} of D as above;

D = {η1 = · · · = ηm = 0}.
Since the Cartan rank of D is 1, there exists 1-form ω, which is independent modulo
{η1, . . . , ηm} such that

ω ∧ dηβ ≡ 0 (mod η1, . . . , ηm) for β = 1, . . . ,m.

Hence there exist 1-forms {$1, . . . , $m} such that

dηβ ≡ ω ∧$β (mod η1, . . . , ηm) for β = 1, . . . ,m.

Then, from rank ∂D = rank D +m, it follows that {η1, . . . , ηm, ω,$1, . . . , $m} are
linearly independent. Taking exterior derivative of both sides of the above mod equality,
we get

0 ≡ dω ∧$β (mod η1, . . . , ηm, ω) for β = 1, . . . ,m.

Hence, from m ≥ 3, we obtain dω ≡ 0 (mod η1, . . . , ηm, ω). Putting

F = {η1 = · · · = ηm = ω = 0},
we have

dηβ ≡ dω ≡ 0 (mod η1, . . . , ηm, ω) for β = 1, . . . ,m.
9



Thus F is completely integrable. Moreover

Ch (D) = {η1 = · · · = ηm = ω = $1 = · · · = $m = 0}
implies Ch (D) is a subbundle of F of corank m. Namely Ch (D) is trivial. This com-
pletes the proof of Proposition. ¤

Remark 5.2. As a characterization of 1-jet spaces, Bryant’s normal form theorem is well
known ([B], [BCG3]). This theorem in 1 independent variable case says that an m-flag
(R,D) of length 1 for m ≥ 3 is a special m-flag if and only if D is of Engel (half-) rank 1
and Ch (D) is trivial. Here the Engel rank of (R,D) is the smallest integer ρ such that

(dα)ρ+1 ≡ 0 (mod η1, . . . , ηm) for ∀α ∈ D⊥,

where D = {η1 = · · · = ηm = 0 }. Here we observe that we cannot replace the Cartan
rank 1 condition in the above Proposition by the Engel rank 1 condition when m = 3,
as the following example shows; Let (y1, y2, y3, x0, x1, x2, x3) be a coordinate system of
R. Let us take a coframe {η1, η2, η3, θi, (i = 0, 1, 2, , 3)}as follows;

η1 = dy1 + x2dx3, η2 = dy2 + x3dx1, η3 = dy3 + x1dx2, θi = dxi.

Then, for D = {η1 = η2 = η3 = 0}, we have



dη1 ≡ θ2 ∧ θ3 (mod η1, η2, η3),
dη2 ≡ θ3 ∧ θ1 (mod η1, η2, η3),
dη3 ≡ θ1 ∧ θ2 (mod η1, η2, η3).

Thus (R,D) is a 3-flag of length 1 such that (R,D) is of Engel rank 1 and has non-trivial
Ch (D).

However we can replace the Cartan rank 1 condition in the above Proposition by the
Engel rank 1 condition when m ≥ 4, as the following Lemma implies.

Lemma 5.3. Let V be a vector space over R. Let ω1, . . . , ωr ∈ ∧2V be 2-forms such
that {ω1, . . . , ωr} are linearly independent and ωi ∧ ωj = 0 for 1 ≤ i ≤ j ≤ r. Then

(1) In case r = 2. There exist vectors v0, v1, v2 ∈ V , which are linearly independent,
such that

ω1 = v0 ∧ v1, ω2 = v0 ∧ v2.

(2) In case r = 3. Either of the followings holds
(i) There exist vectors v1, v2, v3 ∈ V , which are linearly independent, such that

ω1 = v2 ∧ v3, ω2 = v3 ∧ v1, ω3 = ±v1 ∧ v2.

(ii) There exist vectors v0, v1, v2, v3 ∈ V , which are linearly independent, such that

ω1 = v0 ∧ v1, ω2 = v0 ∧ v2, ω3 = v0 ∧ v3.

(3) In case r ≥ 4. There exist vectors v0, . . . , vr ∈ V , which are linearly independent,
such that

ω1 = v0 ∧ v1, ω2 = v0 ∧ v2, . . . , ωr = v0 ∧ vr.

In case m = 1, every Goursat flag of length k (k ≥ 2) is a special 1-flag, i.e., the
Sandwich Lemma holds automatically ([MZ]). By contrast, we need some condition for
an m-flag of length 2 (m ≥ 2) to be special as the following example shows.
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Example 5.4. Let R be a manifold of dimension 3m+1 (m ≥ 2), and let (xα, yβ, zβ) (α =
0, 1, · · · ,m, β = 1, · · · ,m) be a coordinate system on R. For a fixed a ∈ {0, 1, · · · ,m−
2}, let us take a coframe {η1, . . . , ηm, ζ1, . . . , ζm, θ0, . . . , θm} as follows;

θα = dxα , ηγ = dzγ + yγdx0 − 1
2
(x0)

2
dxγ (γ = 1, · · · ,m− a− 1)

ζβ = dyβ + x0dxβ , ηδ = dzδ + yδ−1dxδ−1 (δ = m− a, · · · ,m)

We consider D = {η1 = · · · = ηm = ζ1 = · · · = ζm = 0}. Then we have
{
dηβ ≡ 0 (mod η1, . . . , ηm, ζ1, . . . , ζm) for β = 1, . . . ,m,
dζβ ≡ θ0 ∧ θβ (mod η1, . . . , ηm, ζ1, . . . , ζm) for β = 1, . . . ,m.

{
dηγ ≡ ζγ ∧ θ0 (mod η1, . . . , ηm) for γ = 1, . . . ,m− a− 1,
dηδ ≡ ζδ−1 ∧ θδ−1 (mod η1, . . . , ηm) for δ = m− a, . . . ,m.

Hence we get

∂D = {η1 = · · · = ηm = 0} , ∂2D = T (R)

Ch (∂D) = {η1 = · · · = ηm = ζ1 = · · · = ζm−1 = θ0 = θm−a−1 = · · · = θm−1 = 0}
Thus, (R,D) is an m-flag of length 2, but Ch(∂D) is not a subbundle of D. Moreover
rank Ch (∂D) is m− a.

In order to get good control over Ch (∂D), we prepare the following proposition,
which gives us the Sandwich Lemma for m ≥ 3.

Proposition 5.5. Let (R,D) be a regular differential system such that rank ∂2D =
rank ∂D+m and rank ∂D = rankD+m. Assume m ≥ 3 and the Cartan rank of ∂D is
1, then Ch (∂D) is a subbundle of D of corank 1. Moreover the Cartan rank of D is 1

In view of Lemma 5.3, we can replace the Cartan rank 1 condition by the Engel rank
1 condition when m ≥ 4 (cf. Remark 5.6).

Proof. Let x be any point of R. By the rank condition, there exist linearly independent
1-forms {πi, ηβ, ζβ(i = 1, . . . , s, β = 1, . . . ,m)} defined on a neighborhood U of x, where
s = corank ∂2D, such that

∂2D = {π1 = · · · = πs = 0 },
∂D = {π1 = · · · = πs = η1 = · · · = ηm = 0 },
D = {π1 = · · · = πs = η1 = · · · = ηm = ζ1 = · · · = ζm = 0, }.

{
dπi ≡ 0, dηβ 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm)
dηβ ≡ 0, dζβ 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm)

Since the Cartan rank of ∂D is 1, there exist 1-forms {ω,$1, . . . , $m} on a neigh-
borhood V ⊂ U of x such that

dηβ ≡ ω ∧$β (mod π1, . . . , πs, η1, . . . , ηm)

From rank ∂2D = rank ∂D+m, it follows that {πi, ηβ, ω,$β(i = 1, . . . , s, β = 1, . . . ,m)}
are linearly independent at each y ∈ V . Then we have

Ch (∂D) = {π1 = · · · = πs = η1 = · · · = ηm = ω = $1 = · · · = $m = 0},
Thus Ch (∂D) is a subbubdle of ∂D of corank m+ 1.
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Now the structure equation for D implies

ω ∧$β ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).

First of all, we claim: There exists no open neighborhood V ′ ⊂ V of x such that ω
vanishes identically on V ′ modulo D⊥. Assume the contrary, i.e., there exists V ′ such
that ωV ′ ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm). Then we may assume ω = ζ1, so
that

dηβ ≡ ζ1 ∧$β (mod π1, . . . , πs, η1, . . . , ηm)

Taking the exterior derivative of both sides of this mod equation, we obtain

0 ≡ dζ1 ∧$β (mod π1, . . . , πs, η1, . . . , ηm, ζ1).

Since {πi, ηβ, ζ1, $β(i = 1, . . . , s, β = 1, . . . ,m)} are linearly independent and m ≥ 3,
we get

dζ1 ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1),

which contradicts the structure equation for D.

Now we divide the proof according to the dependence of ωx modulo D⊥(x).

(1) ωx 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).
From ω ∧$β ≡ 0 (mod D⊥), we have

$β ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm, ω).

Hence we have

$β ≡
m∑

γ=1

aβ
γζ

γ (mod π1, . . . , πs, η1, . . . , ηm, ω).

Since {πi, ηβ, ω,$β(i = 1, . . . , s, β = 1, . . . ,m)} are linearly independent, it follows that
det

(
aβ

γ (x )
) 6= 0 . Therefore

Ch (∂D) = {π1 = · · · = πs = η1 = · · · = ηm = ω = $1 = · · · = $m = 0}
= {π1 = · · · = πs = η1 = · · · = ηm = ζ1 = · · · = ζm = ω = 0} ⊂ D.

Thus Ch (∂D) is a completely integrable subbundle of D of corank 1 so that dζβ ≡ 0
(mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm, ω). Hence we have

dζβ ≡ ω ∧ θβ (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm),

Since rank ∂D = rankD + m, {πi, ηβ, ζβ, ω, θβ(i = 1, . . . , s, β = 1, . . . ,m)} are linearly
independent and the Cartan rank of D is 1.

(2) ωx ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).
Since {πi, ηβ, ω,$β(i = 1, . . . , s, β = 1, . . . ,m)} are linearly independent, there

exists β0 ∈ {1, . . . ,m} such that $β0
x 6≡ 0 (mod D⊥(x)). We may shrink our neigh-

borhood V of x so that $β0
y 6≡ 0 (mod D⊥(y)) for each y ∈ V . Then, from

ω ∧$β0 ≡ 0 (mod D⊥), we have

ω ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm, $β0).

Moreover we claim:

$β ∧$β0 ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm),

hold on V for each β ∈ {1, . . . ,m}.
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In fact, for each y ∈ V , we consider the following two cases.
(a) ωy 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).

From ω ∧$β ≡ 0 (mod D⊥), we have $β
y ≡ λβωy (mod D⊥(y)). Since λβ0 6= 0,

we get ωy ≡ λ$β0
y for λ 6= 0. Hence $β

y ∧$β0
y ≡ 0 (mod D⊥(y)) as desired.

(b) ωy ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).
Assume the contrary, i.e., there exists γ ∈ {1, . . . ,m} such that $γ

y ∧$β0
y 6≡ 0 ( mod

D⊥(y)) Then we may take a neighborhood V0 ⊂ V of y so that

$γ
z ∧$β0

z 6≡ 0 (mod D⊥(z)),

for each z ∈ V0. However ω cannot vanish identically on V0 as shown above. Hence
there exists a point z0 ∈ V0 such that ωz0 6≡ 0 (mod D⊥(z0)). Then, as in (a), we get
$γ

z0
∧$β0

z0
≡ 0 (mod D⊥(z0)), which is a contradiction.

Since {πi, ηβ, ω,$β(i = 1, . . . , s, β = 1, . . . ,m)} are linearly independent, we obtain

Ch (∂D) = {π1 = · · · = πs = η1 = · · · = ηm = ω = $1 = · · · = $m = 0}
= {π1 = · · · = πs = η1 = · · · = ηm = ζ1 = · · · = ζm = $β0 = 0} ⊂ D.

Thus Ch (∂D) is a completely integrable subbundle of D of corank 1. Moreover, as in
(1), the Cartan rank of D is 1. This completes the proof of Proposition. ¤

Remark 5.6. We cannot replace the Cartan rank 1 condition in the above Proposi-
tion by the Engel rank 1 condition when m = 3, as the following example shows; Let
(z1, z2.z3, y1, y2.y3, x0, x1, x2, x3) be a coordinate system of R. Let us take a coframe
{η1, η2, η3, ζ1, ζ2, ζ3, θ0, θ1, θ2, θ3} as follows;

η1 = dz1 + y1dx0, η2 = dz2 + y2dy1, η3 = dz3 + x0dy2, θ0 = dx0, θ1 = dx1,
ζ1 = dy1 − x1dx0, ζ2 = dy2 − x2dx0, ζ3 = dy3 − x3dx0, θ2 = dx2, θ3 = dx3.

We consider D = {η1 = η2 = η3 = ζ1 = ζ2 = ζ3 = 0}. Then we have
{
dηβ ≡ 0 (mod η1, η2, η3, ζ1, ζ2, ζ3) for β = 1, 2, 3,
dζβ ≡ θ0 ∧ θβ (mod η1, η2, η3, ζ1, ζ2, ζ3) for β = 1, 2, 3.




dη1 ≡ ζ1 ∧ θ0 (mod η1, η2, η3),
dη2 ≡ (ζ2 + x2θ0) ∧ (ζ1 + x1θ0) (mod η1, η2, η3),
dη3 ≡ θ0 ∧ ζ2 (mod η1, η2, η3).

Hence we get

∂D = {η1 = η2 = η3 = 0} , ∂2D = T (R),

Ch (∂D) = {η1 = η2 = η3 = ζ1 = ζ2 = θ0 = 0}.
Thus, (R,D) is an 3-flag of length 2 such that the Engel rank of ∂D is 1, but Ch(∂D)
is not a subbundle of D.

However, by Lemma 5.3, we can replace the Cartan rank 1 condition in the above
Proposition by the Engel rank 1 condition when m ≥ 4.

By utilizing the above proposition repeatedly, we obtain
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Theorem 5.7. An m-flag (R,D) of length k for m ≥ 3 is a special m-flag if and only
if ∂k−1D is of Cartan rank 1. Moreover, an m-flag (R,D) of length k for m ≥ 4 is a
special m-flag if and only if ∂k−1D is of Engel rank 1.

Proof. Only if part follows from the existence of the completely integrable subbundle F
of ∂k−1D of corank 1 for the special m-flag as in the proof of Proposition 5.1.

For the if part, first, the proof of Proposition 5.1 shows the existence of a completely
integrable subbundle F of ∂k−1D, which contains Ch (∂k−1D). By repeated application
of the previous propositon, we obtain that Ch (∂i+1D) is a subbundle of ∂iD of corank
1 for i = 0, . . . , k − 2. Thus we are left to show that rankD = rank Ch (D) +m+ 1.

Let us take defining 1-forms of D, ∂D and Ch (∂D) such that

∂D = {π1 = · · · = πs = 0} , D = {π1 = · · · = πs = ζ1 = · · · = ζm = 0},
Ch (∂D) = {π1 = · · · = πs = ζ1 = · · · = ζm = ω = 0}.

where s is the corank of ∂D. Since Ch (∂D) is completely integrable, we have

dζα ≡ 0 (mod π1, . . . , πs, ζ1, . . . , ζm, ω), for α = 1, . . . ,m.

Therefore, there exist 1-forms {θ1, . . . , θm} such that{
dπi ≡ 0, (mod π1, . . . , πs, ζ1, . . . , ζm) for i = 1, . . . , s,
dζα ≡ ω ∧ θα, (mod π1, . . . , πs, ζ1, . . . , ζm) for α = 1, . . . ,m.

Then, from rank ∂D = rank D +m, it follows that {πi, ζα, ω, θα(i = 1, . . . , s, α =
1, . . . ,m)} are linealy independent. Hence

Ch (D) = {π1 = · · · = πs = ζ1 = · · · = ζm = ω = θ1 = · · · = θm = 0}.
Thus rank D = rank Ch (D) +m+ 1. This completes the proof of Theorem. ¤

Hence, by Theorem 4.2, we obtain the Drapeau Theorem for m ≥ 3

Corollary 5.8. Let M be a manifold of dimension m+1. An m-flag (R,D) of length k
for m ≥ 3 is locally isomorphic to (P k(M), Ck) if and only if ∂k−1D is of Cartan rank
1, and, moreover for m ≥ 4, if and only if ∂k−1D is of Engel rank 1.

6. Integrable subbundle of corank 1

Let (R,D) be a 2-flag of length 1. Then it can be shown ([C]) that there exists a
local coframe {η1, η2, θ0, θ1, θ2} such that D = {η1 = η2 = 0},{

dη1 ≡ θ0 ∧ θ1 (mod η1, η2),
dη2 ≡ θ0 ∧ θ2 (mod η1, η2)

Thus the Cartan rank of (R,D) is always 1 and we have the covariant system F =
{η1 = η2 = θ0 = 0} of D of corank 1 (cf. [Y3]). As is well known, F is not necessarily
completely integrable.

As for a 2-flag of length 2, we observe that, in Example 5.4, putting m = 2, we
obtain the folllowing structure equation for D = {η1 = η2 = ζ1 = ζ2 = 0}, where

η1 = dz1 + y1dx0 − 1
2
(x0)

2
dx1, η2 = dz2 + y1dx1

ζ1 = dy1 + x0dx1, ζ2 = dy2 + x0dx2, θ0 = dx0, θ1 = dx1, θ2 = dx2,
14



{
dηβ ≡ 0 (mod η1, η2, ζ1, ζ2) for β = 1, 2,
dζβ ≡ θ0 ∧ θβ (mod η1, η2, ζ1, ζ2) for β = 1, 2.{

dη1 ≡ ζ1 ∧ θ0 (mod η1, η2),
dη2 ≡ ζ1 ∧ θ1 (mod η1, η2).

Thus ∂D = {η1 = η2 = 0} and the Cartan rank of ∂D is 1, whereas Ch(∂D) is not a
subbundle of D. This shows that the statement of Proposition 5.5 is false for m = 2.

To cover the case m = 2, we strengthen the hypothesis of Proposition 5.5 as in the
following.

Proposition 6.1. Let (R,D) be a regular differential system such that rank ∂2D =
rank ∂D+m and rank ∂D = rankD+m. Assume that there exists a completely integrable
subbubdle F of ∂D of corank 1, then Ch (∂D) is a subbundle of D of corank 1.

Proof. Let x be any point of R. By the rank condition, there exist linearly independent
1-forms {πi, ηβ, ζβ(i = 1, . . . , s, β = 1, . . . ,m)} defined on a neighborhood U of x, where
s = corank ∂2D, such that

∂2D = {π1 = · · · = πs = 0 },
∂D = {π1 = · · · = πs = η1 = · · · = ηm = 0 },
D = {π1 = · · · = πs = η1 = · · · = ηm = ζ1 = · · · = ζm = 0, }.

{
dπi ≡ 0, dηβ 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm)
dηβ ≡ 0, dζβ 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm)

Moreover, since F is a subbundle of ∂D of corank 1, there exists 1-form ω such that
{π1, . . . , πs, η1, . . . , ηm, ω} are linearly independent and

F = {π1 = · · · = πs = η1 = · · · = ηm = ω = 0 }
Since F is completely integrable, we have dηβ ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ω).
Hence there exist 1-forms {$1, . . . , $m} on a neighborhood V ⊂ U of x such that

dηβ ≡ ω ∧$β (mod π1, . . . , πs, η1, . . . , ηm)

From rank ∂2D = rank ∂D+m, it follows that {πi, ηβ, ω,$β(i = 1, . . . , s, β = 1, . . . ,m)}
are linearly independent at each y ∈ V . Then we have

Ch (∂D) = {π1 = · · · = πs = η1 = · · · = ηm = ω = $1 = · · · = $m = 0} ⊂ F,

Thus Ch (∂D) is a subbubdle of F of corank m.
Now the structure equation for D implies

ω ∧$β ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).

First of all, we claim: There exists no open neighborhood V ′ ⊂ V of x such that ω
vanishes identically on V ′ modulo D⊥. Assume the contrary, i.e., there exists V ′ such
that ωV ′ ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm). Then we may assume ω = ζ1 on
V ′. Since F is completely integrable and F = {π1 = · · · = πs = η1 = · · · = ηm = ζ1 =
0 }, we get

dζ1 ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1),

which contradicts the structure equation for D.

The rest of the proof is quite similar to that of Proposition 5.5, hence is omitted. ¤
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By utilizing the above proposition repeatedly, we obtain

Theorem 6.2. An m-flag (R,D) of length k is a special m-flag if and only if there exists
a completely integrable subbundle F of ∂k−1D of corank 1. Moreover, F is unique for
(R,D).

Proof. Only if part is trivial. For the if part, by repeated application of the above
Proposition, we obtain that F ⊃ Ch (∂k−1D) and Ch (∂i+1D) is a subbundle of ∂iD of
corank 1 for i = 0, . . . , k−2. Thus we are left to show that rankD = rank Ch (D)+m+1,
but the proof is the same as in Theorem 5.7. The uniqueness of F follows from Theorem
4.2. ¤

Hence, by Theorem 4.2, we obtain the following Drapeau Theorem for m ≥ 2.

Corollary 6.3. Let M be a manifold of dimension m + 1. An m-flag (R,D) of length
k is locally isomorphic to (P k(M), Ck) if and only if there exists a completely integrable
subbundle F of ∂k−1D of corank 1.
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