
COMPARISON ESTIMATES FOR THE GREEN FUNCTION AND
THE MARTIN KERNEL

KENTARO HIRATA

Abstract. A comparison estimate for the product of the Green function and
the Martin kernel is given in a uniform domain. As its application, we show the
equivalence of ordinary thinness and minimal thinness of a set contained in a
non-tangential cone. We also give a comparison estimate for the Martin kernels
with distinct singularities.

1. Introduction

The purpose of this paper is to estimate the product of the Green function and
the Martin kernel by an explicit function. In the unit ball B of Rn with n ≥ 2,
the formulas of the Green function GB(·, 0) with pole at the origin and the Martin
kernel KB(·, ξ) with singularity at a boundary point ξ give that

|x− ξ|2−n ≤ GB(x, 0)KB(x, ξ) ≤ cn|x− ξ|2−n

for x = rξ with 2−1 < r < 1, where cn is a positive constant depending only on
the dimension n. Such an estimate in a general domain is interesting because, even
though the Green function and the Martin kernel are not clear, the product can be
controlled by an explicit function. We will consider it in a uniform domain. An
open subset Ω of Rn, where n ≥ 2, is said to be a uniform domain if there exists a
constant C0 > 1 such that each pair of points x and y in Ω can be connected by a
rectifiable curve γ in Ω for which

`(γ) ≤ C0|x− y|,
min{`(γ(x, z)), `(γ(z, y))} ≤ C0δΩ(z) for all z ∈ γ,

(1.1)

where `(γ(x, z)) denotes the length of the subarc γ(x, z) of γ from x to z and δΩ(z)
stands for the distance from z to the boundary ∂Ω of Ω. We denote by GΩ the
Green function for Ω. Let x0 be a reference point in Ω. The Martin kernel of Ω is
defined by

KΩ(x, y) =
GΩ(x, y)
GΩ(x0, y)

for (x, y) ∈ (Ω× Ω) \ {(x0, x0)}.

It is known that if Ω is a uniform domain, thenKΩ(x, ·) can be extended continuously
to the boundary (cf. [2, Theorem 3]). The Martin kernel with singularity at ξ ∈ ∂Ω
is denoted by the same symbol KΩ(·, ξ). For ξ ∈ ∂Ω and α > 1, we write

Γα(ξ) = {x ∈ Ω : |x− ξ| < αδΩ(x)},

a non-tangential cone at ξ. An open ball and a sphere of center x and radius r
are denoted by B(x, r) and S(x, r), respectively. Throughout the paper, we use the

Key words and phrases. Green function, Martin kernel, uniform domain
2000 Mathematics Subject Classification. 31B25, 31C35.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPrint Series of Department of Mathematics, Hokkaido University

https://core.ac.uk/display/42024561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


symbol C to denote an absolute positive constant whose value is unimportant and
may change from line to line. If necessary, we write C(a, b, · · · ) to denote a constant
depending only on a, b, · · · . For two positive functions f1 and f2, we write f1 ≈ f2

if there exists a constant C > 1 such that C−1f1 ≤ f2 ≤ Cf1. The constant C is
called the constant of comparison. Our result in higher dimensions is as follows.

Theorem 1.1. Suppose that Ω is a uniform domain in Rn with n ≥ 3. Let ξ ∈ ∂Ω
and α > 1. Then

GΩ(x, x0)KΩ(x, ξ) ≈ |x− ξ|2−n for x ∈ Γα(ξ) ∩B(ξ, 2−1δΩ(x0)),(1.2)

where the constant of comparison depends only on α and Ω.

This result may be relating to the 3G inequality in bounded subdomains of Rn,
where n ≥ 3: there exists a positive constant C = C(Ω) such that

GΩ(x, y)GΩ(x, z)
GΩ(y, z)

≤ C(|x− y|2−n + |x− z|2−n) for x, y, z ∈ Ω.(1.3)

The 3G inequality was first proved in a bounded Lipschitz domain by Cranston,
Fabes and Zhao [13] to study the conditional gauge theory for the schrödinger oper-
ator. See also Bogdan [8]. Recently, Aikawa and Lundh [4] proved the 3G inequality
in a bounded uniformly John domain. Theorem 1.1 may be interpreted as the lim-
iting case of the 3G inequality. Indeed, if we let z = x0 and tend y to ξ ∈ ∂Ω, then
we have

KΩ(x, ξ)GΩ(x, x0) ≤ C(|x− ξ|2−n + |x− x0|2−n) ≤ C|x− ξ|2−n

whenever x ∈ Ω ∩ B(ξ, 2−1δΩ(x0)). Note that Theorem 1.1 is a local estimate
although the 3G inequality is a global one. Theorem 1.1 asserts that the product
GΩ(·, x0)KΩ(·, ξ) is bounded from below by the function | · −ξ|2−n as well.

The 3G inequality in two dimensions was proved by Bass and Burdzy [7] us-
ing probabilistic methods: for any bounded domain in R2, there exists a positive
constant C = C(Ω) such that

GΩ(x, y)GΩ(x, z)
GΩ(y, z)

≤ C
(

1 + log+ 1
|x− y|

+ log+ 1
|x− z|

)
for x, y, z ∈ Ω,

where log+ f = max{0, log f}. If Ω is a bounded uniform domain in R2 and ξ ∈ ∂Ω,
then the same process as above gives that for x ∈ Ω sufficiently near ξ,

KΩ(x, ξ)GΩ(x, x0) ≤ C log
1

|x− ξ|
.

In the particular case that Ω is a unit disc in R2, this inequality is not sharp as seen
in the starting paragraph of this section. But the above inequality is sharp when ξ is
an isolated boundary point. Indeed, letting δ = 2−1 min{1, dist(ξ, {x0}∪(∂Ω\{ξ}))},
we have for x ∈ B(ξ, δ) \ {ξ} that GΩ(x, x0) = GΩ∪{ξ}(x, x0) ≈ GΩ∪{ξ}(ξ, x0) by the
Harnack inequality, and that

KΩ(x, ξ) =
GΩ∪{ξ}(x, ξ)
GΩ∪{ξ}(x0, ξ)

≥
GB(ξ,2δ)(x, ξ)
GΩ∪{ξ}(x0, ξ)

≥ 2δ
GΩ∪{ξ}(x0, ξ)

log
1

|x− ξ|
.
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In order to obtain comparison estimate (1.2) for n = 2, we assume the following
exterior condition at ξ ∈ ∂Ω:

There exists a positive constant C1 such that for each r > 0 small,
there is a point zr ∈ B(ξ, r) \ Ω so that B(zr, C1r) ⊂ Rn \ Ω.(1.4)

Obviously, Lipschitz domains and NTA domains (in the sense of Jerison and Kenig
[18]) satisfy condition (1.4) at every boundary point. Our result in two dimensions
is as follows.

Theorem 1.2. Let Ω be a uniform domain in Rn with n = 2, and let α > 1.
Suppose that ξ ∈ ∂Ω satisfies condition (1.4). Then

GΩ(x, x0)KΩ(x, ξ) ≈ 1 for x ∈ Γα(ξ) ∩B(ξ, 2−1δΩ(x0)),

where the constant of comparison depends only on α, Ω and C1.

Our results are also relating to the following. In a domain Ωφ whose boundary
is described as the graph of a Lipschitz function φ : Rn−1 → R such that φ(0) = 0,
Burdzy [9, 10], Carroll [11, 12] and Gardiner [14] showed that the convergence of
the integrals∫

{|x′|<1}

max{φ(x′), 0}
|x′|n

dx′ and
∫
{|x′|<1}

max{−φ(x′), 0}
|x′|n

dx′,(1.5)

controls the limit of GΩφ(te, e)/t as t→ 0, where e = (0, · · · , 0, 1) ∈ Rn. The author
[16] obtained a corresponding result for the Martin kernel of Ωφ with singularity
at the origin, that is, the convergence of the integrals in (1.5) controls the limit of
tn−1KΩφ(te, 0) as t→ 0. Theorems 1.1 and 1.2 are independent of the convergence
of the integrals in (1.5), and give a direct connection beween the boundary decay of
the Green function and the boundary growth of the Martin kernel.

Theorems 1.1 and 1.2 will be proved simply using the boundary Harnack principle
and estimates of the Green function. A certain modification of Theorem 1.1, stated
in Section 2, will be enable us to show the equivalence of ordinary thinness and
minimal thinness for a set contained in a non-tangential cone. See Section 3. Using
Theorems 1.1 and 1.2, we also give in Section 4 comparison estimates for the product
of two Martin kernels with distinct singularities.

2. Proof of Theorems 1.1 and 1.2

We start by preparing some materials: the boundary Harnack principle in a uni-
form domain (cf. [2, Theorem 1]) and estimates for the Green function. We say that
a property holds quasi-everywhere if it holds apart from a polar set.

Lemma 2.1. Let Ω be a uniform domain in Rn with n ≥ 2. Then there exist
constants r0 > 0 and C2 > 1 depending only on Ω with the following property: Let
ξ ∈ ∂Ω and 0 < r ≤ r0. If h1 and h2 are positive and bounded harmonic functions
in Ω ∩B(ξ, C2r) vanishing quasi-everywhere on ∂Ω ∩B(ξ, C2r), then

h1(y)
h2(y)

≈ h1(y′)
h2(y′)

for y, y′ ∈ Ω ∩B(ξ, r),

where the constant of comparison depends only on Ω.
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A uniform domain can be characterized in terms of the quasi-hyperbolic metric:

kΩ(x, y) = inf
γ

∫
γ

ds(z)
δΩ(z)

,

where the infimum is taken over all rectifiable curve γ in Ω connecting x to y, and
ds stands for the line element on γ. Gehring and Osgood [15] showed that Ω is a
uniform domain if and only if there exists a positive constant C such that

kΩ(x, y) ≤ C log
[(
|x− y|
δΩ(x)

+ 1
)(
|x− y|
δΩ(y)

+ 1
)]

+ C for x, y ∈ Ω.(2.1)

We say that a finite sequence of balls {B(xj , 2−1δΩ(xj))}Nj=1 in Ω is a Harnack chain
between x and y if x1 = x, xN = y, and xj+1 ∈ B(xj , 2−1δΩ(xj)) for j = 1, · · · , N−1.
The number N is called the length of the Harnack chain. We observe in any proper
subdomains of Rn that the shortest length of the Harnack chain between x and
y is comparable to kΩ(x, y) + 1. The following lemma follows from the Harnack
inequality.

Lemma 2.2. Let Ω be a proper subdomain of Rn with n ≥ 2. Then there exists a
constant C > 1 depending only on the dimension n such that if x, y ∈ Ω, then

exp(−C(kΩ(x, y) + 1)) ≤ h(x)
h(y)

≤ exp(C(kΩ(x, y) + 1))

for every positive harmonic function h in Ω.

To apply Lemma 2.2 to the Green function, we need the following: If z ∈ Ω, then

kΩ\{z}(x, y) ≤ 3kΩ(x, y) + π for x, y ∈ Ω \B(z, 2−1δΩ(z)).(2.2)

The proof of this inequality may be found in [3, Lemma 7.2].

Lemma 2.3. Let Ω be a uniform domain in Rn with n ≥ 2. If x, y ∈ Ω satisfy

|x− y| ≤ C3 min{δΩ(x), δΩ(y)}

for some positive constant C3, then there exists a positive constant C depending only
on C3 and Ω such that

GΩ(x, y) ≥ C|x− y|2−n.

Proof. We may assume, without loss of generality, that δΩ(x) ≤ δΩ(y) and |x− y| ≥
2−1δΩ(x). Take w ∈ S(x, 2−1δΩ(x)). Then, by assumption,

|y − w| ≤ 2|x− y| ≤ 4C3 min{δΩ(w), δΩ(y)}.

Hence Lemma 2.2, together with (2.1) and (2.2), yields that

GΩ(x, y) ≈ GΩ(x,w) ≥ GB(x,δΩ(x))(x,w) ≈ δΩ(x)2−n ≥ C|x− y|2−n.

Thus the lemma is proved.

In general, if n ≥ 3, then GΩ(x, y) ≤ |x − y|2−n for x, y ∈ Ω. But, in two
dimensions, such an upper bound does not necessarily hold. This is a reason to
assume condition (1.4).
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Lemma 2.4. Let Ω be a proper subdomain of R2 and let α > 1. Suppose that ξ ∈ ∂Ω
satisfies condition (1.4). Then there exists a positive constant C depending only on
α and C1 such that

GΩ(x, y) ≤ C for x ∈ Γα(ξ) and y ∈ Ω \B(x, 2−1δΩ(x)).

Proof. Let x ∈ Γα(ξ) and put r = |x− ξ|. By assumption, there is zr ∈ B(ξ, r) \ Ω
such that B(zr, C1r) ⊂ R2 \Ω. We now write y∗ for the inverse of y with respect to
S(zr, C1r). Then we obtain that for y ∈ S(x, 2−1δΩ(x)),

GΩ(x, y) ≤ GR2\B(zr,C1r)
(x, y) = log

(
|y − zr|
C1r

|x− y∗|
|x− y|

)
≤ C(α,C1).

Hence the maximum principle yields the lemma.

Substituting for Theorem 1.1, we prove the following modification, which will be
used in Section 3.

Proposition 2.5. Suppose that Ω is a uniform domain in Rn with n ≥ 3. Let
ξ ∈ ∂Ω, α > 1 and κ ≥ 1. Then for x ∈ Γα(ξ) ∩ B(ξ, (2κ)−1δΩ(x0)) and y ∈
Ω ∩B(ξ, κ|x− ξ|),

GΩ(x, x0)KΩ(x, y) ≈ |x− y|2−n,(2.3)

where the constant of comparison depends only on α, κ and Ω.

Proof. Let x ∈ Γα(ξ) ∩ B(ξ, (2κ)−1δΩ(x0)) and y ∈ Ω ∩ B(ξ, κ|x− ξ|). Then x, y 6∈
B(x0, 2−1δΩ(x0)). Let C4 be a constant sufficiently large so that

C4 > max
{

5, C2,
δΩ(x0)
r0

}
,

where C2 and r0 are the constants in Lemma 2.1. We put r = C−1
4 δΩ(x). Since

δΩ(x) ≤ |x− ξ| < δΩ(x0) < C4r0,

we have r < r0. We consider two cases: δΩ(y) < r and δΩ(y) ≥ r.
Case 1 : δΩ(y) < r. Let y′ ∈ ∂Ω be a point such that δΩ(y) = |y − y′|. Then

|x− y′| ≥ δΩ(x) > C2r and |x0 − y′| ≥ δΩ(x0) ≥ δΩ(x) > C2r.

In view of the second inequality of (1.1), we can take a point yr in S(y′, r) ∩ Ω so
that δΩ(yr) ≥ 2−1C0r. We apply Lemma 2.1 to obtain

KΩ(x, y) =
GΩ(x, y)
GΩ(x0, y)

≈ GΩ(x, yr)
GΩ(x0, yr)

.(2.4)

Note that yr 6∈ B(x0, 2−1δΩ(x0)). Indeed, since 2r < C4r = δΩ(x) ≤ δΩ(x0), we have

|x0 − yr| ≥ δΩ(x0)− δΩ(yr) ≥ δΩ(x0)− r ≥ 1
2
δΩ(x0).

Since |y − ξ| ≤ κ|x− ξ| ≤ ακδΩ(x) = ακC4r and |y − yr| ≤ 2r, we have

|x− yr| ≤ |x− ξ|+ |ξ − y|+ |y − yr| ≤ C(α, κ, C4)r.

It therefore follows from (2.1), Lemma 2.2 and (2.2) that

GΩ(x, x0) ≈ GΩ(yr, x0),(2.5)
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and from Lemma 2.3 that GΩ(x, yr) ≈ |x− yr|2−n. Since |x− y| ≥ δΩ(x)− δΩ(y) ≥
(C4 − 1)r ≥ 4r by δΩ(y) < r, we have

|x− yr| ≤ |x− y|+ |y − yr| ≤ |x− y|+ 2r ≤ 3
2
|x− y|

and

|x− yr| ≥ |x− y| − |y − yr| ≥ |x− y| − 2r ≥ 1
2
|x− y|.

Therefore

GΩ(x, yr) ≈ |x− y|2−n.(2.6)

Combining (2.4), (2.5) and (2.6), we obtain (2.3) in this case.
Case 2 : δΩ(y) ≥ r. Since |x− y| ≤ C(α, κ, C4)r, it follows from (2.1), Lemma 2.2,
(2.2) and Lemma 2.3 that

GΩ(x, x0) ≈ GΩ(y, x0) and GΩ(x, y) ≈ |x− y|2−n,

and so (2.3) holds.
Finally, tending y to the boundary, we also obtain (2.3) for y ∈ ∂Ω∩B(ξ, κ|x−ξ|).

Thus the proposition is proved.

Theorem 1.2 (two dimensional case) may be established by repeating the same
argument as in the proof of Proposition 2.5 with κ = 1. Indeed, the lower bound

GΩ(x, x0)KΩ(x, ξ) ≥ C for x ∈ Γα(ξ) ∩B(ξ, 2−1δΩ(x0)),

holds, since Lemma 2.3 holds for n ≥ 2. We need to use Lemma 2.4 to obtain the
upper bound

GΩ(x, x0)KΩ(x, ξ) ≤ C for x ∈ Γα(ξ) ∩B(ξ, 2−1δΩ(x0)),(2.7)

since GΩ(x, y) ≤ C does not hold in general. For completeness, we give a proof. Let
x ∈ Γα(ξ) ∩ B(ξ, 2−1δΩ(x0)) and y ∈ Ω ∩ B(ξ, r), where r = C−1

4 δΩ(x). Note that
δΩ(y) < r. Let yr be a point as in the proof of Proposition 2.5. Since

|x− yr| ≥ δΩ(x)− δΩ(yr) ≥ δΩ(x)− r ≥ 1
2
δΩ(x),

we have by Lemma 2.4 that GΩ(x, yr) ≤ C. Hence this, together with (2.4) and
(2.5), yields that GΩ(x, x0)KΩ(x, y) ≤ C. Tending y to ξ, we obtain (2.7).

3. Equivalence of ordinary thinness and minimal thinness

In this section, we show, as an application of Proposition 2.5, the equivalence of
ordinary thinness and minimal thinness for a set contained in a non-tangential cone
of a uniform domain in Rn, where n ≥ 3. Let E be a subset of Rn and let ξ ∈ Rn be
a limit point of E. We say that E is thin at ξ (in the ordinary sense) if there exists
a positive superharmonic function u in Rn such that u(ξ) < +∞ and u(x) → +∞
as x → ξ along E. By Wiener’s criterion (cf. [6, Theorem 7.7.2]), thinness can be
characterized in terms of the regularized reduced function. We denote by R̂E1 the
regularized reduced function of the constant function 1 relative to E in Rn, and
write Ej = {x ∈ E : 2−j−1 ≤ |x − ξ| ≤ 2−j}. Then E is thin at ξ if and only if∑∞

j=1 R̂
Ej
1 (ξ) < +∞. The original definition of minimal thinness by Näım [20] is

based on the regularized reduced function of the Martin kernel. We define minimal
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thinness by the following equivalent condition (cf. [6, Theorem 9.2.7]): Let E be a
subset of Ω and let ξ be a minimal Martin boundary point of Ω, which is a Martin
topology limit point of E. We say that E is minimally thin at ξ with respect to Ω
if there exists a Green potential GΩµ in Ω such that

∫
KΩ(x, ξ)dµ(x) < +∞ and

lim
y→ξ, y∈E

GΩµ(y)
GΩ(x0, y)

= +∞ (in the Martin topology).

Now, suppose n ≥ 3 and let E be a set containd in a non-tangential cone at a
boundary point ξ. In [19], Lelong-Ferrand proved in the half-space that E is thin at
ξ if and only if E is minimally thin at ξ. The extension of this to a bounded Lipschitz
domain was established by Aikawa [1]. Note that when n = 2, the equivalence does
not hold in general (cf. [17]). We now give the extension to a uniform domain. Note
that if Ω is a bounded uniform domain, then the Martin compactification of Ω is
homeomorphic to the Euclidean closure and all Martin boundary points are minimal
(cf. [2, Corollary 3]).

Theorem 3.1. Suppose that Ω is a bounded uniform domain in Rn, where n ≥ 3.
Let ξ ∈ ∂Ω and α > 1, and let E be a subset of Γα(ξ). Then E is thin at ξ if and
only if E is minimally thin at ξ with respect to Ω.

Remark 3.2. The boundedness of Ω is not essential and we may leave it out, since if
D is a domain containing Ω such that D∩B(ξ, 1) = Ω∩B(ξ, 1) and if E is minimally
thin at ξ with respect to Ω, then so is with respect to D (cf. [20, Théorème 15]).

Note again that 3G inequality (1.3) in a bounded uniform domain yields that for
x ∈ Ω \B(x0, 2−1δΩ(x0)) and y ∈ Ω,

KΩ(x, y)GΩ(x, x0) ≤ C(|x− y|2−n + |x− x0|2−n) ≤ C|x− y|2−n.(3.1)

Here, in the last inequality, we used |x− y| ≤ 2(diam Ω)δΩ(x0)−1|x− x0|.

Proof of Theorem 3.1. We may assume, without loss of generality, that ξ is a limit
point of E and E ⊂ B(ξ, 6−1δΩ(x0)). We first show the necessity. For j ≥ 1, we let
Ej = {x ∈ E : 2−j−1 ≤ |x− ξ| ≤ 2−j}. Since E is thin at ξ, there exists a sequence
{aj} of positive numbers such that

lim
j→+∞

aj = +∞ and
∞∑
j=1

ajR̂
Ej
1 (ξ) < +∞.

Let µj be the Riesz measure associated with R̂Ej1 , and let dνj(x) = GΩ(x, x0)dµj(x).
Note that the support of νj is contained in Ej . It follows from Proposition 2.5 with
κ = 3 that for y ∈ Ej ,

R̂
Ej
1 (y) =

∫
|x− y|2−ndµj(x) ≤ C

∫
KΩ(x, y)dνj(x).

Since R̂Ej1 = 1 quasi-everywhere on Ej , we have

1
C
≤ GΩνj(y)
GΩ(x0, y)

for quasi-every y ∈ Ej .

Let u(y) =
∑∞

j=1 ajGΩνj(y). Then u is a Green potential in Ω satisfying

lim
y→ξ, y∈E\F

u(y)
GΩ(x0, y)

= +∞,
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where F is a polar set. Also, Proposition 2.5 with y = ξ gives
∞∑
j=1

aj

∫
KΩ(x, ξ)dνj(x) ≤ C

∞∑
j=1

ajR̂
Ej
1 (ξ) < +∞.

Hence E \ F is minimally thin at ξ with respect to Ω, and so is E.
We next show the sufficiency. Since E is minimally thin at ξ with respect to Ω,

there exists a Green potential GΩµ such that
∫
KΩ(x, ξ)dµ(x) < +∞ and

lim
y→ξ, y∈E

GΩµ(y)
GΩ(x0, y)

= +∞.

ReplacingGΩµ by its regularized reduced function relative to Γα(ξ) ∩B(ξ, 2−1δΩ(x0))
in Ω if necessary, we may assume that the support of µ is in Γα(ξ) ∩B(ξ, 2−1δΩ(x0)).
Let dν(x) = GΩ(x, x0)−1dµ(x). It then follows from (3.1) that

GΩµ(y)
GΩ(x0, y)

=
∫
KΩ(x, y)dµ(x) ≤ C

∫
|x− y|2−ndν(x),

so that

lim
y→ξ, y∈E

∫
|x− y|2−ndν(x) = +∞.

Also, Proposition 2.5 with y = ξ gives∫
|x− ξ|2−ndν(x) ≤ C

∫
KΩ(x, ξ)dµ(x) < +∞.

Hence E is thin at ξ. Thus the proof is complete.

4. Further result

In this section, we give comparison estimates for the product of two Martin kernels
with distinct singularities. Estimates will be obtained on a certain curve connecting
singularities. We observe that the properties in (1.1) can be extended to the bound-
ary of Ω, that is, if Ω is a uniform domain, then each pair of points ξ and η in ∂Ω
can be connected by a rectifiable curve γ such that γ \ {ξ, η} ⊂ Ω and

`(γ) ≤ C5|ξ − η|,(4.1)

min{`(γ(ξ, z)), `(γ(z, η))} ≤ C5δΩ(z) for all z ∈ γ,(4.2)

where the constant C5 depends only on C0 in (1.1). See [5, Lemma 2.1], in which
this was proved for a uniformly John domain but their argument is applicable to our
case after replacing the internal metric by the Euclidean metric. For ξ, η ∈ ∂Ω, we
denote by zξ,η the middle point of γ so that `(γ(ξ, zξ,η)) = `(γ(zξ,η, η)) = 2−1`(γ).

Theorem 4.1. Let Ω be a bounded uniform domain in Rn. Let ξ, η ∈ ∂Ω be distinct
points and suppose that γ is a curve connecting ξ to η for which (4.1) and (4.2) are
satisfied. Let zξ,η be the middle point of γ and put

g(ξ, η) = max
{

1,
|ξ − η|2−n

GΩ(zξ,η, x0)2

}
.

The following statements hold:
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(i) If n ≥ 3, then for x ∈ γ,

KΩ(x, ξ)KΩ(x, η) ≈ g(ξ, η)(|x− ξ|2−n + |x− η|2−n),(4.3)

where the constant of comparison depends only on Ω.
(ii) If n = 2 and every boundary point of Ω satisfies condition (1.4), then (4.3)

holds for x ∈ γ.

We observe that if γ is a curve connecting ξ to η with (4.1) and (4.2), then

(2C5)−1|ξ − η| ≤ C−1
5 `(γ(ξ, zξ,η)) ≤ δΩ(zξ,η) ≤ `(γ(ξ, zξ,η)) ≤ C5|ξ − η|.

Note that if Ω is a bounded C1,1-domain, then

GΩ(x, x0) ≈ δΩ(x) for x ∈ Ω \B(x0, 2−1δΩ(x0)).

Hence, in this case, we obtain the following.

Corollary 4.2. Let Ω be a bounded C1,1-domain in Rn with n ≥ 2. Let ξ, η ∈ ∂Ω
be distinct points and suppose that γ is a curve connecting ξ to η for which (4.1)
and (4.2) are satisfied. Then for x ∈ γ,

KΩ(x, ξ)KΩ(x, η) ≈ 1
|ξ − η|n

(|x− ξ|2−n + |x− η|2−n),

where the constant of comparison depends only on Ω.

Let us give a proof of Theorem 4.1.

Proof of Theorem 4.1. We give a proof only when n ≥ 3. Let r0 and C2 be the
constants in Lemma 2.1. We may assume, without loss of generality, that δΩ(x0) ≥
2 max{C2, C5}r0. Let r = (C2 + 2)−1|ξ − η|. We consider two cases: r ≤ r0 and
r > r0.
Case 1 : r ≤ r0. Let x ∈ γ ∩B(ξ, r). Then |x− η| > C2r, and so Lemma 2.1 gives

KΩ(x, η) ≈ GΩ(x, yr)
GΩ(x0, yr)

,(4.4)

where yr is a point such that yr ∈ γ ∩ S(η, r). Since |yr − ξ| > C2r, we again apply
Lemma 2.1 to obtain

GΩ(x, yr)
GΩ(x, x0)

≈ GΩ(xr, yr)
GΩ(xr, x0)

,(4.5)

where xr is a point such that xr ∈ γ ∩ S(ξ, r). Since x ∈ ΓC5(ξ) ∩ B(ξ, 2−1δΩ(x0))
by (4.2), it follows from (4.4), (4.5) and Theorem 1.1 that

KΩ(x, η) ≈ GΩ(xr, yr)
GΩ(xr, x0)GΩ(yr, x0)

GΩ(x, x0)

≈ GΩ(xr, yr)
GΩ(xr, x0)GΩ(yr, x0)

|x− ξ|2−n

KΩ(x, ξ)
.

(4.6)

Note from (4.2) that every δΩ(xr), δΩ(yr), δΩ(zξ,η) is greater than C−1
5 r and that

|x− x0| ≥ δΩ(x0)− |x− ξ| ≥ 1
2
δΩ(x0).

Since |xr − zξ,η| and |yr − zξ,η| are bounded by `(γ) ≤ C5|ξ − η| = C5(C2 + 2)r, we
have from (2.1), Lemma 2.2 and (2.2)

GΩ(xr, x0) ≈ GΩ(zξ,η, x0) ≈ GΩ(yr, x0).(4.7)
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Also, since |xr − yr| ≤ C5(C2 + 2)r and

|xr − yr| ≥ |ξ − η| − |xr − ξ| − |yr − η| ≥ (C2 + 2)r − r − r = C2r,

we have by Lemma 2.3 (ane Lemma 2.4 when n = 2)

GΩ(xr, yr) ≈ |xr − yr|2−n ≈ r2−n ≈ |ξ − η|2−n.(4.8)

Combining (4.6), (4.7) and (4.8), we obtain

KΩ(x, ξ)KΩ(x, η) ≈ |ξ − η|2−n

GΩ(zξ,η, x0)2 |x− ξ|
2−n(4.9)

whenever x ∈ γ ∩B(ξ, r). If x ∈ γ(ξ, zξ,η) \B(ξ, r), then |x− xr| ≤ C5(C2 + 1)r and
δΩ(x) ≥ C−1

5 r by (4.1) and (4.2), and therefore (2.1) and Lemma 2.2 give

KΩ(x, ξ)KΩ(x, η) ≈ KΩ(xr, ξ)KΩ(xr, η).

Observe that |x − ξ| ≈ r = |xr − ξ|. Hence (4.9) holds for x ∈ γ(ξ, zξ,η). Since
|x− ξ|2−n ≈ |x− ξ|2−n + |x− η|2−n for x ∈ γ(ξ, zξ,η) and |ξ− η|2−nGΩ(zξ,η, x0)−2 ≥
C(Ω) > 0, we obtain (4.3) for x ∈ γ(ξ, zξ,η). Similarly, we can obtain (4.3) for
x ∈ γ(zξ,η, η). Thus (4.3) holds for all x ∈ γ in this case.
Case 2 : r > r0. Let x ∈ γ ∩ B(ξ, r0) and let xr0 ∈ γ ∩ S(ξ, r0). Then we observe
that

KΩ(xr0 , η) ≈ 1 and GΩ(xr0 , x0) ≈ 1,

where the constants of comparisons depend on r0, δΩ(x0) and the diameter of Ω.
Note that |ξ − η| = (C2 + 2)r > C2r0. We apply Lemma 2.1 and Theorem 1.1 to
obtain

KΩ(x, η) ≈ KΩ(xr0 , η)
GΩ(xr0 , x0)

GΩ(x, x0) ≈ |x− ξ|
2−n

KΩ(x, ξ)
≈ |x− ξ|

2−n + |x− η|2−n

KΩ(x, ξ)
.

If x ∈ γ(ξ, zξ,η) \B(ξ, r0), then δΩ(x) ≥ C−1
5 r0 by (4.2), and so

KΩ(x, ξ) ≈ 1 ≈ KΩ(x,η) and |x− ξ| ≈ 1 ≈ |x− η|,

where the constants of comparisons depend on C−1
5 r0, δΩ(x0) and the diameter of

Ω. Noting |ξ − η|2−nGΩ(zξ,η, x0)−2 ≤ C(Ω), we have (4.3) for all x ∈ γ(ξ, zξ,η).
Similarly, we can obtain (4.3) for x ∈ γ(zξ,η, η). Thus the proof of Theorem 4.1 is
complete.
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