
REMARKS ON MODIFIED IMPROVED BOUSSINESQ
EQUATIONS IN ONE SPACE DIMENSION
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Abstract. We study the existence and scattering of global small amplitude
solutions to modified improved Boussinesq equations in one dimension with
nonlinear term f(u) behaving as a power up as u → 0. Solutions in Hs space
are considered for all s > 0. According to the value of s, the power nonlinearity
exponent p is determined. Liu [15] obtained the minimum value of p greater

than 8 at s = 3
2

for sufficiently small Cauchy data. In this paper, we prove

that p can be reduced to be greater than 9
2

at s > 8
5

and the corresponding

solution u has the time decay such as ‖u(t)‖L∞ = O(t−
2
5 ) as t →∞. We also

prove nonexistence of nontrivial asymptotically free solutions for 1 < p ≤ 2
under vanishing condition near zero frequency on asymptotic states.

1. Introduction

We consider the following initial value problem for the one dimensional general-
ized IMBq equation (Modified Improved Boussinesq equation):

utt − uxxtt − uxx = (f(u))xx, (x, t) ∈ R× (0, +∞),

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ R,
(1.1)

where f ∈ Ck(C) in the real sense and |f (l)(u)| . |u|p−l for 0 ≤ l ≤ k ≤ p and
p > 1. By Duhamel’s principle, the solution u can be written as

u(x, t) = (∂tS(t)ϕ)(x) + (S(t)ψ)(x) +
∫ t

0

T (t− t′)f(u(t′)) dt′.(1.2)

Here T (t) = S(t)(I − ∂2
x)−1∂2

x and

(∂tS(t)ϕ)(x) =
1
2π

∫

R
eixξ cos

(
tξ√

1 + ξ2

)
ϕ̂(ξ) dξ,

(S(t)ψ)(x) =
1
2π

∫

R
eixξ sin

(
tξ√

1 + ξ2

) √
1 + ξ2

ξ
ψ̂(ξ) dξ,

where ϕ̂(ξ) = F(ϕ)(ξ) =
∫
R e−ix·ξϕ(x) dx is the Fourier transform of ϕ.

The generalized IMBq equation governs the various physical models like non-
linear wave in weakly dispersive medium (in this case f(u) = u2 [3, 13, 16]) and
longitudinal variation wave in elastic rod(f(u) = u3 or u5 [10]), etc. For the local
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or global existence of solution of IMBq equations, see [4, 5, 6, 8, 15], and for the
small amplitude solution and scattering, see [7, 15].

In this paper, the small amplitude solution and scattering to the nonlinear prob-
lem (1.1) are considered in one dimensional case. Our main concerns are to provide
the lower bound of nonlinearity p for the global existence of solution and scattering
according to the regularity of initial data, and also the upper bound of p for the
nonexistence of nontrivial asymptotically free solutions. The methods below can
be applied to the high dimensional case as well without any difficulty. For this see
the section 3.3 Remarks below.

To state our main results, let us define a function space Xs,θ
δ by

Xs,θ
ρ = {v : |||v|||s,θ ≡ sup

t>0
(1 + t)θ‖v‖L∞ + sup

t>0
‖Dsv‖L2 ≤ ρ},

and DαL1 and DL2 by {ϕ : D−αϕ ∈ L1} and {ϕ : D−1ϕ ∈ L2} respectively, where
D =

√
−∂2

x. We use the usual Sobolev spaces W s
r and Hs with the norms

‖ϕ‖W s
r

= ‖ϕ‖Lr + ‖Dsϕ‖Lr , ‖ϕ‖Hs = ‖ϕ‖W s
2
.

The first result is on the following global existence for small data.

Theorem 1.1. Let s, p, α be numbers such that k ≥ s > 2− 4
r

p > max
(

4r − 4
r − 2

,
r + 8

4

)
and α = max

(
3(r − 2)

2r
,
r − 2

4

)

for 2 < r < ∞. Suppose that the data (ϕ,ψ) satisfy the regularity condition

(ϕ,ψ) ∈ (L1 ∩Dmax(0,α−1)L1 ∩W s
r′ ∩Hs)× (L1 ∩DαL1 ∩DL2 ∩W s

r′ ∩Hs)

and the smallness condition
‖ϕ‖L1 + ‖D−max(0,α−1)ϕ‖L1 + ‖ϕ‖W s

r′
+ ‖ϕ‖Hs

+ ‖ψ‖L1 + ‖D−αψ‖L1 + ‖D−1ψ‖L2 + ‖ψ‖W s r′ + ‖ψ‖Hs ≤ δ.
(1.3)

Then if δ is sufficiently small, then there exists a unique global solution u ∈
C1([0,∞); L∞ ∩ Hs) of (1.2) and small positive number ρ depending only on r, δ

such that

|||u|||s, min( r−2
2r , 4

r ) + |||ut|||s, min( r−2
2r , 4

r ) ≤ ρ.

The next is on the scattering.

Theorem 1.2. Let u be the solution of (1.2) as in Theorem 1.1. Then there exist
functions ϕ+ and ψ+ in Hs such that

‖u(t)− u+(t)‖Hs + ‖ut(t)− u+
t (t)‖Hs = O(t−(p−1) min( r−2

2r , 4
r )+1),

where u+ is the unique solution of linear homogeneous equation

u+
tt − u+

ttxx − u+
xx = 0,

u+(0) = ϕ+, u+
t (0) = ψ+.

(1.4)
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The minimum values of p can be chosen to be greater than 9
2 at r = 10 and then

α = 2 and s > 8
5 . We also have that supt>0(1 + t)

2
5 ‖u(t)‖L∞ < ∞. If we choose

r = 6, then we can take the values p, α, s as p > 5, α = 1 and s > 4
3 , and also

have that supt>0(1 + t)
1
3 ‖u(t)‖L∞ < ∞. Thus Theorems 1.1 and 1.2 contain the

physical situation p = 5 and also give slight improvements of the previous result
[15] in which the global existence was established for p > 8 at s = 3

2 and the value
of s should be greater than 1

2 for the scattering. Moreover, even if s ≤ 1
2 (this

can occur for 2 < r < 8
3 ), the global existence can be established and time decay

estimate can be obtained without resort to the Sobolev embedding Hs ↪→ L∞ for
s > 1

2 .
For the purpose of improvement, we use the stationary phase method and Young’s

inequality (‖u ∗ v‖L∞ ≤ ‖u‖Lr‖v‖Lr′ ) for the dyadically localized kernel estimate
of high frequency part of ∂tS, S and T instead of integration estimate used in [15]
and [7]. For the kernel estimate, the condition ϕ, ψ ∈ W s

r′ is used. We also use
van der Corput type estimate for medium frequency part of the operators similar
to the one in [7, 15]. To obtain an estimate for low frequency part, the condition
ψ ∈ DαL1 ∩DL2 is necessary. For the details, see Section 2.2 below.

In [7], the same problem was considered and some extended results were obtained
but the results should be corrected because the authors overlooked the bad behavior
of low frequency part of S(t)ψ at near zero frequency which causes troubles in L∞

and Hs estimates.
In view of Theorem 1.1, if r = 10 and hence ϕ ∈ D(L1∩L2) and ψ ∈ D2(L1∩L2),

then for p > 9
2 , it can be easily shown that (u, ut) ∈ L∞(0,∞; DL2×D2L2) by the

decay estimate supt>0(1+ t)
2
5 ‖u(t)‖L∞ < ∞ and the scattering ‖u(t)−u+(t)‖L2 =

O(t−
2
5 ). On the other hand, the following theorem shows that there is no nontrivial

asymptotically free solution u with ‖u(t) − u+(t)‖L2 = O(t−ε), if p is small and
(u, ut) ∈ L∞(0,∞; DL2 ×D2L2).

Theorem 1.3. Let 1 < p ≤ 2 and suppose that Re(f(u)u) ≥ c|u|p+1 for some posi-
tive constant c. Let u be a smooth solution u to (1.1) with (u, ut) ∈ L∞(0,∞; DL2×
D2L2) and (ϕ+, ψ+) be a pair of smooth functions with compactly supported ϕ̂+ and
ψ̂+ in R \ {0}. Suppose that

‖u(t)− u+(t)‖L2 = O(t−ε) as t →∞(1.5)

for some ε > 0, where u+ is the free solution to the linear problem (1.4). Then
u = u+ = 0.

The theorem above shows that IBq equation (corresponding to the physical sit-
uation f(u) = u2) does not have nontrivial asymptotically free solution. But it
remains open whether the theorem is true for p > 2 in one dimensional case or
not. For the proof, we use an analogous argument to the one of Glassey [11] that
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H(t) = Re
∫

(D−1utD−1u+−D−1u+
t D−1u) dx is uniformly bounded but under the

conditions stated in Theorem 1.3 d
dtH(t) ≥ c

t and hence a contradiction occurs. For
related topics, see [1, 17, 19].

If not specified, throughout this paper, the notation A . B and A & B denote
A ≤ CB and A ≥ C−1B, respectively. Positive constants C vary line by line and
depend only on r and f . A ∼ B means that both A . B and A & B hold.

2. Preliminaries

2.1. Linear estimates. First, we introduce an estimate of oscillatory integral.

Lemma 2.1. For R, t > 1 and 0 < ε < 1, we have

sup
x∈R

∣∣∣∣∣
∫

ε<|ξ|<R

e
i(xξ± tξ√

1+ξ2
)
F (ξ)

dξ

|ξ|m

∣∣∣∣∣

. ε−m max(ε−
1
2 , R2)t−

1
2

(
‖F‖L∞(ε,R) +

∫ R

ε

|F ′(ξ)| dξ

)
,

where m ≥ 0 and F ∈ C1[ε,R].

Proof. A direct application of van der Corput lemma [18] yields readily the proof.
For the case m = 0, see Lemma 4.3 in [15] or Lemma 2.2 in [7]. ¤

Let us choose a Littlewood-Paley function η with and define a frequency projec-
tion operator PN for a dyadic number N by

PNφ(x) =
1
2π

∫
eixξη

(
ξ

N

)
φ̂(ξ) dξ.

And we also denote P≤εφ, P≥N0φ and Pε<·<N0φ by

P≤εφ =
∑

N≤ε

PNφ (low frequency part),

P≥N0φ =
∑

N≥N0

PNφ (high frequency part),

Pε<·<N0φ =
∑

ε<N<N0

PNφ (medium frequency part).

We choose η so that PN = PN−2<·<N+2PN .

Lemma 2.2. Let 2 < r < ∞ and s > 2− 4
r . Then for any ϕ ∈ L1∩Dmin(0,α−1)L1∩

W s
r′ with α = r−2

4 we have

‖∂tS(t)ϕ‖L∞ . (1 + t)−( 1
2− 1

r )(‖ϕ‖L1 + ‖D−min(0,α−1)ϕ‖L1 + ‖Dsϕ‖Lr′ ).

Proof. Taking PN to ∂tS(t) and using change of variable, we have

|PN (∂tS(t)ϕ)(x)| =
∣∣∣∣
∫

eiNxξ cos(N−2tωN (ξ))η(ξ)F
[
PN−2<·<N+2ϕ(

·
N

)
]
(ξ) dξ

∣∣∣∣

. |K(N(·), N−2t)| ∗
∣∣∣PN−2<·<N+2ϕ(

·
N

)
∣∣∣ ,



ON IMBQ EQUATIONS 5

where ωN (ξ) = N2ξ√
N−2+ξ2

and

K(Nx,N−2t) =
1
2π

∫
eiNxξ cos(N−2tωN )η(ξ) dξ

=
1
4π

∫ (
ei(Nxξ+N−2tωN ) + ei(Nxξ−N−2tωN )

)
η(ξ) dξ.

Since |ω′N (ξ)| ∼ |ω′′N (ξ)| ∼ 1 for sufficiently large N and |ξ| ∼ 1, by the method of
stationary and non-stationary phase [18], we have

|PN (∂tS(t)ϕ)(x)| .
∫

(1 + N−2t + N |x− y|)− 1
2 |PN−2<·<N+2ϕ(

y

N
)| dy

. ‖(1 + N−2t + N | · |)− 1
2 ‖Lr‖PN−2<·<N+2ϕ(

·
N

)‖Lr′

. (1 + N−2t)−
1
2

(
N

1 + N−2t

)− 1
r

N
1
r′ ‖PN−2<·<N+2ϕ‖Lr′

. (1 + t)−( 1
2− 1

r )N2− 4
r ‖PN−2<·<N+2ϕ‖Lr′ .

Thus using s > 2− 4
r , we deduce that for large N0 and any 2 < r < ∞

‖P≥N0∂tS(t)ϕ‖L∞ .
∑

N≥N0

(1 + t)−( 1
2− 1

r )N2− 4
r ‖PN−2<·<N+2ϕ‖Lr′

. (1 + t)−( 1
2− 1

r )‖P≥1ϕ‖Bs
r′, 2

. (1 + t)−( 1
2− 1

r )‖Dsϕ‖Lr′ .

(2.1)

Here Bs
r′, 2 is the Besov space with norm for s > 0, 1 < r′ < ∞ by

‖ϕ‖Bs
r′, 2

= ‖ϕ‖Lr′ +

( ∑

N : dyadic number

N2s‖PNϕ‖2
Lr′

) 1
2

.

For the last inequality, we used the well-known embedding W s
q ↪→ Bs

q, 2 for 1 < q ≤ 2
and the fact ‖P≥1ϕ‖W s

r′
. ‖Dsϕ‖Lr′ (see for instance [2]).

As for the medium frequency of ∂tS(t)ϕ, using Lemma 2.1, we can easily show
that for t > 1

‖Pε<·<N0∂tS(t)ϕ‖L∞ . max(ε−
1
2 , N2

0 )t−
1
2 ‖ϕ‖L1 .(2.2)

By Hausdorff-Young’s inequality, we have

‖P≤ε∂tS(t)ϕ‖L∞ . ε‖ϕ‖L1 , if r ≤ 6,

‖P≤ε∂tS(t)ϕ‖L∞ . εα‖D−(α−1)ϕ‖L1 , if r > 6.
(2.3)

Now let us choose ε by t−
2
r (≤ N−4

0 ). Then since 2
r ≥ 1

2 − 1
r for r ≤ 6 and

2α
r ≥ 1

2 − 1
r for r > 6, from (2.2) and (2.3) we have for t > N2r

0

‖P≤N0∂tS(t)ϕ‖L∞ . t−( 1
2− 1

r )‖ϕ‖L1 for r ≤ 6,

‖P≤N0∂tS(t)ϕ‖L∞ . t−( 1
2− 1

r )(‖ϕ‖L1 + ‖D−(α−1)ϕ‖L1) for r > 6.
(2.4)



6 YONGGEUN CHO AND TOHRU OZAWA

If t ≤ N2r
0 , then by another use of the method of non-stationary phase, we have

‖∂tS(t)ϕ‖L∞ ≤ ‖P≤Nr
0
∂tS(t)ϕ‖L∞ + ‖P>Nr

0
∂tS(t)ϕ‖L∞

. ‖ϕ‖L1 +
∑

N>Nr
0

N1− 2
r ‖PNϕ‖Lr′ . ‖ϕ‖L1 + ‖Dsϕ‖Lr′ .

Combining this estimate, (2.1) and (2.4), we obtain for α = r−2
4

‖∂tS(t)ϕ‖L∞ . (1 + t)−( 1
2− 1

r )(‖ϕ‖L1 + ‖D−min(0,α−1)ϕ‖L1 + ‖Dsϕ‖Lr′ ).

¤

Lemma 2.3. Let 2 < r < ∞ and s > 2− 4
r . Then for any ψ ∈ L1 ∩DαL1 ∩W s

r′

with α = 3(r−2)
2r , if r ≤ 6 and α = r−2

4 , if r > 6 we have

‖S(t)ψ‖L∞ . (1 + t)−( 1
2− 1

r )(‖ψ‖L1 + ‖D−αψ‖L1 + ‖Dsϕ‖Lr′ ).

Proof. The proof for the high frequency part of S(t) is almost the same as the one
for ∂tS(t). Thus we consider only the low and medium frequency parts. With α as
above, we have

‖P≤εS(t)ψ‖L∞ . εα‖D−αψ‖L1 .

On the other hand, for the medium frequency we have from Lemma 2.1 that

‖Pε<·<N0S(t)ψ‖L∞ . max(1, ε−(1−α))max(ε−
1
2 , N2

0 )t−
1
2 ‖D−αψ‖L1 ,

if t > 1. Now if we choose ε = t−
2

(3−2α)r (≤ N−4
0 ) for r ≤ 6 and t−

2
r (≤ N−4

0 ) for
r > 6, then since 2α

(3−2α)r ≥ 1
2 − 1

r for r ≤ 6 and 2α
r ≥ 1

2 − 1
r , we have

‖S(t)ψ‖L∞ . t−( 1
2− 1

r )(‖ψ‖L1 + ‖D−αψ‖L1 + ‖Dsψ‖Lr′ )

for large t. If t is small, then similarly to the estimate for ∂tS(t) we have

‖S(t)ψ‖L∞ ≤ ‖P≤Nβ
0
S(t)ψ‖L∞ + ‖P>Nβ

0
S(t)ψ‖L∞

. ‖D−αψ‖L1 + ‖Dsψ‖Lr′ ,

where β = (3− 2α)r for r ≤ 6 and β = r for r > 6. We have just finished the proof
of the lemma. ¤

As a corollary of Lemmas 2.2 and 2.3, we have the following lemma.

Lemma 2.4. Let 2 < r < ∞ and s > 2 − 4
r . Then for any g(·, t) ∈ L1 ∩W s

r′ , we
have∥∥∥∥
∫ t

0

T (t− t′)g(t′) dt′
∥∥∥∥

L∞
.

∫ t

0

(1+t−t′)−min( 1
2− 1

r , 4
r )(‖g(t′)‖L1 +‖Dsg(t′)‖Lr′ ) dt′.

Proof. The only difference between T (t) and ∂tS(t) consists in the lower frequency
part. For this, we have

‖P≤εT (t)g‖L∞ . ε2‖g‖L1 .
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Thus from the low and medium frequency estimate in the proof of Lemma 2.2, we
deduce

‖P≤N0T (t)g‖L∞ . t−min( 1
2− 1

r , 4
r )‖g‖L1

for large t. This completes the proof. ¤

2.2. Remarks on the linear estimates. In view of the proof of Lemmas 2.2 and
2.3, it follows that if D−(α−1)ϕ, D−αψ ∈ L1 for α > 1, the range of r can be
extended up to 4α+2 and hence the time decay of supremum norm becomes faster.
This fact implies that if ϕ̂ and ψ̂ are zero near the origin and compactly supported,
then the time decay rate can be taken by the maximal decay rate 1

2 . Thus we can
expect that the scattering holds up to p > 3 as the case of Schrödinger equation.
But in Lemma 2.4, we were not able to obtain such decay because of the infinite
speed of propagation which makes it impossible to use the zero frequency. We need
more subtle estimate near zero frequency.

In Lemmas 2.2 and 2.3, we used the condition D−αψ ∈ L1 and D−1ψ ∈ L2

for some time decay of the supreme norm and uniform bound on time of Sobolev
norm of Sψ, respectively. In [15], the condition (1−∂2

x)
1
2 D−1ψ ∈ L1∩L2 was used.

Actually, the condition (1−∂2
x)

1
2 D−1ψ ∈ L2 is necessary for the energy conservation

and momentum conservation. This type condition implies at least that ψ̂ should be
zero at ξ = 0. This vanishing condition at zero frequency turns out to be inevitable
for the uniform bound because of the following fact: if ψ̂ = 1 if |ξ| < 1 and 2 if
|ξ| ≥ 2, then for large t

‖S(t)ψ‖2L2 ∼ t

∫
1 + ξ2/t2

ξ2

∣∣∣∣∣sin
(

ξ√
1 + ξ2/t2

)∣∣∣∣∣

2

|ψ̂(ξ/t)|2 dξ & t

∫
|ψ̂|2 dξ →∞.

Moreover, the vanishing condition is inevitable for the time decay. To see this,
let ψ be a smooth function such that ψ̂ = 1 if |ξ| < 1 and ψ̂ = 0 if |ξ| > 2. Then
the limit lim

t→∞
S(t)ψ(x) exists for all x and the following holds

lim inf
t→∞

‖S(t)ψ‖L∞ ≥ 1
2
.(2.5)

For the proof let us choose a positive number θ smaller than 1
3 . Then by Lemma

2.1 with m = 1 and F (ξ) =
√

1 + ξ2(1− ψ̂(tθξ))ψ̂(ξ), we have
∥∥∥∥∥
∫

R
eixξ sin

(
tξ√

1 + ξ2

) √
1 + ξ2

ξ
(1− ψ̂(tθξ))ψ̂(ξ) dξ

∥∥∥∥∥
L∞

. t
3
2 θ− 1

2 → 0(2.6)

as t →∞. Thus for the proof of the estimate (2.5), it suffices to show that

1
2π

∫

R
eixξ sin

(
tξ√

1 + ξ2

) √
1 + ξ2

ξ
ψ̂(tθξ) dξ → 1

2i
(2.7)
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uniformly on compact subsets of R. Letting ε = t−1, by change of variable, we have

1
2π

∫

R
eixξ sin

(
tξ√

1 + ξ2

) √
1 + ξ2

ξ
ψ̂(tθξ) dξ

=
1
2π

∫

R
eiεxξ sin

(
ξ√

1 + ε2ξ2

) √
1 + ε2ξ2

ξ
ψ̂(ε1−θξ) dξ.

By an integration by parts, we have

∫

R
eiεxξ

(
sin ξ − sin

(
ξ√

1 + ε2ξ2

)) √
1 + ε2ξ2

ξ
ψ̂(ε1−θξ) dξ

=
∫ 1

0

∫

R
cos

(
λξ + (1− λ)

ξ√
1 + ε2ξ2

)

×
(

ξ − ξ√
1 + ε2ξ2

) √
1 + ε2ξ2

ξ
eiεxξψ̂(ε1−θξ) dξdλ

=−
∫ 1

0

∫

R
sin

(
λξ + (1− λ)

ξ√
1 + ε2ξ2

)

× ∂

∂ξ




(
ξ − ξ√

1+ε2ξ2

) √
1+ε2ξ2

ξ eiεxξψ̂(ε1−θξ)

λ + (1−λ)

(1+ε2ξ2)
3
2


 dξdλ

= o(1) as ε → 0 uniformly on compact subsets of R.

We also have
∫

R
eiεxξ sin ξ

ξ
(
√

1 + ε2ξ2 − 1)ψ̂(ε1−θξ) dξ = o(1) as ε → 0

uniformly on compact subsets of R. From these two estimates, we deduce that it
suffices to show

lim
ε→0

1
2π

∫

R
eiεxξ sin ξ

ξ
ψ̂(ε1−θξ) dξ = π.

Since sin ξ
ξ = 1

2i

∫ 1

−1
eiξy dy and

∫
ψ dx = 1, we have

1
2π

∫

R
eiεxξ sin ξ

ξ
ψ̂(ε1−θξ) dξ =

1
4πi

∫ 1

−1

∫

R
eiξ(εx+y)ψ̂(ε1−θξ) dξdy

= ε−(1−θ) 1
2i

∫ 1

−1

ψ(
εx + y

ε1−θ
) dy

=
1
2i

∫ 1
ε1−θ −εθx

− 1
ε1−θ −εθx

ψ(y) dy → 1
2i

as ε → 0

uniformly on compact subsets of R. This completes the proof of (2.5).
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3. Proof of the Theorems

3.1. Existence and scattering. The strategy of proof is to use the standard
contraction mapping theorem. For this purpose, let us define a nonlinear mapping
N by

N (u) = ∂tS(t)ϕ + S(t)ψ +
∫ t

0

T (t− t′)f(u)(t′) dt′.

We will prove that for sufficiently small ρ, N maps from Xs,θ
ρ to Xs,θ

ρ . To do this,
we introduce generalized chain and Leibniz rules:

Lemma 3.1. For any s ≥ 0, we have

‖Dsf(u)‖Lr . ‖u‖p−1

L(p−1)r1
‖Ds‖Lr2 ,(3.1)

(
1
r

=
1
r1

+
1
r2

, r1 ∈ (1,∞], r2 ∈ (1,∞)
)

‖Ds(uv)‖Lr . ‖Dsu‖Lr1 ‖v‖Lq2 + ‖u‖Lq1‖Dsv‖Lr2 .(3.2) (
1
r

=
1
r1

+
1
q2

=
1
q1

+
1
r2

, ri ∈ (1,∞), qi ∈ (1,∞] (i = 1, 2)
)

We should emphasize that the exponents r1 of (3.1), q1, q2 of (3.2) can be infinite.
One can easily prove the lemma above by following and modifying slightly the proof
of Proposition 3.1 and 3.3 in [9]. Also see the appendix of [14].

Now let s > 2 − 4
r and θ = min( 1

2 − 1
r , 4

r ). Then from Lemma 2.2–2.4, the
condition (1.3) and the chain rule (3.1), it follows that for any u ∈ Xs, θ

ρ

‖N (u)‖L∞

. (1 + t)−θδ +
∫ t

0

(1 + t− t′)−θ(‖f(u)‖L1 + ‖Dsf(u)‖Lr′ ) dt′

. (1 + t)−θδ +
∫ t

0

(1 + t− t′)−θ(‖u‖p−2
L∞ ‖u‖2L2 + ‖u‖p−1

L
2(p−1)r

r−2
‖Dsu‖L2) dt′

. (1 + t)−θδ +
∫ t

0

(1 + t− t′)−θ(‖u‖p−2
L∞ ‖u‖2L2 + ‖u‖p−2+ 2

r

L∞ ‖u‖1−
2
r

L2 ‖Dsu‖L2) dt′

. (1 + t)−θδ + ρp

∫ t

0

(1 + t− t′)−θ(1 + t′)−(p−2)θ dt′.

Since (p− 2)θ > 1, we have for sufficiently small δ and ρ

sup
t>0

(1 + t)θ‖N (u)‖L∞ . δ + ρp <
ρ

2
.(3.3)
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And also we have

‖N (u)‖Hs . ‖ϕ‖Hs + ‖D−1ψ‖L2 + ‖ψ‖Hs +
∫ t

0

‖f(u)‖Hs dt′

. ‖ϕ‖Hs + ‖D−1ψ‖L2 + ‖ψ‖Hs

+
∫ t

0

(‖u‖p
L2p + ‖u‖p−1

L∞ ‖Dsu)‖L2) dt′

. δ + ρp <
ρ

2
.

(3.4)

Thus N maps from Xs, θ
ρ to Xs, θ

ρ .
Now for any u, v ∈ Xs, θ

ρ we can show from the chain rule (3.1) and Leibniz rule
(3.2) that if δ and ρ are sufficiently small, then

‖N (u)−N (v)‖L∞

.
∫ t

0

(1 + t− t′)−θ(‖f(u)− f(v)‖L1 + ‖Ds(f(u)− f(v))‖Lr′ dt′

.
∫ t

0

(1 + t− t′)−θ
(
(‖u‖p−3

L∞ ‖u‖2L2 + ‖v‖p−3
L∞ ‖v‖2L2)‖u− v‖L∞

+ (‖u‖p−1

L
2(p−1)r

r−2
+ ‖v‖p−1

L
2(p−1)r

r−2
)‖Ds(u− v)‖L2

+
(
‖u‖p−2

L
2(p−2)r

r−2
+ ‖v‖p−2

L
2(p−2)r

r−2

)
(‖Dsu‖L2 + ‖Dsv‖L2)‖u− v‖L∞

)
dt′

. ρp−1|||u− v|||s,θ

∫ t

0

(1 + t− t′)−θ(1 + t′)−(p−2)θ dt′

. (1 + t)−θρp−1‖|u− v‖|s, θ.

Similarly, we can also show

‖N (u)−N (v)‖Hs . ρp−1|||u− v|||s, θ.

Thus for small ρ, N is a contraction mapping and hence there exists a unique
solution u ∈ Xs, θ

ρ to the problem N (u) = u.
Since the time derivative ut satisfies the following equation:

ut(x, t) = − 1
2π

∫

R
eixξ sin

(
tξ√

1 + ξ2

)
ξ√

1 + ξ2
ϕ̂ dξ

+
1
2π

∫

R
eixξ cos

(
tξ√

1 + ξ2

)
ψ̂ dξ

+
1
2π

∫ t

0

∫

R
eixξ cos

(
(t− t′)ξ√

1 + ξ2

)
ξ2

1 + ξ2
f̂(u)(ξ, t′) dξdt′,

by the same argument in Section 2, one can easily show that ut ∈ Xs, θ
ρ , provided

δ and ρ are much smaller. This completes the proof of Theorem 1.1.
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Once the existence has been established, the proof of Theorem 1.2 is rather
straight forward. Let us define functions ϕ+ and ψ+ by

ϕ̂+(ξ) = ϕ̂(ξ) +
∫ ∞

0

ξ√
1 + ξ2

sin
tξ√

1 + ξ2
f̂(u)(ξ, t) dt,

ψ̂+(ξ) = ψ̂(ξ)−
∫ ∞

0

ξ2

1 + ξ2
cos

tξ√
1 + ξ2

f̂(u)(ξ, t) dt.

Let u+ be the solution to the linear problem (1.4) with initial data (ϕ+, ψ+). Then
it can be represented by

u+(x, t) = (∂tS(t)ϕ)(x) + (S(t)ψ)(x) +
∫ ∞

0

T (t− t′)f(u(t′)) dt′.

Since u, ut ∈ Xs, θ
ρ for s > 2− 4

r and θ = min( r−2
2r , 4

r ), we have from Lemma 3.2

‖u(·, t)− u+(·, t)‖Hs .
∫ ∞

t

‖f(u(·, t′))‖Hs dt′ . ρp

∫ ∞

t

(1 + t′)−θ(p−1) dt′

= O(t−θ(p−1)+1).

Similarly, we have

‖ut(·, t)− u+
t (·, t)‖Hs .

∫ ∞

t

‖f(u)(t′)‖Hs dt′ = O(t−θ(p−1)+1).

Since θ(p− 1) > 1, we have just proved the theorem. For more details, see [7].

3.2. Nonexistence of nontrivial asymptotically free solutions. Let us define
a bilinear form H(u, v)(t) by

H(u, v)(t) = Re
∫

R

(
D−1ut(t)D−1v(t)−D−1vt(t)D−1u(t)

)
dx.

Then H(u, v)(t) is well-defined and uniformly bounded on t > 0 for (u, ut), (v, vt) ∈
L∞(0,∞; DL2 ×D2L2).

Our strategy of proof is to use a contradiction to the uniform boundedness of
H. Suppose that there are non-zero functions u and u+ satisfying the condition of
Theorem 1.3. Then we obtain

d

dt
H(u, u+)(t) = Re

∫
f(u)u+ dx.(3.5)

Let H(u, u+)(t) = H(t). Then we have

d

dt
H(t) = Re

∫
(f(u)− f(u+))u+ dx + Re

∫
f(u+)u+ dx

≥ Re
∫

(f(u)− f(u+))u+ dx + c

∫
|u+|p+1 dx.

Now using an argument in [1] and [12], we prove that if t is sufficiently large,

‖u+(t)‖p+1
Lp+1(|x|≤Atβ)

≥ c0t
−β p−1

2(3.6)
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for some positive constant A and c0 depending on ϕ+ and D−1ψ+ and β > 1
depending on ε. Here and after, every constant depends on ϕ+ and ψ+, if not
specified. For the proof of (3.6), we first show that

‖u+(t)‖L2(|x|≤Atβ) & 1 for sufficiently large t.(3.7)

Using Hölder inequality, (3.7) yields the required estimate (3.6). To obtain the L2

lower bound, let us choose a cut off function χ0 supported in (−1, 1) such that

‖u+(t)‖2L2(|x|≤Atβ) = t‖u+(t·, t)‖2L2(|x|≤M) ≥ t‖χ0(·/M)u+(t·, t)‖2L2 ,

where M = Atβ−1. Since u+ is the solution to the linear problem (1.4), for the last
integral, we have

t‖χ0(·/M)u+(t·, t)‖2L2

= t‖χ0(·/M)(∂tS(t)ϕ+)(t·)‖2L2 + t‖χ0(·/M)(S(t)ψ+)(t·)‖2L2

+ 2tRe
∫

(χ0(x/M))2(∂tS(t)ϕ+)(tx)(S(t)ψ+)(tx) dx.

(3.8)

By change of variable and Plancheral’s theorem, we have for the first term

t‖χ0(·/M)(∂tS(t)ϕ+)(t·)‖2L2 =

∥∥∥∥∥χ0(·/M)F−1

(
cos

(·)√
1 + (·)2/t2

t−
1
2 ϕ̂+(·/t)

)∥∥∥∥∥

2

L2

.

From the identity cos2 x = 1+cos(2x)
2 , we deduce that

∥∥∥∥∥cos
(·)√

1 + (·)2/t2
t−

1
2 ϕ̂+(·/t)

∥∥∥∥∥

2

L2

=
∫

cos2
(

ξ√
1 + ξ2/t2

)
t−1ϕ̂+(ξ/t)ϕ̂+(ξ/t) dξ

=
1
2
‖ϕ+‖2L2 +

1
2

∫
cos

(
2ξ√

1 + ξ2/t2

)
t−1ϕ̂+(ξ/t)ϕ̂+(ξ/t) dξ.

By the integration by parts, it follows from the Hölder inequality that
∫

cos

(
2ξ√

1 + ξ2/t2

)
t−1ϕ̂+(ξ/t)ϕ̂+(ξ/t) dξ

= − 1
2t

∫
sin

(
2ξ√

1 + ξ2/t2

)
∂ξ

(
(1 + ξ2/t2)

3
2 ϕ̂+(ξ/t)ϕ̂+(ξ/t)

)
dξ

= O(t−1)

(3.9)

and hence ∥∥∥∥∥

(
cos

(·)√
1 + (·)2/t2

)
t−

1
2 ϕ̂+(·/t)

∥∥∥∥∥
L2

→ 1√
2
‖ϕ+‖L2 as t →∞.(3.10)

Now we claim that there exist large numbers t0 such that

inf
t>t0

t‖χ0(·/M)(∂tS(t)ϕ+)(t·)‖2L2 & 1.(3.11)
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For the proof of (3.11), we may assume that ‖ϕ+‖L2 = 1. Let us define a function
gt(x) by t|(∂tS(t)ϕ+)(tx)|2. Then from (3.10), we can find a positive number t0

such that ‖gt‖L1 ≥ 1
2 for all t > t0. Using the integration by parts m-times, we get

for x 6= 0

t
1
2 (∂tS(t)ϕ+)(tx) =

1
2π

∫
eixξ cos

(
ξ√

1 + ξ2/t2

)
t−

1
2 ϕ̂+(ξ/t) dξ

=
1

2π(−ix)m

∫
eixξ∂m

ξ

(
cos

(
ξ√

1 + ξ2/t2

)
t−

1
2 ϕ̂+(ξ/t)

)
dξ.

We then have gt(x) ≤ At
|x|2m for some A depending on ϕ+. This gives us that

∫
(χ0(x/M))2gt(x) dx =

∫
gt(x) dx−

∫
(1− (χ2

0(x/M))2)gt(x) dx

≥ 1
2
−

∫

|x|≥ 1
2 M

At

|x|2m
dx

≥ 1
2
− 2

2m− 1
At(1/2Atβ−1)1−2m

Now if we choose m and β so that (β − 1)(2m − 1) > 1, then the claim (3.11) is
proved, provided t0 is sufficiently large.

Similarly we can prove that
∥∥∥∥∥

(
sin

(·)√
1 + (·)2/t2

) √
1 + ξ2/t2

ξ/t
t−

1
2 ψ̂+(·/t)

∥∥∥∥∥

2

L2

→ 1√
2
‖(1− ∂2

x)
1
2 D−1ψ+‖2L2

as t →∞ and hence by the same argument as above, we have the estimate

t‖χ0(·/M)(S(t)ψ+)(t·)‖2L2 & 1,(3.12)

if t > t0 for some large t0.
Finally, for the last term of (3.8) let us consider the integral

I(t) = t

∫
(∂tS(t)ϕ+)(tx)S(t)ψ+(tx) dx.

Then by change of variable and Plancheral’s theorem, I(t) is converted by

1
2tπ

∫
sin

(
2ξ√

1 + ξ2/t2

) √
1 + ξ2/t2

2ξ/t
ϕ̂+(ξ/t)ψ̂(ξ/t) dξ.

Here we also used the identity cos x sinx = 1
2 sin 2x. Similarly to the estimate (3.9),

we have I(t) = O(t−1). With this estimate we prove that
∣∣∣∣2tRe

∫
(χ0(x/M))2(∂tS(t)ϕ+)(tx)(S(t)ψ+)(tx) dx

∣∣∣∣ → 0 as t →∞.(3.13)
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Actually, by the integration by parts as above, we have
∣∣∣∣2tRe

∫
(χ0(x/M))2(∂tS(t)ϕ+)(tx)(S(t)ψ+)(tx) dx

∣∣∣∣

≤ |2ReI(t)|+
∫

|x|≥ 1
2 M

At

|x|2m
dx → 0

as t →∞.
Therefore (3.13) together with (3.11) and (3.12) yields the lower bound estimate

(3.7) and hence (3.6).
Since ϕ+ and ψ+ are in F−1C∞0 (R \ {0}), it follows from the proof of Lemmas

2.2 and 2.3 that for all 2 ≤ q ≤ ∞
‖u+(t)‖Lq . t−( 1

2− 1
q ).(3.14)

From the estimate (3.14) and the hypothesis (1.5), we readily have for 1 < p ≤ 2
∣∣∣∣Re

∫
(f(u)− f(u+))u+ dx

∣∣∣∣
. (‖u‖p−1

L2 ‖u+‖2−p
L2 + ‖u+‖L2)‖u+‖p−1

L∞ ‖u− u+‖L2

= O(t−
1
2 (p−1)−ε).

(3.15)

Thus choosing β such as β(p−1)
2 < p−1

2 + ε and β(p−1)
2 ≤ 1, we conclude from (3.6)

that d
dtH(t) & t−1 for large t. This is a contradiction to the uniform boundedness

of H.

3.3. Remarks. The methods of proof for Theorems 1.1 and 1.2 are applicable to
the high dimensional case with a slight modification of Lemma 2.1. One can treat
the high dimensional version of Lemma 2.1 by using a dyadic decomposition and
the method of stationary phase in the case of non-vanishing Gaussian curvature of
the phase. In our problem, since the phase ω = |ξ|√

1+|ξ|2 is radially symmetric, the

Gaussian curvature of ω is equivalent to the value of second derivative of r√
1+r2 (r =

|ξ|). Thus we can easily obtain the high dimensional analogs of Theorems 1.1 and
1.2. As for the Theorem 1.3, using the radial symmetry, one can carry out the
integration by parts with respect to the radial derivatives and hence obtain a high
dimensional version of (3.7). Then by a straightforward application of the one
dimensional argument, one can have the nonexistence of scattering for 1 < p ≤ 1+ 2

n

like Schrödinger or Klein-Gordon equation.
In the proof of Theorem 1.3, the assumption ‖u(t) − u+(t)‖L2 = O(t−ε) was

necessary for the comparison between (3.6) and (3.15). For the proof of (3.6), it
was inevitable to use M = Atβ−1 unlike the Schrödinger case in [1] where M is
just a large constant. In our problem, the dependence of M on t was caused by the
reason that the norm ‖t 1

2 χ0(·/M)∂tS(t)ϕ+(t·)‖2L2 converges to the norm 1
2‖ϕ+‖2L2

but the function t
1
2 χ0(·/M)∂tS(t)ϕ+(t·) itself does not converges to 1√

2
ϕ+ in L2
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because the phase ω = ξ√
1+ξ2

is almost constant at high frequency. This is a

difficulty different from other dispersive equations with well curved phase ω like
the Schrödinger case ω = |ξ|2 and so on. It will be very interesting to prove the
nonexistence of scattering without decay assumption (1.5).
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