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Part I

Efficient hedging with coherent risk measure



1. Introduction

In a complete financial market, we can replicate a given contingent claim
by a self-financing strategy. In an incomplete market, by using a “super-
hedging” strategy, we can generate a final wealth that dominates the payoff
of the contingent claim. If the seller of a contingent claim hopes to hedge the
claim with a smaller initial amount of capital than that required by a perfect
(or super-) hedging strategy, then the seller has to accept some risk. In such
a situation, the seller seeks the optimal “partial” hedge that can be achieved
with his/her initial amount. In Föllmer and Leukert [12], they introduced
the strategy of “efficient hedging” that minimizes the shortfall risk under a
capital constraint. They described the investor’s attitude towards the shortfall
in terms of a loss function, and defined the shortfall risk as the expectation
of the shortfall weighted by the loss function. In other words, they used the
expected loss functions as risk measures.

In this paper, we use coherent measures of risk, introduced by Artzner et
al. [2] as risk measures. They are defined axiomatically by four desirable prop-
erties, that is, monotonicity, subadditivity, positive homogeneity, and trans-
lation invariance. In [2], they restrict themselves to finite probability spaces.
Delbaen [9] extended the definition of coherent risk measures to general prob-
ability spaces (see also Kusuoka [19]). In [9], as the space of random variables,
the space L∞ of all essentially bounded random variables or the space L0 of all
random variables is adopted. We use intermediate space L1 instead here. The
space L1 is large enough to be used in our hedging problem yet sufficiently
small for nice properties to hold.

We show that, for a given contingent claim H, the optimal strategy consists
in hedging a modified claim ϕH for some randomized test ϕ. This is an
analogue of the results by [12].

Let (Ω,F , P ) be a probability space, and let Q be the set of all probability
measures on (Ω,F) absolutely continuous with respect to P . We write L1 and
L∞ for L1(Ω,F , P ) and L∞(Ω,F , P ), respectively. For Q ∈ Q, we denote ex-
pectation with respect to Q by EQ and the Radon-Nykodim derivative dQ/dP
by ZQ. Following [2] and [9], we give the following definition.

Definition 1.1. We say that a function ρ : L1 → R is a coherent risk measure
if the following are satisfied:

(1) For all X ∈ L1 with X ≥ 0, we have ρ(X) ≤ 0.
(2) For all X and Y ∈ L1, we have ρ(X + Y ) ≤ ρ(X) + ρ(Y ).
(3) If X ∈ L1 and λ > 0, then ρ(λX) = λρ(X).
(4) If X ∈ L1 and c ∈ R, then ρ(X + c) = ρ(X) − c.

We consider the coherent risk measures that are lower semi-continuous in the
L1-norm. We establish a representation theorem for them, which is a analogue
of Proposition 4.1 in [2] and Theorem 2.3 in [9].
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Theorem 1.2 ([21]). For a function ρ : L1 → R, the following are equivalent:

(i) The function ρ is a lower semi-continuous coherent risk measure.
(ii) There is a subset Q̃ of Q such that

{ZQ | Q ∈ Q̃} is a weak*-closed convex subset of L∞,(1.1)

ρ(X) = sup
Q∈Q̃

EQ[−X] (X ∈ L1).(1.2)

The element of Q̃ can be interpreted as a “scenario” (see [2] and [9]). We
notice that, for ρ as in Theorem 1.2, the restriction of ρ on L∞ satisfies the
“Fatou property” defined in [9].

Let (Ft)0≤t≤T be a filtration on (Ω,F). For simplicity, we assume that F0 is
trivial and FT is equal to F . The discounted price process of the underlying
asset is described as a semimartingale X = (Xt)0≤t≤T on the filtered probability
space (Ω,F , (Ft)0≤t≤T , P ). Let P denote the set of all equivalent martingale
measures. We assume absence of arbitrage in the sense that P 6= ∅.

A self-financing strategy is described as a pair (V0, ξ), where V0 is an initial
capital, and ξ is a predictable process such that the resulting value process

Vt = V0 +

∫ t

0

ξsdXs (t ∈ [0, T ])

is well defined (see [12]). A self-financing strategy (V0, ξ) is said to be admissible
if the corresponding value process V satisfies

Vt ≥ 0, ∀t ∈ [0, T ], P -a.s.

We consider a contingent claim that is defined by a nonnegative random vari-
able H ∈ L1. We assume that

U0 := sup
P ∗∈P

EP ∗
[H] < ∞.

Let ρ be a coherent risk measure on L1. The shortfall risk we consider here
is given by ρ((VT − H) ∧ 0). For a given amount of initial capital Ṽ0 which is
smaller than U0, we want to find an admissible strategy (V0, ξ) that minimizes
the shortfall risk ρ((VT −H)∧ 0). Thus we consider the optimization problem

ρ ((VT − H) ∧ 0) = ρ

((
V0 +

∫ T

0

ξsdXs − H

)
∧ 0

)
= min(1.3)

under the constraint

V0 ≤ Ṽ0.(1.4)

We take ρ from the class of lower semi-continuous coherent risk measures,
and follow the method of [12]. We define the set

R = {ϕ : Ω → [0, 1] | ϕ is F -measurable}
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of “randomized tests” ϕ. We also define the constrained set

R0 =

{
ϕ ∈ R | sup

P ∗∈P
EP ∗

[ϕH] ≤ Ṽ0

}
.

We reduce our problem to the following proposition, which corresponding to
Proposition 3.1 in [12].

Proposition 1.3 ([21]). There exists ϕ̃ ∈ R0 such that

(1.5) inf
ϕ∈R0

ρ(−(1 − ϕ)H) = ρ(−(1 − ϕ̃)H).

Let ϕ̃ be the solution to the minimization problem defined by (1.5), and let
Ũ be a right-continuous version of the process

Ũt = ess sup
P ∗∈P

EP ∗
[ϕ̃H | Ft].

The process Ũ is a P-supermartingale, i.e., a supermartingale under any P ∗ ∈
P . By the optional decomposition theorem (see [12]), there exists an admissible

strategy (Ṽ0, ξ̃) and an increasing optional process C̃ with C̃0 = 0 such that

Ũt = Ṽ0 +

∫ t

0

ξ̃sdXs − C̃t.

Following [12], we give the following definition.

Definition 1.4. For any admissible strategy (V0, ξ) we define the correspond-
ing success ratio as

ϕ(V0,ξ) = 1{VT≥H} +
VT

H
1{VT <H}.

The next theorem corresponds to Theorem 3.2 in [12].

Theorem 1.5 ([21]). Let ϕ̃ be a solution to the minimization problem (1.5) and

let (Ṽ0, ξ̃) be the admissible strategy determined by the optional decomposition

of the claim ϕ̃H. Then the strategy (Ṽ0, ξ̃) solves the optimization problem
(1.3) and (1.4).

We prove Theorem 1.2 in Section 2, and Proposition 1.3 and Theorem 1.5
in Section 3. In Section 4, we consider our hedging problem with some special
coherent risk measures.

2. Proof of Theorem 1.2

Proof of Theorem 1.2. It is easy to prove the implication (2) ⇒ (1). To prove
the converse one (1) ⇒ (2), we follow the method of proof of Theorem 2.3 in [9].
We put φ(X) = −ρ(X) and define the set C = {X ∈ L1 | φ(X) ≥ 0}. Then
since φ is upper semi-continuous, the set C is a convex and norm closed cone in
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L1. We regard L∞ and L1 as a duality pair associated with the nondegenerate
bilinear form

L1 × L∞ 3 {X, Y } 7→ 〈X,Y 〉 = E[XY ] ∈ R.

Recall that the polar set C◦ of C is defined by

C◦ = {Y ∈ L∞ | E[XY ] ≥ −1 (∀X ∈ C)}

(see [3, p. 30]). However, since C is cone, we have

C◦ = {Y ∈ L∞ | E[XY ] ≥ 0 (∀X ∈ C)} .

This implies that C◦ is also a weak*-closed, convex cone in L∞.
We put Φ = {Y ∈ C◦ | E[Y ] = 1}. Then, it holds that

(2.1) C◦ = ∪λ≥0λΦ.

Indeed, if Y ∈ C◦ with E[Y ] > 0, then we have Y = λỸ , where Ỹ = Y/E[Y ]
and λ = E[Y ]. Hence Y ∈ ∪λ≥0λΦ. On the other hand, if Y ∈ C◦ with
E[Y ] = 0, then Y = 0 since L1

+ ⊂ C. Hence Y ∈ ∪λ≥0λΦ. Thus (2.1) follows.
The bipolar theorem (see [3, p. 32]) then implies that

C =
{
X ∈ L1 | E[XY ] ≥ 0 (∀Y ∈ Φ)

}
.

From this, we find that φ(X) ≥ 0 if and only if E[XY ] ≥ 0 for all Y ∈ Φ.
Since φ(X − φ(X)) = 0, we have that E[(X − φ(X))Y ] ≥ 0 for all Y ∈ Φ.
Thus

inf
Y ∈Φ

E[XY ] ≥ φ(X).

Now, for ε > 0, we have φ(X−φ(X)− ε) = −ε < 0, so that there exists Y ∈ Φ
such that E[(X −φ(X)− ε)Y ] < 0 or E[XY ] ≤ φ(X)+ ε. Since ε is arbitrary,
we obtain

inf
Y ∈Φ

E[XY ] ≤ φ(X),

hence

(2.2) inf
Y ∈Φ

E[XY ] = φ(X).

If we put

Q̃ = {Q ∈ Q | ZQ = Y for some Y ∈ Φ} ,

then (2.2) implies (1.1). Since {ZQ | Q ∈ Q̃} = Φ, we find that this is the
desired representation for ρ. ¤
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3. Proofs of Proposition 1.3 and Theorem 1.5

Let ρ : L1 → R be a lower semi-continuous coherent risk measure. Then, by
Theorem 1.2, there exists a subset Q̃ of Q such that (1.1) and (1.2) hold. We
use the representation (1.2) in the proofs of Proposition 1.3 and Theorem 1.5.

Proof of Proposition 1.3. First, we notice that R is weak*-compact, i.e., σ(L∞, L1)-
compact, in L∞. Since the map

L∞ 3 ϕ 7→ sup
P ∗∈P

EP ∗
[ϕH] ∈ R

is lower semi-continuous in the weak*-topology, the constrained set R0 is
weak*-closed and so is weak*-compact. Since the map

L∞ 3 ϕ 7→ sup
Q∈Q̃

EQ[(1 − ϕ)H] ∈ R

is also lower semi-continuous in the weak*-topology, there exists ϕ̃ ∈ R0 sat-
isfying (1.5). ¤

Proof of Theorem 1.5. We consider an admissible strategy (V0, ξ) with (1.4)
and the corresponding success ratio ϕ. We have from ϕH = VT ∧ H that

(VT − H) ∧ 0 = −(H − VT )+ = −(H − VT ∧ H) = −(1 − ϕ)H.

Since the corresponding value process (Vt)0≤t≤T is a P-supermartingale, we
obtain

EP ∗
[ϕH] ≤ EP ∗

[VT ] ≤ V0 ≤ Ṽ0.

Thus the success ratio ϕ belongs to the constrained set R0 and so we have

ρ ((VT − H) ∧ 0) = sup
Q∈Q̃

EQ[(1 − ϕ)H] ≥ sup
Q∈Q̃

EQ[(1 − ϕ̃)H].

In particular, the success ratio ϕ(Ṽ0,ξ̃) satisfies

(3.1) sup
Q∈Q̃

EQ[(1 − ϕ(Ṽ0,ξ̃))H] ≥ sup
Q∈Q̃

EQ[(1 − ϕ̃)H].

On the other hand, we have

ϕ(Ṽ0,ξ̃)H = ṼT ∧ H ≥ ϕ̃H, P -a.s.,

and so, for all Q ∈ Q̃,

EQ[(1 − ϕ(Ṽ0,ξ̃))H] ≤ EQ[(1 − ϕ̃)H].

Hence we obtain from (3.1) that

ρ
(
(ṼT − H) ∧ 0

)
= sup

Q∈Q̃
EQ[(1 − ϕ(Ṽ0,ξ̃))H] = sup

Q∈Q̃
EQ[(1 − ϕ̃)H],

which proves the theorem. ¤
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4. Optimal hedging

In this section, we study our problem with two special coherent risk mea-
sures. The first one is the case of Q̃ being a singleton, and the second one is
the worst conditional expectation.

First, we take a singleton Q̃ = {Q} with ZQ ∈ L∞ as a scenario set. Then,
the corresponding risk measure is

ρ(X) = EQ[−X].

Thus we want to minimize the coherent risk measure

ρ ((VT − H) ∧ 0) = EQ[−(VT − H) ∧ 0](4.1)

under the constraint

V0 ≤ Ṽ0.(4.2)

Theorem 1.5 shows that this is reduced to the optimization problem

EQ[ϕH] = max(4.3)

under the constraint that ϕ ∈ R satisfies

sup
P ∗∈P

EP ∗
[ϕH] ≤ Ṽ0.(4.4)

We assume that H is not trivial, i.e.,

EQ[H] > 0.

Then the problem (4.3) and (4.4) can be reformulated as

ER[ϕ] = max(4.5)

under the constraint

EP ∗
[ϕ] ≤ Ṽ0

EP ∗ [H]
∀P ∗ ∈ P,(4.6)

where the probability measures R and R∗ are defined by

dR

dQ
=

H

EQ[H]
,

dR∗

dP ∗ =
H

EP ∗ [H]
.

In the terminology of the theory of hypothesis testing, the solution ϕ̃Q is
identified as the most powerful test for the problem in which the null hypothesis
is composite but the alternative simple.

In the complete case, by the fundamental lemma of Neyman and Pearson,
we can solve the problem explicitly.
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Proposition 4.1 ([21]). Assume that P = {P ∗}. Then the most powerful test
ϕ̃Q is given by

ϕ̃Q = 1{ZQ>ãZP∗} + γ1{ZQ=ãZP∗},

where

ã = inf{a | EP ∗
[H1{ZQ>aZP∗}] ≤ Ṽ0}

and

γ =





Ṽ0−EP∗
[H1{ZQ>ãZP∗}]

EP∗ [H1{ZQ=ãZP∗}]
if P ∗({ZQ = ãZP ∗} ∩ {H > 0}) > 0,

an arbitrary value from [0, 1] if P ∗({ZQ = ãZP ∗} ∩ {H > 0}) = 0.

Remark 4.2 ([21]). When Q is equal to P , this proposition coincides with
Proposition 4.1 in [12].

Proof of Proposition 4.1. From the Neyman-Pearson lemma (see Schmetterer
[28, Chapter III, Section 3]) in terms of R and R∗, we obtain that

ϕ̃Q = 1{ZR>b̃ZR∗} + β1{ZR=b̃ZR∗},

where

b̃ = inf

{
b | P ∗(ZR > bZR∗) ≤ Ṽ0

EP ∗ [H]

}

and

β =

{
Ṽ0/EP∗

[H]−R∗(ZR>b̃ZR∗ )

R∗(ZR=b̃ZR∗ )
if R∗(ZR = b̃ZR∗) > 0,

an arbitrary value from [0, 1] if R∗(ZR = b̃ZR∗) = 0.

We have

{ZR = bZR∗} =

{
ZQ = bZP ∗

EQ[H]

EP ∗ [H]

}
∩ {H > 0}, b̃EQ[H]

EP ∗ [H]
= ã,

and γ = β. So

ϕ̃Q1{H>0} = 1{ZQ>ãZP∗} + γ1{ZQ=ãZP∗}.

Since

EQ[ϕ̃QH] = EQ[ϕ̃QH1{H>0}],

the proposition follows. ¤
Next we take the worst conditional expectation by Artzner et al. [2]. In our

setting, this measure is given by

WCEα(X) = sup

{
E

[
(−X)

1A

P (A)

]
| A ∈ F , P (A) > α

}
(X ∈ L1),
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where α ∈ (0, 1). Now, for α ∈ (0, 1], we define another coherent risk measure
on L1 as

ρα(X) = sup {E[(−X)f ] | f ∈ Φα} ,

where

Φα =
{
f | f is F -measurable, 0 ≤ f ≤ α−1, P -a.s., E[f ] = 1

}
.

For each X ∈ L1 and α ∈ (0, 1], both the coherent risk measures ρα(X)
and WCEα(X) are bounded by α−1‖X‖1. This implies that these coherent
risk measures are continuous in the L1-norm (see Inoue [13, Lemma 2.1]). As
mentioned in [9, p. 12], if (Ω,F , P ) nonatomic, then ρα(X) = WCEα(X) for
X ∈ L∞. Since L∞ is dense in L1, we have that, for all X ∈ L1,

ρα(X) = WCEα(X).

We consider our hedging problem with ρα (α ∈ (0, 1]) as a measure of risk.
We do not need to assume that (Ω,F , P ) is nonatomic. Thus we consider the
minimization problem of finding ϕ̃ ∈ R0 such that

(4.7) ρα (−(1 − ϕ̃)H) = inf
ϕ∈R0

ρα (−(1 − ϕ)H) .

Lemma 4.3 ([21]). Let X ∈ L1 such that X ≥ 0. If P (X > 0) ≤ α, then we
have

(4.8) ρα(−X) =
1

α
EP [X].

Proof. We fix X ∈ L1 with X ≥ 0. Then, by Theorem 1.2 in [13], we have

ρα(−X) =
1

α
EP

[
X(1{X>k} + β1{X=k})

]
,(4.9)

where

k = inf {a ∈ R | P (X > a) ≤ α}

and

β =

{
α−P (X>k)

P (X=k)
if P (X = k) > 0,

0 if P (X = k) = 0.

If P (X > 0) ≤ α, then k = 0 and hence (4.8) follows. ¤

For special H, our problem with ρα reduced to that with ρ1 which has
already been treated in [12] as l(x) = x.

Proposition 4.4 ([21]). Suppose that P (H > 0) ≤ α. Then the solution to
the minimization problem (4.7) is the most powerful test ϕ̃P .
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Proof. By Lemma 4.3, we have

ρα(−(1 − ϕ)H) =
1

α
EP [(1 − ϕ)H].

Therefore ϕ̃P minimizes ρα(−(1 − ϕ)H) in R0. ¤
Example 4.5 ([21]). We consider the standard Black-Scholes model as in [12,
Section 6.2]. Then, the discounted price process is given by

Xt = x0 exp

(
σWt +

(
m − σ2

2

)
t

)
,

where m ∈ R, σ > 0, x0 > 0, and W is a one-dimensional Wiener process on
(Ω,F , P ). The unique equivalent martingale measure P ∗ is given by

dP ∗

dP
= exp

(
−m

σ
WT − 1

2

(m

σ

)2

T

)
= const X

−m/σ2

T .

We assume that m > 0, and consider an European call H = (XT − K)+ as in
[12, Section 6.2]. The cost of replication of this claim is

U0 = EP ∗
[H] = x0N(d+) − KN(d−),

where

d± =
1

σ
√

T
log

(x0

K

)
± 1

2
σ
√

T

and N denotes the standard Gaussian cumulative distribution function. Let
Ṽ0 be a positive constant such that Ṽ0 ≤ EP ∗

[H]. We assume

P (H > 0) = N(m
√

T + d−) ≤ α.

Then by Proposition 4.4, the most powerful test ϕ̃P solves the minimization
problem (4.7). By [12, Section 6.2], ϕ̃P is given by

ϕ̃P = 1{XT >c}

where the constant c is determined by

Ṽ0 = EP ∗
[H1{XT >c}]

= x0N

(
1

σ
√

T
log

(x0

c

)
+

1

2
σ
√

T

)
− KN

(
1

σ
√

T
log

(x0

c

)
− 1

2
σ
√

T

)
.
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Part II

Minimizing coherent risk measures of shortfall
in discrete-time models with cone constraints



5. Introduction

It is well-known that a frictionless, discrete-time and finite-horizon model of
financial market is arbitrage-free if and only if there exists an equivalent mar-
tingale measure (the first fundamental theorem of asset pricing). Moreover,
the arbitrage-free market is complete if and only if the equivalent martingale
measure is unique (the second fundamental theorem of asset pricing) (Shiryaev
[31]). In arbitrage-free and complete models, any contingent claim H is at-
tainable, that is, there exists a trading strategy ξH such that the self-financed
wealth process V (x0, ξ

H) is worth H at the maturity date T . The cost x0

of replication is given by the expectation of H under the unique martingale
measure.

Under the market incompleteness or in the presence of frictions, the standard
no-arbitrage arguments are no longer available, and some contingent claims
may not be attainable. However, even so, we can still super-hedge such claims:
starting with enough initial wealth x0, an agent can find a trading strategy ξH

such that

VT (x0, ξ
H) ≥ H, almost surely.

The strategy ξH is called a super-hedging strategy for H. Then, the super-
replication cost x0 is given by the supremum of expectations of H over a
suitable set of probability measures (El Karoui and Quenez [17], Föllmer and
Kabanov [10], Karatzas [15], Schäl [27] and the references cited there). We
define the shortfall risk by the following net profit of hedging loss:

− (H − VT (x, ξ))+ ,

where (a)+ = max(a, 0). For a super-hedging strategy ξH , the shortfall risk is
equal to zero, that is,

−
(
H − VT (x0, ξ

H)
)
+

= 0.

However, if an investor has only an initial wealth x less than x0, then he or
she cannot necessarily accomplish the super-hedging, that is, the shortfall risk
may not be equal to zero.

If we are in a position of such an investor, then we have to accept the
possibility of shortfall. As a result, we wish to measure the shortfall risk
by some risk measure ρ, and try to find an optimal strategy that solves the
minimization problem

inf
ξ

ρ
(
− (H − VT (x, ξ))+

)
.

See Cvitanić [6], Föllmer and Leukert [11, 12], and Pham [24]. These references
adopted the ρ(X) = EP [l(−X)] as risk measures, where l(·) is a loss function
and P is the objective probability. They studied the minimization problem

inf
ξ

EP
[
l
(
(H − VT (x, ξ))+

)]

13



in complete or incomplete market models.
In this paper, we work in the general discrete-time models with convex cone-

constrained trading strategies. Such models were studied in [24], and Pham
and Touzi [25]. Under a suitable assumption, the market model is arbitrage-
free if and only if the set Me of all equivalent probability measures under which
the discounted price process satisfies a generalized martingale property is not
empty (see Theorem 2.3 below). Moreover, in such a market, super-hedging
as stated above is possible. Theorem 2.4 below, due to [24], characterizes the
super-replication cost of H by the supremum of expectations of H over Me.
In particular, in the case of short-selling prohibition, the set Me is given by
the set of all “equivalent supermartingale measures”.

As risk measures, we use the coherent risk measures introduced by Artzner,
Delbaen, Eber, and Heath [2]. They are real-valued functions on a suitable
space of random variables satisfying four desirable properties, that is, mono-
tonicity, subadditivity, positive homogeneity, and translation invariance. We
recall the precise definition in Section 3. Given a coherent risk measure ρ and
a contingent claim H, we study the stochastic control problem

(5.1) inf
ξ

ρ
(
− (H − VT (x, ξ))+

)
.

See Nakano [21], where a similar optimization problem for general frictionless
continuous-time semimartingale models is studied.

It is known that a coherent risk measure ρ of a random variable X arises
as the supremum of the expected negative of X over a set of “real-world”
probability measures or “scenarios”, that is,

ρ(X) = sup
Q∈Q

EQ[−X]

for some set of probability measures Q (see Proposition 4.1 in [2]; Theorem 2.3
in Delbaen [9]; see also Theorem 1.2 in [21]; and Theorem 1.1 in Inoue [13]).
Thus the problem (5.1) is equivalent to the minimization problem

inf
ξ

sup
Q∈Q

EQ
[
(H − VT (x, ξ))+

]
.

For a special scenario set Q, problems of this type are studied in Cvitanić and
Karatzas [7], and Sekine [30], essentially complete, continuous-time models.
The problem (5.1) that consider in this paper is different from those in these
references because of the presence of constraints on trading strategies (and the
discrete-time setting).

In the proposed approach to the problem (5.1), we use the methods of convex
duality and super-hedging. The supermartingale property of V (x, ξ) and the
super-hedging method enable one to reduce the dynamic problem (5.1) to the
following static problem:

(5.2) inf
X∈X (x)

ρ (−(H − X)) ,

14



where the infimum is taken over a suitable set X (x) of random variables. To
solve the static problem (5.2), we use the convex duality method (cf. [6];
Cvitanić and Karatzas [8]). After enlarging Q and Me to suitable classes Z
and G, respectively, we define the auxiliary dual problem to (5.2) by

(5.3) sup
{
EP [H (Z ∧ yG)] − xy : Z ∈ Z, G ∈ G, y ≥ 0

}
,

where a ∧ b = min(a, b). Following [8], we prove the existence of a solution

(Ẑ, Ĝ, ŷ) to the dual problem (5.3). Using the triple, we show that there exists
a solution to the problem (5.2) of the form:

(5.4) X̂ = H1{ŷĜ<Ẑ} + HB1{ŷĜ=Ẑ},

where B is some random variable taking values in [0, 1]. This result is similar
to Theorem 4.1 in [8].

In conclusion, our approach may be summarized as follows: First, we solve
the auxiliary dual problem (5.3) to obtain a triple (Ẑ, Ĝ, ŷ). Next, we find a

random variable B such that X̂ of the form (5.4) is a solution to the static

problem (5.2). Finally, we construct a super-hedging strategy ξ̂ for X̂. Then,

the resulting strategy ξ̂ solves (5.1).
This paper is organized as follows: In Section 6, we present the general

framework and the basic results for the discrete-time models with cone-constrained
trading strategies. We prepare coherent risk measures to be used in Section
7. In Section 8, we formulate the minimization problem (5.1), and reduce the
dynamic problem (5.1) to the static one (5.2). Then we present the semi-closed
form solution as in (5.4) to the problem (5.2) via the convex duality method.
We also give a simple illustrating example. Section 9 is devoted to the proof
of a key to the main theorem.

6. Discrete-time models with constraints

Let T ∈ N. The discounted price process of d stocks is described as an
Rd-valued adapted stochastic process S = {St, t = 0, . . . , T} on some filtered
probability space ((Ω,F , P ), (Ft)t=0,...,T ). We shall assume that F0 = {∅, Ω}
and that FT = F . For a probability measure Q on (Ω,F), we denote by EQ

the expectation with respect to Q. We write L1(P ) for L1(Ω,F , P ). Here
we consider only real-valued function. We assume that St ∈ L1(P ) for t =
0, . . . , T .

For Rd-valued process Y = (Yt)t=0,...,T , we define ∆Yt := Yt − Yt−1 for

t = 1, . . . , T . We write a·b for the inner product of a, b ∈ Rd: a·b :=
∑d

k=1 akbk

for a = (ak) and b = (bk).
A trading strategy is an Rd-valued predictable process ξ = (ξt)t=1,...,T . Here,

for i = 1, . . . , d, ξt
i represents the number of shares of the stock Si held by the

investor during (t−1, t] for t = 1, . . . , T . We denote by Ξ the set of all trading
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strategies. For x ∈ R and ξ ∈ Ξ, we define the discounted (self-financed)
wealth process Vt(x, ξ) by

Vt(x, ξ) = x +
t∑

k=1

ξk · ∆Sk, t = 1, . . . , T,

V0(x, ξ) = x.

Let C be a nonempty closed convex cone in Rd. A constrained trading
strategy ξ is a trading strategy such that

ξt ∈ C, t = 1, . . . , T, P a.s.

We denote by Ξ(C) the set of all constrained trading strategies. Since C is a
cone, the (negative) polar cone C◦ of C is given by

C◦ =
{
b ∈ Rd : a · b ≤ 0 (∀a ∈ C)

}

(see Section 5 of Chapter 1 in Aubin and Ekeland [4]).

Example 6.1. We have the following examples of constraint sets:

(1) Unconstrained case: C = Rd. Then C◦ = {0}.
(2) Prohibition of short-selling of some stocks:

C =
{
a ∈ Rd : ai ≥ 0 (∀i ∈ I)

}
,

where I is a subset of {1, . . . , d}. Then C◦ is given by

C◦ =
{
b ∈ Rd : bi ≤ 0 (i ∈ I), bi = 0 (i ∈ {1, . . . , d} \ I)

}
.

We define the following convex cone associated with Ξ(C):

K = {VT (0, ξ) : ξ ∈ Ξ(C)} .

Denote by L0
+(P ) the space of all nonnegative random variables. We define

the no arbitrage condition as follows:

Definition 6.2. We say that there is no arbitrage opportunity if

(NA) K ∩ L0
+(P ) = {0}.

We define the subset Ξ(x) of Ξ(C) by

Ξ(x) = {ξ ∈ Ξ(C) : VT (x, ξ) ≥ 0, P−a.s.} .

Thus we consider the admissibility condition that imposes the nonnegativity
constraint only on the terminal wealth value. Denote L∞(Ω,F , P ) by L∞(P ),
and let P be the set of all probability measures on (Ω,F) absolutely continuous
with respect to P . As in [24], we introduce the following set of ‘martingale
measures’:

M(P ) =

{
Q ∈ P :

dQ/dP ∈ L∞(P ) and

EQ[∆St|Ft−1] ∈ C◦, t = 1, . . . , T, Q−a.s.

}
,

Me(P ) = {Q ∈ M(P ) : Q ∼ P} .
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Writing Vt(x, ξ) = Vt−1(x, ξ) + ξt · ∆St, it is easily seen that for any ξ ∈
Ξ(x), the process V (x, ξ) is a supermartingale under any Q ∈ M(P ). In the
unconstrained case C = Rd, the set Me(P ) is actually the set of equivalent
probability measures with density in L∞(P ) under which S is a martingale.
On the other hand, in the no short-selling constraints case C = [0,∞)d, the
set Me(P ) is the set of equivalent probability measures with density in L∞(P )
under which S is a supermartingale.

Following [25] and [24], we shall make a nondegeneracy assumption on the
price process. Set, for t = 1, . . . , T ,

N(t − 1) =
{
η ∈ L0,d(Ft−1, P ) : η · ∆St = 0, P−a.s.

}
,

where L0,d(Ft, P ) denotes the space of all Rd-valued Ft-measurable random
variables. We assume that

(B) N(t − 1) = {0} (t = 1, . . . , T ).

The condition (B) is satisfied by most standard financial models. For example,
the Cox-Ross-Rubinstein model satisfies (B) (see Sections 3 and 5 in [24]).

Under the condition (B), the no arbitrage condition (NA) implies the ‘no free
lunch’ condition (see [25] and [24]). Further, we have the following extended
version of first fundamental theorem of asset pricing:

Theorem 6.3 ([25]). Assume (B). Then (NA) holds if and only if Me(P ) 6= ∅.

We define the super-replication cost x0 of a nonnegative contingent claim
H ∈ L1(P ) by

x0 = inf {x ∈ R : VT (x, ξ) ≥ H, P−a.s., for some ξ ∈ Ξ(x)} .

In what follows, we write M = M(P ) and Me = Me(P ) for simplicity. The
next theorem, due to [24], provides a duality result between the initial wealth
and the expectation of the contingent claim under probability measures Me,
within a general discrete-time framework with cone constraints.

Theorem 6.4 ([24]). Assume (NA) and (B). Then the super-replication cost
of a nonnegative contingent claim H ∈ L1(P ) is given by

(6.1) x0 = sup
{
EQ[H] : Q ∈ Me

}
.

In (6.1), we may replace Me by M. Moreover, if supQ∈Me EQ[H] < ∞, then

there exists ξH ∈ Ξ(x0) such that VT (x0, ξ
H) ≥ H, P−a.s. The strategy ξH is

called a super-hedging strategy for H.

Remark 6.5. For a super-hedging strategy ξH in Theorem 6.4 and x ≥ x0, we
easily see that VT (x, ξH) ≥ H.
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7. Coherent risk measures

Let us consider a nonnegative contingent claim H ∈ L1(P ). Following a
trading strategy ξ and starting with an initial wealth x, an agent loses the
resulting shortfall (H − VT (x, ξ))+ at time t = T . Thus his or her shortfall
risk is − (H − VT (x, ξ))+. We are concerned with the problem of minimizing
a coherent risk measure of this shortfall risk.

Definition 7.1 ([2] and [9]). We say that a functional ρ : L1(P ) → R is a
coherent risk measure if the following are satisfied:

(i) For X ∈ L1(P ) with X ≥ 0, we have ρ(X) ≤ 0.
(ii) For X and Y ∈ L1(P ), we have ρ(X + Y ) ≤ ρ(X) + ρ(Y ).
(iii) If X ∈ L1(P ) and λ ∈ (0,∞), then ρ(λX) = λρ(X).
(iv) If X ∈ L1(P ) and c ∈ R, then ρ(X + c) = ρ(X) − c.

Remark 7.2 ([22]). For interpretations of the above properties, we refer to [2],
where they restrict themselves to finite probability spaces. Subsequently, in
[9], the definition of coherent risk measures is extended to general probability
spaces; as the space of random variables, the space L∞(P ) or the space L0(P )
of all random variables is adopted. As in [21], we use the intermediate space
L1(P ) here. The space L1(P ) is large enough to be used in our hedging problem
since the payoff of, e.g., a European call option belongs to L1(P ) since we have
assumed that ST ∈ L1(P ).

Let ρ : L1(P ) → R be a coherent risk measure that is continuous in the L1-
norm. Recall P from Section 6. Then, we have the following representation:

(7.1) ρ(X) = sup
Q∈Q

EQ[−X] (X ∈ L1(P )),

where

(7.2) Q =
{
Q ∈ P : dQ/dP ∈ L∞(P ), EQ[−X] ≤ ρ(X) (∀X ∈ L1(P ))

}
.

See Theorem 1.2 in [21]; see also Proposition 4.1 in [2], Theorem 2.3 in [9],
and Theorem 1.1 in [13]. So, every continuous coherent risk measure arises
as the supremum of expected negatives of a random variable over a set Q
of ‘real-world’ probability measures or ‘scenarios’. Then, from the uniform
boundedness theorem, we easily see that

(7.3) sup
Q∈Q

‖dQ/dP‖∞ < ∞.

Remark 7.3 ([22]). In Theorem 1.2 in [21], it is proved that the representation
(7.1) also holds for lower semi-continuous coherent risk measures ρ. However,
even for such ρ, (7.3) still holds by the uniform boundedness theorem. This
implies that every lower semi-continuous coherent risk measure turns out to
be continuous (see Lemma 2.1 in [13]).

We need the next property of coherent risk measures.
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Definition 7.4 ([2] and [9]). We say that a coherent risk measure ρ : L1(P ) →
R is relevant if, for every A ∈ F with P (A) > 0, we have ρ(−1A) > 0.

The next proposition, which is an analogue of Theorem 3.5 in [9], charac-
terizes relevant coherent risk measures.

Proposition 7.5 ([22]). Let ρ : L1(P ) → R be a continuous coherent risk
measure, and let Q be as in (7.2). Then the following are equivalent :

(i) ρ is relevant.
(ii) The set {Q ∈ Q : Q ∼ P} is not empty.

Proof. It is easy to prove the implication (ii) ⇒ (i). To prove the converse
(i) ⇒ (ii), we follow the line of the proof of Theorem 3.5 in [9]. Set Y =
{dQ/dP : Q ∈ Q} and take a sequence {Yn}∞n=1 from Y so that

lim
n→∞

P (Yn > 0) = sup
Y ∈Y

P (Y > 0).

We define the probability measure Q̂ = Ŷ P by

Ŷ =
∞∑

n=1

2−nYn.

Then, since {Ŷ > 0} = ∪∞
n=1{Yn > 0}, we have

P (Ŷ > 0) ≥ sup
Y ∈Y

P (Y > 0).

However, by (7.3), Ŷ ∈ L∞(P ), whence Q̂ ∈ Q. Thus

(7.4) P (Ŷ > 0) = sup
Y ∈Y

P (Y > 0).

Now suppose that P (Ŷ = 0) > 0. Since ρ is relevant, there exists Y0 ∈ Y
such that EP [Y01{Ŷ =0}] > 0. This implies

P (Y0 > 0, Ŷ = 0) > 0.

However, if we put Y ′ := (Ŷ + Y0)/2 ∈ Y , then we find from (7.4) that

P (Y0 > 0, Ŷ = 0) = P (Ŷ = 0) − P (Ŷ = 0, Y0 = 0)

= P (Ŷ = 0) + P
(
{Ŷ > 0} ∪ {Y0 > 0}

)
− 1

= P (Ŷ = 0) + P (Y ′ > 0) − 1

= P (Ŷ = 0) + P (Ŷ > 0) − 1 = 0,

which is a contradiction. Thus Q̂ and P are equivalent. ¤
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Remark 7.6 ([22]). The ‘worst conditional expectation’ is a typical example
of coherent risk measures. Given α ∈ (0, 1), this measure is defined by, for
X ∈ L1(P ),

WCEα(X) = sup
{
EQ[−X] : Q(·) = P (·|A), P (A) > α, A ∈ F

}

(see Section 5 in [2] and Section 4 in [9]). WCEα is the law-invariant, smallest
coherent risk measure dominating the value at risk VaRα, which is a popular
risk measure, but not a coherent one. Now we define another coherent risk
measure ρα(·) on L1(P ) by

(7.5) ρα(X) = sup
Q∈Q

EQ[−X] (X ∈ L1(P )),

where

Q = {Q ∈ P : dQ/dP ≤ 1/α} .

As mentioned in Section 4 in [9], if the underlying probability space (Ω,F , P )
is nonatomic, then ρα coincides with WCEα on L1(P ) since the extreme points
of Q are of the form 1A/P (A) with P (A) = α (see Lindenstrauss [20]). We see
that ρα is relevant and continuous in the L1-norm. For related work, we refer
the reader to [1], [13], Kusuoka [19], and [30]. In particular, [30] studies the
minimization problem of ρα

(
− (H − VT (x, ξ))+

)
in complete continuous-time

market models. In many situations, it seems more convenient to use ρα than
to use WCEα itself.

8. The minimization

Let ρ : L1(P ) → R be a relevant, continuous coherent risk measure. Then ρ
has a representation of the form (7.1). We consider a nonnegative contingent
claim H ∈ L1(P ) that satisfies

x0 := sup
Q∈M

EQ[H] < +∞.

In this section, we assume the no arbitrage condition (NA) and the nondegen-
eracy condition (B). Then, it follows from Theorems 6.3 and 6.4 that Me 6= ∅
and that the super-replication cost of H is given by supQ∈M EQ[H].

Now let x > 0 and ξ1, ξ2 ∈ Ξ(x). If

ρ
(
− (H − VT (x, ξ1))+

)
≤ ρ

(
− (H − VT (x, ξ2))+

)

or, equivalently,

sup
Q∈Q

EQ
[
(H − VT (x, ξ1))+

]
≤ sup

Q∈Q
EQ

[
(H − VT (x, ξ2))+

]
,

then we may regard the strategy ξ1 as preferable to ξ2. Therefore, an agent,
who uses the coherent risk measure ρ as measure of shortfall risk, wishes to
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minimize ρ(−(H − VT (x, ξ))+) for a given initial wealth x. Thus we consider
the following optimization problem: for x > 0,

(8.1) R(x) := inf
ξ∈Ξ(x)

ρ
(
− (H − VT (x, ξ))+

)
.

Remark 8.1 ([22]). For x ≥ x0, the super-hedging strategy ξH is obviously a
solution to the problem (8.1) since

(
H − VT (x, ξH)

)
+

= 0.

We define the set X (x) by
(8.2)

X (x) =
{
X ∈ L1(P ) : 0 ≤ X ≤ H, P−a.s., EP [GX] ≤ x, (∀G ∈ M)

}
.

Here we identify each probability measure Q ∈ M with its Radon-Nikodým
density G = dQ/dP . As in [12], [21], and [24], we reduce the dynamic problem
(8.1) to a static one by the next proposition.

Proposition 8.2 ([22]). Suppose that X̂ ∈ X (x) is a solution to the static
problem

(8.3) inf
X∈X (x)

ρ(−(H − X)).

Then there exists a super-hedging strategy ξ̂ ∈ Ξ(x) for X̂ that solves the
dynamic problem (8.1). Moreover, we have

R(x) = inf
X∈X (x)

ρ(−(H − X)).

Proof. The proof is similar to that of Proposition 4.1 in [24]. Let ξ ∈ Ξ(x) and
X := H − (H − VT (x, ξ))+. Then X ∈ L1(P ) and X ≤ VT (x, ξ). Now, under
every Q ∈ M, the process V (x, ξ) is a supermartingale, so that X ∈ X (x). So
we obtain

ρ
(
− (H − VT (x, ξ))+

)
= ρ(−(H − X)) ≥ inf

X′∈X (x)
ρ(−(H − X ′)).

Since ξ is an arbitrary element of Ξ(x), we find that

(8.4) R(x) ≥ inf
X∈X (x)

ρ(−(H − X)).

Conversely, suppose that X̂ ∈ X (x) solves the problem (8.3). We put

x̂ := sup
G∈M

EP [GX̂].

Then x̂ ≤ x < +∞, and so Theorem 6.4 implies that there exists a super-
hedging strategy ξ̂ ∈ Ξ(x) for X̂ such that

VT (x, ξ̂) ≥ X̂.
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Since −(H − X̂) ≤ −
(
H − VT (x, ξ̂)

)
+
, we have, from the monotonicity of ρ,

that

(8.5) R(x) ≤ ρ

(
−

(
H − VT (x, ξ̂)

)
+

)
≤ ρ(−(H − X̂)).

The proposition follows from (8.4) and (8.5). ¤
In what follows, we assume

0 < x < x0,

and study the static problem (8.3) for the initial wealth x. We follow the
convex duality method as in [6] and [8].

We define

Z =

{
Z ∈ L∞(P ) :

Z ≥ 0 (P−a.s.), EP [Z] ≤ 1,

EP [ZX] ≤ ρ(−X) (∀X ∈ L1
+(P ))

}
,

where L1
+(P ) denotes the space of all nonnegative random variables in L1(P ).

Since Q ⊂ Z, it holds that

(8.6) ρ(−X) = sup
Z∈Z

EP [ZX] (X ∈ L1
+(P )).

Remark 8.3 ([22]). In the case of ρα in (7.5) with (8.6), we can show that

Z = {Z ∈ L∞(P ) : 0 ≤ Z ≤ 1/α, EP [Z] ≤ 1}.

The next proposition is needed to prove Lemmas 8.7 and 9.1.

Proposition 8.4 ([22]). Let Z be as above.

(i) The set Z is convex and closed under P−a.s. convergence.
(ii) If a sequence {Zn}∞n=1 from Z converges to a random variable Z, P−a.s.,

on the set {H > 0} as n → ∞, and if Z = 0 on the set {H = 0}, then
we have Z ∈ Z.

Proof. Suppose that a sequence {Zn} from Z converges to a random variable
Z, P−a.s. Then, by Fatou’s lemma, we have

EP [ZX] ≤ lim inf
n→∞

EP [ZnX] ≤ ρ(−X) < ∞ (X ∈ L1
+(P )).

From this, it easily follows that Z ∈ L∞(P ). Similarly, by Fatou’s lemma, we
have EP [Z] ≤ 1. Thus Z ∈ Z, and so (i) follows.

Let {Zn} and Z be as in (ii). By Fatou’s lemma, we see that, for X ∈ L1
+(P ),

EP [ZX] = EP
[
ZX1{H>0}

]
≤ lim inf

n→∞
EP

[
ZnX1{H>0}

]

≤ lim inf
n→∞

EP [ZnX] ≤ ρ(−X) < ∞.

In particular, Z ∈ L∞(P ). Similarly, we have that EP [Z] ≤ 1. Thus Z ∈ Z.
This proves (ii). ¤
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Following Section 3 in [6] and Section 3 in [8], we introduce the set

G :=

{
G ∈ L1

+(P ) :
EP [G] ≤ 1, EP [GH] ≤ x0,

EP [GX] ≤ x, ∀x > 0, ∀X ∈ X (x)

}

(recall that we have assumed that x ∈ (0, x0)).

Proposition 8.5 ([22]). We have the following:

(i) The set G is convex, closed under P−a.s. convergence, and bounded in
L1(P ), and it includes the convex hull of M, that is,

conv

{
dQ

dP

}

Q∈M
⊂ G.

(ii) If a sequence {Gn}∞n=1 from G converges to some random variable G,
P−a.s., on the set {H > 0}, and if G = 0 on the set {H = 0}, then we
have G ∈ G.

Proof. As in the proof of Proposition 8.4, we obtain Proposition 8.5 using
Fatou’s lemma several times. ¤

Remark 8.6 ([22]). The properties (i) and (ii) in Proposition 8.5 are needed to
prove Lemma 8.7 and Lemma 9.1, respectively. Therefore, for this purpose,
we may replace G by another set G ′ if it satisfies (i) and (ii) in Proposition 8.5.
For example, consider the one-period models with no-short-selling constraints.
Then we know that

(8.7) M =
{
Q ∈ P : EQ[S1] ≤ S0

}
.

We easily find that the set G ′ defined by

G ′ :=
{
G′ ∈ L1

+(P ) : EP [G′S1] ≤ S0, EP [G′] ≤ 1
}

satisfies the properties (i) and (ii) in Proposition 8.5 for every H, whence we
may replace G by G ′.

Now, as in Section 3 in [8], we have the following important observation: for
Z ∈ Z, G ∈ G, y ≥ 0, and X ∈ X (x),

EP [Z(H − X)] = EP [ZH] − EP [X(Z − yG)] − yEP [GX]

≥ EP [ZH] − EP [H(Z − yG)+] − xy(8.8)

= EP [H(Z ∧ yG)] − xy.

We define

f(y) = sup
Z∈Z,G∈G

EP [H(Z ∧ yG)] (y ≥ 0);(8.9)

g(x) = sup
y≥0

(f(y) − xy) .(8.10)
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Then we have

(8.11) g(x) ≤ inf
X∈X (x)

sup
Z∈Z

EP [Z(H − X)] = inf
X∈X (x)

ρ (−(H − X)) .

Lemma 8.7 ([22]). For each y ≥ 0, there exists a pair (Zy, Gy) ∈ Z × G that
attains the supremum in (8.9).

Proof. Let {(Zn, Gn)}∞n=1 be a sequence from Z × G such that

lim
n→∞

EP [H(Zn ∧ yGn)] = f(y).

Since the set Z × G is bounded in L1(P ) × L1(P ), the theorem of Komlós
(see Komlós [16] and Schwartz [29]) implies that there exists a pair (Zy, Gy) ∈
L1(P ) × L1(P ) and a relabeled subsequence

{
(Z ′

j, G
′
j)

}∞
j=1

of {(Zn, Gn)}∞n=1

such that
(

1

k

k∑

j=1

Z ′
j,

1

k

k∑

j=1

G′
j

)
→ (Zy, Gy) (k → ∞), P−a.s.

By the P−a.s. closedness of Z and G, we have (Zy, Gy) ∈ Z × G. Since

|EP [ZX]| ≤ ρ(−|X|) < +∞ (X ∈ L1(P ), Z ∈ Z),

it follows from the uniform boundedness theorem that

(8.12) sup
Z∈Z

‖Z‖∞ < ∞.

From this, as well as Lebesgue’s convergence theorem and the concavity of the
function (s, t) 7→ s ∧ t, we obtain

EP [H(Zy ∧ yGy)] = lim
k→∞

EP

[
H

{(
1

k

k∑

j=1

Z ′
j

)
∧ y

(
1

k

k∑

j=1

G′
j

)}]

≥ lim
k→∞

1

k

k∑

j=1

EP
[
H(Z ′

j ∧ yG′
j)

]

= lim
j→∞

EP
[
H(Z ′

j ∧ yG′
j)

]
= f(y).

Thus (Zy, Gy) attains the supremum, as desired. ¤

Lemma 8.8 ([22]). The function f(·) is concave.

Proof. Let y1, y2 ∈ [0,∞) and t ∈ (0, 1). If y1 = y2 = 0 then the concavity
immediately follows. So we assume that y1 > 0 or y2 > 0. By Lemma 8.7,
there exist (Zyj

, Gyj
) ∈ Z × G, j = 1, 2, such that

EP
[
H(Zyj

∧ yjGyj
)
]

= f(yj) (j = 1, 2).
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We put G := (ty1Gy1 + (1 − t)y2Gy2) / (ty1 + (1 − t)y2) ∈ G. Then it follows
that

tf(y1) + (1 − t)f(y2)

= EP [H {t(Zy1 ∧ y1Gy1) + (1 − t)(Zy2 ∧ y2Gy2)}]
≤ EP [H {(tZy1 + (1 − t)Zy2) ∧ (ty1Gy1 + (1 − t)y2Gy2)}]
= EP [H {(tZy1 + (1 − t)Zy2) ∧ (ty1 + (1 − t)y2)G}]
≤ f (ty1 + (1 − t)y2) .

Thus we obtain the lemma. ¤
Lemma 8.9 ([22]). There exists ŷ ≡ ŷx > 0 that attains the supremum in
(8.10).

Proof. By Lemma 8.8, the function

h(y) := f(y) − xy (y ≥ 0)

is concave. From (8.12), we see that h(+∞) = −∞. Clearly, we have

h(0) = 0, h(y) ≥ −xy (y > 0).

We claim that there exists y0 > 0 such that h(y0) > 0. Suppose otherwise.
Then h(y) ≤ 0 for y > 0. Since ρ is relevant, by Proposition 7.5 there exists
Z ∈ Z such that Z > 0, P−a.s. We see that, for every G ∈ G,

xy ≥ f(y) ≥ EP [H(Z ∧ yG)] (∀y > 0).

Dividing by y and then letting y ↓ 0, we have that, for any G ∈ G,

EP [HG] ≤ x.

However, this contradicts the assumption x < x0. Thus the claim is proved.
The lemma now follows from the concavity of h(·). ¤
Remark 8.10 ([22]). As mentioned in Remark 8.6, the necessity of considering
Z and G rather than Q and M, respectively, is to ensure the existence of a
solution to the dual problem g(x).

Now, here is our main theorem.

Theorem 8.11 ([22]). Let ŷ > 0 be as in Lemma 8.9, and let (Ẑ, Ĝ) ≡ (Zŷ, Gŷ)
be an optimal pair for the problem (8.9) with y = ŷ.

(i) There exists a [0, 1]-valued random variable B such that the random vari-
able

X̂ := H1{ŷĜ<Ẑ} + HB1{ŷĜ=Ẑ}

is a solution to the static problem (8.3). Moreover, there is no “duality
gap” in (8.11), that is, g(x) = R(x).

(ii) If ξ̂ is a super-hedging strategy for X̂, then ξ̂ is a solution to (8.1).
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The following proposition is a key to the proof of Theorem 8.11.

Proposition 8.12 ([22]). There exists a [0, 1]-valued random variable B such

that X̂ of the form in Theorem 8.11 satisfies X̂ ∈ X (x) as well as the conditions

EP
[
ĜX̂

]
= x,(8.13)

sup
Z∈Z

EP
[
Z(H − X̂)

]
= EP

[
Ẑ(H − X̂)

]
.(8.14)

We prove this proposition in Section 9, following the method of [6] and [8].
In this method, some results from the nonsmooth convex analysis ([4]) are
used.

Proof of Theorem 8.11. Using (8.13) and the fact X̂(Ẑ − ŷĜ) = H(Ẑ − ŷĜ)+

in (8.8) with Z = Ẑ, X = X̂, G = Ĝ, and y = ŷ, we see that

EP
[
Ẑ(Ĥ − X̂)

]
= EP

[
H(Ẑ ∧ ŷĜ)

]
− xŷ

= f(ŷ) − xŷ = g(x),

whence, by (8.14),

g(x) = sup
Z∈Z

EP
[
Z(H − X̂)

]
= ρ

(
−(H − X̂)

)
.

Therefore, from (8.11), it follows from that

ρ
(
−(H − X̂)

)
≤ inf

X∈X (x)
ρ (−(H − X)) .

However, X̂ is in X (x), so that X̂ attains the infimum above. In particular,
by Proposition 8.2, we find that g(x) = R(x) and that (ii) holds. Thus the
theorem follows. ¤

We illustrate Theorem 8.11 by using one-period binomial models.

Example 8.13 ([22]). Let 0 < d < 1 < u and 0 < π < 1. We consider the
probability space Ω = {u, d}, F = 2Ω, P

(
{u}

)
= π = 1−P

(
{d}

)
. Let {S0, S1}

be the discounted price process described as

S0 = 1, S1 =

{
u if ω = u,

d if ω = d.

We consider the no-short-selling constraints. From (8.7), we see that Q ∈ M
if and only if Q(u) ≤ π̂ := (1 − d)/(u − d).

Let α ∈ (0, 1). We take ρα in (7.5) as the measure of risk here. We consider
the European call H = (S1 − K)+ with d < K < u. Then it follows from
Remark 8.3 that

Z =
{
Z : 0 ≤ Z ≤ α−1, πZ(u) + (1 − π)Z(d) ≤ 1

}
.
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We put

G ′ = {G : 0 ≤ G(u) ≤ π̂/π, πG(u) + (1 − π)G(d) ≤ 1} .

Then G ′ satisfies the properties (i) and (ii) in Proposition 8.5. Here, as men-
tioned in Remark 8.6, we consider G ′ rather than G. The function f(·) in (8.9)
with G replaced by G ′ is given by

f(y) = sup
Z∈Z,G∈G′

π(u − K) (Z(u) ∧ yG(u)) .

We easily find that, for y > 0, this supremum is attained by, e.g.,

Ẑ(ω) =

(
1

α
∧ 1

π

)
1{u}(ω), Ĝ(ω) = π̂1{u}(ω).

Then the dual problem (8.10) is written as

g(x) = sup
y≥0

[
π(u − K)

{(
α−1 ∧ π−1

)
∧ yπ̂

}
− xy

]
.

Since x < x0 = π̂(u−K), ŷ = π(α−1 ∧ π−1)/π̂ attains this supremum. There-
fore, from Theorem 8.11, we deduce that the random variable

X̂ := H1{ŷĜ<Ẑ} + HB1{ŷĜ=Ẑ}

= (u − K)B1{u}

is optimal for some [0, 1]-valued random variable B. However, from the con-
dition (8.13), we obtain

B(u) =
x

π̂(u − K)
,

whence

X̂ =
x

π
1{u} =

x

x0

H.

9. Proof of Proposition 8.12

This section is devoted to the proof of Proposition 8.12. Following [6] and
[8], we introduce the Banach space

K := L1(P ) × L1(P ) × R

with norm

‖(U, V, y)‖K := EP [|U | + |V |] + |y|
and its subset

L := {(HZ, yHG, y) ∈ K : Z ∈ Z, G ∈ G, y ≥ 0} .

Lemma 9.1 ([22]). The set L is convex and closed in K.
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Proof. Let t ∈ (0, 1) and (HZj, yjHGj, yj) ∈ L for j = 1, 2. If y1 = y2 = 0, the
convexity immediately follows. Assume that y1 > 0 or y2 > 0. Then we have

G :=
ty1G1 + (1 − t)y2G2

ty1 + (1 − t)y2

∈ G,

so that (H(tZ1 + (1 − t)Z2), H(ty1G1 + (1 − t)y2G2), ty1 + (1 − t)y2) ∈ L. Thus
the convexity follows.

Next, let (HZn, ynHGn, yn) ∈ L be a sequence that converges to some
(U, V, y) in K. Then yn → y, and HZn → U , P−a.s. (possibly along a subse-
quence). Put

Z :=

{
U/H on {H > 0},
0 on {H = 0}.

Then we have that U = HZ on {H > 0} and that Zn → Z on {H > 0}, as
n → ∞, P−a.s. The property (ii) in Proposition 8.4 implies Z ∈ Z.

On the other hand, we have

EP [H|ynGn − yGn|] ≤ |yn − y|x0 → 0 (n → ∞),

hence

EP [H|yGn − W |] → 0 (n → ∞),

where, we set W = V/H on {H > 0}, and = 0 on {H = 0}. If y = 0,
then W = 0 = yHG1. If y > 0 and if we put G := W/y, then we have that
Gn → G = W/y, P−a.s., on the set {H > 0} (possibly along a subsequence)
and that G = 0 on the set {H = 0}. The property (ii) in Proposition 8.5
implies G ∈ G. Thus the closedness of L follows. ¤

We now define a functional Φ : K → R by

Φ(U, V, y) = xy − EP [U ∧ V ].

Lemma 9.2 ([22]). Let Ẑ, Ĝ, and ŷ be as in Section 8. The functional Φ is
proper, convex and lower semi-continuous on K and attains its infimum over
L at the triple (HẐ, ŷHĜ, ŷ).

Proof. Since the proof of the properness, convexity, and lower semi-continuity
are simple, we omit them. By Lemmas 8.7 and 8.9, we have

Φ(HẐ, ŷHĜ, ŷ) = xŷ − EP
[
H(Ẑ ∧ ŷĜ)

]
= xŷ − f(ŷ)

≤ xy − f(y) ≤ xy − EP [H(Z ∧ yG)]

= Φ(HZ, yHG, y), ∀(HZ, yHG, y) ∈ L.

Thus the triple (HẐ, ŷHĜ, ŷ) is optimal. ¤
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Proof of Proposition 4.8. The method of the proof is similar to that of Section
3 in [6] and Sections 4 and 6 in [8]. We now consider the dual space

K∗ := L∞(P ) × L∞(P ) × R

of K, and the normal cone (see Definition 4.1.3 and Proposition 4.1.4 in [4])

N (HẐ, ŷHĜ, ŷ) :=

{
(T, W, ζ) ∈ K∗ :

EP [HẐT + ŷHĜW ] + ŷζ ≥
EP [UT + V W ] + yζ, (∀(U, V, y) ∈ L)

}

to the set L at the point (HẐ, ŷHĜ, ŷ) ∈ L. We also consider the subdiffer-
ential at this point

∂Φ(HẐ, ŷHĜ, ŷ) :=





(T, W, ζ) ∈ K∗ :

Φ(HẐ, ŷHĜ, ŷ) − Φ(U, V, y) ≤

EP
[
T (HẐ − U) + W (ŷHĜ − V )

]

+ ζ(ŷ − y), (∀(U, V, y) ∈ K)





.

Then, from Lemma 9.2, it follows that the triple (HẐ, ŷHĜ, ŷ) solves the
problem

inf
(U,V,y)∈M

Φ(U, V, y),

so that, by Corollary 4.6.3 in [4], there exists a triple (T̂ , Ŵ , ζ̂) ∈ K∗ such that

(T̂ , Ŵ , ζ̂) ∈ N (HẐ, ŷHĜ, ŷ) and (−T̂ ,−Ŵ ,−ζ̂) ∈ ∂Φ(HẐ, ŷHĜ, ŷ). These
are equivalent to the following, respectively:

EP
[
HT̂ (Ẑ − Z) + HŴ (ŷĜ − yG)

]
+ ζ̂(ŷ − y) ≥ 0,(9.1)

∀(Z, G, y) ∈ Z × G × [0, +∞),

EP
[
T̂ (U − HẐ) + Ŵ (V − ŷHĜ) + H(Ẑ ∧ ŷĜ) − U ∧ V

]
(9.2)

≥ (x + ζ̂)(ŷ − y), ∀(U, V, y) ∈ K.

By letting y → ±∞, we see that (9.2) holds only if

(9.3) ζ̂ = −x.

From (9.1) with ζ̂ = −x, Z = Ẑ, G = Ĝ, and y = ŷ ± δ (δ > 0), we have

(9.4) EP [ĜHŴ ] = x.

On the other hand, (9.1) with Z = Ẑ and y = ŷ implies

(9.5) EP [GHŴ ] ≤ EP [ĜHŴ ], ∀G ∈ G,

and (9.1) with G = Ĝ and y = ŷ implies

(9.6) EP [ZHT̂ ] ≤ EP [ẐHT̂ ], ∀Z ∈ Z.

Reading (9.2) with

U = HẐ − 1{Ŵ+T̂>1}, V = ŷHĜ − 1{Ŵ+T̂>1}
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and using (9.3), we have

EP [(Ŵ + T̂ − 1)+] ≤ 0.

Similarly we obtain EP
[
(1 − Ŵ − T̂ )+

]
≤ 0, whence

(9.7) Ŵ + T̂ = 1.

Hence, the conditions (9.1) and (9.2) can be written as

EP
[
HŴ (ŷĜ − yG + Z − Ẑ) + H(Z − Ẑ)

]
≥ x(ŷ − y),

∀(Z, G, y) ∈ Z × G × [0, +∞),

EP
[
Ŵ (V − U + HẐ − ŷHĜ) + U − HẐ + H(Ẑ ∧ ŷĜ) − U ∧ V

]
≥ 0,(9.8)

∀(U, V ) ∈ L1(P ) × L1(P ).

Considering (9.8) for U = HẐ, V = ŷHĜ + 1A with arbitrary A ∈ F , we see
that

0 ≤ EP
[
Ŵ1A + H(Ẑ ∧ ŷĜ) − HẐ ∧ (ŷHĜ + 1A)

]
≤ EP [Ŵ1A],

so that Ŵ ≥ 0, P−a.s. Similarly we get

0 ≤ EP
[
(1 − Ŵ )1A

]
,

whence Ŵ ≤ 1, P−a.s. Therefore

(9.9) 0 ≤ Ŵ ≤ 1 P−a.s.

The conditions (9.5) and (9.9) imply HŴ ∈ X (x). The condition (9.8) for
U = V implies

(9.10) EP
[
HŴ (Ẑ − ŷĜ)

]
≥ EP

[
H(Ẑ − ŷĜ)+

]
.

Hence, (9.9) and (9.10) lead to HŴ (Ẑ − ŷĜ) = H(Ẑ − ŷĜ)+, P−a.s., so that

Ŵ = 1 on {ŷĜ < Ẑ} ∩ {H > 0}, = 0 on {ŷĜ > Ẑ} ∩ {H > 0}.
Thus, there exist [0, 1]-valued random variables B and J such that

(9.11) Ŵ = 1{ŷĜ<Ẑ,H>0} + B1{ŷĜ≥Ẑ,H>0} + J1{H=0}.

Reading (9.8) with Ŵ in (9.11), U = HU ′, and V = HV ′, we have

EP
[(

1{ŷĜ<Ẑ} + B1{ŷĜ≥Ẑ,H>0}

)
H(U − V + Ẑ − ŷĜ)

+H(U − Ẑ + Ẑ ∧ ŷĜ − U ∧ V )
]
≥ 0, ∀U, V ∈ L∞(P ).

In particular, reading U = Ẑ, we have that, for V ∈ L∞(P ),

EP
[
H

(
1{ŷĜ<Ẑ} + B1{ŷĜ≥Ẑ,H>0}

)
(V − ŷĜ) + H(Ẑ ∧ ŷĜ − Ẑ ∧ V )

]
≥ 0.
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So, for V ∈ L∞(P ), we obtain

EP
[
BH1{ŷĜ≥Ẑ}(ŷĜ − V )

]

≤ EP
[
H(V − ŷĜ)1{ŷĜ<Ẑ} + H(Ẑ ∧ ŷĜ − Ẑ ∧ V )

]

= EP
[
H(V − ŷĜ)1{ŷĜ<Ẑ} + H(ŷĜ − V )1{ŷĜ<Ẑ,V ≤Ẑ}(9.12)

+H(ŷĜ − Ẑ)1{ŷĜ<Ẑ<V } + H(Ẑ − V )1{ŷĜ≥Ẑ≥V }

]

= EP
[
H(V − Ẑ)1{ŷĜ<Ẑ<V } + H(Ẑ − V )1{ŷĜ≥Ẑ≥V }

]
.

From (9.12) with

V =

{
Ẑ − ε on {ŷĜ < Ẑ},
Ẑ on {ŷĜ ≥ Ẑ}

for some ε > 0, we have

{V < Ẑ} = {ŷĜ < Ẑ},
and so

EP
[
BH(ŷĜ − Ẑ)+

]
≤ EP

[
H(−ε)1{ŷĜ<Ẑ}

]
≤ 0.

This implies B = 0 on {ŷĜ > Ẑ, H > 0}, P−a.s. Therefore we deduce that

HŴ = H(1{ŷĜ<Ẑ} + B1{ŷĜ=Ẑ}) = X̂ P−a.s.

On the other hand, the conditions (9.4), (9.6) and (9.7) imply that X̂ satisfies
(8.13) and (8.14). Thus the proposition follows. ¤
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Part III

Minimization of shortfall risk in a
jump-diffusion model



10. Introduction

In this paper, we consider a frictionless, complete financial market consisting
of one riskless bond and two risky assets Si, i = 1, 2, that are traded up to a
finite time horizon T . We suppose that the dynamics of Si are described by
jump-diffusion processes. Given a contingent claim H and an initial wealth x,
we study the following optimization problem:

(10.1) V (x) = inf
π∈A

E [`p ((H − Xx,π(T ))+)] ,

where `p(x) is the power function xp/p with p > 1, Xx,π is the wealth process,
and A is a set of admissible portfolios.

To explain the problem (10.1), we consider an investor with initial wealth
x. If x is greater than the replication cost of H, say xH , then the investor can
hedge the contingent claim H without risk, by the completeness of the market.
However, if x is strictly less than xH , he/she faces the possibility of shortfall,
i.e., for any portfolio π, the shortfall (H −Xx,π(T ))+ may be positive. In this
situation, one method of hedging H is to follow a portfolio that minimizes the
shortfall risk E [`p ((H − Xx,π(T ))+)].

For work related to the problem (1), see, e.g., Föllmer and Leukert [12]
and Pham [24]. See also Nakano [22]. In [12], general semimartingale models
and general loss functions are considered. They impose the nonnegativity
constraint on the wealth processes, and use the arguments involving Neyman-
Pearson-type lemmas. This setting is crucial in solving their problem. In
this paper, however, instead of the nonnegativity constraint, we impose only
an integrability condition on the wealth processes (see Definition 11.2 below).
Thus, our setting is similar to that of [24], except that we work in a jump-
diffusion model of continuous-time markets. By requiring only the integrability
condition on the wealth processes, we can obtain not only the optimal terminal
wealth but also the optimal portfolio explicitly.

In Section 11, we explain the model and state the precise formulation of our
problem. We then show that we can separate the problem into two problems,
that is, the perfect hedging problem of H and the utility minimization problem

(10.2) J(xH − x) = inf
π∈A0(xH−x)

E[`p(X
xH−x,π(T ))],

where A0(xH − x) is the set of portfolios. We prove that the optimal portfolio
of (10.1) is represented as the difference between the perfect hedging portfolio
of H and the optimal portfolio of the problem (10.2). As in the standard
utility maximization problems (cf. Karatzas and Shreve [18, Chapter 3] and
Jeanblanc-Picqué and Pontier [14]), we can solve the problem (10.2) by using
the martingale method. In our main theorem, we give closed form expressions
for the optimal portfolio and the value function V (x). These results hold for
every European-type contingent claim, such as, claims that can take negative
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values and path-dependent options. All the proofs of the results are given in
Section 12.

11. The model and main results

We consider a frictionless financial market consisting of one riskless bond B
and two risky asset Si, i = 1, 2, that are traded up to a finite time horizon T .
We suppose that B satisfies the equation

dB(t) = r(t)B(t)dt, B(t) = 1.

We also suppose that Si, i = 1, 2, satisfy the stochastic differential equations

(11.1)

{
dSi(t) = Si(t−)(µi(t)dt + σi(t)dW (t) + γi(t)dN(t)),

Si(0) = si ∈ (0,∞) (i = 1, 2),

where W is a one-dimensional standard Brownian motion on a complete prob-
ability space (Ω,F , P ), and the process N is a Poisson process with intensity
λ(·), which is independent of W . The filtration (Ft)t≥0 is the P -augmentation
of the natural filtration generated by W and N . Then W is a (P,Ft)-Brownian
motion, N is a (P,Ft)-Poisson process with intensity λ(·), and the process

M(t) := N(t) −
∫ t

0
λ(s)ds is a P -martingale.

Assumption 11.1. For i = 1, 2, λ, r, µi, σi, and γi are bounded, measurable,
deterministic functions on [0, T ] that satisfy the following conditions:

(i) λ(t) > 0, r(t) ≥ 0, σi(t) > 0, γi(t) > −1, and γi(t) 6= 0 for t ∈ [0, T ] and
i = 1, 2;

(ii) there exists c1 ∈ (0,∞) such that, for t ∈ [0, T ],

|σ1(t)γ2(t) − σ2(t)γ1(t)| ≥ c1;

(iii) there exists c2 ∈ (0,∞) such that, for t ∈ [0, T ],

(µ2(t) − r(t))σ1(t) − (µ1(t) − r(t))σ2(t)

λ(t)(σ2(t)γ1(t) − σ1(t)γ2(t))
≥ c2.

In this paper, we define the investor’s wealth process (X(t))0≤t≤T in the
standard self-financing way. Thus we assume that X(·) ≡ Xx,π(·) satisfies

(11.2)





dXx,π(t) = r(t)Xx,π(t)dt

+
2∑

i=1

πi(t) {(µi(t) − r(t))dt + σi(t)dW (t) + γi(t)dN(t)} ,

Xx,π(0) = x,

where x ∈ R is an initial wealth and the portfolio process π(t) = (π1(t), π2(t))
is an R2-valued Ft-predictable process such that all the integrals in (11.2) are
well-defined. The process (π1(t), π2(t)) represents the actual amounts of money
invested in the risky assets (S1(t), S2(t)).
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Throughout this paper, we fix p ∈ (1,∞), and consider the loss function `p

defined by

`p(x) =
xp

p
(x ≥ 0).

We are concerned with the minimization of E[`p((H − Xx,π(T ))+)] over some
suitable class of portfolios. To this end, we define the class of admissible
portfolios as follows.

Definition 11.2. A portfolio process (π(t))0≤t≤T is said to be admissible if

E

[
sup

0≤t≤T
|X0,π(t)|p

]
< ∞.

We write A for the class of all such π.

Put, for t ∈ [0, T ],

θ(t) :=
(µ2(t) − r(t))γ1(t) − (µ1(t) − r(t))γ2(t)

σ2(t)γ1(t) − σ1(t)γ2(t)
;

β(t) :=
(µ2(t) − r(t))σ1(t) − (µ1(t) − r(t))σ2(t)

λ(t)(σ2(t)γ1(t) − σ1(t)γ2(t))
.

Then, by Assumption 11.1, the functions θ and β are bounded, and β is posi-
tive. Moreover we have

(11.3) µi(t) − r(t) − σi(t)θ(t) + λγi(t)β(t) = 0, i = 1, 2.

We consider the exponential local martingale

L(t) := exp

(
−

∫ t

0

θ(s)dW (s) − 1

2

∫ t

0

|θ(s)|2ds

)

× exp

(∫ t

0

log β(s)dN(s) +

∫ t

0

λ(s)(1 − β(s))ds

)
.

From the boundedness of θ and β, the process (L(t))0≤t≤T is a strictly positive
P -martingale, and satisfies, for every a ∈ R,

(11.4) E[(L(t))a] < ∞.

We consider the probability measure P0 on (Ω,FT ) defined by

dP0

dP
= L(T ).

Then, the process

W0(t) := W (t) +

∫ t

0

θ(s)ds (0 ≤ t ≤ T )
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is a (P0,Ft)-Brownian motion, (N(t))0≤t≤T is a (P0,Ft)-Poisson process with
intensity λ(t)β(t), and the process

M0(t) := N(t) −
∫ t

0

λ(s)β(s)ds (0 ≤ t ≤ T )

is a P0-martingale (cf. Brémaud [5]). Using (11.3), we have, for i = 1, 2,

dS̃i(t) = S̃i(t−)(σi(t)dW0(t) + γi(t)dM0(t)),

where S̃i(t) = Si(t)/B(t). Thus, (S̃i(t))0≤t≤T , i = 1, 2, are also P0-martingales.
In what follows, we use the following notation:

Notation. For a process (Y (t))0≤t≤T , we denote by Ỹ (t) the discounted value

of Y (t), i.e., Ỹ (t) := Y (t)/B(t).

For x ∈ R and π ∈ A, the discounted wealth process X̃x,π satisfies

(11.5) X̃x,π(t) = x +
2∑

i=1

∫ t

0

π̃i(s) {σi(s)dW0(s) + γi(s)dM0(s)} .

Thus, X̃x,π is a local P0-martingale. However, since π ∈ A, we have from
Hölder’s inequality and (11.4) that E0[sup0≤t≤T |X̃x,π(t)|] < ∞, where E0[·]
denotes the expectation with respect to P0. This implies that X̃x,π is a P0-
martingale.

Now, the market above is complete in the following sense:

Proposition 11.3 ([23]). Let H ∈ Lp+ε(Ω,FT , P ) for some ε > 0, and put

(11.6) xH := E0

[
H

B(T )

]
.

Then there exists unique πH ∈ A such that, for t ∈ [0, T ],

(11.7) X̃xH ,πH
t = E0

[
H

B(T )

∣∣∣∣Ft

]
a.s.

Let H ∈ Lp+ε(Ω,FT , P ). We interpret H as the investor’s liability. By
Proposition 11.3, starting with initial wealth xH := E0[H/B(T )], the investor
can find the replicating portfolio π ∈ A for H. However, if the initial wealth
x is less than xH , he/she faces the possibility of shortfall. In such a situation,
one is naturally led to the minimization of shortfall in an adequate sense. Thus
we consider the following stochastic control problem:

V (x) := inf
π∈A

E [`p((H − Xx,π(T ))+)] , x < xH .

By definitions of H and A, we easily find that V (x) < ∞.
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As we stated in Section 10, we can separate the problem above into two
problems, that is, the perfect hedging problem of H and a utility minimiza-
tion problem. For z > 0, we denote by A0(z) the set of portfolio processes
(π(t))0≤t≤T satisfying

Xz,π(t) ≥ 0 t ∈ [0, T ] a.s.,

and

E

[
sup

0≤t≤T
|X0,π(t)|p

]
< ∞.

We consider another optimization problem, that is,

(11.8) J(z) := inf
π∈A0(z)

E [`p(X
z,π(T ))] , z > 0.

Proposition 11.4 ([23]). For every z ∈ (0,∞), there exists π0 ∈ A0(z) that
is optimal for the problem stated in (11.8).

Define q ∈ (0,∞) by (1/p) + (1/q) = 1. The main theorem of this paper is
stated in the following.

Theorem 11.5 ([23]). (i) Let π0 be as in Proposition 11.4 with z = xH − x
and let πH be as in Proposition 11.3. Then πH − π0 is optimal for the
problem (10.1).

(ii) For (t, u) ∈ [0, T ]×(0,∞), let (Π1, Π2) be the unique solution to the linear
system 




σ1(t)Π1(t, u) + σ2(t)Π2(t, u) = − θ(t)

p − 1
u,

γ1(t)Π1(t, u) + γ2(t)Π2(t, u) = (β(t))q−1u.

Then the optimal portfolio π0 ∈ A0(z) of the problem (11.8) is given by
(Π1(t,X

z,π0(t−)), Π2(t,X
z,π0(t−))).

(iii) The value function V (x) in (10.1) is given by

V (x) = `p(xH − x) exp

(
−(p − 1)

∫ T

0

a(s)ds

)
(x < xH),

where a(·) is defined by

(11.9) a(s) = −qr(s) +
1

2
q(q − 1)θ2(s) − λ(s) ((q − 1) − qβ(s) + (β(s))q) .

(iv) The optimal terminal wealth in (10.1) is given by

Xx,πH−π0(T )

= H − (xH − x)(L(T ))q−1 exp

(
−

∫ T

0

(
a(s) +

r(s)

p − 1

)
ds

)
.
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By Theorem 11.5, if we can obtain the hedging portfolio πH , then we can
minimize the shortfall risk by implementing the portfolio πH−π0. The problem
(10.1) is thus reduced to the perfect hedging problem of H. In the case of a
claim of the form H = f(S1(T ), S2(T )), the hedging portfolio can be obtained
as in the classical case of Black-Scholes model. See, e.g., Runggaldier [26],
Section 6 in [14], and the references cited there.

Remark 11.6 ([23]). As in the most utility maximization problems, we can
associate the problem (11.8) with a HJB equation. We define the wealth
process X t,z,π with initial condition (t, z) ∈ [0, T ] × (0,∞) as in (11.2). We
also define the class A0(t, z) of portfolio processes in a way similar to the
definition of A0(z), and put J(t, z) := infπ∈A0(t,z) E[`p(X

t,z,π(T ))]. Then, as in
Chapter 3 in [18] and Proposition 5.1 in [14], we can prove that the function
J(t, z) satisfies the following HJB equation:





∂J(t, z)

∂t
+ inf

π∈R2
LJ(t, z) = 0,

J(T, z) = `p(z), (t, z) ∈ [0, T ) × (0,∞),

where

LJ(t, z) = zr(t)
∂J

∂z
(t, z) +

2∑

i=1

(µi(t) − r(t))
∂J

∂z
(t, z)

+
1

2

(
2∑

i=1

πiσi(t)

)2

∂2J

∂z2
(t, z) + λ

{
J

(
t, z +

2∑

i=1

πiγi(t)

)
− J(t, z)

}
.

12. Proofs

12.1. Proof of Proposition 11.3.

Proof of Proposition 4. Let H ∈ Lp+ε(Ω,FT , P0), and put xH := E0[H/B(T )].
Then, as in Proposition 2.1 in [14], there exists a portfolio process πH such
that (11.7) holds. We can easily show the admissibility of πH using the P0-
martingale property of X̃, Hölder’s inequality, (11.4), and Doob’s maximal
inequality. ¤
12.2. Proof of Proposition 11.4. As in the references on the expected utility
maximization such as Chapter 3 in [18], we use the martingale method.

First we write I(·) for the inverse function of `′p(·), that is, I(y) = yq−1 for
y > 0, where 1/p + 1/q = 1. Let Up be the negative of the Legendre transform
of `p:

Up(y) = − sup
x>0

(xy − `p(x)) = inf
x>0

(`p(x) − xy)(12.1)

= `p(I(y)) − yI(y), y > 0.

The infimum in (12.1) is attained by x = I(y).
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For (t, y) ∈ [0, T ] × (0,∞), we define the process

Y t,y(s) = y exp

(
−

∫ s

t

r(u)du −
∫ s

t

θ(s)dW (u) − 1

2

∫ s

t

|θ(s)|2du

)

× exp

(∫ s

t

log β(u)dN(u) +

∫ s

t

(1 − β(u))λdu

)
, t ≤ s ≤ T.

Then Y t,y satisfies
{

dY t,y(s) = Y t,y(s−) (−r(s)ds − θ(s)dW (s) + (β(s) − 1)dM(s)) ,

Y t,y(t) = y.

We put, for (t, y) ∈ [0, T ] × (0,∞),

X (t, y) := E0

[
e−

R T
t r(s)dsI(Y t,y(T ))

]
.

Then, we easily see that

(12.2) X (t, y) = y1/(p−1) exp

(∫ T

t

a(s)ds

)
,

where a(·) is given by (11.9). We write Y(t, ·) for the inverse function of X (t, ·),
that is,

(12.3) Y(t, z) = zp−1 exp

(
−(p − 1)

∫ T

t

a(s)ds

)
.

Proof of Proposition 11.4. By (12.1), we find that, for y > 0 and π ∈ A0(z),

E[`p(X
z,π(T ))]

= E[`p(X
z,π(T )) − Y 0,y(T )Xz,π(T )] + E[Y 0,y(T )Xz,π(T )]

= E[`p(X
z,π(T )) − Y 0,y(T )Xz,π(T )] + yz(12.4)

≥ E[Up(Y
0,y(T ))] + yz.

The equality in (12.4) holds if and only if

Xz,π(T ) = I(Y 0,y(T )).

However, from Proposition 11.3, there exists π0 ∈ A0(z) such that

(12.5) X̃z,π0(t) = E0

[
e−

R T
0 r(s)dsI(Y 0,Y(0,z)(T ))

∣∣∣Ft

]
.

Then (12.4) implies that E[`p(X
z,π0(T ))] = J(z). ¤
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12.3. Proof of Theorem 11.5.

Proof of Theorem 11.5. We consider the stochastic Legendre transform U(y, ω)
of −`p(H(ω) − z): for y > 0,

(12.6) U(y, ω) = sup
−∞<z≤H(ω)

{−`p(H(ω) − z) − yz} = `q(y) − yH(ω).

The supremum in (12.6) is attained by H(ω) − I(y).
From (11.7) and (12.5), we have

XxH ,πH (T ) = H, XxH−x,π0(T ) = I
(
Y 0,y(T )

)

and

E0

[
e−

R T
0 r(u)duI

(
Y 0,y(T )

)]
= xH − x,

where y := Y(0, xH − x). It follows that

(12.7) Xx,πH−π0(T ) = XxH ,πH (T ) − XxH−x,π0(T ) = H − I
(
Y 0,y(T )

)
.

Now, by (12.6), we see that, for every π ∈ A,

(xH − x)Y(0, xH − x) − E
[
`q

(
Y(0, xH − x)e−

R T
0 r(u)duL(T )

)]

= E
[
Y 0,y(T )H − `q

(
Y 0,y(T )

)]
− xY(0, xH − x)

≤ E
[
Y 0,y(T )H − `q

(
Y 0,y(T )

)
− Y 0,y(T ) (H ∧ Xx,π(T ))

]

≤ E [`p(H − Xx,π(T ) ∧ H)] = E [`p((H − Xx,π(T ))+)] .

Both equalities hold in the above inequalities if and only if

(12.8) H ∧ Xx,π(T ) = H − I
(
Y 0,y(T )

)
.

However, (12.7) implies that the portfolio πH − π0 satisfies (12.8). Therefore,

V (x) = E
[
`p((H − Xx,πH−π0(T ))+)

]
(12.9)

= (xH − x)Y(0, xH − x) − E
[
`q

(
Y(0, xH − x)e−

R T
0 r(u)duL(T )

)]
.

Thus Theorem 11.5 (i) follows.
From (12.5) and the Markov property of the process Y t,y, we have, for z > 0,

Xz,π0(t) = E0

[
e−

R T
t r(s)dsI

(
Y 0,Y(0,z)(T )

)∣∣∣Ft

]

= X
(
t, Y 0,Y(0,z)(t)

)
,

where π0 is as in Proposition 11.4. Thus

(12.10) Y 0,Y(0,z)(t) = Y(t,Xz,π0(t)).
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Itô formula and (12.2) imply that

d
(
e−

R t
0 r(s)dsX (t, Y 0,y(t))

)
= −θ(t)e−

R t
0 r(s)dsY 0,y(t)Xy(t, Y

0,y(t))dW0(t)

+
{
X (t, β(t)Y 0,y(t)) −X (t, Y 0,y(t))

}
dM0(t).

From this and (12.10), we see that

X̃z,π0(t) − z

= −
∫ t

0

θ(s)e−
R s
0 r(u)du Y(s,Xz,π0(s))

Yz(s,Xz,π0(s))
dW0(s)(12.11)

+

∫ t

0

e−
R s
0 r(u)du {X (s, β(s)Y(s,Xz,π0(s−))) − Xz,π0(s−)} dM0(s).

Therefore, by (12.3) we have

−θ(t)
Y(t, u)

Yz(t, u)
= − θ(t)

p − 1
u =

2∑

i=1

σi(t)Πi(t, u),

X (t, β(t)Y(t, u)) − u = β(t)1/(p−1)u =
2∑

i=1

γi(t)Πi(t, u).

Thus, by (12.11), Theorem 11.5 (ii) follows.
By (12.3), (12.9), and easy computation similar to that of (12.2), we have

V (x) = `p(xH − x) exp

(
−(p − 1)

∫ T

0

a(s)ds

)
,

which proves Theorem 11.5 (iii). Finally, Theorem (11.5) (iv) follows immedi-
ately from (12.7). ¤
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and P. Schönbucher eds., Advances in Finance and Stochastics: Essays in Honour of
Dieter Sondermann, 1–37, Springer-Verlag, Berlin, 2002.
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[12] H. Föllmer and P. Leukert, Efficient hedging: Cost versus shortfall risk, Finance Stoch.

4 (2000), 117–146.
[13] A. Inoue, On the worst conditional expectation, J. Math. Anal. Appl. 286 (2003),

237–247.
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