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1 Introduction

We start studying zero dimensional Gorenstein algebras over a field K on which the sym-
metric group Sk acts by the permutation of the variables. For this there are several reasons.

1. Following is an example of a non trivial Gorenstein algebra due to F. S. Macaulay.
Observe that it is defined by an ideal fixed by the group S3. This can be found in ([1]
p.29) and ([13] p.81).

K[x, y, z]/(xy, yz, zx, x2 − y2, x2 − z2). (1)

If K = C, this is the only isomorphism type of a Gorenstein algebra with the Hilbert
function (1 3 1).

For K = R, there is another isomorphism type:

K[x, y, z]/(x2, y2, z2, x(y − z), y(z − x)) (2)

Early 70’s Sakuma and Okuyama discovered some more such examples:

K[x, y, z]/(x3 − y3, y3 − z3, xy, yz, zx)

K[x, y, z]/(xy − xz, yx− yz, x3, y3, z3)

Surprisingly these are also defined by ideals that are fixed by the symmetric group.
These examples suggest at least that Gorenstein algebras with the Sk-action are nat-
ural.

2. Gorenstein algebras with the Sk-action have been studied in the representation the-
ory for a long time. For example, Terasoma-Yamada [16] constructed a basis of an
irreducible decomposition for the coinvariant algebra of Sk,

K[x1, · · · , xk]/(e1, · · · , ek), (3)

where ei is the elementary symmetric polynomial of degree i. For related results see
[6], [12], [14], [15], [18]. Coinvariant albebras are also treated in [2] and [9].
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3. Consider the equi-degree monomial complete intersection:

A = K[x1, · · · , xk]/(x
n
1 , · · · , xn

k) (4)

Obviously this is a zero dimensional Gorenstein algebra with the action of Sk. As a
vector space this is isomorphic to the tensor space

(Kn)⊗k.

The Schur-Weyl duality deals with the decomposition of the space (Kn)⊗k as (GL(n)×
Sk)-modules. Thus all results the Schur-Weyl duality implies can be applied to the
algebra A. Conversely with the identification A ∼= (Kn)⊗n, it is possible to look at the
Schur-Weyl duality from the viewpoint of the theory of commutative algebra.

4. Suppose that f ∈ K[x1, · · · , xk] is a (semi-)invariant of Sk. Then obviously

A = K[x1, · · · , xk]/(x
n
1 , · · · , xn

k): f

is a zero dimensional Gorenstein algebra with the Sk-action. It is not difficult to show
that a zero dimensional Gorenstein algebra with the Sk-action arises in this way. (cf.
[19] Lemma 4.)

Following are some such examples. Here ∆ is the difference product of the variables,
and pi is the power sum and hi the complete symmetric polynomial of degree i.

(a) (x2, y2, z2): x + y + z = (x2, y2, z2, xy − xz, xy − yz)

(b) (x3, y3, z3): x3y3 + y3z3 + z3x3 = (xy, yz, zx, x3 − y3, y3 − x3)

(c) (xr+2, yr+2, zr+2): ∆ = (hr, hr+1, hr+2), r = 1, 2, . . .

(d) (x3r, y3r, z3r): ∆(h2(r−1))
3 = (pr, pr+1, pr+2), r = 1, 2, . . .

One might be interested in decomposing such an algebra into irreducible Sk-modules.
It seems to be an interesting question to ask what is the Hilbert function of the graded
vector space

Y λ(A)

where Y λ is the Young symmetrizer corresponding to a partition λ.

The purpose of this paper is to show that the strong Lefschetz property of a Gorenstein
algebra can be used very efficiently to deal with these problems mentioned above.

Suppose that A is a Gorenstein ring with a strong Lefschetz element l ∈ A. Put L = ×l ∈
End(A). Then it is possible to construct a degree -1 map D ∈ End(A) such that {L,D, H}
is an sl(2)-triple, where H = [LD]. This means that the eigenspaces of H are precisely
the homogeneous parts of A. Suppose moreover that A has the action of Sk and that the
invariant linear form l = x1 +x2 + · · ·+xn is a strong Lefschetz element. Then, as is obvious,
the vector space KerL is fixed, hence the spaces KerL∩Ai are fixed by the action of Sk. Thus
in such a case an irreducible decomposition of A can be constructed by first decomposing
the kernel of the multiplication map

×(x1 + · · ·+ xk): A → A (5)
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into irreducible spaces and then applying the map D repeatedly to the constituents of the
decomposition of KerL. (Or equivalently, first decompose KerD and then apply L.)

A linear map D ∈ End(A) for a given nilpotent endomorphism L ∈ End(A) such that
{L,D, [LD]} is an sl(2)-triple can be constructed from a Jordan basis of the vector space A
for L. (See [20].) In this sense Proposition 7 is the key proposition of this paper.

An obvious example of an Artinian Gorenstein ring in which x1+· · ·+xn is a strong Lefschetz
element is the equi-degree monomial complete intersection

A(n, k): = K[x1, · · · , xk]/(x
n
1 , · · · , xn

k)

mentioned above. In this paper we treat the two extremal cases A(n, 2) and A(2, k). If
k = 2, we have that KerL decomposes into one dimensional homogeneous parts. Hence the
irreducibility of (KerL)i is trivial. In the case n = 2, the irreducibility of (KerL)i is immediate
if we take for granted the basic facts of the representation theory of the symmetric group.
These results are stated in Theorem 10 and in Theorem 19 respectively.

One other purpose of this paper is to apply Theorem 19 to determine the minimal number of
generators of the ideal (x2

1, · · · , x2
k): (x1+· · ·+xk) in the polynomial ring. By analyzing Specht

polynomials involving only square-free monomials, it is possible to determine a minimal
generating set of the ideal. We do this in Section 5. Theorem 21 may be regarded as a
generalization of Macaulay’s example mentioned earlier.

It is well known that the group algebra K[Sk] is semi-simple (assuming char K = 0) and the
primitive idempotents are precisely the Young symmetrizers. Thus given an Sk-module, say
A, one obtains an irreducible decomposition of A by applying various Young symmetrizers to
it. With this principle it is possible to construct an irreducible decomposition of the tensor
space A = (Kn)⊗k. We exhibit the decomposition in Appendix. We would like to note that
the bases treated in this paper are different from those obtained in this way.

In section 6 we exhibit the Hilbert function of the module Y λ(A) for arbitrary n, k with the
trivial λ, in which case the Young symmetrizer Y λ is the map

Y λ: A → A

defined by

Y λa =
1

k!

∑
σ∈Sk

aσ.

Hence Y λ(A) = ASk is the ring of invariants.

As one will see this shows that to consider the ring structure in the vector space (Kn)⊗k has
much advantage than to treat the tensor space as it is.

More results are found in our forthcoming paper [17].
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2 Preliminaries

2.1 A list of notational conventions

Here is a list of notation which we are going to fix throughout the paper. Details are following
the list.

• λ = (k1, k2, · · · , kr) ` k indicates that λ is a partition of a positive integer k. The
same notation is used to indicate a Young diagram of size k. It is assumed that
k1 ≥ k2 ≥ · · · ≥ kr > 0. The length r of λ is denoted by l(λ).

• If J ∈ End(V ) is nilpotent, the partition λ(J) = (k1, · · · , kr) is called the conjugacy
class of J , indicating the sizes of Jordan blocks in the Jordan decomposition of J .

• A Young tableau T is a Young diagram λ with a numbering of boxes with integers
1, 2, · · · , k. In this case λ = |T | is the shape of T .

• ∆T denotes the Specht polynomial defined by a Young tableau T .

• µ(I) denotes the minimal number of generators of ideal.

2.2 The equi-degree monomial complete intersection
as a tensor space

Throughout this paper we denote by K an algebraically closed field of characteristic 0. Let
R = K[x1, · · · , xk] be the polynomial ring. The partial degree of a homogeneous polynomial
f ∈ R is the maximum degree of f with respect to a single variable. By A(n, k) we denote
the vector subspace of R consisting of polynomials of partial degree at most n − 1. Let
I = (xn

1 , · · · , xn
k) be the ideal of R. Then as vector spaces we have the decomposition

R = A(n, k)⊕ I.

The vector space A(n, k) may be regarded as the tensor space (Kn)⊗k. Since A(n, k) ∼= R/I
the vector space A(n, k) has the structure of a commutative ring. Put A = A(n, k). A basis
of A can be the set of monomials of partial degree at most (n− 1):

{xi1
1 · · ·xik

k |0 ≤ i1, · · · , ik ≤ n− 1}
An element of A is expressed uniquely as

∑
F (i1, i2, · · · , ik)xi1

1 xi2
2 · · ·xik

k .

With the identification A ∼= (Kn)⊗k the general linear group GL(n) acts on the vector space
A as the tensor representation. Let

Φ: GL(n) → GL(A) (6)
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be the representation. Explicitly, if g = (gαβ) ∈ GL(n) then

Φ(g)(xi1
1 · · ·xik

k ) = (
n−1∑

β=0

gi1βxβ
1 ) · · · (

n−1∑

β=0

gikβxβ
k). (7)

Here the indices α, β of the matrix entries for g = (gαβ) ∈ GL(n) range over 0, 1, · · · , n− 1.
At the same time the symmetric group Sk acts on A as the permutation of the variables.

We are interested in the decomposition of A into irreducible Sk modules. According to the
Schur-Weyl duality it will give us an irreducible decomposition of A as (GL(n)×Sk)-modules.

2.3 Young tableaux and Specht polynomials

A partition of a positive integer k is a way to express k as a sum of positive integers. If we say
that λ = (k1, · · · , kr) is a partition of k, it means that k = k1+· · ·+kr and k1 ≥ · · · ≥ kr > 0.
A partition of k is identified with a Young diagram of size k in a well known manner. Thus
the same notation λ = (k1, · · · , kr) denotes a Young diagram of size

∑
ki with rows of ki

boxes, i = 1, · · · , r, aligned left. A Young tableau T is a Young diagram λ whose boxes are
numbered with integers 1, · · · , k in any order. In this case we say that λ is the shape of
T and write λ = |T |. A Young tableau is standard if every row and column is numbered
increasingly.

A Young tableau T defines a Specht polynomial, denoted ∆T , as follows:

Put I = {1, 2, · · · , k} and

Ij = {α ∈ I|α is in the jth column of |T | }.

Define
∆j =

∏

α < β
α, β ∈ Ij

(xα − xβ),

and finally,

∆T =
∏

j

∆j, (8)

where j runs over all columns. This is the Specht polynomial defined by the Young tableau T .
(We disregard the signs of Specht polynomials.)

2.4 Nilpotent matrices and Jordan bases

Let M(k) denote the set of k × k matrices with entries in K.

6



Let J ∈ M(k) be a nilpotent matrix. Let νi = rankJ i − rankJ i+1 for i = 0, 1, · · · , p, where

p is the least integer such that Jp+1 = O. Then λ̂: = (ν0, ν1, · · · , νp) is a partition of k. We

denote the dual partition of λ̂ by λ(J). (cf. Definition 1 below.)

Now suppose that T is a Young tableau of size k. Using the numbering of T define the
matrix J = (aij) ∈ M(k) by

aij =

{
1 if j is next to the right of i,
0 otherwise.

(9)

It is easy to see that the matrix J is nilpotent and λ(J) = |T |. We call any matrix defined
as above for a Young tableau T a Jordan canonical form (of a nilpotent matrix).

Let V be a vector space of dimension k. If a basis of V is fixed, we may identify M(k) and
End(V ). Suppose that J ∈ End(V ) is nilpotent. A Jordan basis for J is a basis of V on
which J is put in a Jordan canonical form. (According to the definition of a Jordan basis
just defined above, any permutation of basis elements of a Jordan basis is a Jordan basis.)
It is an elementary fact that there exits a Jordan basis. Note that if two nilpotent elements
J and J ′ are conjugate, then λ(J) = λ(J ′). We make a definition of the “conjugacy class”
of a nilpotent endomorphism, with a slight abuse of language, as follows.

Definition 1 Let V be a k-dimensional vector space over K. Suppose that J ∈ End(V )
is nilpotent. We say that a partition (k1, · · · , kr) of k is the conjugacy class of J if the
Jordan canonical form of J consists of the Jordan blocks of sizes k1, · · · , kr. We denote by
λ(J) the conjugacy class of J .

Remark 2 Note that the notation λ(J) coincides with the previously defined λ(J) for

a nilpotent matrix. In fact, if we put νi = dim ImJ i/ImJ i+1, then the sequence λ̂ =

(ν0, ν1, · · · , νp) is a partition of k. One sees easily that the dual partition λ to λ̂ is the
conjugacy class of J .

Let J ∈ End(V ) be nilpotent with the conjugacy class λ = λ(J). Suppose that B ⊂ V is
a Jordan basis for J . Then it is possible to place the elements of B into the boxes of the
Young diagram λ(J) bijectively in such a way that it satisfies the following conditions:

{
e, e′ ∈ B and e′ = Je ⇔ e′ is placed next to the right of e.
e ∈ KerJ ⇔ e is placed at the end of a row.

(10)

(cf. Equation (9).)
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Remark 3 As explained above, by choosing a bijection between the elements of a Jordan
basis for J and the boxes of the Young diagram λ(J), it is possible to identify a Jordan
basis B for J and the Young diagram λ(J). With this identification the rightmost boxes
of λ(J) form a basis for KerJ . Also the boxes of the first column of λ(J) coincide with
{b ∈ B|b 6∈ ImJ}. Once λ(J) is known, KerJ ∩B determines B. Similarly the diagram λ(J)
and the subset B \ ImJ ⊂ B determine B.

Definition 4 Suppose that λ = (k1, · · · , kr) is a Young diagram. Let f1, · · · , fs be the finest
subsequence of (k1, · · · , kr) such that f1 > · · · > fs > 0. Then it is possible to write

(k1, · · · , kr) = (f1, · · · f1︸ ︷︷ ︸
m1

, f2, · · · , f2︸ ︷︷ ︸
m2

, · · · , fs, · · · , fs︸ ︷︷ ︸
ms

).

We call m1, · · · ,ms the multiplicity sequence of the Young diagram λ.

2.5 The strong Lefschetz property

Let V =
⊕c

i=0 Vi be a finite dimensional graded vector space. The Hilbert function of V is
the map i 7→ dim Vi, which we usually write as the polynomial

∑
(dim Vi)q

i. (For convention
we let dim Vi = 0 for i < 0 or i > c.) Let J ∈ End(V ) be a degree one map so J consists
of the graded pieces J |Ai

: Ai → Ai+1. Then J is nilpotent. We say that J ∈ End(V ) is a
strong Lefschetz element if the restricted map

J c−2i|Vi
: Vi → Vc−i

is bijective for all i = 0, 1, · · · , [c/2]. (Such an endomorphism exists only if the Hilbert
function of V is symmetric and unimodal.)

Definition 5 Let A =
⊕c

i=0 Ai be an Artinian graded K-algebra. Denote by × : A →
End(A) the regular representation of A. (I.e., ×a(b) = ab for a, b ∈ A.) We say that A has
the strong Lefschetz property, if there exists a linear form l ∈ A such that ×l ∈ End(A) is a
strong Lefschetz element. We call such a linear form l ∈ A a strong Lefschetz element of A
as well as ×l ∈ End(A).

Proposition 6 Suppose that A =
⊕c

i=0 Ai is a graded Artinian K-algebra with a symmetric
Hilbert function

∑
hiq

i. Let l be a linear form of A. Then ×l is the strong Lefschetz
element if and only if λ(×l) is the dual partition to (h′0, h

′
1, · · · , h′c), which is a permutation

of (h0, h1, · · · , hc) put in the decreasing order.

Proof. See [8] Proposition 18.
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Proposition 7 With the same notation as above, suppose that J ∈ End(V ) is a strong
Lefschetz element. Then any homogeneous basis of KerJ can be extended uniquely to a
Jordan basis for J .

Proof. Let
∑

hiq
i be the Hilbert function of A. Since J is a strong Lefschetz element, we

have

dim(KerJ ∩ Ai) =

{
0 if hi ≤ hi+1,
hi − hi+1 if hi > hi+1.

(11)

Let s be the greatest integer such that hs−1 < hs and let

mi = hi − hi−1, for i = 0, 1, 2, · · · , s.

Since hi = hc−i for 0 ≤ i ≤ c, we may rewrite the equation (11) as

dim(KerJ ∩ Ac−i) =

{
mi for i = 0, 1, 2, · · · , s,
0 otherwise.

Now let B be a homogeneous basis of KerJ given arbitrarily. We have to find a basis of
A containing B on which J is put in the Jordan canonical form. Put Bc−i = B ∩ Ac−i for
i = 0, 1, · · · , s. Then Bc−i is a basis of KerJ∩Ac−i. Since the restricted map J c−2i: Ai → Ac−i

is bijective, there is a finite set Bi ⊂ Ai such that #Bi = mi and such that J c−2i(Bi) = Bc−i.
It is easy to show that the set

B̃: =
s⊔

i=0

{J j(Bi)|j = 0, 1, 2, · · · , c− 2i}

is linearly independent and hence is a basis of A. It is easy to see that B̃ is a desired basis
and that it is unique. ¤

Remark 8 In the same notation and assumption of Proposition 7, the conjugacy class of J
is given by

λ(J) = (c + 1︸ ︷︷ ︸
1

, c− 1, · · · , c− 1︸ ︷︷ ︸
m1

, c− 3, · · · , c− 3︸ ︷︷ ︸
m2

, · · · , c− 2s + 1, · · · , c− 2s + 1︸ ︷︷ ︸
ms

).

The multiplicity sequence of λ(J) is

m0 = 1,m1,m2, · · · ,ms

where mi = hi − hi−1 for i = 0, 1, · · · , s. ¤

Following is proved in [20] and plays an important role in this paper.

Theorem 9 Let A = A(n, k) be the same as defined in Section 1. Then A has the strong
Lefschetz property and x1 + x2 + · · ·+ xk is a strong Lefschetz element of A.
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3 A(n, 2) or the two fold tensor of Kn

If k = 2, then the Gorenstein algebra A = K[x1, · · · , xk]/(x
n
1 , · · · , xn

k) takes the form

A ∼= K[x1, x2]/(x
n
1 , x

n
2 ).

Write x, y for x1, x2. Recall that we identify A = A(n, 2) as a vector subspace of R = K[x, y]
and R = A⊕ (xn, yn). Denote by ×: A → End(A) the regular representation of the Artinian
algebra A. Put J = ×(x+y). Since J is a strong Lefschetz element, we may use Proposition 7
to construct a Jordan basis for J . First we would like to construct a homogeneous basis for
KerJ .

The Hilbert function of A is the following sequence.

degree 0 1 2 · · · n-2 n-1 n · · · 2n-3 2n-2
dim 1 2 3 · · · n-1 n n-1 · · · 2 1

Since J is a strong Lefschetz element, J : Ai → Ai+1 is either injective or surjective. Hence
we have

dim(KerJ ∩ Ai) =

{
0, if i < n− 1,
1, if n− 1 ≤ i ≤ 2n− 2.

Since dim(KerJ ∩ Ai) is at most one, a homogeneous basis of KerJ is uniquely determined
up to constant multiple.

For d = n− 1, n, n + 1, · · · , 2n− 2, put

bd =
d∑

j=0

(−1)jxd−jyj, and bd = bd mod (xn, yn).

Then since bd(x + y) = xd+1 ± yd+1, we have bd ∈ KerJ for d ≥ n− 1. Thus we have

KerJ ∩ Ad = 〈bd〉 for d = n− 1, n, · · · , 2n− 2. (12)

Because J is a strong Lefschetz element, there is an element ai ∈ Ai for each i ≤ n − 1
such that J2n−2−2i(ai) = b2n−2−i. Note that J j(ai) are all symmetric if i is even and are
alternative if i is odd. Now we have proved the following.

Theorem 10 The set

n−1⊔
i=0

{J j(ai)|j = 0, 1, 2, · · · , 2n− 2− 2i}
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is a homogeneous Jordan basis for J ∈ End(A). The basis element J jai is symmetric if i is
even and alternative if i is odd. The conjugacy class of J is given by

λ(J) = (2n− 1, 2n− 3, · · · , 3, 1).

Proof. The first part was treated more generally in Proposition 7. The second part fol-
lows immediately from the definition of b2n−2−i and ai. The third statement follows from
Proposition 6. ¤

Now we consider the representation

Φ: GL(n) → GL(A)

as mentioned in Section 2.2. (For the definition of Φ see (7) and (15).) Recall that the
special linear group SL(2) has a unique irreducible module of dimension i for each i > 0.
We denote it by V (i− 1). Fix n > 0 and let

Ψ: SL(2) → GL(n) (13)

be the irreducible representation corresponding to the module V (n − 1). We may consider
A = A(n, 2) as an SL(2)-module via the composition

SL(2)
Ψ→ GL(n)

Φ→ GL(A).

Proposition 11 With the same notation above A decomposes into SL(2)-modules as

A ∼= V (2n− 2)⊕ V (2n− 4)⊕ · · · ⊕ V (0).

Proof. Abbreviate ρ = Φ ◦Ψ, so ρ: SL(2) → GL(A). The group homomorphism ρ induces a
Lie algebra homomorphism

dρ: sl(2) → gl(A).

It is well known that the irreducible decomposition of ρ is determined by that of dρ. Now
recall that the Lie algebra sl(2) is the vector space spanned by three elements e, f, h with
the bracket relations

[ef ] = h, [he] = 2e, [hf ] = −2f.

It is easy to see that to decompose A into irreducible sl(2)-modules is to decompose dρ(e)
into Jordan blocks. Notice that dΨ(e) is nilpotent and may be considered as a single Jordan
block by conjugation since Ψ is irreducible. Consequently dρ(e) ∈ gl(A) may be considered
as the multiplication map ×(x + y) by definition of ρ and dρ. Hence the assertion follows
from Theorem 10. ¤

With the same notation as above let W = V (n− 1)
⊗

V (n− 1). Let W = Ws ⊕Wa be the
decomposition of W into the symmetric and alternate tensors respectively. (It is well known
that the spaces Ws and Wa are irreducible GL(n)-modules, which we take for granted.)
Via the representation (13) the spaces Ws and Wa are also SL(2)-modules. The following
proposition shows how Ws and Wa decompose into irreducible SL(2)-modules.
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Proposition 12 If n is even, then

Ws
∼= V (2n− 2)⊕ V (2n− 6)⊕ · · · ⊕ V (2)︸ ︷︷ ︸

n/2

,

and
Wa

∼= V (2n− 4)⊕ V (2n− 8)⊕ · · · ⊕ V (0)︸ ︷︷ ︸
n/2

.

If n is odd, then
Ws

∼= V (2n− 2)⊕ V (2n− 6)⊕ · · · ⊕ V (0)︸ ︷︷ ︸
(n+1)/2

,

and
Wa

∼= V (2n− 4)⊕ V (2n− 8)⊕ · · · ⊕ V (2)︸ ︷︷ ︸
(n−1)/2

.

Proof. Identify W = A(n, 2). Then Ws is the space spanned by the symmetric polynomials
in A and Wa the alternate polynomials. Hence the assertion follows immediately from
Theorem 10 and Proposition 11. ¤

4 A(2, k) or the Boolean algebra

Throughout this section we fix A = A(2, k). So A is the subspace of the polynomial ring
K[x1, · · · , xk] spanned by square-free monomials. At the same time A is endowed with the
algebra structure

A = K[x1 · · · , xk]/(x
2
1, · · · , x2

k).

Usually the set 2{x1,···,xk} is called the Boolean algebra with two the operations ∧,∨. Here
we call A above the Boolean algebra as a commutative algebra over the field K.

We put L = ×(x1 + x2 + · · ·+ xk) and

D =
∂

∂x1

+ · · ·+ ∂

∂xk

.

We think of L and D as operating on the polynomial ring R = K[x1, · · · , xk]. Recall that
R = A⊕ I, where I = (x2

1, · · · , x2
k). We denote by D|A the restricted map D on A. Similarly

by L|A we denote the map R/I → R/I induced by L. Thus L|A, D|A ∈ End(A). Let H be
the commutator H = [L|A, D|A]. So H ∈ End(A).

Proposition 13 (a) 〈L|A, D|A, H〉 is an sl(2)-triple.

(b) There exists a Jordan basis B for L|A such that B \ Im(L|A) is a basis of Ker(D|A).

12



Proof. (a) Let J+ =

(
0 1
0 0

)
, J− =

(
0 0
1 0

)
. Then the three elements 〈J+, J−, H〉, where

H: = [J+, J−] =

(
1 0
0 −1

)
, is an sl(2)-triple. This proves the case k = 1. Let E2 be the

2× 2 identity matrix. Then one sees that, using square free monomials as a basis of A, the
map L|A is represented by the matrix

k∑
i=0

E2 ⊗ · · · ⊗ E2︸ ︷︷ ︸
i−1

⊗J+ ⊗ E2 ⊗ · · · ⊗ E2︸ ︷︷ ︸
k−i

and similarly D|A by
k∑

i=0

E2 ⊗ · · · ⊗ E2︸ ︷︷ ︸
i−1

⊗J− ⊗ E2 ⊗ · · · ⊗ E2︸ ︷︷ ︸
k−i

.

We induct on k to show that the three matrices L|A, D|A, and H := [L|A, D|A] satisfy the
required relations [H, L|A] = 2L|A, and [H, D|A] = 2D|A.

(b) See Humphrey ([10] pp.31-34). ¤

The following theorem enables us to construct a Jordan basis for L|A.

Theorem 14 For i = 0, 1, 2, · · · , [k/2], the vector space (KerD)∩Ai is spanned by the Specht
polynomial of degree i. The Specht polynomials arising from the standard Young tableaux
form a basis of (KerD) ∩ A.

Proof of Theorem 14 is postponed to the end of Proposition 18.

Lemma 15 KerD = K[{xi − xj|1 ≤ i, j ≤ k}]

Proof. Recall that R = K[x1, · · · , xk] and KerD = {f ∈ R|Df = 0}. Since KerD is a
subalgebra of R, we have

KerD ⊃ K[{xi − xj|1 ≤ i, j ≤ k}].

On the other hand the RHS is isomorphic to the polynomial ring in (k−1) variables. Noticing
that D is surjective of degree -1, it is easily verified that they coincide by comparing the
Hilbert functions.

Lemma 16 Put V = (KerD) ∩ A. Then dim Vi = Max{(k
i

)− (
k

i−1

)
, 0}, where Vi = V ∩ Ai.

13



Proof. First note that the Hilbert function of A is given by
∑(

k
i

)
qi. The graded vector space

A has the SLP with L|A a strong Lefschetz element. By Proposition 13, the maps D|A and
L|A are alike except that D|A is a degree −1 map. Thus D|A: Ai → Ai−1 is either injective
or surjective. Thus the assertion follows. ¤

Lemma 17 Let T be a Young tableau with the shape λ. Suppose that λ has size k. Let ∆T

be the Specht polynomial defined by T .

(1) ∆T = 1 ⇐⇒ λ has one row.

(2) ∆T ∈ A and ∆T 6= 1 ⇐⇒ λ has two rows.

(3) Suppose that ∆T ∈ A. Then the degree of ∆T is equal to the second term of λ.

(4) ∆T ∈ Ker[D|A : A → A] ∩ Ai if λ = (k − i, i).

Proof. (1), (2) and (3) are immediate from the definition of ∆T . (4) follows from Lemma 15.
¤

We need one more proposition to prove Theorem 14.

Proposition 18 Suppose that λ = (k − i, i) is a Young diagram.

(a) The number of standard Young tableaux of shape λ is
(

k
i

)− (
k

i−1

)
.

(b) The set of Specht polynomials defined by the standard Young tableaux of a fixed shape
λ is linearly independent.

Proof. (a) Suppose that T is a standard Young tableau. If the box k is removed from T it is
a Standard Young tableau of size k − 1. Thus the induction works. (Details are left to the
reader.)

(b)Suppose that T is standard. Then one notices easily that the head term of ∆T in the
reverse lexicographic monomial order is the product of monomials in the second row. It means
that two Specht polynomials arising from different standard Young tableaux are different.
Thus the proof is complete.

Proof of Theorem 14. Immediate by Lemmas 15, 16, 17 and Proposition 18. ¤

Now our main theorem is stated as follows.

Theorem 19 Let J = L|A and Vd = (KerD|A) ∩ Ad. Put h = [k/2], and mi =
(

k
i

) − (
k

i−1

)
for i = 0, 1, . . . , h.

14



(1) The conjugacy class λ(J) of J is given by

λ(J) =





(k + 1︸ ︷︷ ︸
m0

, k − 1, · · · , k − 1︸ ︷︷ ︸
m1

, k − 3, · · · , k − 3︸ ︷︷ ︸
m−2

, · · · , 1, · · · , 1︸ ︷︷ ︸
mh

), if k is even,

(k + 1︸ ︷︷ ︸
m0

, k − 1, · · · , k − 1︸ ︷︷ ︸
m1

, k − 3, · · · , k − 3︸ ︷︷ ︸
m−2

, · · · , 2, · · · , 2︸ ︷︷ ︸
mh

), if k is odd.

(2) For 0 ≤ d ≤ h, and 0 ≤ i ≤ k − 2d, the vector space

J i(Vd)

is an irreducible Sk-module of isomorphism type λ = (k − d, d).

(3) For any Spceht polynomial ∆T ∈ Vd, the vector space

〈∆T , J(∆T ), J2(∆T ) · · · , Jk−2d(∆T )〉
is an irreducible GL(2)-module of isomorphism type λ = (k − d, d).

(4) An irreducible decomposition of A as Sk-modules is given by

A =
h⊕

d=0

(
k−2d⊕
i=0

J i(Vd)).

In particular the irreducible module of type λ = (k − d, d) occurs (k + 1 − 2d) times,
and the irreducible GL(2)-module of type (k − d, d) occurs md times.

Proof. (1) See Proposition 6. (2) In Lemma 17 and Proposition 18 we showed that the space
Vd is spanned by the Specht polynomials defined by the standard Young tableau of shape
(k − d, d). It is well known that this is irreducible. Also li(Vd) is isomorphic to Vd unless it
is trivial because x1 + · · ·+ xk is Sk-invariant. (3) Let ρ be the composition

SL(2)
Ψ→ GL(2)

Φ→ GL(A)

where Ψ is the natural injection and Φ is the tensor representation. To decompose A into
irreducible GL(2)-modules is the same as to decompose it as SL(2)-modules. This is obtained
by decomposing the Lie algebra representation:

dρ : sl(2) → gl(A).

Now the assertion follows from Lemma 13. (4) Clear from (1), (2) and (3). ¤

Example 20 Let k = 4. Let l = ×(x1 + x2 + x3 + x4) ∈ End(A(2, 4)). We exhibit the
Jordan basis of ×l. The Hilbert function of A is (1, 4, 6, 4, 1). The derived sequence is
(1, 3, 2).

1. The Specht polynomial of degree 0 is 1.
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2. The Specht polynomials of degree 1 (corresponding to the standard Young tableau
with shape λ = λ(3, 1)) are a := x1 − x2, b := x1 − x3 and c := x1 − x4.

3. The Specht polynomials of degree 2 (corresponding to the standard Young tableau
with shape λ = λ(2, 2)) are f := (x1 − x2)(x3 − x4) and g := (x1 − x3)(x2 − x4).

The bases for the irreducible decomposition of A = A(2, 4) as GL(2)-modules are:

1. 〈1, l, l2, l3, l4〉
2. 〈a, la, l2a〉 and 〈b, lb, l2b〉 and 〈c, lc, l2c〉
3. 〈f〉 and 〈g〉

We have 24 = 5× 1 + 3× 3 + 1× 2. When li is expanded, all terms which contain a square
of a variable should be regarded zero. With this convention li is equal to the ith elementary
symmetric polynomial multiplied by i!.

5 Application to the theory of Gorenstein rings

Put A = R/(x2
1, · · · , x2

k) and l = x1 +x2 + · · ·+xk ∈ A. Using the notation of Proposition 13,
we have ×l = L|A. Since we have obtained a Jordan basis for D|A: A → A. it is a Jordan
basis for ×l as well. (cf. Proposition 13.) Thus it in particular gives us a basis for 0: l ⊂ A.
as a vector space. However, it does not necessarily determine a minimal ideal basis for 0: l. In
this section we would like to exhibit a minimal generating set of 0: l. Denote by ( )?: A → A
the “Hodge dual” of A. Namely, define

M? = (x1 · · ·xk)/M

for M ∈ A. By linearity this is extended to define the dual map A → A.

If ∆ is a Specht polynomial, we call ∆? the dual Specht polynomial. (We assume that this
is defined only for Specht polynomials of partial degree at most one.)

In the next theorem we use the notation fixed in Section 2. Namely, λ = λ(r, s) is a Young
diagram with two rows of length r, s, and if T is a Young tableau then |T | is the shape of T
and ∆T is the Specht polynomial defined by T . µ is the minimal number of generators.

Theorem 21 In the polynomial ring R, put

I = (x2
1, · · · , x2

k) : (x1 + · · ·+ xk).
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Then we have

µ(I) = k +

(
k

h

)
−

(
k

h + 1

)
.

Here h is such that h = k/2 or h = (k + 1)/2 according as k is even or odd.

If k is even, then
I = (x2

1, · · · , x2
k) + {∆?

T | |T | = λ(h, h)}R
and if k is odd,

I = (x2
1, · · · , x2

k) + {∆?
T | |T | = λ(h, h− 1)}R.

(If k is even, it is the same if ? is dropped.)

We need a lemma before proving this theorem.

Lemma 22 Let T be a Young tableau of the shape λ = λ(k − s, s). Let ∆ = ∆T be the
Specht polynomial defined by T . Suppose two integers (i, j) appear in a same column of λ.
Then ( ∂

∂xi
− ∂

∂xj
)∆ is a Specht polynomial. (A constant multiple is disregarded.) Furthermore

we have

((
∂

∂xi

− ∂

∂xj

)∆)? = (xi − xj)∆
?

Proof. By hypothesis it immediately follows that (xi−xj) is a factor of ∆, and it is the only
factor of ∆ which involve these two variables. Hence we have ( ∂

∂xi
− ∂

∂xj
)∆ = ±2∆/(xi−xj).

The second assertion is as easy.

Proof of Theorem 21. It is enough to prove the second part.

We have already proved that Ker[D: A → A] is spanned by the Specht polynomials. Thus
we have that Ker[(×l): A → A] is spanned by the dual Specht polynomials. Let a be the
ideal of A generated by the dual Specht polynomials of the least degree. Then a contains all
dual Specht polynomials by Lemma 22. ¤

Remark 23 Theorem 21 may be regarded as a broad generalization of F. S. Macaulay’s
example (2) in Introduction.

Corollary 24 Let A = K[x1, · · · , xk]/(x
2
1, · · · , x2

k), and let l be the linear element l = x1 +
· · ·+ xn of A. Then

µ(0: l) =

(
k

h

)
−

(
k

h + 1

)
.

Here h is as in Theorem 21 .

Proof. Immediate by Theorem 21.
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Theorem 25 As before let A = R/(x2
1, · · · , x2

k), and let y ∈ A be a general element of
A. Then the Macaulay type of A/(y) is the h-th Catalan number 1

h+1

(
2h
h

)
. Here h is as in

Theorem 21. Equivalently if we put I = (x2
1, · · · , x2

k, Y ), where Y is a general element of the
polynomial ring and if we write a minimal free resolution of R/I as

0 → Fk → Fk−1 → · · · → F1 → R → R/I → 0

then, we have rank Fk = 1
h+1

(
2h
h

)
.

Proof. The Macaulay type of A/(y) is equal to the minimal number of generators of 0: y. It
is well known that this is also equal to the last rank of the minimal free resolution of 0: y.
Now it suffices to notice that

(
k

h

)
−

(
k

h + 1

)
=

1

h + 1

(
2h

h

)
,

where h = k/2 or (k + 1)/2 as in Theorem 21.

6 The Hilbert function of the ring of invariants of A(n, k)

In this section we let A = K[x1, · · · , xk]/(x
n
1 , · · · , xn

k) where n and k are arbitrary positive
integers. Let G: = Sk act on A by the permutation of the variables. In the next theorem we
would like to exhibit the ring of invariants AG and the Hilbert function of AG.

Theorem 26
AG = K[e1, · · · , en]/(pn, pn+1, · · · , pn+k−1).

Here ed is the elementary symmetric polynomial of degree d and pd is the power sum pd =
xd

1 + · · ·+ xd
k. Hence the Hilbert function of AG is:

hAG(q) =
(1− qn)(1− qn+1) · · · (1− qn+k−1)

(1− q1)(1− q2) · · · (1− qk)

Proof. Consider the exact sequence

0 → (xn
1 , · · · , xn

k) → R → A → 0.

Since chK = 0, we have the exact sequence

0 → (xn
1 , · · · , xn

k)G → RG → AG → 0.

Note that RG = K[e1, · · · , ek]. The socle degree of A is nk−k, and Ank−k = 〈(ek)
n−1〉. Since

en−1
k is fixed under the action of G, this shows that the maximum degree of elements of AG

is nk − k.
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Put A′ = RG/(pn, pn+1, · · · , pn+k−1). Obviously we have a natural surjection:

A′ → AG → 0 (14)

which we would like to prove to be an isomorphism. First note that the rational function in
the statement of this Theorem is the Hilbert function of A′. (This can be obtained using the
fact RG = K[e1, e2, · · · , ek].) This shows that A′ and AG have the same socle degree, which
is equal to nk−k. Since A′ is an Artinian Gorenstein ring, the one dimensional vector space
of the maximum degree is the unique minimal ideal of the ring A′. This shows that the map
(14) cannot have a non-trivial kernel. This completes the proof.

Remark 27 1. Since

lim
q→1

(1− qn)(1− qn+1) · · · (1− qn+k−1)

(1− q1)(1− q2) · · · (1− qk)
=

(
n + k − 1

k

)
,

we have dim AG = hAG(1) =
(

n+k−1
k

)
. This is expected for AG is the irreducible

GL(n)-module corresponding to the trivial λ, which is the symmetric tensor space.

2. It is conceivable that the Hilbert function of Y λ(A) where Y λ is the Young symmetrizer
corresponding to λ = (k1, · · · , kr) ` k should be obtained as a q-analog of the dimension
formula of the irreducible GL(n)-module in the decomposition of (Kn)⊗k.

More precisely we conjecture that the Hilbert function of Y λ(A) is

qk2+2k3+···+(r−1)kr
∏

1≤i<j≤n

[ki − kj + j − i]

[j − i]
.

Here [a] denotes 1−qa

1−q
for any positive integer a. Note that this is a q-analog of the

dimension formular for W λ as shown at the end of Appendix.

7 Appendix

We exhibit a basis of the tensor space

(Kn)⊗k

so that it decomposes into irreducible (GL(n)× Sk)-modules.

In addition to the notation fixed at the beginning of Section 2, we use the following notation.

• A tableau T (of shape λ) is said to be standard if the boxes of T is filled with the
integers {1, 2, . . . , k}, where k is the size of λ, and they increase strictly in every row
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and column. We denote by STab(λ) the set of standard Young tableaux of shape λ.
For example, if λ = (2, 1), then

STab(λ) =

{
1 2
3

,
1 3
2

}
.

• A tableau T of shape λ is said to be semi-standard (with letters at most n) if the
boxes of T are filled with integers at most n, and these integers strictly increasing in
each column, and not strictly decreasing in each row. We denote by SSTabn(λ) the set
of semi-standard tableaux of shape λ with letters at most n. For example, if λ = (2, 1)
and n = 3, then we have

SSTabn(λ) =

{
1 1
2

,
1 1
3

,
1 2
2

,
1 3
2

,
1 2
3

,
1 3
3

,
2 2
3

,
2 3
3

}
.

Put A = V ⊗k where V is an n dimensional vector space over K.

The general linear group GL(n) acts on the vector space A as the tensor representation

Φ: GL(n) → GL(A) (15)

by
Φ(g)(a1 ⊗ a2 ⊗ · · · ⊗ ak) = ga1 ⊗ ga2 ⊗ · · · ⊗ gak,

for g ∈ GL(n) and a1 ⊗ a2 ⊗ · · · ⊗ ak ∈ A.

The symmetric group Sk acts on A as the permutation of the components, i.e., for each
σ ∈ Sk and a1 ⊗ a2 ⊗ . . .⊗ ak ∈ A, we let

(a1 ⊗ a2 ⊗ . . .⊗ xk)
σ = aσ(1) ⊗ aσ(2) ⊗ . . .⊗ aσ(k).

According to the Schur-Weyl duality, the vector space A decomposes as (GL(n)×Sk)-modules
as

A ∼=GL(n)×Sk

⊕
λ`k

l(λ)≤n

W λ ⊗ V λ,

where W λ and V λ are the λ-th irreducible representation modules of GL(n) and Sk respec-
tively. The dimensions and the multiplicities are given as follows:

dimension multiplicity
W λ #SSTabn(λ) #STab(λ)
V λ #STab(λ) #SSTabn(λ)

See [4], [7], [21] for details of these modules.
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Let T ∈ SSTabn(λ) and S ∈ STab(λ). Let Y S be the Young symmetrizer corresponding to
S. Furthermore let {e1, e2, . . . , en} be a basis of V so the basis of A is given by

{ei1 ⊗ ei2 ⊗ · · · ⊗ eik |1 ≤ i1, i2, . . . , ik ≤ n}.
Then we define eS

T ∈ A to be

eS
T = eT (S−1(1)) ⊗ eT (S−1(2)) ⊗ · · · ⊗ eT (S−1(k)),

where the tableaux S and T are regarded as maps from the set of boxes in the Young diagram
λ to the set of integers {1, 2, · · · , k}.

For example, if k = n = 3 and S =
1 3
2

and T =
2 2
3

, then eS
T = e2 ⊗ e3 ⊗ e2.

Now the irreducible constituents V T and W S of A are given by

V T =
⊕

S∈STab(λ)

KY SeS
T ,

and
W S =

⊕

T∈SSTabn(λ)

KY SeS
T .

Furthermore ⊕

S∈STab(λ)

W S ∼= W λ ⊗ V λ ∼=
⊕

T∈SSTabn(λ)

V T ,

and finally,

A =
⊕
λ`k

l(λ)≤n

⊕

S∈STab(λ)

W S =
⊕
λ`k

l(λ)≤n

⊕

T∈SSTabn(λ)

V T .

It is well known that

dim W λ =
∏

1≤i<j≤n

ki − kj + j − i

j − i
. (16)

Here λ = (k1, · · · , kr) ` k. (See, for example, [7] p.303.)
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[12] W. Kraśkiewicz and J. Weyman, Algebra of coinvariants and the action of Coxeter
elements, Bayreuth. Math. Schr. 63 (2001), 265–284.

[13] F. S. Macaulay, The algebraic theory of modular systems, Cambridge University Press,
London, 1916.

[14] H. Morita and T. Nakajima, The coinvariant algebra of the symmetric group as a direct
sum of induced modules, to appear in Osaka J. Math.

[15] H. Morita, Decomposition of Green polynomials of type A and DeConcini-Procesi-
Tanisaki algebras of certain types, preprint.

[16] T. Terasoma and H. -F. Yamada, Higher Specht polynomials for the symmetric group,
Proc. Japan Acad., 69(1993), 41-44.

[17] H. Morita and J. Watanabe, The Schur-Weyl duality and the equi-degree monomial
complete intersections in a small number of variables, to appear.

[18] T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974),
159–198.

[19] J. Watanabe, A note on Gorenstein rings of embedding codimension three, Nagoya
math. J. 50 (1973), 227-32.

[20] J. Watanabe, The Dilworth number of Artinian rings and and finite posets with rank
function, Adv. Stud. Pure Math., 11 (1987), 303-312.

[21] H. Weyl, Classical groups, their invariants and representations, 2nd Edition, Princeton,
1946.

22


