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ABSTRACT: Let H* be a weak-* closed subalgebra of L°°(m) on which m is multiplicative.
Let I be a weak-* closed linear span of functions in H*® that are zero on sets of positive

measure. Then I is a weak-* closed ideal of H*. In this paper this typical ideal is studied.

§1. Introduction
Throughout this note (X,.4,m) will be a fixed nontrivial probability measure space
and A will be a complex subalgebra of L™ = L*(m) containing the constants and satis-

fying the following condition:

/x fgdm = /x fdm L gdm (f,g € 4).

The abstract Hardy space H? = H?(m),0 < p < oo, determined by A is defined to be
the closure of A in I? = L?(m), when p is finite and to be the weak-* closure of 4 in L*
when p = co. The measure m is multiplicative on H® and so determines a point ¢ in the
maximal ideal space M(H*) of H*®. We denote the Gleason part determined by ¢ by
G(¢); ie. G(¢) = {¢ € M(H>);|| ¢ — ¥ |[< 2}. The ideal J of H* is called primary if
f,9 € H® and fg € J implies f € J or g € J. The hull of J consists of all ¥ € M(H*>)
such that ¢(f) =0forall f € J.

DEFINITION: I = I(H®) is a weak-* closed linear span of functions on H* that are zero

on sets of positive measure. Then I is an ideal.

The questions arises: (1) Is I a primary ideal?, (2) I = {f € H® : ¥(f) = 0 for
all ¥ € hull I}?, (3) What is H>® /I ?, (4) If hull I = {¢} then what happens in H*?,
(5) What relations are there between G(¢) and hull I?. In this paper mainly we give the
answers in case A + A is weak-* dense in L™, that is, A is a weak-* Dirichlet algebra [19].

For any measurable subset E of X, the function xg is the characteristic function
of E. If f € L?, write E; for the support set of f and write x; for the characteristic
function of E;. Suppose 0 < p < s < 0o. For any subset M C L*(m), denote by [M], the

LP(m)-closure of the linear span of M (weak-* closure for p = o).



The table of contents is the following: §1. Introduction, §2. I = {0}, §3. I C H°, §4.
I=Hp,§. H*/I, §6. Structure of H* in case I = H, §7. Nontrivial Gleason part,
$8. General weak-* closed ideal, §9. An application of I.

§2. I ={0}.

If I = {0} then it is clear that I is a primary ideal. M(H>) = hull I if and only if
I = {0}. In many concrete examples, I = {0}. If D is a weak-* closed subalgebra of L*
which contains H*™ and is not an invariant subspace under multiplications of functions in

A, then we call D an essential algebra. The following proposition is a version of Helson

and Quigley [5].

PROPOSITION 1. If there exists an essential algebra which contains H* and is maximal
among the proper weak-* closed subalgebras of L™, then I = {0} and H* is an integral

domain.

PROOF: Let B be the essential maximal weak-* closed subalgebra. Let f € H* and
0 < m(E;) < 1. Put

D =[x Bleo + (1 — x/) L%,

then D is a weak-* closed subalgebra and B & D S L. For [f[xsBlw] = [XsfBle =
[fB]e and [fB)oe # xs L™ because B is essential.

In general the converse of Proposition 1 is not true. However if A is a weak-* Dirichlet
albebra, then Nakazi [12, Theorem 2] showed the converse is true, using a method due to

Muhly [11].

EXAMPLE 1: Let I be an ordered discrete abelian group and G the compact dual group of
I'. Let T'; be the semigroup in I' which orders I'. If A is the uniform algebra on G which
is generated by 'y and o is a Haar measure on G, then A is a weak-* Dirichlet algebra in

L*(c). I = {0} if and only if T'; is a maximal semigroup of I'.



§3. ICHP.
i I = {0} then H® D I. In general we don’t know HZ° D I, equivalently hull 7 5 ¢.

PROPOSITION 2. If m is absolutely continuous with respect to some Jensen measure p of

¢, then HE DL

PROOF: If f € H® and m(E;) < 0, then u(E;) > 0 because m is absolutely continuous

with respecct to p. Since p is a Jensen measure,

/;loglfldpzloglfﬁ(f)'

and hence ¢(f) = 0. This implies the proposition.

If A is a weak-* Dirichlet algebra then m is a Jensen measure and hence by Propo-
sition 2 H® D I. In general we don’t know I # H® or I # HZ. Let Hpin be the
intersection of all weak-* closed subalgebras of L™ which contains H* properly. We say
that H*® is ¢-weak-* maximal if whenever B is a weak-* closed subalgebra of L*™ such

that B D H* and ¢ extends multiplicative to B, then B = H* (cf. [4, Theorem 5.5]).

PROPOSITION 3. If H,,;, 2 H*™ then I is an ideal of H,,;, and so I # H™. If moreover

H* is ¢-weak-* maximal and I C H3® then I G HP.

PROOF: Let f € I and 0 < m(F;) < 1. Put

Bt = [xs H®|oo + [(1 — x4)H ] 0

then B; is a weak-* closed superalgebra of H*® and hence By D Hpia. Moreover
By[fH®)oo C [fH®])oo C I and hence Hpin[fH™]oo C I. Let g be the linear combi-
nation of f1,...,f, in I with 0 < m(E;) <1 (j =1,...,n), then Hpin[gH®]e C I and
hence Hp;n I C I. This implies the proposition.



If A is a weak-* Dirichlet algebra then I C H3® and hence I # H®. Nakazi [14,
Corollary 5] showed that the converse of Proposition 3 is true. In Example I G H if
and only if there exists the least semigroup of I' which contains I'; properly, where ¢ is a

complex homomorphism determined by m = o.

EXAMPLE 2: . Let L®(T') be the algebra of essentially bounded, measurable functions
with respect to Lebesgue measure on the circle T. H*(T') denotes the algebra of functions
in L*(T) where Fourier coefficients with negative indices vanish. Let ¢ € M(H*>(T')) be
not in the Shilov boundary of H(T') and m the representing measure of ¢, then H*(T)
is a weak-* Dirichlet algebra of L>(m). If ¢ is an evalution at a point in the open unit
disc, then I = {0}. If ¢ is not so and G(@) # {¢} then {0} # I & H*(m) by [8, p.492].
If G(¢) = {¢} then we know nothing about I.

When hull I 5 ¢, if hull I # {¢} then I & H®. However we don’t know that if
I G HY then hull I # {¢}.

§4. I=Hp.

It is easy to construct H*™ with I = HZ°. In fact when I G HJ® let B be the weak-*
closed linear span of 1 and I, then By = {f € B : ¢(f) = 0} = I. However this B is
not ¢-weak-* maximal. Hence B + B is not weak-* dense in L. But we have examples
in weak-* Dirichlet algebras. In Example 1, there does not exist the least semigroup of T

which contains I'y properly if and only if I = HZ".

EXAMPLE 3: Let (z1(t) : t > 0),...,(2(t) : ¢ > 0) be £ independent complex Brownian
motions on a complete probability space (2, P) such that P(z1(0) =--- = 2,(0) =0) = 1.
For every t > 0, F(t) denotes the o-field generated by {z;(¢) : 0 < s < ¢;5 = 1,...,m}
and the P-null sets, and F denotes the o-field generated by U, F (). Let us denote by
H>(Q) the algebra of bounded (F(¢))-martingales (X : ¢ > 0) which admit an Ito integral

representation of the form

L t
X=X +Y / a;(s)dz;(s) (¢ 0)
j=1 0



where a;,...,a; are predictable processes. Then H® = {X,, : (X; : t > 0) € H=(Q)}
is a weak-* Dirichlet algebra on (Q2, F, P) [20, Theorem 3.1]. By [1, Corollary 1] and [14,
Corollary 5], I = H3°.

§5. H®/I.
If H =1 then H* /I is a field. We wish to know H* /I when HZ® # I.

THEOREM 4. Let A be a weak-* Dirichlet algebra and I G HZ.
(1) There exists a weak-* closed subalgebra H*™ of H*® and we have the direct sum

decomposition

H® =H*® o I.

(2) I is a primary ideal and hence H™ is an integral domain.

(3) I={feH®:9(f)=0 forall 4 €hull I}.

(4) hullI=M(H*) and H* |hullI=H>|hull L

(5) If L™ is the commutative von-Neumann algebra generated by H™ then H*™ is a
weak-* Dirichlet algebra and maximal among the proper weak-* closed subalgebra of L*.

PROOF: By [14,Corollary 5], Hpmin # H™ and by [14, Theorem 2], I = {f € Hpip :
fx fgdm =0 forall g € Hpin}. By [7, Theorem 1.5], Hpin = £ & I where £ =
Hopin N Hpin. Put H® = H® N L then

and (1) follows. (2) is known in [14, Corollary 2], but we give a simple proof using (1). If
f,9 € H™ and fg € I then we can write f = u+ fo and g = v + go where %,v € H™ and
fo,90 € I. fg € I implies uv € I N’ H™ and so uv = 0. Hence u or v belongs to I N H*
and u = 0 or v = 0. This implies (2)

Let ® be a homomorphism from H™ onto H*™ with the kernel I, then it is a contrac-

tion. The restriction map of elements in M(H®) to H* is continuous from M(H*) into



M(H®). If ¢g € M(H>), put ¢(f) = ¢o(B(f)) for any f € H® then ¢ € M(H*>) and
® | H® = ¢o. Hence the restriction map is onto and one to one on hull I. From this (3)
and (4) follows. It is clear that £L* C L. By [15, Proposition 7], £+ I + I is weak-* dense
in L. Since H® + H® + I + I is weak-* dense in L®, H® + H™ is weak-* dense in £
and hence £ = £*. This implies that H*> is a weak-* Dirichlet algebra in £L=. If D is
a weak-* closed subalgebra of £ which contains H* properly, then D & I is a weak-*
closed superalgebra of H® in Hyp,in and Hpin = D & I by the definition of Hpin. Hence
D = £ and (5) follows.

When A is a weak-* Dirichlet algebra and I & Hg® then hull I 2 {¢}.
§6. Structure of H* in case I = H2.

THEOREM 5. Let A be a weak-* Dirichlet algebra and I = HJ®.
(1) There exist a weak-* closed subalgebra H™ of H™ and a weak-* closed ideal of

H> with J C I, and we have the direct sum decomposition

H® =H® o J.

(2) J is not a primary ideal and hence H*™ is not an integral domain.

(3) J={feH>;¢(f)=0 forall + chullJ}.

(4) hullJ=M(H*®) and H® |hullJ=H*|hullJ.

(5) If L™ is a commutative von-Neumann algebra generated by H* then H™ is a

weak-* Dirichlet algebra and I(H>®) = H3.

PROOF: Since I # {0}, by Proposition 1 there exists a weak-* closed superalgebra B of
H® with H* S BC L®. Let J={f € B; [y fgdm =0 forall g€ B}, then by [7,
Theorem 15| B=L®Jand L=BNB # {1}. Let H* =H® N L then H®* = H* @ J
and (1) follows. By Proposition 3, there exists a weak-* closed superalgebra B; of H™
with H* C B; S B. Let Jy ={f € By : [y fgdm =0 forall g € B,},thenJ; 2J
and B; N By # {1}. There exists a characteristic function xg, € B such that



xe(xE.J1) 2 XE(XE.J)

for any xg € B; with xgxE, # 0 (see [13, Theorem 1]). As in the proof of [12, Lemma 3],
by [12, Lemma 2| there exists a characteristic function xg € B; such that xgxz,J1 # {0}
and (1 — xg)xE.J1 # {0}. If f € xEXE,J1 and g € (1 — XE)XE,J1 then f ¢ Jand g € J,
and fg € J. This implies (2). (3), (4) and that H™ is a weak-* Dirichlet algebra in £*,
can be proved as in the proof of Theorem 4.

We shall show that I(H*®) = K. I HZ # I(H>), by [14, Corollary 5] Hmin 2 H
and hence Hopin @ J 2 H®. Hpmin ® J is a minimal weak-* closed subalgebra of L™ that
contains H™ properly. By [17], Hmin © J = Hmin a0nd Hpin # H % While by hypothesis
and [14, Corollary 5], Hpmin = H®. This contradiction implies H3®> = I(H>).

§8. Nontrivial Gleason part
We wish to know the relation between G(4) and hull I.

PROPOSITION 7. Let m be a Jensen measure of ¢. If there exists a Jensen measure p of
¥ € G(¢) such that ¢ # ¢ and p is absolutely continuous with respect tom, then H3® 2 I.
Proof is similar to the proof of Proposition 2.

THEOREM 8. Let A be a weak-* Dirichlet algebra and G(¢) # {¢}.
(1) I={fecH=®:9(f)=0 forall < € G(¢)} and hull I = the closure of G(¢).
(2) H*® =H>* @I and H™ is isometrically isomorphic to H**(T') in Example 2.

PROOF: By Theorem 4 H® = H® @ I and H*™ is a weak-* Dirichlet algebra. Since
G(¢) # {¢} and hull I D G(¢) by Proposition 7, the Gleason part of ¢ in M(H*™) is
non-trivial. Hence HP = ZH™ for some Z € HY with | Z |= 1 (see [9, p.469]). Then
HP =ZH®. Let J={f € H® : §(f) =0 forall ¢ € G(¢)},then H* =H®J
where H denotes the weak-* closure of the polynomials in Z, and ZJ = J (see [9, Lemma
5]). Then H C H*™ becasue Z € H*®, and J D I. Let £ be the weak-* closure of the



polynomials in Z and Z, then £J C Jand hence JCI. Thus H=H® and J = I. It is
known that ¥ is isometrically isomorphic to H*°(T) (cf. [21] and [9, Lemma 6]).

Theorem 8 is essentially a famous theorem of Wermer (cf. [21], [9] and [8]). It
happens that hull I # {¢} and G(¢) = {¢}. Hence Theorem 4 is a generalization of
Wermer’s theorem in case hull I # {¢}.

§8. General weak-* closed ideal

In this section, assuming that A is a weak-* Dirichlet algebra, we wish to consider
general weak-* closed ideals in H* using the typical weak-* closed ideal I. Let J be a
weak-* closed ideal of H*® and put

B(J)={feL®:fJcJ}.

It is reasonable to assume B(J) = H> because of the results in [12], [13] and [7]. | J |=
| H= | by [16] where | J |= {| f |;f € J}. M [HPJ]o & J then J = gH™ for some
unimodular fanction g in H* [19]. We wish to know about J when [H2*J] = J.

THEOREM 9. Suppose I # HZ®. Let J be a weak-* closed ideal of H* with B(J) = H*,
then

J=Jo®dgql

where | Jo |=| H* | and q € Hpin with | g |=1.

PROOF: Set J; = [HpminJ|oo, then xgJ1 2 xE[IJ1]eo for any xg € Hmin with xg # 0.
For if xgJ1 = xg[IJ1]e for some xg € Hpin with xg # 0, then
xeJ C xgJ1 = xg[lJ]e CJ

because I H,,;,, C I, and this contradicts B(J) = H*®. By [7, Theorem 1.5] the measure m

is quasi-multiplicative on H,,;, and by [13, Theorem 2] J; = gHpin for some unimodular



fanction ¢ € Hpin,. Hence Hpin D §J DO I and §J = J; & I where £ D J,; and
H>®J; C Jz. Then by [16] | J2 |=] H*® | because H™ is a weak-* Dirichlet algebra in £=.
Put Jy = qJ; then the theorem follows.

THEOREM 10. Suppose I = H® and B, (« € A) are weak-* closed superalgebras of H*
such that B, # H® and N{B, : @« € A} = H®. Let J be a weak-* closed ideal of H®
with B(J) = H*®.Then

{UI.J :a € AYJoo € J C N{[Bat]e : x € A}

where I, = {f € Bo: [y fgdm =0 forall g€ B,}.

(1) Foranya € A [BaJlw = goBa. for some unimodular function g, € B, and if
[Bad]loo = ¢', B, then g.g', € B, N B,.

(2) K[UI,J]e # J then J = qH®™ for some unimodular fanction ¢ € H™.

(3) KJ#N[BaJ]w then J = gH® for some unimodular fanction g € H™.

(4) KU J)ew =J=N[ByaJ]ew then

J= [Uand]OO = NgaBa

where q. is a unimodular function in B,.

PROOF: [ByJ]oo = @o B« for some unimodular function g, € B, asin the proof of Theorem
9 and it is clear that if [B,J]e = ¢/ B, then g.g. € B, N B,. This implies (1). (2) is
clear because U] = I = HY [19]. (3) follows by the dual method. (1) implies (4).

EXAMPLE 4: Let A be the algebra of continuous complexvalued functions on the infinite
torus 7' which are uniform limits of polynomials in zf’ ; zé‘, vevy 2t where (£1,£2,...,4s,0,
0,...) €T and T the set of (£1,£3,...) € Z* whose first non-zero entry is positive, together
with 0. Denote by m the normalized Haar measure on 7, then A is the weak-* Dirichlet
algebra of L°(m). Let B, be the weak-* closure of ;o #, H>, then B, 2 B, 2 Bs 2
...H® and (>, B, = H®. Let J be a weak-* closed ideal of H® with B(J) = H*™.

10



I [Un InJ]oo =J = n,,[BnJ]oo then J = [U,, QnIn]co = nn an'ln ‘Ian o qn+1B'n»+1v
gnln C @uy1lnyr and I, = 2, B,,, where g, € B, and | ¢, |= 1.

In (4) of Theorem 10 (even if in Example 4) we don’t know that there exists a weak-*
closed ideal J of H* such that [Ul,J]e = J = N[BaJ]w-. In the same method we can
prove Theorems 9 and 10 for weak-* closed invariant subspace of L* under multipliations
of functions of H*. Since H,i» is an extended weak-* Dirichlet algebra, we apply to this
algebra the general theory for extended weak-* Dirichlet algebras [15]. For example if w
is positive in L' we can calculate inf{fy | 1 — g |* wdm;g € I}.

§10. An appli,cation of I

In this section we assume that A is a weak-* Dirichlet algebra. In Example 1, Shapiro
[18] showed that if I'; is a maximal semigroup of I' and has not the least positive element,
then for 0 < p < 1 each continuous linear functional on H? is a constant multiple of the
linear functional determined by m. We shall show the same result for Example 1 not

assuming that I', is a maximal semigroup of I, and for Example 3.
THEOREM 11. For 0 < p < 1 each continuous linear functional on H? is zero on I.

PROOF: We may assume I # {0}. By Proposition 1 there exsits a weak-* closed subalgebra
Bwith H°CBC L. PutIp={f€B: [, fgdm=0 forall g€ B}thenIgCI.
For I = {f € Hpin : [y fgdm =0 forall g € Hmin}. Let £ be a continuous linear
functional on H?, put for any fixed g € I

{(u) = L(ug) (u € Lp).

Then { is a continuous linear functional on the LP-closure of L5 and hence =0 by Day’s
theorem [3]. This implies £(g) = 0 for each g € I and hence £ =0 on Ig. When I # H°,
by [14, Corollary 5] Hin # H®. If B = H,,;, then I = I and this implies the theorem.
When I = HZ?, by (14, Corollary 5] Hpin = H*. Hence there exist superalgebras B, of
H*® such that N,B, = H* and B, # H*®. Then [UsIp_ ]oo = I and hence { =0 on I.

11



COROLLARY 1. Suppose I = HJ°. Then for 0 < p <1 each continuous linear functional

on H? is a constant multiple of the linear functional determined by m.

Muhly [10] showed Shapiro’s theorem for ergodic H*. Corollary 1 does not contain it

because I = {0} for ergodic H*°. In Example 1, if I'} has not the least positive element,

then I = H® or H* = H* & I where H* is isometrically isomorphic to the Hardy space

in case I'y is a maximal semigroup. Hence Corollary 1 and Shapiro’s theorem imply that

for

0 < p < 1 each continuous linear functional on H? is a constant multiple of the linear

fanctional determined by m.
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