Some Typical Ideal In a
Uniform Algebra

K. Kishi and T. Nakazi

Series #30. June 1988

HOKKAIDO UNIVERSITY PREPRINT SERIES IN MATHEMATICS

- # Author Title
 - 1. Y. Okabe, On the theory of discrete KMO-Langevin equations with reflection positivity (I)
- 2. Y. Giga and T. Kambe, Large time behavior of the vorticity of two-dimensional flow and its application to vortex formation
- 3. A. Arai, Path Integral Representation of the Index of Kahler-Dirac Operators on an Infinite Dimensional Manifold
- 4. I. Nakamura, Threefolds Homeomorphic to a Hyperquadric in P4
- 5. T. Nakazi, Notes on Interpolation by Bounded Analytic Functions
- 6. T. Nakazi, A Spectral Dilation of Some Non-Dirichlet Algebra
- 7. **H. Hida**, A p-adic measure attached to the zeta functions associated with two elliptic modular forms II
- 8. T. Suwa, A factorization theorem for unfoldings of analytic functions
- 9. T. Nakazi, Weighted norm inequalities and uniform algebras
- 10. **T. Miyake**, On the spaces of Eisenstein series of Hilbert modular groups
- 11. K. Nitta, Note on the double centralizers in an H-separable extension
- 12. **K. Kubota**, Microlocal parametrices and propagation of singularities near gliding points for hyperbolic mixed problems Π
- 13. Y. Okabe, On a stochastic difference equation for the multidimensional weakly stationary process with discrete time
- 14. G. Ishikawa, Parametrization of a Singular Lagrangian Variety
- 15. Y. Okabe, On the theory of discrete KMO-Langevin equations with reflection positivity (II)
- 16. A. Arai, Spectral Analysis of a Quantum Harmonic Oscillator Coupled to Infinitely Many Scalar Bosons
- 17. T. Miyake, On Qab-rationality of Eisenstein series of weight 3/2
- 18. Y. Okabe, On the theory of discrete KMO-Lanegvin equation with reflection positivity (III)
- 19. A. Sannami, A topological classification of the periodic orbits of the Henon family
- 20. **P. Aviles and Y. Giga**, Singularities and rank one properties of Hessian measures
- 21. A. Arai, Perturbation of Embedded Eigenvalues in Fock Spaces :
 A General Class of Exactly Soluble Models
- 22. T. Nakazi, A Lifting Theorem And Analytic Operator Algebras
- 23. T. Nakazi, Complete Spectral Area Estimates and Selfcommutators
- 24. S. Matsuoka, Nonsingular Algebraic Curves in $\mathbb{RP}^1 \times \mathbb{RP}^1$
- 25. **S. Matsuoka**, An algebraic criterion for right-left equivalence of holomorphic functions on analytic varieties
- 26. A. Arai, Supersymmetric embedding of the Hamiltonian for the RWA oscillator
- 27. K. Sugano, Note on separable extensions of noncomutative rings
- 28. Y. Giga, A local characterization of blowup points of semilinear heat equations
- 29. Y. Giga and H. Sohr, On the Stokes operator in exterior domains

Some Typical Ideal In a Uniform Algebra

KAZUO KISHI*

AND

TAKAHIKO NAKAZI*

Faculty of Education
Wakayama University
Wakayama, Japan

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060, Japan

^{*}This research was partially supported by Grant-in-Aid for Scientifdic Research, Ministry of Education.

¹⁹⁸⁰ Mathematics Subject Classification 46 J 10

ABSTRACT: Let H^{∞} be a weak-* closed subalgebra of $L^{\infty}(m)$ on which m is multiplicative. Let I be a weak-* closed linear span of functions in H^{∞} that are zero on sets of positive measure. Then I is a weak-* closed ideal of H^{∞} . In this paper this typical ideal is studied.

§1. Introduction

Throughout this note (X, A, m) will be a fixed nontrivial probability measure space and A will be a complex subalgebra of $L^{\infty} = L^{\infty}(m)$ containing the constants and satisfying the following condition:

$$\int_X fgdm = \int_X fdm \int_X gdm \quad (f,g \in A).$$

The abstract Hardy space $H^p = H^p(m), 0 , determined by <math>A$ is defined to be the closure of A in $L^p = L^p(m)$, when p is finite and to be the weak-* closure of A in L^∞ when $p = \infty$. The measure m is multiplicative on H^∞ and so determines a point ϕ in the maximal ideal space $M(H^\infty)$ of H^∞ . We denote the Gleason part determined by ϕ by $G(\phi)$; i.e. $G(\phi) = \{\psi \in M(H^\infty); || \phi - \psi || < 2\}$. The ideal J of H^∞ is called primary if $f, g \in H^\infty$ and $fg \in J$ implies $f \in J$ or $g \in J$. The hull of J consists of all $\psi \in M(H^\infty)$ such that $\psi(f) = 0$ for all $f \in J$.

DEFINITION: $I = I(H^{\infty})$ is a weak-* closed linear span of functions on H^{∞} that are zero on sets of positive measure. Then I is an ideal.

The questions arises: (1) Is I a primary ideal?, (2) $I = \{f \in H^{\infty} : \psi(f) = 0 \text{ for all } \psi \in hull \ I\}$?, (3) What is H^{∞}/I ?, (4) If $hull \ I = \{\phi\}$ then what happens in H^{∞} ?, (5) What relations are there between $G(\phi)$ and hull I?. In this paper mainly we give the answers in case $A + \bar{A}$ is weak-* dense in L^{∞} , that is, A is a weak-* Dirichlet algebra [19].

For any measurable subset E of X, the function χ_E is the characteristic function of E. If $f \in L^p$, write E_f for the support set of f and write χ_f for the characteristic function of E_f . Suppose $0 . For any subset <math>M \subset L^s(m)$, denote by $[M]_p$ the $L^p(m)$ -closure of the linear span of M (weak-* closure for $p = \infty$).

The table of contents is the following: §1. Introduction, §2. $I = \{0\}$, §3. $I \subseteq H_{\phi}^{\infty}$, §4. $I = H_{\phi}^{\infty}$, §5. H^{∞}/I , §6. Structure of H^{∞} in case $I = H_{\phi}^{\infty}$, §7. Nontrivial Gleason part, §8. General weak-* closed ideal, §9. An application of I.

$$\S 2. \ I = \{0\}.$$

If $I = \{0\}$ then it is clear that I is a primary ideal. $M(H^{\infty}) = hull \ I$ if and only if $I = \{0\}$. In many concrete examples, $I = \{0\}$. If D is a weak-* closed subalgebra of L^{∞} which contains H^{∞} and is not an invariant subspace under multiplications of functions in \bar{A} , then we call D an essential algebra. The following proposition is a version of Helson and Quigley [5].

PROPOSITION 1. If there exists an essential algebra which contains H^{∞} and is maximal among the proper weak-* closed subalgebras of L^{∞} , then $I = \{0\}$ and H^{∞} is an integral domain.

PROOF: Let B be the essential maximal weak-* closed subalgebra. Let $f \in H^{\infty}$ and $0 < m(E_f) < 1$. Put

$$D = [\chi_f B]_{\infty} + (1 - \chi_f) L^{\infty},$$

then D is a weak-* closed subalgebra and $B \subsetneq D \subsetneq L^{\infty}$. For $[f[\chi_f B]_{\infty}] = [\chi_f f B]_{\infty} = [fB]_{\infty}$ and $[fB]_{\infty} \neq \chi_f L^{\infty}$ because B is essential.

In general the converse of Proposition 1 is not true. However if A is a weak-* Dirichlet albebra, then Nakazi [12, Theorem 2] showed the converse is true, using a method due to Muhly [11].

EXAMPLE 1: Let Γ be an ordered discrete abelian group and G the compact dual group of Γ . Let Γ_+ be the semigroup in Γ which orders Γ . If A is the uniform algebra on G which is generated by Γ_+ and σ is a Haar measure on G, then A is a weak-* Dirichlet algebra in $L^{\infty}(\sigma)$. $I = \{0\}$ if and only if Γ_+ is a maximal semigroup of Γ .

§3. $I \subseteq H_{\phi}^{\infty}$.

If $I = \{0\}$ then $H_{\phi}^{\infty} \supset I$. In general we don't know $H_{\phi}^{\infty} \supset I$, equivalently hull $I \ni \phi$.

PROPOSITION 2. If m is absolutely continuous with respect to some Jensen measure μ of ϕ , then $H_{\phi}^{\infty} \supset I$.

PROOF: If $f \in H^{\infty}$ and $m(E_f) < 0$, then $\mu(E_f) > 0$ because m is absolutely continuous with respect to μ . Since μ is a Jensen measure,

$$\int_{X} log \mid f \mid d\mu \geq log \mid \phi(f) \mid$$

and hence $\phi(f) = 0$. This implies the proposition.

If A is a weak-* Dirichlet algebra then m is a Jensen measure and hence by Proposition 2 $H_{\phi}^{\infty} \supset I$. In general we don't know $I \neq H^{\infty}$ or $I \neq H_{\phi}^{\infty}$. Let H_{min} be the intersection of all weak-* closed subalgebras of L^{∞} which contains H^{∞} properly. We say that H^{∞} is ϕ -weak-* maximal if whenever B is a weak-* closed subalgebra of L^{∞} such that $B \supset H^{\infty}$ and ϕ extends multiplicative to B, then $B = H^{\infty}$ (cf. [4, Theorem 5.5]).

PROPOSITION 3. If $H_{min} \supseteq H^{\infty}$ then I is an ideal of H_{min} and so $I \neq H^{\infty}$. If moreover H^{∞} is ϕ -weak-* maximal and $I \subseteq H^{\infty}_{\phi}$ then $I \subsetneq H^{\infty}_{\phi}$.

PROOF: Let $f \in I$ and $0 < m(E_f) < 1$. Put

$$B_f = [\chi_f H^{\infty}]_{\infty} + [(1 - \chi_f) H^{\infty}]_{\infty}$$

then B_f is a weak-* closed superalgebra of H^{∞} and hence $B_f \supset H_{min}$. Moreover $B_f[fH^{\infty}]_{\infty} \subset [fH^{\infty}]_{\infty} \subset I$ and hence $H_{min}[fH^{\infty}]_{\infty} \subset I$. Let g be the linear combination of f_1, \ldots, f_n in I with $0 < m(E_j) < 1$ $(j = 1, \ldots, n)$, then $H_{min}[gH^{\infty}]_{\infty} \subset I$ and hence $H_{min}I \subset I$. This implies the proposition.

If A is a weak-* Dirichlet algebra then $I \subset H_{\phi}^{\infty}$ and hence $I \neq H^{\infty}$. Nakazi [14, Corollary 5] showed that the converse of Proposition 3 is true. In Example $I \subsetneq H_{\phi}^{\infty}$ if and only if there exists the least semigroup of Γ which contains Γ_{+} properly, where ϕ is a complex homomorphism determined by $m = \sigma$.

EXAMPLE 2: Let $L^{\infty}(T)$ be the algebra of essentially bounded, measurable functions with respect to Lebesgue measure on the circle T. $H^{\infty}(T)$ denotes the algebra of functions in $L^{\infty}(T)$ where Fourier coefficients with negative indices vanish. Let $\phi \in M(H^{\infty}(T))$ be not in the Shilov boundary of $H^{\infty}(T)$ and m the representing measure of ϕ , then $H^{\infty}(T)$ is a weak-* Dirichlet algebra of $L^{\infty}(m)$. If ϕ is an evalution at a point in the open unit disc, then $I = \{0\}$. If ϕ is not so and $G(\phi) \neq \{\phi\}$ then $\{0\} \neq I \subsetneq H^{\infty}_{\phi}(m)$ by [8, p.492]. If $G(\phi) = \{\phi\}$ then we know nothing about I.

When hull $I \ni \phi$, if hull $I \neq \{\phi\}$ then $I \subsetneq H_{\phi}^{\infty}$. However we don't know that if $I \subsetneq H_{\phi}^{\infty}$ then hull $I \neq \{\phi\}$.

§4.
$$I = H_{\phi}^{\infty}$$
.

It is easy to construct H^{∞} with $I = H^{\infty}_{\phi}$. In fact when $I \subsetneq H^{\infty}_{\phi}$ let B be the weak-* closed linear span of 1 and I, then $B_{\phi} = \{f \in B : \phi(f) = 0\} = I$. However this B is not ϕ -weak-* maximal. Hence $B + \bar{B}$ is not weak-* dense in L^{∞} . But we have examples in weak-* Dirichlet algebras. In Example 1, there does not exist the least semigroup of Γ which contains Γ_{+} properly if and only if $I = H^{\infty}_{\phi}$.

EXAMPLE 3: Let $(z_1(t):t\geq 0),\ldots,(z_\ell(t):t\geq 0)$ be ℓ independent complex Brownian motions on a complete probability space (Ω,P) such that $P(z_1(0)=\cdots=z_\ell(0)=0)=1$. For every $t\geq 0$, $\mathcal{F}(t)$ denotes the σ -field generated by $\{z_j(t):0\leq s\leq t;j=1,\ldots,m\}$ and the P-null sets, and \mathcal{F} denotes the σ -field generated by $\bigcup_{t\geq 0} \mathcal{F}(t)$. Let us denote by $H^\infty(\Omega)$ the algebra of bounded $(\mathcal{F}(t))$ -martingales $(X_t:t\geq 0)$ which admit an Ito integral representation of the form

$$X_t = X_0 + \sum_{j=1}^{\ell} \int_0^t \alpha_j(s) dz_j(s) \quad (t \ge 0)$$

where $\alpha_1, \ldots, \alpha_\ell$ are predictable processes. Then $H^{\infty} = \{X_{\infty} : (X_t : t \geq 0) \in H^{\infty}(\Omega)\}$ is a weak-* Dirichlet algebra on (Ω, \mathcal{F}, P) [20, Theorem 3.1]. By [1, Corollary 1] and [14, Corollary 5], $I = H^{\infty}_{\phi}$.

§5. H^{∞}/I .

If $H_{\phi}^{\infty} = I$ then H^{∞}/I is a field. We wish to know H^{∞}/I when $H_{\phi}^{\infty} \neq I$.

THEOREM 4. Let A be a weak-* Dirichlet algebra and $I \subsetneq H_{\phi}^{\infty}$.

(1) There exists a weak-* closed subalgebra \mathcal{H}^{∞} of H^{∞} and we have the direct sum decomposition

$$H^{\infty} = \mathcal{H}^{\infty} \oplus I$$
.

- (2) I is a primary ideal and hence \mathcal{H}^{∞} is an integral domain.
- (3) $I = \{ f \in H^{\infty} : \psi(f) = 0 \text{ for all } \psi \in hull I \}.$
- (4) $hull\ I = M(\mathcal{H}^{\infty})$ and $H^{\infty} \mid hull\ I = \mathcal{H}^{\infty} \mid hull\ I$.
- (5) If \mathcal{L}^{∞} is the commutative von-Neumann algebra generated by \mathcal{H}^{∞} then \mathcal{H}^{∞} is a weak-* Dirichlet algebra and maximal among the proper weak-* closed subalgebra of \mathcal{L}^{∞} .

PROOF: By [14,Corollary 5], $H_{min} \neq H^{\infty}$ and by [14, Theorem 2], $I = \{f \in H_{min} : \int_{X} fgdm = 0 \text{ for all } g \in H_{min}\}$. By [7, Theorem 1.5], $H_{min} = \mathcal{L} \oplus I$ where $\mathcal{L} = H_{min} \cap \bar{H}_{min}$. Put $\mathcal{H}^{\infty} = H^{\infty} \cap \mathcal{L}$ then

$$H^{\infty} = \mathcal{H}^{\infty} \oplus I$$

and (1) follows. (2) is known in [14, Corollary 2], but we give a simple proof using (1). If $f,g \in H^{\infty}$ and $fg \in I$ then we can write $f=u+f_0$ and $g=v+g_0$ where $u,v \in \mathcal{H}^{\infty}$ and $f_0,g_0 \in I$. $fg \in I$ implies $uv \in I \cap \mathcal{H}^{\infty}$ and so uv=0. Hence u or v belongs to $I \cap \mathcal{H}^{\infty}$ and u=0 or v=0. This implies (2)

Let Φ be a homomorphism from H^{∞} onto \mathcal{H}^{∞} with the kernel I, then it is a contraction. The restriction map of elements in $M(H^{\infty})$ to \mathcal{H}^{∞} is continuous from $M(H^{\infty})$ into

 $M(\mathcal{H}^{\infty})$. If $\phi_0 \in M(\mathcal{H}^{\infty})$, put $\phi(f) = \phi_0(\Phi(f))$ for any $f \in H^{\infty}$ then $\phi \in M(H^{\infty})$ and $\phi \mid \mathcal{H}^{\infty} = \phi_0$. Hence the restriction map is onto and one to one on hull I. From this (3) and (4) follows. It is clear that $\mathcal{L}^{\infty} \subset \mathcal{L}$. By [15, Proposition 7], $\mathcal{L} + I + \overline{I}$ is weak-* dense in L^{∞} . Since $\mathcal{H}^{\infty} + \overline{\mathcal{H}}^{\infty} + I + \overline{I}$ is weak-* dense in L^{∞} , $\mathcal{H}^{\infty} + \overline{\mathcal{H}}^{\infty}$ is weak-* dense in L^{∞} and hence $L = \mathcal{L}^{\infty}$. This implies that \mathcal{H}^{∞} is a weak-* Dirichlet algebra in L^{∞} . If D is a weak-* closed subalgebra of L^{∞} which contains \mathcal{H}^{∞} properly, then $D \oplus I$ is a weak-* closed superalgebra of H^{∞} in H_{min} and $H_{min} = D \oplus I$ by the definition of H_{min} . Hence $D = \mathcal{L}^{\infty}$ and (5) follows.

When A is a weak-* Dirichlet algebra and $I \subsetneq H_{\phi}^{\infty}$ then hull $I \supsetneq \{\phi\}$.

§6. Structure of \mathbf{H}^{∞} in case $\mathbf{I} = H_{\phi}^{\infty}$.

THEOREM 5. Let A be a weak-* Dirichlet algebra and $I = H_{\phi}^{\infty}$.

(1) There exist a weak-* closed subalgebra \mathcal{H}^{∞} of H^{∞} and a weak-* closed ideal of H^{∞} with $J \subseteq I$, and we have the direct sum decomposition

$$H^{\infty} = \mathcal{H}^{\infty} \oplus J.$$

- (2) I is not a primary ideal and hence \mathcal{H}^{∞} is not an integral domain.
- (3) $J = \{ f \in H^{\infty}; \psi(f) = 0 \text{ for all } \psi \in hull J \}.$
- (4) $hull\ J = M(\mathcal{H}^{\infty})$ and $H^{\infty} \mid hull\ J = \mathcal{H}^{\infty} \mid hull\ J$.
- (5) If \mathcal{L}^{∞} is a commutative von-Neumann algebra generated by \mathcal{H}^{∞} then \mathcal{H}^{∞} is a weak-* Dirichlet algebra and $I(\mathcal{H}^{\infty}) = \mathcal{H}^{\infty}_{\phi}$.

PROOF: Since $I \neq \{0\}$, by Proposition 1 there exists a weak-* closed superalgebra B of H^{∞} with $H^{\infty} \subseteq B \subseteq L^{\infty}$. Let $J = \{f \in B; \int_{X} fgdm = 0 \text{ for all } g \in B\}$, then by [7, Theorem 1.5] $B = \mathcal{L} \oplus J$ and $\mathcal{L} = B \cap \bar{B} \neq \{1\}$. Let $\mathcal{H}^{\infty} = H^{\infty} \cap \mathcal{L}$ then $H^{\infty} = H^{\infty} \oplus J$ and (1) follows. By Proposition 3, there exists a weak-* closed superalgebra B_{1} of H^{∞} with $H^{\infty} \subseteq B_{1} \subseteq B$. Let $J_{1} = \{f \in B_{1} : \int_{X} fgdm = 0 \text{ for all } g \in B_{1}\}$, then $J_{1} \supseteq J$ and $B_{1} \cap \bar{B}_{1} \neq \{1\}$. There exists a characteristic function $\chi_{E_{0}} \in B_{1}$ such that

$\chi_E(\chi_{E_0}J_1)\supsetneq\chi_E(\chi_{E_0}J)$

for any $\chi_E \in B_1$ with $\chi_E \chi_{E_0} \neq 0$ (see [13, Theorem 1]). As in the proof of [12, Lemma 3], by [12, Lemma 2] there exists a characteristic function $\chi_E \in B_1$ such that $\chi_E \chi_{E_0} J_1 \neq \{0\}$ and $(1 - \chi_E)\chi_{E_0} J_1 \neq \{0\}$. If $f \in \chi_E \chi_{E_0} J_1$ and $g \in (1 - \chi_E)\chi_{E_0} J_1$ then $f \notin J$ and $g \in J$, and $fg \in J$. This implies (2). (3), (4) and that \mathcal{H}^{∞} is a weak-* Dirichlet algebra in \mathcal{L}^{∞} , can be proved as in the proof of Theorem 4.

We shall show that $I(\mathcal{H}^{\infty}) = \mathcal{H}^{\infty}_{\phi}$. If $\mathcal{H}^{\infty}_{\phi} \neq I(\mathcal{H}^{\infty})$, by [14, Corollary 5] $\mathcal{H}_{min} \supseteq \mathcal{H}^{\infty}$ and hence $\mathcal{H}_{min} \oplus J \supseteq H^{\infty}$. $\mathcal{H}_{min} \oplus J$ is a minimal weak-* closed subalgebra of L^{∞} that contains H^{∞} properly. By [17], $\mathcal{H}_{min} \oplus J = H_{min}$ and $H_{min} \neq H^{\infty}$. While by hypothesis and [14, Corollary 5], $H_{min} = H^{\infty}$. This contradiction implies $\mathcal{H}^{\infty}_{\phi} = I(\mathcal{H}^{\infty})$.

§8. Nontrivial Gleason part

We wish to know the relation between $G(\phi)$ and hull I.

PROPOSITION 7. Let m be a Jensen measure of ϕ . If there exists a Jensen measure μ of $\psi \in G(\phi)$ such that $\psi \neq \phi$ and μ is absolutely continuous with respect to m, then $H_{\phi}^{\infty} \supsetneq I$.

Proof is similar to the proof of Proposition 2.

THEOREM 8. Let A be a weak-* Dirichlet algebra and $G(\phi) \neq {\{\phi\}}$.

- (1) $I = \{ f \in H^{\infty} : \psi(f) = 0 \text{ for all } \psi \in G(\phi) \} \text{ and hull } I = \text{the closure of } G(\phi).$
- (2) $H^{\infty} = \mathcal{H}^{\infty} \oplus I$ and \mathcal{H}^{∞} is isometrically isomorphic to $H^{\infty}(T)$ in Example 2.

PROOF: By Theorem 4 $H^{\infty} = \mathcal{H}^{\infty} \oplus I$ and \mathcal{H}^{∞} is a weak-* Dirichlet algebra. Since $G(\phi) \neq \{\phi\}$ and hull $I \supset G(\phi)$ by Proposition 7, the Gleason part of ϕ in $M(\mathcal{H}^{\infty})$ is non-trivial. Hence $\mathcal{H}^{\infty}_{\phi} = Z\mathcal{H}^{\infty}$ for some $Z \in \mathcal{H}^{\infty}_{\phi}$ with |Z| = 1 (see [9, p.469]). Then $H^{\infty}_{\phi} = ZH^{\infty}$. Let $J = \{f \in H^{\infty} : \psi(f) = 0 \text{ for all } \psi \in G(\phi)\}$, then $H^{\infty} = \mathcal{H} \oplus J$ where \mathcal{H} denotes the weak-* closure of the polynomials in Z, and ZJ = J (see [9, Lemma 5]). Then $\mathcal{H} \subset \mathcal{H}^{\infty}$ becasue $Z \in \mathcal{H}^{\infty}$, and $J \supset I$. Let \mathcal{L} be the weak-* closure of the

polynomials in Z and \tilde{Z} , then $\mathcal{L}J \subset J$ and hence $J \subset I$. Thus $\mathcal{H} = \mathcal{H}^{\infty}$ and J = I. It is known that \mathcal{H} is isometrically isomorphic to $H^{\infty}(T)$ (cf. [21] and [9, Lemma 6]).

Theorem 8 is essentially a famous theorem of Wermer (cf. [21], [9] and [8]). It happens that $hull\ I \neq \{\phi\}$ and $G(\phi) = \{\phi\}$. Hence Theorem 4 is a generalization of Wermer's theorem in case $hull\ I \neq \{\phi\}$.

§8. General weak-* closed ideal

In this section, assuming that A is a weak-* Dirichlet algebra, we wish to consider general weak-* closed ideals in H^{∞} using the typical weak-* closed ideal I. Let J be a weak-* closed ideal of H^{∞} and put

$$B(J) = \{ f \in L^{\infty} : fJ \subset J \}.$$

It is reasonable to assume $B(J)=H^{\infty}$ because of the results in [12], [13] and [7]. $|J|=|H^{\infty}|$ by [16] where $|J|=\{|f|;f\in J\}$. If $[H_{\phi}^{\infty}J]_{\infty}\subseteq J$ then $J=qH^{\infty}$ for some unimodular function q in H^{∞} [19]. We wish to know about J when $[H_{\phi}^{\infty}J]_{\infty}=J$.

THEOREM 9. Suppose $I \neq H_{\phi}^{\infty}$. Let J be a weak-* closed ideal of H^{∞} with $B(J) = H^{\infty}$, then

$$J = J_0 \oplus qI$$

where $|J_0|=|\mathcal{H}^{\infty}|$ and $q \in H_{min}$ with |q|=1.

PROOF: Set $J_1 = [H_{min}J]_{\infty}$, then $\chi_E J_1 \supseteq \chi_E [IJ_1]_{\infty}$ for any $\chi_E \in H_{min}$ with $\chi_E \neq 0$. For if $\chi_E J_1 = \chi_E [IJ_1]_{\infty}$ for some $\chi_E \in H_{min}$ with $\chi_E \neq 0$, then

$$\chi_E J \subset \chi_E J_1 = \chi_E [IJ]_\infty \subset J$$

because $IH_{min} \subset I$, and this contradicts $B(J) = H^{\infty}$. By [7, Theorem 1.5] the measure m is quasi-multiplicative on H_{min} and by [13, Theorem 2] $J_1 = qH_{min}$ for some unimodular

function $q \in H_{min}$. Hence $H_{min} \supset \bar{q}J \supset I$ and $\bar{q}J = J_2 \oplus I$ where $\mathcal{L}^{\infty} \supset J_2$ and $\mathcal{H}^{\infty}J_2 \subset J_2$. Then by [16] $|J_2| = |\mathcal{H}^{\infty}|$ because \mathcal{H}^{∞} is a weak-* Dirichlet algebra in \mathcal{L}^{∞} . Put $J_0 = qJ_2$ then the theorem follows.

THEOREM 10. Suppose $I=H_{\phi}^{\infty}$ and B_{α} ($\alpha\in\Lambda$) are weak-* closed superalgebras of H^{∞} such that $B_{\alpha}\neq H^{\infty}$ and $\cap\{B_{\alpha}:\alpha\in\Lambda\}=H^{\infty}$. Let J be a weak-* closed ideal of H^{∞} with $B(J)=H^{\infty}$. Then

$$[\{\cup I_{\alpha}J: \alpha\in\Lambda\}]_{\infty}\subseteq J\subseteq\cap\{[B_{\alpha}J]_{\infty}: \alpha\in\Lambda\}$$

where $I_{\alpha} = \{ f \in B_{\alpha} : \int_{X} fgdm = 0 \text{ for all } g \in B_{\alpha} \}.$

- (1) For any $\alpha \in \Lambda$ $[B_{\alpha}J]_{\infty} = q_{\alpha}B_{\alpha}$ for some unimodular function $q_{\alpha} \in B_{\alpha}$ and if $[B_{\alpha}J]_{\infty} = q'_{\alpha}B_{\alpha}$ then $q_{\alpha}q'_{\alpha} \in B_{\alpha} \cap \bar{B}_{\alpha}$.
 - (2) If $[\cup I_{\alpha}J]_{\infty} \neq J$ then $J = qH^{\infty}$ for some unimodular function $q \in H^{\infty}$.
 - (3) If $J \neq \cap [B_{\alpha}J]_{\infty}$ then $J = qH_{\phi}^{\infty}$ for some unimodular function $q \in H^{\infty}$.
 - (4) If $[\cup I_{\alpha}J]_{\infty} = J = \cap [B_{\alpha}J]_{\infty}$ then

$$J = [\cup q_{\alpha}I_{\alpha}]_{\infty} = \cap q_{\alpha}B_{\alpha}$$

where q_{α} is a unimodular function in B_{α} .

PROOF: $[B_{\alpha}J]_{\infty} = q_{\alpha}B_{\alpha}$ for some unimodular function $q_{\alpha} \in B_{\alpha}$ as in the proof of Theorem 9 and it is clear that if $[B_{\alpha}J]_{\infty} = q'_{\alpha}B_{\alpha}$ then $q_{\alpha}\bar{q'_{\alpha}} \in B_{\alpha} \cap \bar{B}_{\alpha}$. This implies (1). (2) is clear because $[\cup I_{\alpha}]_{\infty} = I = H_{\phi}^{\infty}$ [19]. (3) follows by the dual method. (1) implies (4).

EXAMPLE 4: Let A be the algebra of continuous complexvalued functions on the infinite torus T^{∞} which are uniform limits of polynomials in $z_1^{\ell_1}, z_2^{\ell_1}, \ldots, z_n^{\ell_n}$ where $(\ell_1, \ell_2, \ldots, \ell_n, 0, 0, \ldots) \in \Gamma$ and Γ the set of $(\ell_1, \ell_2, \ldots) \in Z^{\infty}$ whose first non-zero entry is positive, together with 0. Denote by m the normalized Haar measure on T^{∞} , then A is the weak-* Dirichlet algebra of $L^{\infty}(m)$. Let B_n be the weak-* closure of $\bigcup_{i=0}^{\infty} \bar{z}_n^i H^{\infty}$, then $B_1 \supseteq B_2 \supseteq B_3 \supseteq \ldots H^{\infty}$ and $\bigcap_{n=1}^{\infty} B_n = H^{\infty}$. Let J be a weak-* closed ideal of H^{∞} with $B(J) = H^{\infty}$.

If $[\bigcup_n I_n J]_{\infty} = J = \bigcap_n [B_n J]_{\infty}$ then $J = [\bigcup_n q_n I_n]_{\infty} = \bigcap_n q_n B_n$, $q_n B_n \supset q_{n+1} B_{n+1}$, $q_n I_n \subset q_{n+1} I_{n+1}$ and $I_n = z_n B_n$, where $q_n \in B_n$ and $|q_n| = 1$.

In (4) of Theorem 10 (even if in Example 4) we don't know that there exists a weak-* closed ideal J of H^{∞} such that $[\cup I_{\alpha}J]_{\infty}=J=\cap [B_{\alpha}J]_{\infty}$. In the same method we can prove Theorems 9 and 10 for weak-* closed invariant subspace of L^{∞} under multipliations of functions of H^{∞} . Since H_{min} is an extended weak-* Dirichlet algebra, we apply to this algebra the general theory for extended weak-* Dirichlet algebras [15]. For example if w is positive in L^1 we can calculate $\inf\{\int_X |1-g|^2 \ wdm; g \in I\}$.

§10. An application of I

In this section we assume that A is a weak-* Dirichlet algebra. In Example 1, Shapiro [18] showed that if Γ_+ is a maximal semigroup of Γ and has not the least positive element, then for $0 each continuous linear functional on <math>H^p$ is a constant multiple of the linear functional determined by m. We shall show the same result for Example 1 not assuming that Γ_+ is a maximal semigroup of Γ , and for Example 3.

THEOREM 11. For $0 each continuous linear functional on <math>H^p$ is zero on I.

PROOF: We may assume $I \neq \{0\}$. By Proposition 1 there exsits a weak-* closed subalgebra B with $H^{\infty} \subseteq B \subseteq L^{\infty}$. Put $I_B = \{f \in B : \int_X fgdm = 0 \text{ for all } g \in B\}$ then $I_B \subset I$. For $I = \{f \in H_{min} : \int_X fgdm = 0 \text{ for all } g \in H_{min}\}$. Let ℓ be a continuous linear functional on H^p , put for any fixed $g \in I_B$

$$ilde{\ell}(u) = \ell(ug) \quad (u \in \mathcal{L}_B).$$

Then $\tilde{\ell}$ is a continuous linear functional on the L^p -closure of \mathcal{L}_B and hence $\tilde{\ell}=0$ by Day's theorem [3]. This implies $\ell(g)=0$ for each $g\in I$ and hence $\ell=0$ on I_B . When $I\neq H^\infty_\phi$, by [14, Corollary 5] $H_{min}\neq H^\infty$. If $B=H_{min}$ then $I=I_B$ and this implies the theorem. When $I=H^\infty_\phi$, by [14, Corollary 5] $H_{min}=H^\infty$. Hence there exist superalgebras B_α of H^∞ such that $\cap_\alpha B_\alpha=H^\infty$ and $B_\alpha\neq H^\infty$. Then $[\cup_\alpha I_{B_\alpha}]_\infty=I$ and hence $\ell=0$ on I.

COROLLARY 1. Suppose $I = H_{\phi}^{\infty}$. Then for $0 each continuous linear functional on <math>H^p$ is a constant multiple of the linear functional determined by m.

Muhly [10] showed Shapiro's theorem for ergodic H^{∞} . Corollary 1 does not contain it because $I = \{0\}$ for ergodic H^{∞} . In Example 1, if Γ_+ has not the least positive element, then $I = H^{\infty}_{\phi}$ or $H^{\infty} = \mathcal{H}^{\infty} \oplus I$ where \mathcal{H}^{∞} is isometrically isomorphic to the Hardy space in case Γ_+ is a maximal semigroup. Hence Corollary 1 and Shapiro's theorem imply that for $0 each continuous linear functional on <math>H^p$ is a constant multiple of the linear functional determined by m.

REFERENCES

- 1. H.Arai, On the algebra of bounded holomorphic martingales, Proc. Amer. Math. Soc. 97 (1986), 616-620.
- 2. K. Barbey and H.König, Abstract analytic function and Hardy algebras, Lecture Notes in Mathematics 593 (1977), Springer-Verlag, Berlin.
- 3. M.Day, The spaces L^p with 0 , Bull. Amer. Math. Soc. 46 (1940), 816-823.
- 4. T.W. Gamelin, Embedding Riemann surfaces in maximal ideal spaces, J. Funct. Anal. 2 (1968), 123-146.
- H. Helson and F. Quigley, Maximal algebras of continuous functions, Proc. Amer. Math. Soc. 8 (1957), 111-114.
- K. Hoffman and I. M. Singer, Maximal algebras of continuous functions, Acta Math. 103 (1960), 217-241.
- 7. R.Kallenborn and H.König, An invariant subspace theorem in the abstract Hardy algebra theory, Arch. Math. 39 (1982), 51-58.
- 8. K.Kishi, The maximal ideal space of certain algebra $H^{\infty}(m)$, J. Math. Soc. Japan 30 (1978), 483-493.
- 9. S.Merrill and N. Lal, Characterization of certain invariant subspaces of H^p and L^p spaces derived from logmodular algebras, Pacific J. Math. 30 (1969), 463-474.
- 10. P.S.Muhly, Ergodic Hardy spaces and duality, Michigan Math. J. 25 (1978), 317-323.

- 11. P.S.Muhly, Maximal weak-* Dirichlet algebras, Proc. Amer. Math. Soc. 36 (1972), 515-518.
- 12. T.Nakazi, Superalgebras of weak-* Dirichlet algebras, Pacific J. Math. 68 (1977), 197-207.
- T.Nakazi, Invariant subspaces of weak-* Dirichlet algebras, Pacific J. Math. 69 (1978), 151-167.
- 14. T.Nakazi, Quasi-maximal ideals and quasi-primary ideals of weak-* Dirichlet algebras, J. Math. Soc. Japan 31 (1979), 677-685.
- 15. T. Nakazi, Extended weak-* Dirichlet algebras, Pacific J. Math. 81 (1979), 493-513.
- 16. T. Nakazi, Helson's existence theorem of function algebras, Arch. Math. 32 (1979), 386-390.
- 17. T. Nakazi, Minimal superalgebras of weak-* Dirichlet algebras, Proc. Amer. Math. Soc. 95 (1985), 70-72.
- 18. J. Shapiro, Subspaces of $L^p(G)$ spanned by characters: 0 , Israel J. Math. 29 (1978), 248-264.
- 19. T.P.Srinivasan and J.-K.Wang, Weak-* Dirichlet algebras, Function Algebras (1966), 216-249, Scott, Foresman, and Co., Chicago.
- 20. N.Th. Varopoulos, The Helson-Szegö theorem and A_p -functions for Brownian motion and several variables, J. Funct. Anal. 39 (1980), 85-121.
- 21. J. Wermer, Dirichlet algebras, Duke Math. J. 27 (1960), 373-382.