
Global properties of spacelike curves in
Minkowski 3-space

Shyuichi IZUMIYA, Makoto KIKUCHI and Masatomo TAKAHASHI

April 6, 2005

Abstract

We study global properties of closed spacelike curves in Minkowski 3-space.

1 Introduction

Recently there appeared some articles on differential geometry of spacelike submanifolds in
Minkowski space [2, 3, 4, 5, 7, 8]. A natural question is how global properties of spacelike
submanifolds in Minkowski space are different from those properties of submanifold in Euclidean
space? The simplest case is spacelike curves in Minkowski 3-space. In this paper we study global
properties of spacelike closed curves in Minkowski 3-space. There exists the canonical Euclidean
plane in Minkowski 3-space with the natural projection from Minkowski 3-space (cf., §2). If
we consider a regular (immersed) closed curve in such the plane, then it is a spacelike regular
closed curve.

Firstly we consider a problem how global properties of spacelike closed curves are different
from those of closed Euclidean plane curves. For any regular spacelike curve, the projection
image is a regular plane curve. Therefore the rotation number of the projection image is a
regular homotopy invariant for spacelike regular closed curves. The converse assertion is also
true for regular spacelike closed curves (cf., Theorem 3.1). It follows from the theorem of
Whitney [12] that the rotation number of the projection image of a spacelike regular closed
curve is a complete invariant with respect to the spacelike regular homotopy. We also give a
Lorentzian geometric formula for calculating the rotation number of the projection image of a
spacelike regular closed curve (cf., Theorem 3.8).

Secondary, we consider spacelike knots (closed embedded spacelike curves). In order to avoid
wildness we consider in the PL-category. We consider the spacelike isotopy among spacelike
knots and show that two spacelike knots K and K ′ are spacelike isotopic if and only if these are
isotopic (as the ordinary sense) and the regular projection images (Minkowski spacelike regular
diagrams) of these spacelike knots are regular isotopic. Here we say that two regular diagrams
in a plane is regular isotopic if we can change one of the regular diagram to another regular
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diagram by performing, a finite number of times, the Reidemeister moves Ω2, Ω3 (cf., Fig. 1 in
§4). In [10], the oriented regular isotopic class of oriented regular diagrams given by the same
oriented knot up to isotopy (in the sense of the ordinary knot theory) is completely determined
by the pair of the rotation number and the writhe of the regular diagrams. It follows that the
spacelike isotopy among spacelike knots is completely determined by the pair of the rotation
number and the writhe of the regular projection images up to the ordinary isotopy.

2 Basic facts and notations

In this section we prepare some basic notions on Minkowski 3-space and spacelike curves. For
basic concepts and properties, see [11]. Let R3 = {(x0, x1, x2) | xi ∈ R (i = 0, 1, 2) } be a
3-dimensional cartesian space. For any x = (x0, x1, x2), y = (y0, y1, y2) ∈ R3, the pseudo scalar
product of x and y is defined by

〈x, y〉 = −x0y0 + x1y1 + x2y2.

We call (R3, 〈, 〉) Minkowski 3-space. We denote R3
1 instead of (R3, 〈, 〉). We say that a non-

zero vector x ∈ R3
1 is spacelike, lightlike or timelike if 〈x, x〉 > 0, 〈x, x〉 = 0 or 〈x, x〉 < 0

respectively. The norm of the vector x ∈ R3
1 is defined by ‖x‖ =

√|〈x, x〉|. We have the
canonical projection π : R3

1 −→ R2 defined by π(x0, x1, x2) = (x1, x2). Here we identify {0}×R2

with R2 and it is considered as Euclidean plane whose scalar product is induced from the pseudo
scalar product 〈, 〉. We denote that

LC∗
+ = {x = (x0, x1, x2, x3) ∈ LC0 |x0 > 0, 〈x, x〉 = 0}

and we call it the future lightcone at the origin. If x = (x0, x1, x2) is a lightlike vector, then
x0 �= 0. Therefore we have

x̃ =

(
1,

x1

x0
,
x2

x0

)
∈ S1

+ = {x = (x0, x1, x2) | 〈x, x〉 = 0, x0 = 1}.

We call S1
+ the lightcone (or, spacelike) unit circle.

For any x = (x0, x1, x2), y = (y0, y1, y2) ∈ R3
1, the pseudo vector product of x and y is

defined as follows:

x ∧ y =

∣∣∣∣∣∣
−e0 e1 e2

x0 x1 x2

y0 y1 y2

∣∣∣∣∣∣ = (−(x1y2 − x2y1), x2y0 − x0y2, x0y1 − x1y0),

where {e0, e1, e2} is the canonical basis of R3
1.

We now review Lorentzian differential geometry on spacelike regular curves. Let γ : I −→ R3
1

be a spacelike regular curve, where I is an open interval. The arc -length of a spacelike curve
γ, measured from γ(t0), t0 ∈ I is

s(t) =

∫ t

t0

‖γ̇(t)‖dt,

where γ̇ = dγ/dt. Then a parameter s is determined such that ‖γ′(s)‖ = 1, where γ′(s) = dγ/ds.
Consequently we say that a spacelike regular curve γ is parameterized by arc-length if it satisfies
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‖γ′(s)‖ = 1. We now assume that the parameter s of γ is the arc-length parameter. Let us
denote t(s) = γ′(s), and we call t(s) a unit tangent vector of γ at s. We define the curvature
by κ(s) = ‖γ′′(s)‖. If κ(s) �= 0, then the unit principal normal vector n(s) of the curve γ at s
is given by γ′′(s) = κ(s)n(s). The signature of x is defined to be

sign (x) =




1 x is spacelike,
0 x is lightlike,

−1 x is timelike.

We write δ(γ(s)) = sign (n(s)). The unit vector b(s) = t(s) ∧ n(s) is called a unit binormal
vector of the curve γ at s. Since t(s) is spacelike, we have 〈b(s), b(s)〉 = −δ(γ(s)). Then the
following Frenet-Serret type formula holds:


t′(s) = κ(s)n(s),
n′(s) = −δ(γ(s))κ(s)t(s) + τ(s)b(s),
b′(s) = τ(s)n(s),

where τ(s) is the torsion of the curve γ at s (cf. [1]). This is the system of natural equations
for the study of spacelike curves in R3

1. It is, however, useless at the point γ(s) with κ(s) = 0.
We denote N(s) = γ′′(s) and B(s) = t(s) ∧ N(s) under the assumption that γ′′(s) �= 0. We
simply call N(s) a principal normal vector and B(s) a binormal vector. If κ(s) �= 0, then we
have N(s) = κ(s)n(s) and B(s) = κ(s)b(s). It follows that

〈N (s) ± B(s), N(s) ± B(s)〉 = κ2(s)(δ(γ(s)) − δ(γ(s))) = 0.

If κ(s) = 0, then N(s) is a lightlike vector, so that any pseudo orthogonal vector in the normal
plane of γ(s) is parallel to N(s). This means that N(s) ± B(s) is a lightlike vector which is
parallel to the vector N(s) for s ∈ I with κ(s) = 0.

For any spacelike regular curve γ : I −→ R3
1 with the arc-length parameter s, we define the

lightcone Gauss map L̃ : I −→ S1
+ by

L̃(s) = ˜N (s) + B(s).

By the previous arguments, we have L̃(s) = ˜n(s) + b(s) when κ(s) �= 0. Therefore we define a
map L : I −→ LC∗ by

L(s) = n(s) + b(s)

under the condition that κ(s) �= 0. In this case, we write that L(s) = (�0(s), �1(s), �2(s)).

For a spacelike curve γ : I −→ R3
1, we now define a family of functions H : I × S1

+ −→ R

by H(s, v) = 〈γ(s), v〉. We call H a lightcone height function on γ. We denote h(s) = H(s, v0)
for v0 ∈ S1

+. In [2], we have shown the following proposition:

Proposition 2.1 Let γ : I −→ R3
1 be a unit sped spacelike curve with γ′′(s) �= 0.

(1) h′(s0) = 0 if and only if v0 is in the pseudo-normal plane at γ(s0). Especially, if κ(s0) �= 0,

then v0 = ˜N(s0) ± B(s0).

(2) h′(s0) = h′′(s0) = 0 if and only if v0 = ˜N(s0) ± B(s0) = Ñ(s) and κ(s0) = 0.
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We consider the meaning of the above proposition as follows: Let F : (R × R, (0, 0)) −→ R

be a germ of smooth functions family. By the implicit function theorem, ∂2F/∂t∂u(0, 0) �= 0
and ∂F/∂t(t, u) = 0 if and only if there exists a smooth function germ g : (R, 0) −→ (R, 0) such
that u = g(t). Under this condition, ∂2F/∂t2(0, 0) = 0 if and only if g′(0) = 0. Applying this
general arguments to the lightcone height function family H, we have the following corollary:

Corollary 2.2 Let γ : I −→ R3
1 be a unit speed spacelike curve with γ′′ �= 0. Then s0 ∈ I is a

singular point of the lightcone Gauss map (ie., L̃′(s0) = 0 ) if and only if κ(s0) = 0.

The main subject in this paper is a spacelike closed curve. Let γ : S1 −→ R3
1 be a smooth

regular closed curve (i.e., γ̇(t) �= 0), where S1 is a unit circle. Throughout in this paper,
we assume that S1 is oriented as the anti-clockwise direction. We say that γ is spacelike
if the tangent vector γ̇(t) is spacelike at any point t ∈ S1. For any spacelike curve γ(t) =
(x0(t), x1(t), x2(t)), the relation −ẋ0(t)

2+ẋ1(t)
2+ẋ2(t)

2 > 0 leads that π◦γ̇(t) = (ẋ1(t), ẋ2(t)) �=
0, so that π◦γ is always a regular Euclidean plane curve. Moreover if a spacelike regular closed
curve γ is an embedding, we call it a spacelike knot.

3 Spacelike regular homotopy

In this section we consider regular homotopy classifications of regular spacelike closed curve.
Let γ0, γ1 : S1 −→ R3

1 be closed regular spacelike curves in R3
1. We say that γ0 and γ1 are

spacelike regular homotopic if there exists a smooth map F : S1 × [0, 1] −→ R3
1 such that

Fτ : S1 −→ R3
1 is a closed regular spacelike curve at each τ ∈ [0, 1] and F0 = γ0, F1 = γ1.

Here, we denote Fτ (t) = F (t, τ). By the argument in the last section, if γ0 and γ1 are spacelike
regular homotopic, then π ◦γ0 and π ◦γ1 are regular homotopic as closed regular plane curves.
It has been known that the regular homotopy classification among regular plane curves are
classified by the rotation number [12]. Therefore the rotation number of the projection of a
closed spacelike regular curve is a spacelike regular homotopy invariant. For regular spacelike
closed curves, we have the following theorem:

Theorem 3.1 Let γ0, γ1 be regular spacelike closed curves. If π ◦ γ0 and π ◦ γ1 are regular
homotopic as regular plane curves, then γ0 and γ1 are spacelike regular homotopic.

Proof. By the assumption, there exists a smooth mapping H : S1×I −→ R2 such that H(t, 0) =
γ0(t), H(t, 1) = γ1(t) and ∂H/∂t(t, τ) �= 0. We set γ0(t) = (x0(t), x1(t), x2(t)). Since γ0 is a
spacelike curve, we have −ẋ2

0(t)+ẋ2
1(t)+ẋ2

2(t) > 0 and ẋ2
1(t)+ẋ2

2(t) = ‖∂H/∂t(t, 0)‖2. Therefore
we have|ẋ0(t)| < ‖∂H/∂t(t, 0)‖. If we put γ1(t) = (y0(t), y1(t), y2(t)), then we also have |ẏ0(t)| <
‖∂H/∂t(t, 1)‖. Since 0 < ‖∂H/∂t(t, τ)‖ for any (t, τ) ∈ S1 × I, there exists a smooth function
h : S1 × I −→ R such that h(t, 0) = ẋ0(t), h(t, 1) = ẏ0(t) and |h(t, τ)| < ‖∂H/∂t(t, τ)‖. We
now define a smooth mapping F : S1 × I −→ R3

1 ; F (t, τ) = (f0(t, τ), f1(t, τ), f2(t, τ)) where

f0(t, τ) =

∫ t

0

h(s, τ)ds + τy0(0) + (1 − τ)x0(0), (f1(t, τ), f2(t, τ)) = H(t, τ).

Since ∂f0/∂t(t, τ) = h(t, τ), we have(
∂f0

∂t
(t, τ)

)2

<

∥∥∥∥∂H

∂ta
(t, τ)

∥∥∥∥2

=

(
∂f1

∂t
(t, τ)

)2

+

(
∂f2

∂t
(t, τ)

)2

.
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Moreover ∂F/∂t(t, τ) = (∂f0/∂t(t, τ), ∂H/∂(t, τ)) �= 0. We also have f0(t, 0) =
∫ t

0
ẋ0(s)ds +

x0(0) = x0(t)− x0(0) + x0(0) = x0(t) and f0(t, 1) =
∫ t

0
ẏ0(s)ds + y0(0) = y0(t)− y0(0) + y0(0) =

y0(t). Therefore we have a spacelike regular homotopy F between γ0 and γ1. �

For a regular closed plane curve γ : S1 −→ R2, we denote the rotation number of γ by R(γ).
We have the following corollary of the above theorem and Whitney’s classification theorem:

Corollary 3.2 Let γ0 and γ1 be spacelike regular closed curve in R3
1. Then γ0 and γ1 are

spacelike regular homotopic if and only if R(π ◦ γ0) = R(π ◦ γ1).

We remark that the rotation number of the projection of a closed spacelike regular curve is
a complete invariant under the spacelike regular homotopy.

On the other hand, we try to calculate the rotation number of a spacelike regular closed
curve from the view point of Lorentzian differential geometry. Let γ : S1 −→ R3

1 be a unit speed
closed spacelike regular curve with γ′′ �= 0. We now fix the parameterization of the lightcone
circle:

S1
+ = {(1, cos θ, sin θ) | 0 ≤ θ < 2π}.

It follows that we can denote that

L̃(s) = (1, cos θ(s), sin θ(s))

by a smooth function θ(s). Then we have the following proposition:

Proposition 3.3 Under the same notations as the above, we have the following relation:

dθ

ds
(s) =

−δ(γ(s))

�0(s)
κ(s)

at s ∈ S1 with κ(s) �= 0. If κ(s) = 0 then dθ/ds(s) = 0.

Proof. Firstly we assume that κ(s) �= 0. By definition, we have

L̃′(s) =

(
0,− sin θ(s)

dθ

ds
(s), cos θ(s)

dθ

ds
(s)

)
.

If we write n(s) = (n0(s), n1(s), n2(s)), then we calculate the following determinant:

|n(s), L̃(s), L̃′(s)| =

∣∣∣∣∣∣
n0(s) n1(s) n2(s)

1 cos θ(s) sin θ(s)
0 − sin θ(s)(dθ/ds)(s) cos θ(s)(dθ/ds)(s)

∣∣∣∣∣∣
=

dθ

ds
(s)(n0(s) − n1(s) cos θ(s) − n2(s) sin θ(s))

= −dθ

ds
(s)〈n(s), L̃(s)〉

=
dθ

ds
(s)

〈
n(s),

1

�0(s)
(n(s) + b(s))

〉

= −δ(γ(s))

�0(s)

dθ

ds
(s).
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On the other hand, since L = �0L̃, we have L′ = �′0L̃ + �0L̃
′. Moreover, by the Frenet-Serret

type formula, we have L′ = −δ(γ)κt + τ(n + b). It follows that

|n(s), L̃(s), L̃′(s)| =

∣∣∣∣n(s),
1

�0(s)
L(s),

1

�0(s)
L′(s) +

�′0(s)
�0(s)

L(s)

∣∣∣∣
=

∣∣∣∣n(s),
1

�0(s)
(n(s) + b(s)),

1

�0(s)
(−δ(γ(s))κ(s)t(s) + τ(s)(n(s) + b(s)

∣∣∣∣
=

−δ(γ(s))κ(s)

�2
0(s)

|n(s), b(s), t(s)|

=
−δ(γ(s))κ(s)

�2
0(s)

|(−δ(γ(s))) =
κ(s)

�2
0(s)

.

Therefore we have the desired relation.

By Corollary 2.2, κ(s) = 0 if and only if s is a singular point of the lightcone Gauss map.
This is equivalent to the condition dθ/ds(s) = 0. �

We define the normalized curvature κ̄(s) by

κ̄(s) =
−δ(γ(s))

�0(s)
κ(s).

Then we have the following proposition:

Proposition 3.4 For any unit speed closed regular spacelike curve γ : S1 −→ R3
1 with γ′′ �= 0,

we have

1

2π

∫
S1

κ̄(s)ds = deg L̃,

where deg L̃ is the mapping degree of L̃.

Proof. By Proposition 3.3, we have∫
S1

κ̄(s)ds =

∫ 2π

0

dθ

ds
(s)ds = 2πdeg L̃.

�

By using the canonical projection π : (R3 −→ R2, we have an orientation preserving diffeo-
morphism π|S1

+ : S1
+ −→ S1. We now consider the (Euclidean) Gauss map

N : S1 −→ S1

on π ◦ γ.

We need the following lemma.

Lemma 3.5 For any unit speed closed regular spacelike curve γ : S1 −→ R3
1, the vector π◦L̃(s)

is transverse to (π ◦ γ)′(s) at any point s ∈ S1.
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Proof. Suppose that there is a point s ∈ S1 such that the vector π ◦ L̃(s) is not transverse to

(π ◦ γ)′(s). Since π ◦ γ is a regular curve in R2, we have π ◦ L̃(s) ∈ 〈(π ◦ γ)′(s)〉�. Therefore we
have

L̃(s) ∈ 〈γ′(s)〉� + Ker dπγ(s).

On the other hand, L̃(s) is in the pseudo-normal plane of γ at s and L̃(s) /∈ Ker dπγ(s). Since
Ker dπγ(s) is a timelike one-dimensional subspace in Tγ(s)R

3
1, we have

〈L̃(s), Ker dπγ(s)〉� + 〈γ′(s)〉� = Tγ(s)R
3
1.

However, by the assumption, the dimension of the vector space in the left hand side is at most
2. This is a contradiction. �

Lemma 3.6 Under the choice of a suitable direction of N, π ◦ L̃ and N are homotopic.

Proof. Since L̃ is transverse to π ◦ γ(S1) in R2, 〈π ◦ L̃(s), N(s)〉 �= 0 at any s ∈ S1. Since S1 is

connected, we choose the direction of N such that makes 〈π ◦ L̃(s), N(s)〉 > 0.

We now construct a homotopy between π ◦ L̃ and N. Let

F : S1 × [0, 1] −→ S1

be defined by

F (s, t) =
tN(s) + (1 − t)π ◦ L̃(s)

‖tN(s) + (1 − t)π ◦ L̃(s)‖
,

where ‖ · ‖ is the Euclidean norm.

If there exists t′ ∈ [0, 1] and s′ ∈ S1 such that t′N(s′) + (1 − t′)π ◦ L̃(s′) = 0, then we have

N(s′) = −π ◦ L̃(s′). This contradicts to the assumption that 〈π ◦ L̃, N(s)〉 > 0. Therefore F is

a continuous mapping satisfying F (s, 0) = π ◦ L̃(s) and F (s, 1) = N(s) for any s ∈ S1. �

Since the mapping degree is a homotopy invariant and a invariant under orientation pre-
serving diffeomorphisms, we have the following corollary.

Corollary 3.7 Under the same assumptions as those in Proposition 3.4, we have

deg L̃ = R(π(γ)).

By the definition of the normalized lightcone curvature κ̄, we obtain:

1

2π

∫
S1

κ̄(s)ds = deg (L̃) = R(π(γ)).

This proves the following theorem.

Theorem 3.8 For any unit speed closed regular spacelike curve γ : S1 −→ R3
1 with γ′′ �= 0, we

have

1

2π

∫
S1

κ̄(s)ds = R(π(γ)).
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4 Spacelike knots

In this section we consider spacelike knots in Minkowski 3-space. This section depends heavily
on results in the ordinary knot theory in Euclidean 3-space. For fundamental concepts, please
refer [9].

Although the notion of spacelike knots is defined as smooth spacelike embeddings, we con-
sider in the PL-category like as the ordinary knot theory. A spacelike knot K is defined to be
a closed polygon in Minkowski 3-space satisfying the following conditions:

(1) Any age of K is a part of a spacelike line.

(2) For any age AB, the projection image π(AB) is also a line segment in the Euclidean
plane.

(2) If we have two adjacent edges AB, BC of K, then π(AB) ∩ π(BC) = {π(B)}.
By the original definition of spacelike curves in the smooth category, the projection image

of a spacelike curve is a regular curve in the Euclidean plane. Therefore we need the condition
(2) and (3) in the PL-category.

On the given spacelike knot K we may perform the following four operations:

(1) We may divide an edge,AB, in space of K into two edges, AC, CB, by placing a point
C on the edge.

(2) [The converse of (1)] If AC and CB are two adjacent edges of K such that if C is erased
AB becomes a straight line, then we may remove the point C.

(3) Suppose C is a point in space that does not lie on K. Consider edges XA, AB, BY
in K. If AC, CB are parts of spacelike lines and the triangle �ABC, formed by AB and C,
does not intersect K, with the exception of the edge AB, moreover π(XA) ∩ π(�ABC) =
π(BY ) ∩ π(�ABC) = ∅, we may remove AB and add the two edges AC and CB.

(4) [The converse of (3)] If there exists in space a triangle �ABC that contains two adjacent
edges AC and CB of K, and this triangle does not intersect K, except at the edges AC and
CB, moreover π(XA) ∩ π(�ABC) = π(BY ) ∩ π(�ABC) = ∅, then we may delete the two
edges AC, CB and add the edge AB.

These four operations (1), (2), (3), (4) are called the elementary spacelike knot move. A
spacelike knot K is said to be spacelike equivalent (or,spacelike isotopic) to a spacelike knot K ′

if we obtain K ′ by applying the elementary spacelike knot moves a finite number of times. We
can also consider the orientation of spacelike knots as usual.

We consider the projection π(K) of a spacelike knot K. Like as the ordinary knot projection,
by performing several elementary spacelike knot moves, we can impose the following conditions:

(1) π(K) has at most a finite number of points of intersection.

(2) If Q is a point of intersection of π(K), then the inverse image , π−1(Q) ∩ K, of Q in K
has exactly two points. That is, Q is a double point of π(K).

(3) A vertex of K is never mapped onto a double point of π(K).

The projection π(K) that satisfies the above conditions is said to be a Minkowski spacelike
regular projection. If we distinct the knot passes over or under itself at each double point, we
have a Minkowski spacelike regular diagram.

We now consider the analogy of the Reidemeister moves of ordinary knots. In the ordinary
knot theory, there are three kinds of moves Ω1, Ω2 and Ω3 and/or their inverses which are
called the Reidemeister moves. Of course, we ignore the trivial moves Ω∗, Ω0 here. We now call
just the two moves Ω2 and Ω3 and/or their inverse the spacelike Reidemeister moves. We can
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easily show that all spacelike Reidemeister moves can be obtained as sequences of elementary
spacelike moves.

��

��

��

��

��

Figure 1: The Reidemeister moves

Let K and K ′ be spacelike knots with Minkowski spacelike regular diagrams π(K) and
π(K ′), respectively. Then π(K) and π(K ′) are equivalent as Minkowski spacelike regular di-
agrams (or briefly, M-s-equivalent) if we can change π(K) to π(K ′) by performing, a finite
number of times, the spacelike Reidemeister moves (with trivial moves). We remark that M-
s-equivalent has been called the regular isotopy among regular diagrams in the ordinary knot
theory. We can show the following theorem:

Theorem 4.1 Let K and K ′ be spacelike knots with Minkowski spacelike regular diagrams
π(K) and π(K ′), respectively. Then K and K ′ are spacelike equivalent if and only if π(K) and
π(K ′) are M-s-equivalent.

The proof of Theorem 4.1 is almost parallel to that of the corresponding theorem in the
ordinary knot theory (cf., [9], Theorem 4.1.1). We can verify that we do not use the Ω1 move
and its inverse for each step of the proof in the ordinary knot theory. Therefore we only describe
the outline of the proof here. For simplicity, we call a finite number of times a composition of
spacelike Reidemeister moves a spacelike R-move.
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We can easily show that the following 7 moves are spacelike R-moves:

���� ����

��

���� ����

�� ��

���� ���� ��	�

Figure 2: a1, a2, b1, b2, c1, c2, c3

Outline of the proof of Theorem 4.1. Let K be a spacelike knot. Suppose that K ′ is
obtained by replacing AB of K by two edges AC ∪CB of �ABC. Here we write a = π(A), b =
π(B), c = π(B) etc. In the ordinary knot theory we need to consider two cases in Fig. 3.
However, the case (b) cannot be occurred as an elementary spacelike knot moves, so that we
only consider the case (a). We denote that π(�ABC) = �abc and π(AB) = ab. Therefore,
it is enough to show that we can change W = ac ∪ cb to the segment ab by repeatedly using
spacelike R-moves. In the proof of ([9],Theorem 4.1.1), we can verify that only the above
spacelike R-moves {a1, a2, b1, b2, c1, c2.c3} are used. Therefore we change π(K) to π(K ′) by
performing, a finite number of times, the spacelike Reidemeister moves. �

The equivalence relation on regular diagrams generated by the Reidemeister moves Ω2 and
Ω3 has been called a regular isotopy [6]. Therefore Theorem 4.1 asserts that K and K ′ are
spacelike isotopic if and only if π(K) and π(K ′) are regular isotopic. We now consider regular
isotopic invariants for regular diagrams. We consider oriented knots. Let assign either +1 or
−1 to each crossing point of a regular diagram of an oriented knot. At a crossing point, c, of an
oriented spacelike regular diagram , as shown in Fig. 4, we have two possible configurations.
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Figure 3: Two cases for the ordinary knot Figure 4: Signatures

In case (a) we assign sign(c) = +1 to the crossing point, while in case (b) we assign
sign(c) = −1. For an oriented spacelike knot K, we have the oriented Minkowski spacelike
regular diagram π(K). Then, the sum w(K) of the signs of all the crossing points of π(K)
is said to be the writhe (or, the Tait number) of K. In [10], it has been shown the following
theorem:

Theorem 4.2 Let K and K ′ be oriented knots in Euclidean space with the oriented regular
diagrams D and D′ of a fixed regular projection respectively. Then D is regular isotopic to D′

if and only if K is isotopic to K ′ and (R(D), w(D)) = (R(D), w(D)).

As a corollary of Theorems 4.1 and 4.2, we have the following classification theorem:

Theorem 4.3 Let K and K ′ be oriented spacelike knots. Then K is spacelike isotopic to K ′

if and only if K is isotopic to K ′ (as ordinary knots) and

(R(π(K)), w(π(K))) = (R(π(K ′)), w(π(K ′))).
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