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§ 0 Introduction. The purpose of this article is to prove

(0.1) Theorem. A compact complex threefold homeomorphic to a
nonsingular hyprergquadric 03 in P4 is isomorphic to 03 if
Hl(X,OX) = 0 and if there is a positive integer m such that dim

0
H (X, me) > 1.
As its corollaries, we obtain

(0.2) Theorem. A Moishezon threefold homeomorphic to Q3 is
isomorphic to Q3 if its Kodaira dimension is less than three.

A compact complex threefold is called a Moishezon
threefold if it has three algebraically independent meromorphic
functions on it.

(0.3) Theorem. An arbitrary complex analytic (global)

deformation of Q3 is isomorphic to Q3.

We shall prove a stronger theorem (2.1) in arbitrary
characteristic and apply this in complex case to derive (0.1).
The above theorems in arbitrary dimension have been proved by
Brieskorn [2] under the assumption that the manifold is
kdhlerian. See also [3],[9],[11] for related results. When I
completed the major parts of the present article, I received a
preprint [14) of Peternell, in which he claims that he is able
to prove the theorems (0.2) and (0.3) without assuming the

condition on Kodaira dimension. See [12,(3.3)].



The main idea of the present article is the same as that
of our previous work [12], in which we proved the similar
theorems for complex projective space P3. However there arises
a new problem that we have never seen in [12]. See (0.4) below.

Let X be a complex threefold with Hl(X,OX) =0 ,K(X,—Kx)
2 1 (see [61), which is homeomorphic to a nonsingular
hyperquadric Q3. Let L be the generator of Pic X (¥ Z) with L3
equal to two. Then Kx = ~3L by Brieskorn [2], Morrow [11] and
{12,(1.1)]. 1In the same manner as in [12], we see that dim [L|
is not less than four.

Let D and D' be an arbitrary pair of distinct members of
IL], & the scheme-theoretic complete intersection D N D' of D
and D'. Then 2 is a pure one dimensional connected closed
analytic subspace of X containing Bs |L|, the base locus of the

linear system |L|. By studying 2 and Qr in detail, we

ed

eventually prove that the base locus Bs IL] is empty. Indeed,

we are able to verify;

(0.4) Lemma. gred is a connected (prossibly reducible) curve

whose irreducible components are nonsingular rational curves
intersecting transversally and either
(0.4.1) 92 is an irreducible nonsingular rational curve, or

(0.4.2) 92 is "a double line" with Qr irreducible nonsingular,

ed

(0.4.3) & is "a double 1line" plus a nonsingular rational curve,

(0.4.4) 9 is reduced everywhere and is the union of two



rational curves ("lines") and a (possibly empty) chain of
rational curves connecting the "lines", each component ¢f the

chain being algebraically equivalent to zero.

It turns out after completing the proof of (0.1) that the
case (0.4.3) is impossible and the chain in (0.4.4) is empty.

It follows from (0.4) that Bs |L| is empty so that the
complete intersection & = D M D' is irreducible nonsingular for
a general pair D and D', and that dim [L| is equal to four.
Thus we have a bimeromorphic morphism £ ¢f X onto a (possibly
singular) hyperquadric in P4 associated with the linear system
|L]. It follows from Pic X ¥ Z and an elementary fact about
singular hypergquadrics in P4 that the image £(X) is nonsingular
and that £ is an isomorphism of X onto Q3.

The article is organized as follows. 1In section one, we
recall elementary facts about algebraic two cycles on singular

hyperguadrics in P4. In sections 2-8, we consider a threefold X

124

with a line bundle L such that Pic X ZL., X, = -3L, L3 is

X
positive, k(X,L) 2 1 (see [7]). In section 2,we prove the
vanishing of certain cohomology groups. We also prove L3 22
and ho(X,L) 2 5.

In section 3, first we state without proof five lemmas
(3.2)-(3.6) which are detailed forms of (0.4) and then by
assuming these , prove that X is isomorphic to 03. In sections

4-8, we study a scheme-theoretic complete intersection & = D I

D' to prove the lemmas (3.2)-(3.6).



In section 9, we first give a slight improvement of a
theorem in [12) and complete the proofs of (0.1) by applying the

results in sections 2-8.

Acknowledgement. We are very grateful to A. Fujiki and

H. Watanabe for their encouragement and advices.

List of notations

yA integers or the infinite cyclic group

o complex numbers

X a nonsingular threefold

K(X,L) L-dimension of X, L being a line bundle on X [7]

Bs L] the set of base points of the linear system |L|
Hq(X,F) the g-th cohomology group of X with coefficients in

a coherent sheaf F

hdx,F) dimCHq(X,F)
X(X,F) r-0%%x, )
o {=¥A
%
OX’ OX the sheaf of germs over X of holomorphic (resp.

nonvanishing holomorphic) functions

IC’IQ the ideal sheaf in 0x defining C, resp. 2

9§ the sheaf of germs over X of holomorphic p-forms

Kx the canonical line bundle of X

(D] the line bundle associated with a Cartier divisor D
bq the g-th Betti number (of X)

Cq the g-th Chern c¢lass (of X)

cl(E) the first Chern class of a vector bundle E

0-5



cl(C) the homology class of an irreducible curve C

Q3,Qi hyperquadrics in P4, see (1.1)



$ 1 Hyperguadrics in P4
(1.1) We recall elementary facts about hyperquadrics in P4.

Let X, (0§ 1i % 4) be the homogeneous coordinate of P4, Fv =
V+1

Z xi . Qi a hypersurface defined by Fv = 0. The hypersurface
i=0

Q3

v (v = 1,2,3) is irreducible and 03 (:= Qg) only is

nonsingular.

The hypersurface Q? contains a conic g := Qi N {x3 = x4 =

0} and a line 9 := {xO =X, = X, = 0}. Let U be a sufficiently
small open neighborhood of 2 in Q?. We may assume that Q?\U
(resp. U) is homotopic to g (resp. 2) and that 39U ,the boundary
of U,is an Ss—bundle over the conic g. By the Thom-Gysin

sequence , we have,

_ YA n
(1.1.1) H (80,1) = { o

2,3,5
n 4

non
N = O

In particular, H3(8U,Z) = Ho(q, ).

Also by the Mayer-Vietoris sequence of Qi = (Q?\U) U (the
closure of U), we have,

3 . Z n=20,2,
(1.1.2)  H (Q7,2) = { 4 n=1,3,

By (1.1.1) and (1.1.2), we have,

4,6
5

3 1 ~ ~
(1.1.3) H4(Q1,Z) = HB(BU,Z) = Ho(q,Z) = Z.

(1.2) Lemma. There is a Weil divisor on Qf which is not an

integral multiple of a hyperplane section H of Qf in H4(Qf,Z).

Proof. Let a = [ao,al,azl be a point of the conic q, Da =

the closure of {la ,X, € C}. Then by

0-31-32-%3 3-%4
_ i 3
(1.1.3), H = 2D_ in H,(Q],2). g.e.d.

4 ,
,x4] €EP ; x



(1.3) Lemma. Let Q be a gquadric surface Qg N {x4 = 0}
contained in Qg. Then H4(Qg,2) = HZ(Q,Z) (¥ Z & Z) and HZ(Q,Z)
is generated by fibers of two rulings via the isomorphism of Q

with P1 X Pl.

Proof. Similar to the above. g.e.d.

(1.4) Remark. In arbitrary characteristic, any singular
hyperquadric in P4 is a cone over a hyperplane section of it,
whence it has a Weil divisor which is not (algebraically

equivalent to) an integral multiple of a hyperplane section.



& 2 Lemmas

Our first aim is to prove the following

(2.1) Theorem. Let X be a compact complex threefold or a

complete irreducible nonsingular algebraic threefold defined

over an algebraically closed field of arbitrary characteristic

L a line bundle on X. Assume that Hl(X,OX) = 0, Pic X = ZIL,

L3 > 0, Kx = -3, w(X,L) 2 1. Then L3 = 2 and X is isomorphic

. . . 4
to a nonsingular hyperquadric in P

Compare [2], [8].

Sections 2-8 are devoted to proving (2.1). Throughout
sections 2-8, we always assume that X is a compact complex
threefold satisfying the conditions in (2.1). Our proof of
(2.1) is completed in (3.8) by assuming (0.4), or more
precisely, (3.2)-(3.6).

224, L3 2 2, x(x,mL) 2

(2.2) Lemma. Hl(X,OX) 0 and c,c¢

172
(m+1)(m+2)(2m+3) /6.

- 2
0, X(X,OX) = 1 + h (X,Ox) 2 1 and ¢,¢,
2

2
clL /4

Proof. We see h3(X,OX)

= 24X(X,0,) 2 24, X(X,mL) = X(X,0,) + m(cf + ¢ L/12 + m

+ m3L3/6. Assume L3 = 1 to derive a contradiction. Let clc2 =
24a, a 2 1. Hence ch = 8a by L3 = 1. We also see that X(X,L)

= (5+5a)/3, whence 1 + a = 0 mod 3 and a 2 2. Let a = 3b + 2, b

fi

2 0. Then X(X,2L) 7b + (21/2), which is absurd. Consequently
L3 2 2 and X(X,mL) 2 (m+1)(m+2)(2m+3)/6 by ch = c1c2/3 > 8.

g.e.d.



(2.3) Lemma. ho(X,L) 2 5.
Proof. The same proof as in [11,(1.5)] works by taking 4 = 3,

X(X,L) 2 5 instead of 4 & 4 and X(X,L) 2 4. g.e.d.

(2.4) Lemma. Let D and D' be distinct members of |L|, & =D N

D' the scheme-theoretic intersection of D and D'. Then we have,

(2.4.1) HY(X,-mL)=0 for g=0,1,m>0:q=2,0Sms3;q=3,0Sms2,
(2.4.2) Hq(D,-mLD)=O for g=0,m>0:q=1,0Sms2;q=2,m=0,1,
(2.4.3) HO(Q,-LQ) = 0, HI(Q,OQ) = 0,
(2.4.4) u%x,0.) * u%mp,0) = u%9,0) T C

. * r x ’7 D r g rd
(2.4.5) H (X,-3L) HZ(D,—ZLD) x HI(Q,-LQ) ¥ C.
Proof. The same as in [11,(1.7)1 by using an exact seguence
0 » Op(-L) = oy = Oy ~ 0 [11,(1.5.1) and (1.6)].

g.e.d.
(2.5) Corollary. HZ(X,OX) = 0 an X(X,Ox) = 1.

(2.6) Corollary. Bs |L|] = Bs |L



§ 3 A complete intersection R = D N D'

Let X, L be the same as in section 2.

(3.1) Lemma. Let D and D' be distinct members of the linear

system |L|, R := D N D' the complete intersection of D and D'.

into

Let Qred = Al + L., As be the decomposition of Qr

irreducible components. Then

ed

(3.1.1) each Aj is a nonsingular rational curve with LAj S 2,

(3.1.2) 4if there is an irreducible component Ai with LAi = 2,

then LAj S 1 for 5 #

i.
Proof. By (2.4.3), Hl(Q,Og) = 0. Hence Hl(Aj,O ) = 0 for any

A,
J

j, whence Aj is a nonsingular rational curve. In view of (2.4.5)

, hl(ﬂ,—Lg) = 1, whence hl(Slr -L ) S 1. Therefore

ed Qred
S 1 S .0
Y hi(A,,-L, ) = Y h'(A,,0, (-2+LA.)) S 1. The assertions
s i A, . i” A, i
i=1 i i=1 i
are therefore clear. See [11,(2.3)]. qg.e.d.

In the subsequent sections 4-8, we shall prove the

following five lemmas:

(3.2) Lemma. Let Q = D M D' be the complete intersection in

(3.1). Assume that there is an irreducible component C of gred

with LC 2 2. Then

(3.2.1) LC = 2 and 2 is an irreducible nonsingular rational

curve, isomorphic to C,

22 - -
(3.2.2) IC/IC e OC( 2) 8 OC( 2).




(3.3) Lemma. Let 2 =D 1 D' be the complete intersection in

(3.1). Assume that there is an irreducible component C of Q

red
with LC = 1 such that 2 is nonreduced anywhere along C. Let I9~
(resp. IC) be the ideal sheaf of OX defining 2 (resp. C). Then
2,.2 o _ 2,.2 o
I&+IC/IC = 0C or OC( 1). 1If IQ+IC/IC = OC , then
(3.3.1) gred is an irreducible nonsingular rational curve,

isomorphic to C,

(3.3.2) 9 is "a double line", to be precise, at any point p o

C, the ideal sheaf ISl (resp. I.) 4is given by;

C

I, =0 x + 0 y2

Q X,p X,p" 7

Ie = %%, p* * %, p¥
for suitable local parameters x and vy at p,.

2 2 o _ ~ _ 2

(3.3.3) Ic 2 I& 3 IC’ IC/Ic = OC o) OC( 1), IC/IQ = OC( 1), IQ/IC
= OC'
{3.4) Lemma. Let 2 =D M D' be the complete intersection in
(3.1). Assume that there is an irreducible component C of gred

with LC = 1 such that 2 is nonreduced anywhere along C. Assume

2,.2 . _ . : :
that IQ+IC/IC = OC( 1) and that if gred is reducible, then C
meets an irreducible component C' of 9 not contained in Bs

-~ T‘red

[L!. Then 2 is a double line plus a nonsingular rational curve

C'. To be more precise,

(3.4.1) Qred is the union of € and C' with LC =1, LC' = 0

, the curve C intersecting C’' transversally at a unigue point po,

(3.4.2) the ideal sheaf I, (resp. IC,IC.) defining 2 (resp.

C,C') is given at P, by



0 Y.,
X,po

I = Q x + 0
P X,poz

for a local varameter system x,y and z at Py and except at po, Q

is a double line along C in the sense of (3.3.2), and reduced

along C',
(3.4.3) IC/Ic = OCSOC( 1), IC./IC. = OC.(Z)SOC..

(3.5) Lemma. Let 2 = D N D' be the complete intersection in

(3.1). Assume that Q2 is reduced at a point of an irreducible

component CO of gred with LCo = 1 and that Co intersects an
irreducible component C' of Qred not contained in Bs |L|. Then,

(3.5.1) 9 is reduced everywhere,

(3.5.2) there exist another irreducible component C_ of Q with
h

m
LCm = 1 and a chain of irreducible components Cj of Q wit

0 (1 £ 3 £ m-1) such that R is the union of Cj (023 2 m), the

pair Cj and Ck (3 < k) intersect iff § = k~1. If 5 = k-1, then
Cj_1 an Cj intersect at a unique point Py (1 53 3m
transversally, to be precise,
Og , (i= the completion of Oy _ ) T Cclix,y,z11/(x,yz),
’—j I 4 j
for suitable local parameters xX,v,2Z2 at pj,
OC ® OC(-l) (C = CO,Cm)

(3.5.3) 1./12 = {
0.(1)80,(1) or 0,(2)80,

(C=¢C.,,...,C )

(3.6) Lemma Let 2 = DM D' be the complete intersection in

(3.1). Let C be an irreducible component of gred with I.C = 1. If




Qred is reducible, then C intersects an irreducible component C'

of 9 not contained in Bs |L]|.
red

From (3.2)-(3.6), we infer the following

(3.7) Lemma. The linear system |L| is base point free and

dim |L| = 4, L = 2.

Proof by assuming (3.2)-(3.6). 1In view of (2.3), we are able to

choose distinct members D and D' from |L|. Let 2 = D N D' be the
complete intersection. Let Q = A, + ... + A be the

red 1 s
decomposition into irreducible components. Then c¢l{(Q) = nlcl(Al)

+ ...+ nscl(AS) € HZ(X,Z) for some ng > 0 (see [11,(2.1)1).

Since L3 = L9 = nlLA + ... + nsLAS, there is at least a

1
component Ai with LAi > 0. We see that there are only three
cases;
Case 1. gred contains an irreducible component C with LC 2 2,
Case 2. gred contains no irreducible components C' with

LC' 2 2, but contains an irreducible component C with LC = 1
along which Q is nonreduced anywhere,

Case 3. gred contains no irreducible components C' with

LC' 2 2, but contains an irreducible component C,. with LCO =1

0

such that 2 is reduced at a point of Co.

Case 1. By (3.2), 2 is isomorphic to C. By (2.6), Bs |L| =

. 3 _ _ _ _
Bs ILQI. Since L” = LQ = LC = 2, we have Ly = 0o(2), so that ngl

is base point free. Consequently |L| is base point free and

n%x,1) = 2 + h%9Q,L.) = 5.

2



Case 2. First we assume that Qred is irreducible. By (3.3)

and (3.4), Qred is isomorphic to C and IC/IQ = OC(—l). Hence we

have an exact sequence,

0 - (IC/IQ)®L - OQ(L) - OC(L) = 0,

whence 0 = OC - OQ(L) - Oc(l) - 0 is exact. It

follows that
0 0 0
0 -2 H (C,OC) - H (Q,Lg) - H (C,Oc(l))

> H'(c,0) - Hl(Q,LQ) > Hl(C,OC(l)) > 0
is exact. Hence |L| is base point free. Moreover hO(X,L) = 2 +
hO(Q,LQ) = 5. The intersection number L3 = LR = 2 because
ho(ﬁ,sLQ) = 28 + 1. In this case, the proof of (3.7) is
complete.

Next we consider the case where Qred is reducible. Then
by (3.4) and (3.6), 2 is a double line plus a nonsingular
rational curve C',whence cl(2) = 2¢l(C) + cl(C') and LQ = 2. We

. _ _ 2 .
define a subsheaf I2 of IC by I2 = OC( 1)+IC via the
g = OCQOC(-l). Let p = CMNC'. We note that with
the notations in (3.4), IZ,p (:= the stalk of 12 at p) = Ox’px +

Then we have exact sequences;

isomophism IC/I

X, oY

20
0 = 0y(L) =2 0,,8(0,/I,)(L) > C7(% 0,/I.,+1,) > O,

Q X' c'
o - Oc(l) - (OX/IZ)(L) > Oc(l) - 0

~ 0
because IC/IZ = OC' We see that a subspace H (OC') (6]

HO((IC/IZ)(L)) of HO(OC.) ® HO((OX/IZ)(L)) is mapped onto

0,/1.,+I. by the natural homomorpvhism. Therefore hO(X,L) =

X' t¢cr 2
ho(&,LQ) + 2 =5, Bs |[L| = Bs !Lg{ = . This completes the

proof of (3.7) in Case 2.



Case 3. By (3.5) and (3.6), 2 is reduced everywhere and 2 = C

0
. _ _ _ . _ 3 _
+ ...+ Cm with LCo = LCm =1, LCj = 0 (1 £3J £m1). Then L~ =
LR = L(CO + ..+ Cm) = 2. Consider an exact sequence,
m
0 - OQ(L) - OC (1)@0C @...@OC @OC (1) = ¢C = 0.
0 1 m-1 m

It follows from this that hO(X,L) = 2 + hO(Q,LQ) = 5, and that
L] is base point free.

Thus we complete the proof of (3.7). qg.e.d.

(3.8) Completion of the proof of (2.1) by assuming (3.2)-(3.6).

Let X be a compact complex threefold with a line bundle L
satisfying the conditions in (2.1). By (3.7), we have a
bimeromorphic morphism of X onto a hyperquadric in P4. The image
f(X) endowed with reduced structure is one of Qi (v = 1,2,3).

We note Pic X = ZIL = Z[fo], where H is a hyperplane section of
£(X) and [£°H] is the line bundle associated with £ H. If we are
given a Weil divisor (an analytic two cycle) E of f(X), then f*E
is a Cartier divisor of X and E = f*(f*E) because f is
bimeromorphic. Since [f*E] is an integral multiple of L, any
Weil divisor of f(X) is homologically (algebraically) egquivalent
to an integral multiple of H [3, Theorem 1.4]. Hence f£(X) # Qf,
Qg in view of (1.2) and (1.3). We note that over an
algebraically closed field of arbitrary characteristic, any
singular hyperguadric in P4 has a Weil divisor which is not an
integral multiple of a hyperplane section. Consequently f(X) =
Q3. Since £, is an isomorphism of Pic X onto Pic Q3 (= ZIHD),
the exceptional set (det(Jac £f)) of f is empty (see [11,(2.8)1).

Therefore £ is an isomorphism of X onto Q3. g.e.d.



Before closing this section, we prepare three lemmas for

sections 4-8.

(3.9) Lemma. Let 2 =D N D' be the complete intersection in

(3.1), C an irreducible component of gred’ IC the ideal sheaf of

<o 2, _ 2 ~ n
OX defining C, cl(IC/IC) = s € H'(C,Z) (% Z). Then X(X,OX/IC)

n({n+l)(sn~s + 3)/6, s = -3LC+2.
Proof. The first assrtion is clear from Riemann-Roch for C =
Pl. Next consider an exact sequence,
2 1 1
0 - IC/IC 4 QX@OC - RC > 0.
- 2y . - -
Then we have s = cl(Ic/IC) = KXC + 2 = -3LC + 2 . qg.e.d.

(3.10) Lemma. Let 2 and C be the same as in (3.9). Let ¢

2 2 . .
(IQ/IQ )®OC - IC/IC be the natural homomorphism induced from

the inclusion of IQ into I

Then ¢ is injective everyvwhere on C

c*

iff Q is reduced at a point of C.

Proof. We note that (19/13)80C = OC(—L)GOC(-L) is locally free,
hence torsion free. Therefore the following conditions are
equivalent to each other;

(3.10.1) ¢ is injective everywhere,

(3.10.2) ¢ is injective at a point g of C,

(3.10.3) Coker(¢) = 0 at a point p of C,
2

(3.10.4) IQ + IC = IC at a point p of C,
(3.10.5) IQ = IC at a point p of C.
Thus the assertion is clear. g.e.d.



X

(3.11) Lemma. Let I and I' (# OX) be ideal sheaves of O
Suvpose that I C I' and hl(OX/I) = 0, dim supp(Ox/I) = 1. Then

1 vy '
h (Ox/I ) = 0 and X(OX/I ) 2 1.

Clear.



$ 4 Proof of (3.2)
We apply a method of Mori [9,pp. 167-170].

Assume that C is an irreducible component of gred with LC

/1%)g0. =

= 2. Then by (3.1.1), we have LC = 2. Then (IQ 9 c

OC(-Z)QOC(TZ). Since C = Pl, by a theorem of Grothendieck, we
2 - -
express IC/IC = Oc(a)QOC(b), a2 b. By (3.9), a+b = -4,

2
(4.1) Lemma. IQ 74 IC

Proof. Suppose I, C Ig. Hence hl(OX/Ig) = 0 by (2.4.3).

Q
2 2y _ - -
Hence X(OX/IC) £ 1. However by (3.9), X(OX/IC) = §+3 = -1

because s = -4 . This is a contradiction. qg.e.d.

In view of (4.1), we have a nontrivial natural

homomorphism ¢ : (I /I2)®0 - 1 /I2

o/ 1y c c/Ic We shall prove

(4.2) Lemma. ¢ is _injective.

Proof. Suppose not. Then both Ker ¢ and Im ¢ are torsion free
sheaves of rank one, hence locally Oc—free. By a theorem of
Grothendieck, we express Ker ¢ = Oc(c), Im ¢ = OC(d) for some
c, d € Z. Then we have an exact sequence,

0o - Oc(c) - OC(—Z)GOC(—Z) - Oc(d) = 0.
Hence ¢ + d = -4, b S ¢ S -2 35 4d £ a. Now we shall prove b = @
(hence a = b = ¢ = d = -2)., Assume b ¢ d to derive a

contradiction. Then since Hom0 (OC(d),OC(b)) = 0, the sheaf
C

Oc(d) is contained in a direct summand OC(a) of IC/Ig. Here we

note that if b < 4, then b ¢ a so that the subsheaf Oc(a) in the



splitting of IC/Ig is uniquely determined in IC/IS . Define a

subsheaf I of IC by I = Oc(a) + Ié. Then we see readily that IC

2 o ~ 1 -yl -
313 Ig, I/IC = Oc(a), IC/I = OC(b). By H (O&) = H (OX/I&) =
0, we have,

1 s X(OX/I) = X(OX/IC) + X(IC/I) = 2 + b,

whence b 2 -1. This contradicts b £ ¢ = -2. Hence a =
b=c=d=-2. Next we let J = Im ¢ + Ig =1y Ié. Then J O
IQ, IC/J = OC(—Z). Therefore

< = - =

1 = X(OX/J) X(OX/IC) + X(OC( 2)) 0,
which is a contradiction. g.e.d.
(4.3) Completion of the vroof of (3.2). By (4.2), we have
the exact seguence,
2 2

0 - (IQ/IQ)®OC - IC/IC
Therefore -2 £ a, -2 £ b, whence a = b = -2. Hence (IQ/12)®OC
~ 2 .
= IC/IC' LLet p be a point of X, Ig,p (resp. IC,p) be the stalk

2 _ ,

of IQ (resp. IC) at p. Then IQ,P + Ic,p = Ic,p for any point p
of C, whence ISl p = IC P This shows that 2 is isomorphic to C

anywhere on C. Since Qr is connected by (2.4.4), 2 is

ed

isomorphic to C.

This completes the proof of (3.2). qg.e.d.



8 5 Proof of (3.3)

(5.1) Lemma. Agssume that C is an irreducible component of

. _ 2 . B

Qred with L = 1. Then IC/IC = OC B OC( 1).

. ol 2 >
Proof. Since C = P, we express IC/IC = Oc(a)®oc(b), az2b
Then by (3.9), a + b = cl(IC/Ig) = -3LC +2=-1,a20, bs-1.
We shall show a = 0, b = -1. We assume b S -2 to derive a
contradiction. Consider the natural homomorphism ¢

2 2 < _ . \ .
(IQ/IQ)@)OC - IC/IC. When b £ -2, Im ¢ is contained in OC(a)
- - 2 ~
= Oc(a)@{O}. Let I = Oc(a)+IC. Then Ic s I G ISl and IC/I =
Oc(b). Hence by (3.11),
< - =
1 = X(OX/I) X(OX/IC) + X(IC/I) 2 + b.

This is a contradiction. Hence a = 0, b = -1. qg.e.d.

In what follows, we assume that C is an irreducible

component of gred with LC = 1 along which 2 is nonreduced
anywhere.
(5.2) Lemma I. ¢ I2
. . Q c*
2 _ 2 3
Proof. Assume IQ C IC. Let I = ICIQ' Then Ig 12 Ig , IC 3
o~ 2 ~ - _-
I and IQ/I = (IQ/I&)G)OC = OC( 1)®OC( 1). Therefore by (2.4),
hO(Ox/I) = 1, hl(OX/I) = 0. Consider the natural inclusion
. 4, 4 3,.4 . _ _ _
1+ I + IC/IC - IC/IC = OCQOC( 1)®OC( 2)®0C( 3).

Then Im 1 is contained in OCSOC(-I)GOC(—Z) because the following

natural homomorphism 1is surjective,

2 2 4, .4 _ 4,4 3,.4
(IL/I8(I/10I80, > I I+I10/I = I+I/I, (C IZ/1)
2 2 N _ _ _ _
and  (I,/IZ)B(I/I0IB0, ¥ O,(-1)80,(~1)80,(~2)80,(-2).



3

124

L) - - - 4 L3 3 ]
Let I' = Oc@Oc( I)QOC( 2)+IC. Then I, 3 I' D 1, IC/I

o

OC(-3). By hl(OX/I) = 0 and (3.11), we have,
3
< ’ = - =
1 = X(OX/I ) X(OX/IC) + X(OC( 3)) 0
which is a contradiction. Hence IS1 74 Ig. g.e.d.
(5.3) Completion of the proof of (3.3). We consider the
. . 2 2

natural homomorphism ¢ : (IQ/IQ)QOC - IC/IC. By (5.2),
Im ¢ is not zero. Since Im ¢ (= IQ+IS/I§) is a subsheaf of a
torsion free sheaf IC/Ig, it is locally OC-free. Since 2 is
nonreduced along C, Im ¢ is of rank one by (3.10). Here we may

set Im ¢ = Oc(c) for some ¢ € Z. Then ¢ = 0 or -1 because

2 ~ _ _ . . .
(IQ/IQ)®OC = OC( 1)®OC( 1). In view of our assumption in
(3.3), Im ¢ = OC’ Ker ¢ = OC(—Z). Let E = Coker ¢ = OC(-l), F
= Im ¢ E OC‘ Then we may view Icllg = E 8 F because Hl(C,Ev®F)

0, Ev being the dual of E. So we consider again the

homomorphism ¢ as,

. 2 _ 2
¢ (IQ/IQ)®OC » F CEO®F = IC/IC.

Let p be an arbitrary point of C. Then there are two

generators x ,y of IC p’ and two generators f, g of IQ D such
_ . 2 2
that ¢(f) = x, 4(g) = 0, x mod IC,p (resp. y med IC,p

generates F (resp. E). Since f = x mod Ié o” it is easy to see

)

C.p over Ox’p, so that we may take £

instead of x. Then by deleting an O

that £ and vy generates I

X’p—multlple of x from g, we

may assume g = Bym for some B € 0 and m > 0, the restriction

X,p
of R to C being not identically zero. Thus we obtain local

parameters X and y € IC,p and R € OX,P , m > 0 such that

(5.3.1) IC’p = Ox’px + Ox’py



m

1 + 0 Ry

9,0 - 9%, p¥ X,Dp

where the restriction BC of B to C is not identically zero. The
integer m is uniquely determined by the point p, but it is

independent of the choice of p € C. We note that m 2 2 because

2
C,p’

Let ¢ = {Uj} be a sufficiently fine covering of an open

g eI

neighborhood of C by Stein (or affine) open sets Uj' Then by

(5.3.1), we have x. € I'(U.,I,.) ,y. € I'(U.,1.), BR. € I'(U.,0,)
J 3772 773 3 3 j’7X

C
such that

i

(5.3.2) F(Uj,I ) I"(Uj,OX)xj + T(Uj,Ox)Yj

C

(U, 1g) = I(U, 0%, + I(U,, 08,75
Since IC/Ié = F B E = OC ® OC(—l), we may assume that
(5.3.3) xj = X, mod Ié , yj = ijyk mod Ig,
where ij stands for the one cocycle LC = Oc(l) € Hl(C,O;).

Note that the second egquatiocn in (5.3.3) does make sense.

m
kY K
identified iff (we may assume that)

-2
Q k(Dle)'

This shows that

m ~ _
Hence Dijyj and DkB € Ker ¢ (= OC( 2)) are

(5.3.4) (DjIC)

_ al—m
(5.3.5) (lec) = ij (Bklc)’

In particular, B, := {R.;.; U. € ¢} is a nontrivial
c jlcr 75

element of HO(C,OC(2~m)). This is possible only when m = 2 and

B, is a nonzero constant. Conseguently Qr is nonsingular

C ed

anywhere on C, and it is isomorphic to C because it is connected
by (2.4.4). Moreover 2 is "a double line" in the sense that at

any point p of C, there exist local parameters x, y € 1 such

C,p
that



I

C,p OX,px * OX,py'
_ 2
Ig,p © Ok, p* * oX,py ’
This completes the proof of (3.3).



& 6 Proof of (3.4)

Let C be an irreducible component of Qre with LC = 1,

4
along which 2 is nonreduced anywhere.

By (5.3),there are two possibilities Im ¢ ¥ OC or OC(—l).

The case Im ¢ E= OC was discussed in section 5. In this section,

we shall discuss the case Im ¢

124

OC(-l). We note that via the

. . 2 _ _
isomorphism IC/IC = OC®OC( 1), the subsheaf 0C = OCQ{O} of

IC/Ig is uniquely determined. First we prove

o~

(6.1) Lemma. Assume Im ¢ = OC(-l). Then Im ¢ is not contained

. _ 2

in OC (= OCQ{O}) C IC/IC.

Proof Assume Im ¢ = OC(-l) C OC to derive a contradiction.
ILLet p be an arbitrary point of C. Then there are two generators

2
X,y of Ic,p and two generators f£,g of 19”p such that x mod IC,p

(resp. y mod Ig D) generates OC®{0} (resp. {O}QOC(—l)) in

7 &

, and ¢(f) generates Im ¢, $(g) = 0, or eguivalently g

Qo

IC,p/I

2
€ Iﬂ,p C,p’
2 .
IC,p for some o € OX,p' Thus we obtain,

(6.1.1) C.p Ox’px + OX,py’

f +

P

MI Since Im ¢ is contained in OCQ{O}, f = ax mod

Ty
§]

—
u

Q,p OX,p oX,pg’

_ 2
f = ax mod IC,p

2
9,pnIC,p‘

{Uj} be a sufficiently fine covering of an open

where « € OX,p' g €1

Let ¢

neighborhood of C by Stein (or affine) open sets Uj. Then by

(6.1.1), we have x.,y. € T(U.,,1I
J J J

12), «, € T(U.,0,) such that
C 3 377X

)y, £, € T(U,,I,), g, € T(U,, I, 0
J J 3 J

C Q2 Q



)

(6.1.2) T(Uj,I I"(Uj,OX)xj + F(Uj,Ox)yj

C

F(Uj,IQ) = I‘(Uj,ox)fj + I‘(Uj,ox)gj
f. = o.x. mod I2 ,
J J 3 C

Moreover by the choice of the generators, we may assume

(6.1.3) fj = ijfk mod ICIQ , gj = ijgk mod ICISz ,
- 2 - 2
xj = xk mod IC , yj = ijyk mod IC
. _ 1 *
where ij is the one cocycle LC = Oc(l) € H (C,OC).
Then one checks that ac = {ajlc} is a nontrivial element

of HO(C,OC(I)). Hence «. has a single zero at a point P, of C

C

and it vanishes nowhere else.
If aIC is nonvanishing at p in (6.1.1), then £ and y

generates 1 so that we may take f instead of X and can

C,p ’
normalize g as Bym for some R € OX p and for some m & 2 so that
the restriction of R to C is not identically zero . The integer
m is independent of the choice of p.

If aIC has a single zero at p in (6.1.1), then z := «

forms a regular sequence at p together with the parameters x and

¥. Since £ = zx mod Ig D in (6.1.1), we may assume,by a
suitable coordinate change, that IC,p = OX’px + OX,pY’
f = 2zx or zx - ys for some s 2 2.

Therefore by taking a suitable refinement of ¢ if

necessary, we may assume that

(6.1.4) Uj contains Py iff 3 = O,
6.1. ., = ., . ., 0 <
(6.1.5) I"(UJ IC) I."(UJ OX)XJ + 1"(U:J X)Yj
F(Uj,IQ) = F(Uj,ox)xj + I‘(Uj,OX)gj ,
. _ m > .
for 5 # 0, gj = Bjyj, Bj € F(Uj,ox), mzz 2, BjIC being not

identically zero,



)

(6.1.6) F(UO,IC F(UO,OX)XO + F(UO,OX)YO

F(UO,IQ) = I‘(UO,OX)f0 + F(UO,OX)QO
- - S >
fO = ZyX, Or Z X, Yo (s 2 2)
where xo,yo and zo form a regular seguence everywhere on UO’ go
€ Ié , and moreover
(6.1.7) B. (3 # 0) (resp. z,) vanishes nowhere on U,. (: = U,
J 0 ij i

N Uj , 1 #3) (resp. on Uoj).

Now we define BO as follows. Let x = xo, y = yo, zZ = zo.

Case O. Assume fo = 2ZX. Then the second generator g0 of IQ is

normalized (mod fo) into 9y = An(x,y)x + Bn(y,z)yn for some n 2
2, An € I‘(UO,IC),Bn € F(UO,OX) ,Bn being not identically zero on

C. At a general point g of C sufficiently close to p, IC q

(resp. I ) is generated by x and y (resp. x and ym) by (6.1.7)

2,a

because 8 does not vanish at g. It follows that n 2 m. We now

define

_ n-m
BO = Bn(y,z)y .

Next we consider the case £ = zx - ys, s = 2.

Case 1. Assume s > m. We can choose fj such that fj = xj for 3

# 0 and fj = Q.. f mod I.I, for any j,k. We see

jkk c 9
X = (fo+ys)/z = (Sloj/z)xj mod I.I,
¥ = Co3%y v dos¥5
for some coj and doj such that chIC = 0, dOjIC = on. On

the other hand,
- 2
9y = Az(x,y)x + Bz(y,z)y
for some A2 € F(UO,IC), B2 € F(UO,OX). Since F(UOj’IcIQ) is
2 m+1l

enerated by Xx.,,xX.Y..,Y. , We have,
g Y J JYJ YJ

_ 2
99 = Bz(y,z)y mod ICIQ



2 2 m+1
= Y., d..vy. od (X.,X.¥..,Y.
Bz(dojyj z2)( OJYJ) m ( 5 xjyJ yj )
2 m
= 0 d (x.,x.y..Y.
mod ( 3 xjyj yj)

by (6.1.5), whence B,(dysvy,2) is divisible by (dojyj)m'z.

Hence B,(y,z) is divisible by ym-Z‘ So we define

_ -m+2
BO = Bz(y,z)y .
Case 2. Assume s = m. Let 9o = Y Avu(z)xvy“. Then on
Yihsd
vs+u, Vv
U.., we see g, = Y A (z)y /z mod I.I.. By (6.1.7), we
03 C vepzl Vi cC™Q
have y A, /z¥ = 0 for k < m, and we define
vs+u=k u
_ v
B, = VS+Z_ Av“/z .
V,uuZB

By these definitions, we have,

Boyo = 9 mod ICIQ on Uoj
= ongj mod ICIQ by (6.1.3)
= QOijy? mod I,Ig by (6.1.5)
Biy? = ijejy? mod 1,1, (i,3 # 0).

Therefore we have

_ 1-m . .
(Bilc)" Q (R.,;.) for any i,3.

i3 jlc

In Case 0 and Case 1, B, is holomorphic on U

0 In Case

0"

2, BOIC is holomorphic except at po and meromorphic at po, and
it has a pole at po of order at most vmax := max{v; vs + u = m,
AVu # 0}. Clearly vmax S m-2 when s < m. Hence BC : = {lec;

U. € ¢} is a nontrivial element of HO(C,O (1-m+v 3) = {0},
3 C max

which is a contradiction. Thus Im ¢ is not contained in OC'
qg.e.d.



(6.2) Completion of the proof of (3.4). Let E = Coker ¢ , F =

o s 0 (- . 2
Im ¢. Then by (6.1), E = Oc , F E Oc( 1) and we may view IC/IC

= E ® F because Hl(C,EV®F) = 0, So we consider again the

homomorphism ¢ as,

. 2 _ 2
¢ (IQ/IQ)®OC » F CEBF = IC/IC°

Let p be an arbitrary point of C. Then there are two

generators x ,y of IC p’ and two generators £, g of I& p such

that ¢(£f) = x, ¢$(g) = 0, and that x mod Ig D
2

. _ 2
IC,p ) generates F (resp. E). Since £f = x mod IC,p’

take £ instead of x. Then in the same manner as in (5.3), by

(resp. y mod

wve may

taking a sufficiently fine covering ¢ = {Uj} of an open
neighborhood of C by Stein open sets Uj’ we have xj € F(Uj,IQ)

,yj € F(Uj,I ), B. € F(Uj,OX) such that xj and yj (resp. x. and

C 3 3

m
Bjyj) generate F(Uj, ) (resp. F(Uj,I ».

Q
OC(—1)®OC,we may assume

2 - 2
jkxk mod IC , yj = yk mod IC

X
where ij stands for the one cocycle LC € Hl(C,OC). Since

Ker ¢ is isomorphic to OC(—l), and it is generated locally by

IC
F

104

. 2 _
Since IC/IC = ® E

(6.2.1) x. = 2
J

B.yw, we see that
J°3

(6.2.2) (Bj!C) gjk(Bklc)’
In particular, R, := {R.,.; U, € &} is a nontrivial
o jle” 73

element of HO(C,OC(I)) by (6.2.2). Consequently BC has a single
zero at a unigque point pO € C and it vanishes nowhere else.

Then z := R, forms a regular sequence at p, with the parameters

0 0

X and vy.
The curve C intersects a unique irreducible component C'

of gred at po, but nowhere else. In particular, Qred is



reducible. Let I be the ideal sheaf of O, defining C'. Then

c' X
IC',po = OX,pOX + OX,pOz' By the assumption in (3.4), we have §

.= ! 2
:= LC' 2 0. Let Ic./IC.

124

>
OC.(a)@OC.(b), a 2 b, and ¢C'

2
(I&/I&)®OC. - IC./IS, the natural homomorphism. Then since £
is reduced generically along C', we have by (3.9) a + b = -36+2,

and dim(Coker ¢C.) = a + b + 26 = -8 + 2. Since BO = z is a

local parameter, Coker ¢C' D = C[y]/(ym), whence m S -8 + 2.
“F0

Hence m = 2, 8 = 0, Coker ¢., = Coker ¢., = C[y]/(yz). By
c c +Po

2 ~
/Ig)®oc. = OC,@OC. and the form of Coker ¢C"p0 , we have

a =2, b = 0. Moreover this shows that C' meets no irreducible

(I51

component other than C.

Thus the proof of (3.4) is complete. qg.e.d.



$ 7 Proof of (3.5)

Assume that there is an irreducible component CO of Qred

with LCo = 1 such that 2 is reduced at a point of CO' Assume

moreover that CO intersects an irreducible component C1 of gred

not contained in Bs |L}.

(7.1) Lemma. Let C = CO. We have,
(7.1.1) C intersects the unigue jrreducible component C' of
gred - C (:= the closure of Qred\ C) at _a unigue point p

transversally, to be more precise, we can choose local

varameters x,y and z at p such that

IC,p N OX,px ¥ OX,py’

To,p = %x,p% ¥ %, p%¥-
(7.1.2) Q is reduced evervwhere on C, and reduced generically
along C'.
Proof. 1In view of (5’1)’Ic/Ig = OCGOC(-l). We consider the

. ) 2 o _ - 2
natural homomorphism ¢ : (Ig/lg)®oc(" OC( 1)@OC( 1)) = IC/IC.

By (3.10), ¢ is injective and Coker ¢ = OC/OC(-l) % C. Let p be

Supp Coker ¢é. The in the same manner as in (5.3), we can find

local parameters Xx,y,w and a germ B € OX p such that

Id

I =0 x + 0 Y.,



I + 0 DB(y,w)ym

9,0 - %, p* " %,

where R(0,w) is not identically zero and m 2 1. Since ¢ is
injective, we have m = 1. Moreover we see that B(0,w) has a
single zero at p. Hence B(y,w) forms a parameter system at p
with x and y. So (7.1.1) is clear by setting z = R(y,w).

(7.1.2) is clear from (7.1.1). g.e.d.

(7.2) Completion of the proof of (3.5). By the assumption,

the irreducible component C0 of Qred with LCO = 1 intersects an

irreducible component C1 of gred which is not contained in

Bs |L|. Then LC, = 0 or 1. Assume LC., = 0. Let I, /I 2 .
1 1 c,’ ¢,

OC (a)EBOC {(b), a2 b. By (7.1.2), 2 is reduced generically
1 1

along C., whence the natural homomorphism ¢, : (I /12)80 -
1 1 Qe Cl

2
I./1
C1 C1

is injective. Hence a 2 0, b 2 0. Moreover a + b =

-3LC1 + 2 = 2. Therefore dim Coker ¢1 = 2, (a,b) = (1,1) or

(2,0). Since ¢1 is not surjective at P, 1= Co N Cl’ there is a

unigque point p1 of C # such that ¢1 is not surjective at

1 P17 Py

P, - By the same argument as in (7.1), we can choose local

parameters x,y.,z at p1 such that

I = 0 x + 0 Y.,
Cllpl x’pl



Consequently there is the third component C2 of &red

intersecting Cl‘ Then C2 is not contained in Bs |[L].

Otherwise, C; is contained in Bs |L] because LC, = 0. Hence LC2

= 0 or 1. If LC2 = 0, then we repeat the same argument as

above and after a finite repetition of these steps, we

eventually obtain C_~ and a chain of rational curves Cl""’cm—l

of 2 such that I, = 0 (1 £ jJ £ m-1) and LC_ = 1, and the
red 3 m

pair Cj and Ck (j < k) intersect at a unique point pj

transversally iff 3 = k-1. By the same argument as above no Cj
(035 £m) is contained in Bs |L|. Moreover by (5.1) and

2 _ .
(7.1), Icm/ICm = OCmQOCm( 1) and Cm intersects Cm_1 only. By

(2.4.4), % is connected so that it is the union of CO,...,Cm.
Hence Q is reduced everywhere.

Thus the proof of (3.5) is complete.



& 8 Proof of (3.6)

(8.1) Lemma. Let C be an arbitrary irreducible component of

gred with LC = 1. Then we have,

2 . _
(8.1.1) IC/IC = OC ® Oc( 1),
(8.1.2) C intersects Qred - C (:= the closure of gred\ C) at a

unique point p» transversally, to be more precise, we can choose

local parameters X,y and z at p such that
IC,p - OX,px * OX,py’
- m
To,p ® %, 0% * %x,p?¥ -

for some m & 1, we call m the multiplicity of C in 2

(8.1.3) C is not contained in Bs |L]|.

Proof. The assertion (8.1.1) follows from (5.1). If 2 is
reduced at a point of C, then (8.1.2) follows in the same manner
as in (7.1). Next we consider the case where Q is nonreduced
along C. Consider the natural homomorphism ¢ : (IQ/I§)®OC -
1,/12.
contained in OCQ{O}. Let E = Coker ¢, F = Im ¢é. Then we may

Then by (3.3) and (6.1), Im ¢ = Oc(-l) and Im ¢ is not

view IC/Ig = E ® F and consider the homomorphism ¢ as,

2
Q2

Then we are able to choose an open covering ¢ = {Uj} of an open

. _ 2
¢ (IQ/I )@0C - FCEG®G®F = IC/IC.
neighborhood of C and xj,yj and Bj satisfying (5.3.2). Here we
may assume that
X. = Q.. %x_mod 12 y. =y, mod 12 I3 = 9. R
3 jkTk c’ 15 k c’ 3lc jkTk|C
and that xj (resp. yj) generates F (resp. E). Hence BC =

{lec;Uj € ¢} is a nontrivial element of HO(C,OC(I)), whence R

C
has a single zero at a unigue point po of C. Then x = xj,y = yj



and z = Bj at po form a regular parameter system at po. This
completes the proof of (8.1.2).

Now we are able to construct a partial "normalization” of
Q by using the expression (8.1.2) of I, and I

C Q
With the notations in (8.1.2), we define an ideal

as follows:;

subsheaf IQ, of OX by:;

Ig',p = Ig,p (p € X\ C)

1]
o]
~

152.,p = Ox’px + Ox’Dz (p

I&‘,p = OX,p

is the stalk of IQ. at p. Let Q' be an analytic

(p € C \ {po})

where IQ',P

subspace of X with &red = (&red N C) U {po}, OQ, = Ox/Ig" and
k

Ik = IC + I& (1 £k £m). Then we have exact seqguences;

(8.1.4) 0 - OQ - OX/IQ' 8 OX/Im = OX/Im+IQ' = o,

(8.1.5) 0 ~» I, _,NIo/I NIy, » I +Io,/1, = I, ,+Io,/1, , > O,

(8.1.6) 0 =~ Ik+IQ'/Ik - OX/Ik - OX/Ik+I&' - 0

- k ~
We note that OX/Ik+IQ' = Clyl/(y )’Ik—l/Ik = OC’Ik—l Ig./IkﬂIg,

_ - _ 40
= OC( po). Let Vk = H ((Ik+1&'/1k)®OX(L))’ ni,j the natural

homomorphism of Vi into Vj for i > 3. From (8.1.4)-(8.1.6)

n

tensored by OX(L), we infer long exact segquences,

0 0
(8.1.7) 0> H (OQ(L)) > H ((OX/IQ'

0
(8.1.8) 0> H(0) >V, >V, _ >0

0 ~ Kk
(8.1.9) 0 - Vk - H ((OX/Ik)(L)) - OX/Ik+IQ' (z CH)

- 0
Then by (8.1.9), Vk = Ker(H ((Ox/Ik)(L)) - OX/Ik+IQ')’ whereas

V_ is a subspace of HO(OQ(L)) by (8.1.7). By (8.1.8), n

0 m
}(L))BH ((Ox/Im)(L)) - C

k,k-1

is surjective and dim Vk = dim Vk—l + 1, whence nm,l =

m,m—lnm—l,m—z"°n2,1 : Vm - V1 is surjective. Since V1 =

HO(C,L

n

o 0 . .
c po)(.— elements of H (C,LC) vanishing at po) is a



nontrivial subspace of HO(C,LC), Cc\ {po} is disjoint from Bs

lLgl (= Bs IL| by (2.6)). This completes the proof of (8.1.3).
‘q.e.d.

(8.2) Corollary. dim V, =k, h°((0,/I )(L)) = 2k.

Proof. By the above proof, dim Vk = dim V1 +k-1. From the

exact segquence

o - (Ik-l/Ik)(L) - (OX/Ik)(L) - (OX/Ik—l)(L) - 0
and (I,_,/1,)(L) ¥ 0,(1), we infer h%((0,/1,)(L)) =

ho((Ox/Ik_l)(L)) + 2, whence the second assertion. g.e.d.

(8.3) Proof of (3.8) — Start. Assume that there is an

irreducible component C of Qred with LC = 1 such that C

intersects an irreducible component C' of gred not contained in

Bs |L|. Then by (3.2)-(3.5) and (3.7), Bs |L| is empty so that

for any %' = D"MD" ,D", D" € |L|, any irreducible component C"
of gred with LC" = 1 intersects a component C" of gred not
contained in Bs |L|. Therefore it remains to consider the case

where for any 2 DND' ,D, D' € |L|, any irreducible component

C of gred with LC 1 intersects a component of Qr contained

ed

in Bs |L|. Then C is not contained in Bs |L} and there is a

unique irreducible component C' of 2 intersecting C by (8.1).

red
In what follows, we assume this to derive a contradiction in
(8.10).

First we shall prove,

(8.4) Lemma. Let Cj (1 £ 3 S s) be all the irreducible

components of Qr with LCj =1, Bj the unique irreducible

ed



component of Q_ contained in Bs |L| that Cj intersects. By

ed

choosing a general pair D and D°, B1 = B2 = ... = Bs’

Proof. We apply a variant of the argument in [11,(2.6)].

Assume the contrary. Then we can choose a one parameter family

D (t e Pl) and a Zariski dense open subset U of P* with the

following properties;

(8.4.1) Qt,red = cl,t + .. 4 Cs(t),t + B1 + B2 + ..., t €U,
B, C Bs L, B, # B, where 9 =D N D},

(8.4.2) LCj £ ° 1, (1 53 S s(t)),

(8.4.3) Cl,t (resp. Cz,t) intersects B1 (resp. Bz) for any t €
U.

Let 4 (resp. dé) be the equation defining D (resp. Dé),

and define an analytic subset Z of X X P1 by Z = {(x,t) € X x

pl. ax) = d{(x) = 0). Let p, be the j-th projection of X X pl,

g, : Y. 2 Z. the

Zj all the irreducible components of Zred’ 3 3 3

7. h.

normalization of Z,, Y, -3 Uy >3 pt

the Stein factorization of

BA

-1
. < -
ngj (1 3 £ s). We may assume that Cj plgj(nj (uj)), tj

.
J
-1
= h. .) for s . € U. j = 1,2). B 8.1), L(m."(v)) is
j(uj) ome uJ 5 (3 ) y ¢ Plgg( 3 ( i
irreducible nonsingular and intersects Bj only at one point

when v moves in a Zariski dense open subset Vj of Uj. Then

C and C
1.5y 2

In fact, if Cl,tl N Cz,tz = {p,...} # & and if p # Cl,tlﬂ Bl’

then th contains Cl,tl by thcl’tl = Lcl,tl = 1. Since Dt is

chosen general, this contradicts that C1 t is not contained in
71

intersect nowhere for general u1 € Vl,u2 € VZ’

2,t

Bs |L|. Therefore we may assume that Cl,tl N c2,t2 = Cl,t n B1



= Cz,t ! B2. This shows that Cl,t intersects Qt,red - Cl,t at

the intersection B1 N B2 (# ¢) for general t. However this is

impossible by (8.1.2). This proves that C1 & and C
71

intersect nowhere for general u1 € Vl,u2 € Vz. Hence the

(Yz) is at most one

2,t2

intersection of p (Yl) and p

191 192
dimensional. However D = Plgl(Yl) = plgz(Yz) because D is

irreducible. This is a contradiction. g.e.d.

By (8.4), all Bj are the same, say, Bj = B for any j, by
choosing a sufficiently general pair D ,D' and 2 = D N D', Let
_ . 2 2
n = -LB, and let ¢B : (Ig/Ig)QOB - IB/IB be the natural

homomorphism. One sees n 2 0 in view of (3.2) and (8.1).

(8.5) Lemma. Let & =D M D' for D, D' sufficiently general.

Let mj be the multiplicity of Cj in 2, m := m1+...+ms . Thenm

=n+ 2 ,n 2 0,

Proof. By (8.1.2), 2% is reduced generically along B, so that ¢B
is injective by (3.10). Hence Coker ¢B is finite. One sees that
. _ 2, _ 2 . _ .
dim Coker ¢B = cl(IB/IB) c1((IQ/IQ)®OB) = -LB + 2 =n + 2, dim

Coker ¢B,pj = mj at any intersection peoint pj := Cj 1B by

(8.1.2). Since pj's are all distinct by (8.1.2), we have
msSsn + 2. Since 2 is of multiplicity mj generically along Cj
and it is reduced generically along B, cl(Q) is equal to
m cl(Cl) + ..t mscl(Cs) + cl(B) + cl(B') for some effective

1
one cycle B' such that Supp B' C Bs |L|, Supp B' 2 B. Then LB'



< 0. In fact, there is no irreducible component B" of Béed with

LB” 2 1 by (3.2) and (8.1). Therefore we have by (2.2),

2s.° = LR SLm.C. + ... +mC_+B) =m - n.
171 s s
3

This proves m 2 n + 2, hencem = n + 2, L~ = 2. g.e.d.

(8.6) Corollary. Let 9 =D 1 D' for D, D' sufficiently

A

general. The curve B intersects Cj (1 £ 73 s) only, 2 is

]
3
Q
+

reduced everywhere along B \ U(B N Cj) , 2
3

+fm C +
§ s

B, Bs |L| = Bs |L

(8.7) Lemma. Let D" and D" be arbitrary members of |[L|, D" #

D", Q' = D"MD". Then 2' =m

+ ... +m',C', + B for some m!
] s J

and s' where LCé = 1, m' :=m + mé. =n + 2, the

structures of ', Cé and B a Cé 1 B are described in (8.1).
Proof. The proof of (3.7) shows that Bs|L| = ¢ in the cases
(3.2)-(3.5). Since Bs |L| = B in our case, any irreducible

component Cé of Qée with LCé = 1 intersects B. By the above

d
argument, we see 2' = miCi + ...+ m;.Cé. + B for some mé and s'
where LCé = 1, m' := mi + ... F mé, = n + 2. The rest is clear

from (8.1). qg.e.d.

(8.8) Lemma. ho(OQ(L)) = m, and n = -LB > 0.
Proof. Let Q" be an analytic subspace of X whose ideal in 0x is
m.
defined by Ig, = Ig+ N (I ) J where m.= multiplicity
159ss 3 J
of Cj in &. We easily see that
IQ",p = Iﬂ,p (p € &red\B),



m.

3 _
OX,px + OX,py (p = Bﬂcj)

0) (p ¢ U C.)
X, p 155 Ss

Then there is an exact segquence

m.
(L)BOL(L) » & C J 5 0.
3

Since the support of 2" is the disjoint union of Cj (1 £ 35 £ s)

0 - OQ(L) - OQ“

we see by (8.1.9) and (8.1) ho(Og"(L)) = 2(m1+...+ms) = 2m, and

m.
that the natural homomorphism HO(OQ“(L)) -~ @cJd is
3

surjective. Since HO(OQ(L)) is mapped to zero in

HO(OB(L)), we have hO(OQ(L)) = m, hO(OB(L)) = 0 . It follows

from OB(L) OB(—n) that n > 0. gq.e.d.

Let h : Y » X be the blowing-up of X with B center, E =

h~1(B) N =h'L - [E], D
red’ - .

* — * —
hD-E, D'= h D' - E, Cj = the

£ s). Then one checks

A
o

proper transform of Cj (1

(8.9) Lemma. For general D and D' in L}, Ej is isomorphic to

i=7

C. an
J

|

— t— s —— ——
(b MDD = g C., DP' = m,C, + ... +m C , B' := E
red - 3

N D is isomorvhic to B.

Proof. We note that a general member of |L| is nonsingular

along B. Indeed,assume that D and D' are singular at a peoint p

. 2 2 - '
of B, that is, ID,p C mX,p’ ID',p C mX,p' Let 2 = DID'. Then
_ 2
Tﬁ,p = Hom(mg’p/mg’p,c)
_ 2
= Hom(mx’p/ID,p+ID.'p+mx'p,C)

Hom(m /m2

X,p X,p’C)



whence dim T&,p = 3. However by (8.1.2), dim T&,p

which is absurd. Let g := B Cj, a :=mj. It suffices to

S 2,

consider the problem near g to prove (8.9). Then by (8.1:2),

= a
Iﬂ,q OX,qX * OX,qzy ’

IB,a ® %, ¢* * %%, 4% Iijq = %%, ¢* * %%, ¥

We may assume without loss of generality that ID q = OX qx,
ID' q = Ox q(x+zya) because general D and D' are nonsigular
along B. Now it is easy to check the assertions by a direct

computation. qg.e.d.

(8.10) Completion of the proof of (3.6). Since Cj is a movable

part of DND', Bs |N| consists of at most finitely many points,

e 2
= i =
whence NCj 2 0 for any j. Let IB/IB OB(a)@OB(b), a e b, ¢
a-b. Then by (3.9), a + b = ¢ + 2b = 3n+2 and E is a rational

ruled surface Ec. By (8.9), n > 0. Let e (resp. £) be a

section (resp. a fiber) of the ruling of ZC with e2 = c, f2 =
0, ef = 1. Let e be a section of Ec with ei = -¢c, ee = 0.
Let B' := END. We see [El; = -e-bf, EB' = E®D = EZ(h'L - E) =
~(2n+2), E® = ¢, (15/12) = 3n + 2, N> = > + 3n"LE®- B = 2 + 3n
- (3n+2) = 0. Consegquently mlNE1 L mSNES = NDD' = N3 = 0,
NEj = 0, and |N| is base point free.

Let B' = pe + gf € Pic E. In view of (8.9), B' is

isomorphic to B and p = 1. Since [B'] = [BJE = (h*L—[E])E = e +
{b-n)f, we have ¢ = b-n. 1If B' = e, then ¢ = -¢, b = 2n+2, a-b
= -n-2 < 0. This is a contradiction. Hence B' = e, so that

g 2 0, b2 n. Therefore ho(E,N®OE) = ho(zc,e + (b-n)f) = n + 4,

We have by (8.8) ho(v.N) = n%(X,L) = ho(Q,Lg) + 2 =m+ 2 =n +

8-8



4, and by (8.1.2) h°(Y,N-E)

hO(X,ISL) = 0, whence we have a

natural isomorphism HO(Y,N) S HO(E,N®OE).

Let g : Y = Pn+3 {(n > 0) be the morphism associated with

the linear system INT, the restriction of g to E. Any point

9g

y of Y is contained in some C_.l of some D N D' because ho(Y,N) 2

5. By NEj = 0, C. is mapped to one point. Moreover EEj =

J
- X - -
(N+E)Cj = h LCj = LCj = 1, whence g(y) = g(CjﬂE). Hence g(Y) =
g(E). We note that the linear system lN@OEl defines an
isomorphism gE of E into Pn+3 iff b > n. If b = n, then gE is

an isomorphism over E \ e .

We shall define a morphism § of Y onto E as follows. If
b > n, then we define § to be the morphism g. In the general
case, take an arbitrary point y of Y. Then choose two general

members D and D' of |[N| such that D,D' pass through y. The

intersection 2 = (DND)

red is the disjoint union of Cj (3 =

red

1,...,8) by (8.9). Hence there is a unique Ej passing through
y. Since Eaj = 1, E intersects Ej at a unigque point y' of E.
We define ¢(y) = y' = E N Ej. The point y' is independent of
the choice of D and D'. To show this, take D" and D" of |N|

such that D" and D" pass through y. Let %' = D" N d" , ﬁéed =

C1+~-~+Cs.. Then there is a unique 5; passing through y. In

fact, since 56; = B'Ei = Nai = 0, both D and D' contain Ei,

whence Ei is also the unigque irreducible component of gred

passing through y. Hence Cj = E;. Therefore Ej NE = 5; N E.
It is easy to check that for any point y of E (% Zc), there

exist two members H and H' of |N®O such that H (1 H' is reduced

El
and it contains y. By the isomorphism HO(Y,N)

n

HO(E,NSOE), for



a given vy of Y, we can choose two members D" and D™ of |L| such

that D" N D" N E is reduced and D" ,5“'pass through y where D" =
— x

hD" - E, D" = h' D™ - E. Hence D" N D™ has mi = 1 for any j in

(8.7). By using this it is easy to see that § is a morphism of Y

into (indeed, onto) E. If b = n, the morphism ¥ coincides with
the morphism g on Y\g_l(g(ew)). Note that g(Y\g—l(g(ew))) E
E\ew.

One also sees readily that any fiber of { endowed with
reduced structure is Pl, one of the irreducible components of
D N D' for some B, D' € IN|. Since both Y and E are smooth, @
is flat and any general (scheme-theoretic) fiber of ¥ is Pl.
Any fiber is mutually algebraically eguivalent and w—l(x)E = 1
for general x € E. By the criterion of multiplicity one, we see
that a fiber w-l(x) is generically reduced for any x € E. Since
any fiber is Gorenstein, it is therefore reduced everywhere,
whence it is a nonsingular rational curve Pl. Thus the morphism
Y gives a Pl—bundle structure of Y over E with a section E.
Therefore there is a rank two vector bundle F on E such that Y ¥
P(F) and the following is exact;

0 - OE - F = det F - 0.

The surface E (= P(det F)) is embedded into Y by viewing det F
as a quotient bundle of ¥ as above. Then we have det F = -NE/Y
= -[E]E = e + bf. Since Hl(E,—e—bf) = 0, F £ det F @ OE' Now
it is easy to see that bZ(Y) (or Picard number of Y) = 3. The
threefold X is obtained from Y by contracting E to a curve B,

whence bz(X) (or Picard number of X) = 2. This is a

contradiction.



This completes the proof of (3.6).
The proofs in secitions 2-8 work as well in

(8.11) Remark.

arbitrary characteristic.



& 9 Proof of (0.1)

(9.1) Theorem. Let X be a compact complex threefold

homeomorvhic to P3 is isomorphic to P3 if Hl(X,OX) = 0 and if

0
h (X,—mKX) 2 2 for some positive integer m.

Proof. Since Hl(X,OX) = 0, we have a natural exact sequence
X
1 - Hl(X,Ox) > HEX,ZH)(2Z) - HZ(X,OX). Since Hl(X,O;)

has a nontrivial element KX and HZ(X,OX) is torsion free,

Hl(X,O;) is mapped isomorphically onto HZ(X,Z). Let L be the
X
generator of Hl(X,OX) with L° = 1. Since the second Stiefel

Whitney class w. (= cl(X) mod 2) and rational Pontrjagin classes

2

are topological invariants, we see by [5,pp. 207-208]
cl(X) = (2s+4)L, X(X,OX) = (s+1)(s+2)(s+3)/6

for an integer s. We see h3(X,OX) = ho(x,Qi) S b, =0, X(X,OX)

3

= 1 + hz(X,OX) 2 1. This shows s & O, KX = =(2s+4)L, 2s+4 2 4.

Thus all the assumptions in [11,(1.1)] are satisfied. Hence X

is isomorphic to P3. g.e.d.

(9.2) Proof of (0.1). By the same argument as in (9.1), we see

HZ(X,Z) ¥ Z. Let L be a generator of Pic X with L3 = 2.

1

Pic X
Then by [1, p.188] or [10, p.321], we have,
cl(X) = (2s+3)L, X(X,OX) = (s+1)(s+2)(28+3)/6
for an integer s . By (1.2), X(X,OX) 2 1, whence s 2 0.
If s > 0, then X is isomorphic to P3 by [11,(1.1)] which is a
contradiction. Hence s = 0 and X is isomorphic to 03 by (2.1).
g.e.d.
Theorems (0.2) and (0.3) are derived from (0.1). See

[1131,1121.



Appendix.

As was pointed out by Fujita, the proof of (2.7) in [11]
does not work in positive characteristic because it uses
Bertini's theorem.

We shall give an alternative proof of [11,(1.1)] in
arbitrary characteristic.

(A.1) Theorem. Let X be a complete irreducible nonsingular

algebraic threefold defined over an algebraically closed field of

it

arbitrary characteristic. Assume Pic X = ZL, Hl(X,OX)

-dL (4 2 4), L3 > 0, k(X,L) 2 1. Then X is isomorphic to P3.

0, Kx =

For the proof of (A.1), in view of [11,(2.8) or (2.9)1],it
suffices to prove that a complete intersection & = D 1 D' for any

pair D and D' € |L| is a nonsingular rational curve.

In view of [11,(2.2)]), & = 4, KX = -4L. And by
[11,(2.3)], there is a unigque irreducible component Al of Qred
with LA1 = 1. Here we write C = A1 for simplicity.

First we show,

(A.2) Lemma I, @ I2
. 9 c-
Proof. Let I51 {resp. IC) be the ideal sheaf in OX defining 2
(resp. C). By Grothendieck's theorem, let Ic/Ig = Oc(a)@oc(b),
. 2 1 1
= = % = = - = -
a 2 b. We infer cl(Ic/IC)+c1(9C) ¢, (£,80.) K. C 4LC 4.
Hence a + b = -2. Hence b & -1. Assume IQ cC Ig. We consider
. . 2 2,.3 .
the natural homomorphism ¢ : (Ig/IQ)E@OC - IC/IC (=

: 2 ~
OC(Za)QOC(a+b)®OC(2b)). Since (IQ/IQ)®OC = OC(—I)QOC(—I), Im ¢

is contained in OC(Za). Let I = OC(Za)+Ig. Then since by



[11,(1.7.3)] Hl(OX/IQ) = 0, we have X(OX/I) 2 1. It follows
that
= 2 2 =
12 X(0y /1) = X(0y/1.) + X(I/1a) + X(I./1) = 1 + 2b,

which is absurd. g.e.d.

(A.3) Lemma. IC/Ié = OC(—I)SOC(—I) and the natural homomorphism
) 2 2 . . .

¢ (IQ/IQ)E@OC > IC/IC is an isomorphism.

Proof. By the proof of (A.2), we note a + b = -2, b s -1 % a.

If a > b, then Im ¢ is contained in OC(a). Let I = Oc(a)+Ié.

Then I51 C1IC IC’ IC/I = Oc(b). In the same manner as in (A.2),

by [11,(1.7.3)) and (3.11), we have
< = =
1 = X(OX/I) X(OX/IC) + X(IC/I) 2 + b.
This is a contradiction. Hence a = b = -1. Assume ¢ is not
injective. We note that by (A.2), ¢ is a nontrivial

homomorphism. Since Im ¢ (= Ig+Ig/Ig) is a rank one subsheaf of

a torsion free sheaf Ic/Ig’ it is locally Oc-free. Here we may

set Im ¢ = Oc(c) for some ¢ € Z. Then ¢ = -1 because (IQ/IE)-‘?OC

= OC(—1)®OC(-1). LLet E = Coker ¢ = OC(-l), F = 1Im¢ = OC(-l).
Then we may view Ic/Ig = E ® F because Hl(C,EV®F) = 0, EY being
the dual of E. So we consider again the homomorphism ¢ as,
. 2 _ 2
$ (Ig/lg)®oc - F CEG®F = IC/IC‘

Let p be an arbitrary point of C. Then there are two
generators x ,y of IC p’ and two generators £, g of Ig b such
_ _ 2 2

that ¢(f) = x, ¢é(g) = 0, x mod Ic,p (resp. y mod Ic,p )
generates F (resp. E). In the same manner as in (5.3), we
obtain local parameters x and y € IC D and B € OX b’ m > 0 such
that



(A.3.1) IC,p = OX,px + OX’pY
To,p = %, p* * Ox, pRY"
where the restriction BC of R to C is not identically zero. We
note that m 2 2 because g € IS,D.
Let ¢ = {Uj} be a sufficiently fine covering of an open

neighborhood of C by Stein open sets Uj. Then by (A.3.1), we

have x. € I'(U.,1I ;Y. € ., , € ., .
3 ( 3 Q) y3 T(Uj I1.), R I‘(U:J OX) such that x3 and

C 3
m
yj (resp. xj and Bjyj) generate T(Uj,IC) (resp. F(Uj,I&)).

. 2 ~ N _
Since (IQ/IQ)®OC = OC( 1)®OC( 1), we may assume that

- 2 _ 2
(A.3.2) xj = ijxk mod IC , yj = ijyk mod IC’

where ij stands for the one cocycle LC € Hl(C,Oé).
m m o _

Two elements Dijyj and DkBkyk € Ker ¢ (2 OC( 1)) are

identified iff (we may assume that)
-1

(A.3.3) (Djlc) M) k(Dk’C).

This shows that

- ol-m

(A.3.4) (lec) = ij (Bklc)‘

In particular, BC ' = {lec‘ Uj € ®} is a nontrivial

element of HO(C,OC(I—m)). This is possible only when m = 1 and
BC is a nonzero constant. This contradicts m 2 2. Consequently ¢
is injective whence it is an isomorphism. This completes the
proof of (A.3). qg.e.d.

By (A.3), IQ,p + Ig’p = Ic,p whence IQ,p = IC,p for any
point p of C. This shows that Q is nonsingular anywhere along
C. Since 2 is connected by [11,(1.7)], 2 is isomorphic to C.
Then it is easy to see that Bs |L] = ¢ and that the morphism

associated with |L| is an isomorphism of X onto p3, g.e.d.
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