A CLASS OF NONLINEAR EVOLUTION EQUATIONS GOVERNED BY TIME-DEPENDENT OPERATORS OF SUBDIFFERENTIAL TYPE

Dedicated to Professor N. Kenmochi on the Occasion of His 60th Birthday

NORIAKI YAMAZAKI Department of Mathematical Science, Common Subject Division Muroran Institute of Technology 27-1 Mizumoto-chō, Muroran, 050-8585 Japan E-mail: noriaki@mmm.muroran-it.ac.jp

Abstract. Recently there are so many mathematical models which describe nonlinear phenomena. In some phenomena, the free energy functional is not convex. So, the existence-uniqueness question is sometimes difficult. In order to study such phenomena, let us introduce the new class of abstract nonlinear evolution equations governed by time-dependent operators of subdifferential type. In this paper we shall show the existence and uniqueness of solution to nonlinear evolution equations with time-dependent constraints in a real Hilbert space. Moreover we apply our abstract results to a parabolic variational inequality with time-dependent double obstacles constraints.

AMS Subject Classification 34A60, 35K55, 35K90, 47J35:

Keywords Nonlinear evolution equation, subdifferential, parabolic PDE's, variational inequality

1 Introduction

We study an abstract nonlinear evolution equation in a real Hilbert space H of the form

$$u'(t) + \partial \varphi^t(u(t); u(t)) + G(t, u(t)) \ni f(t) \quad \text{in } H, \text{ a.e. } t \in (0, T),$$
(1)

where $u'(t) := \frac{d}{dt}u(t)$, $G(t, \cdot)$ is a single valued perturbation small relative to φ^t , and f is a given *H*-valued function. For each $t \in [0, T]$, a function $\varphi^t(\cdot; \cdot) : H \times H \to \mathbb{R} \cup \{\infty\}$ is given such that for all $w \in H$, $\varphi^t(w; \cdot) : H \to \mathbb{R} \cup \{\infty\}$ is a proper, l.s.c. (lower semi-continuous) and convex function, and $\partial \varphi^t(w; \cdot)$ is its subdifferential operator, i.e., $z^* \in \partial \varphi^t(w; z)$ if and only if

$$z \in D(\varphi^t(w; \cdot))$$
 and $(z^*, y - z) \le \varphi^t(w; y) - \varphi^t(w; z)$ for all $y \in H$.

For a proper, l.s.c. and convex function $\psi^t(\cdot) : H \to \mathbb{R} \cup \{\infty\}$, many mathematicians studied the nonlinear evolution equation of the form

$$u'(t) + \partial \psi^t(u(t)) \ni f(t) \quad \text{in } H, \text{ a.e. } t \in (0, T).$$

$$(2)$$

For various aspects of (2), we refer to [2, 5, 6, 8, 9, 11, 18, 19]. For instance, Kenmochi [6] showed the existence-uniqueness, stability and convergence of solutions to (2).

For the nonmonotone perturbation $G(t, \cdot)$, Otani [16] has already shown the existence of solution to

$$u'(t) + \partial \psi^t(u(t)) + G(t, u(t)) \ni f(t)$$
 in H , a.e. $t \in (0, T)$. (3)

The large-time behavior of solutions for (3) was discussed by [20] from the view-point of attractors. For another works of (3), we refer to [10, 16, 17, 20, 21, 22], for instance.

The main object of this paper is to establish abstract results on existence-uniqueness of solutions to (1). Note that the function $\varphi^t(u; u)$ is not convex in u, hence we can not apply the theory established by Ôtani [16]. So, by using the idea of Kenmochi-Kubo [7] and Kubo-Yamazaki [12, 13], we shall show the existence of solution to (1) in this paper. Namely, for the given function $w : [0, T] \to H$, let us consider the problem

$$u'(t) + \partial \varphi^t(w(t); u(t)) \ni f(t) - G(t, w(t))$$
 in H , a.e. $t \in (0, T)$. (4)

Assuming some appropriate conditions on the *t*- and *w*-dependence of the function $\varphi^t(w; z)$, we can apply the result of Kenmochi [6]. Then we see that the equation (4) has a unique solution *u* for each *w*, and that the mapping $w \mapsto u$ has some compactness property. Hence, by using a fixed point argument, we can get the existence of solution to (1).

In Section 2 we present our main results on existence and uniqueness of solution to (1), and then the uniqueness (Theorem 3) is proved. In Section 3 we prove the local existence result (Theorem 1). In Section 4, the global existence result (Theorem 2) is proved. In the final Section 5 we apply our abstract results to a parabolic variational inequality with time-dependent double obstacle constraints.

Notation

Throughout this paper, let H be a real Hilbert space with norm $|\cdot|_H$ and inner product (\cdot, \cdot) . For a proper l.s.c. convex function ψ on H we use the notation $D(\psi)$, $\partial \psi$ and $D(\partial \psi)$ to indicate the effective domain, subdifferential and its domain of $\partial \psi$, respectively. For their precise definitions and basic properties, see a monograph by Brézis [4].

2 Assumptions and main results

We consider a Cauchy problem $CP(u_0)$ for (1) of the following form:

$$CP(u_0) \begin{cases} u'(t) + \partial \varphi^t(u(t); u(t)) + G(t, u(t)) \ni f(t) & \text{in } H \text{ a.e. } t \in (0, T), \\ u(0) = u_0, \end{cases}$$

where T is a given positive number, a function $\varphi^t(u(t); u(t))$ is introduced in Section 1, $G(t, \cdot)$ is a single valued perturbation small relative to φ^t , $f \in L^2(0, T; H)$ is a given function, and $u_0 \in H$ is given data.

Definition 1. Given $u_0 \in H$ and $f \in L^2(0,T;H)$, the function $u : [0,T] \to H$ will be called a solution to $CP(u_0)$, if $u \in W^{1,2}(0,T;H)$, $u(0) = u_0$, $u(t) \in D(\partial \varphi^t(u(t); \cdot))$ and $f(t) - u'(t) - G(t, u(t)) \in \partial \varphi^t(u(t); u(t))$ for a.e. $t \in [0,T]$, namely

$$(f(t) - u'(t) - G(t, u(t)), \ y - u(t)) \le \varphi^t(u(t); y) - \varphi^t(u(t); u(t))$$

for any $y \in H$, a.e. $t \in [0, T]$.

For a given positive number T, let $\{\alpha_r\} := \{\alpha_r; r > 0\}$ be a family of functions $\alpha_r \in W^{1,2}(0,T)$, with parameter r > 0. With this family $\{\alpha_r\}$, we specify a class $\Phi(\{\alpha_r\})$ of all families $\{\varphi^t\} := \{\varphi^t; t \in [0,T]\}$ of time-dependent functions $\varphi^t(\cdot; \cdot)$ on $H \times H$ as follows.

Definition 2. We denote by $\{\varphi^t\} \in \Phi(\{\alpha_r\})$ the set of all time-dependent functions $\varphi^t(\cdot; \cdot)$ from $H \times H$ into $\mathbb{R} \cup \{\infty\}$ satisfying the following seven conditions:

- (Φ1) For each $w \in H$ and $t \in [0, T]$, $\varphi^t(w; \cdot) : H \to \mathbb{R} \cup \{\infty\}$ is a proper l.s.c. convex function;
- ($\Phi 2$) There exists a positive constant $C_1 > 0$ such that

$$\varphi^t(w;z) \ge C_1 |z|_H^2, \quad \forall t \in [0,T], \ \forall w \in H, \ \forall z \in D(\varphi^t(w;\cdot));$$

- (Φ3) For each $t \in [0, T]$, $w \in H$ and k > 0, the level set $\{z \in H; \varphi^t(w; z) \le k\}$ is compact in H;
- (Φ 4) $D(\varphi^t(w; \cdot))$ is independent of $w \in H$ for any $t \in [0, T]$;

(Φ5) For each r > 0, $s, t \in [0,T]$ with $s \le t, w \in D(\varphi^s(0; \cdot))$ with $|w|_H \le r$ and $z \in D(\varphi^s(w; \cdot))$ with $|z|_H \le r$ there exists an element $\tilde{z} \in D(\varphi^t(w; \cdot))$ such that

$$|\tilde{z} - z|_H \le |\alpha_r(t) - \alpha_r(s)| \left(1 + \varphi^s(0; z)^{\frac{1}{2}}\right)$$

and

$$\varphi^{t}(w;\tilde{z}) - \varphi^{s}(w;z) \le |\alpha_{r}(t) - \alpha_{r}(s)| \left(1 + \varphi^{s}(0;z) + \varphi^{s}(0;w)^{\frac{1}{2}} \varphi^{s}(0;z)^{\frac{1}{2}} + \varphi^{s}(0;w)^{\frac{1}{2}} \right);$$

($\Phi 6$) For each r > 0 there is a positive constant $C_r > 0$ such that

$$|\varphi^{t}(w_{1};z) - \varphi^{t}(w_{2};z)| \leq C_{r}|w_{1} - w_{2}|_{H}\varphi^{t}(0;z)^{\frac{1}{2}},$$

 $\forall t \in [0,T], \ \forall w_i \in H \text{ with } |w_i|_H \leq r, \ (i=1,2), \text{ and } \forall z \in D(\varphi^t(0,\cdot));$

(Φ7) There is a function $h \in W^{1,2}(0,T;H)$ with $C_h := \sup_{t \in [0,T]} \varphi^t(0;h(t)) < +\infty$.

Next, we introduce the class $\mathcal{G}(\{\varphi^t\})$ of time-dependent perturbation $G(t, \cdot)$ associated with $\{\varphi^t\} \in \Phi(\{a_r\})$.

Definition 3. $\{G(t, \cdot)\} \in \mathcal{G}(\{\varphi^t\})$ if and only if $G(t, \cdot)$ is a single valued operator from $D(G(t, \cdot)) \subset H$ into H which fulfills the following conditions (G1)-(G3):

- (G1) $D(\varphi^t(0; \cdot)) \subset D(G(t, \cdot)) \subset H$ for all $t \in [0, T]$ and $G(\cdot, v(\cdot))$ is (strongly) measurable on J for any interval $J \subset [0, T]$ and $v \in L^2_{loc}(J; H)$ with $v(t) \in D(\varphi^t(0; \cdot))$ for a.e. $t \in J$.
- (G2) There are positive constants $C_2 > 0$, $C_3 > 0$ such that

$$|G(t,z)|_{H}^{2} \leq C_{2}\varphi^{t}(z;z) + C_{3}, \quad \forall t \in [0,T], \ \forall z \in D(\varphi^{t}(0;\cdot)).$$

(G3) (Demi-closedness) If $\{t_n\} \subset [0,T], \{z_n\} \subset H, t_n \to t, z_n \to z \text{ in } H \text{ (as } n \to +\infty)$ and $\{\varphi^{t_n}(0,z_n)\}$ is bounded, then $G(t_n,z_n) \to G(t,z)$ weakly in H as $n \to +\infty$.

Now let us mention our main local existence result in this paper. In Section 3 we shall prove Theorem 1.

Theorem 1. Let T be any positive number. Assume $\{\varphi^t\} \in \Phi(\{\alpha_r\}), \{G(t, \cdot)\} \in \mathcal{G}(\{\varphi^t\})$ and $f \in L^2(0,T;H)$. Then, for each $u_0 \in D(\varphi^0(0; \cdot))$ there exists a positive constant $T_0(\leq T)$ such that $CP(u_0)$ has at least one solution u on $[0, T_0]$.

The next main theorem is concerned with the global existence result in this paper. In Section 4 we shall prove Theorem 2.

Theorem 2. Let T be any positive number. Assume $\{\varphi^t\} \in \Phi(\{\alpha_r\}), \{G(t, \cdot)\} \in \mathcal{G}(\{\varphi^t\})$ and $f \in L^2(0, T; H)$. Additionally, assume that (Φ 8) There is a positive constant $C_4 > 0$ such that

$$\varphi^t(w; z) \le C_4(1 + |w|_H^2 + \varphi^t(0; z)), \quad \forall t \in [0, T], \ \forall w \in H, \ \forall z \in D(\varphi^t(0; \cdot)).$$

Then, for each $u_0 \in D(\varphi^0(0; \cdot))$ there exists at least one solution u to $CP(u_0)$ on [0, T].

To show the uniqueness of solution to $CP(u_0)$, we shall introduce subclasses of $\Phi(\{\alpha_r\})$ and $\mathcal{G}(\{\varphi^t\})$.

Definition 4. Let γ be a non-negative continuous and convex function on H such that $\gamma(z) + \gamma(-z) = 0$ if and only if z = 0. Then

(1) $\{\varphi^t\} \in \Phi_{\gamma}(\{\alpha_r\})$ if and only if $\{\varphi^t\} \in \Phi(\{\alpha_r\})$ satisfies the γ -accretiveness (\star) for φ^t as follows:

(*) For any $z_i \in D(\partial \varphi^t(z_i; \cdot))$ and $z_i^* \in \partial \varphi^t(z_i; z_i)$ (i = 1, 2), there is an element $w_0 \in \partial \gamma(z_1 - z_2)$ so that $(z_1^* - z_2^*, w_0) \ge 0$, where $\partial \gamma$ is the subdifferential of γ in H.

(2) $\{G(t, \cdot)\} \in \mathcal{G}_{\gamma}(\{\varphi^t\})$ if and only if for any positive number $\varepsilon > 0$, there is a positive constant $C_{\varepsilon} > 0$ such that

$$|(G(t, z_1) - G(t, z_2), w_0)| \le \varepsilon(z_1^* - z_2^*, w_0) + C_{\varepsilon} \{\gamma(z_1 - z_2) + \gamma(z_2 - z_1)\},\$$

whenever $t \in [0, T], z_i \in D(\partial \varphi^t(z_i; \cdot)), z_i^* \in \partial \varphi^t(z_i; z_i) \ (i = 1, 2), \text{ and}$

$$w_0 \in \partial \gamma(z_1 - z_2)$$
 with $(z_1^* - z_2^*, w_0)_H \ge 0.$

Now let us mention our main uniqueness result in this paper.

Theorem 3. Let T be any positive number. Assume $\{\varphi^t\} \in \Phi_{\gamma}(\{\alpha_r\}), \{G(t, \cdot)\} \in \mathcal{G}_{\gamma}(\{\varphi^t\})$ and $f \in L^2(0, T; H)$. Then, for each $u_0 \in H$ the solution u to $CP(u_0)$ is unique.

Proof. Let u and v be solutions to $CP(u_0)$. By the γ -accretiveness of φ^t , for a.e. $\tau \in [0, T]$ there exists $z^*(\tau) \in \partial \gamma(u(\tau) - v(\tau))$ such that

$$(u^*(\tau) - v^*(\tau), z^*(\tau)) \ge 0$$
(5)

for any $u^*(\tau) \in \partial \varphi^\tau(u(\tau); u(\tau))$ and $v^*(\tau) \in \partial \varphi^\tau(v(\tau); v(\tau))$.

By $\{G(t, \cdot)\} \in \mathcal{G}_{\gamma}(\{\varphi^t\})$, for a number $\varepsilon \in (0, 1]$ there is a constant $C_{\varepsilon} > 0$ such that

$$|(G(\tau, u(\tau)) - G(\tau, v(\tau)), z^*(\tau))|$$

$$\leq \varepsilon(u^*(\tau) - v^*(\tau), z^*(\tau)) + C_{\varepsilon}\{\gamma(u(\tau) - v(\tau)) + \gamma(v(\tau) - u(\tau))\}$$
(6)

for a.e. $\tau \in [0, T]$.

From (5) and (6) it follows that

$$\begin{array}{ll} 0 &\leq & (u^{*}(\tau) - v^{*}(\tau), z^{*}(\tau)) \\ &= & ([f(\tau) - u'(\tau) - G(\tau, u(\tau))] - [f(\tau) - v'(\tau) - G(\tau, v(\tau))], z^{*}(\tau)) \\ &\leq & (-u'(\tau) + v'(\tau), z^{*}(\tau)) + |(-G(\tau, u(\tau)) + G(\tau, v(\tau)), z^{*}(\tau))| \\ &\leq & -\frac{d}{d\tau} \gamma(u(\tau) - v(\tau)) \\ &\quad + \varepsilon(u^{*}(\tau) - v^{*}(\tau), z^{*}(\tau)) + C_{\varepsilon} \{\gamma(u(\tau) - v(\tau)) + \gamma(v(\tau) - u(\tau))\}, \end{array}$$

which implies that

$$\frac{d}{d\tau}\gamma(u(\tau) - v(\tau)) \le C_{\varepsilon}\{\gamma(u(\tau) - v(\tau)) + \gamma(v(\tau) - u(\tau))\} \quad \text{for a.e. } \tau \in [0, T]$$

Similarly we have

$$\frac{d}{d\tau}\gamma(v(\tau) - u(\tau)) \le C_{\varepsilon}\{\gamma(u(\tau) - v(\tau)) + \gamma(v(\tau) - u(\tau))\},\$$

hence we have

$$\frac{d}{d\tau}\{\gamma(u(\tau) - v(\tau)) + \gamma(v(\tau) - u(\tau))\} \le 2C_{\varepsilon}\{\gamma(u(\tau) - v(\tau)) + \gamma(v(\tau) - u(\tau))\},$$
(7)

for a.e. $\tau \in [0, T]$.

Now, applying Gronwall's inequality to (7), we get

$$e^{-2C_{\varepsilon}t}\{\gamma(u(t)-v(t))+\gamma(v(t)-u(t))\}\leq 0 \text{ for any } 0\leq t\leq T,$$

which implies that u(t) = v(t) for all $t \in [0, T]$. Thus Theorem 3 has been proved.

3 Proof of Theorem 1

In this section we shall show Theorem 1 by the fixed point argument. To do so, for a given positive number T > 0, we put a Banach space

$$E(T) \equiv \left\{ w \in W^{1,2}(0,T;H) \; ; \; \sup_{t \in [0,T]} \varphi^t(0;w(t)) < +\infty \right\}.$$

By the assumption $(\Phi 7)$ we note that $E(T) \neq \emptyset$.

Now, for each $w \in E(T)$ let us consider a following Cauchy problem $CP(w; u_0)$:

$$CP(w; u_0) \begin{cases} u'(t) + \partial \varphi^t(w(t); u(t)) \ni f(t) - G(t, w(t)) & \text{in } H, \text{ a.e. } t \in (0, T), \\ u(0) = u_0. \end{cases}$$

To show the existence-uniqueness of solution to $CP(w; u_0)$, we prepare the key lemma.

Lemma 1. For each $w \in E(T)$ we take a positive constant R > 0 such that $\sup_{t \in [0,T]} |w(t)|_H \leq R$. Put

$$\psi_w^t(z) := \varphi^t(w(t); z) \text{ for } z \in H$$

Then, there is a positive constant $N_1 > 0$ independent of w satisfying the following: for any $s, t \in [0,T]$ with $s \leq t$ and $z \in D(\psi_w^s)$ with $|z|_H \leq R$, there exists $\tilde{z} \in D(\psi_w^t)$ such that

$$|\tilde{z} - z|_H \le N_1 (1 + C_R)^4 (1 + R)^6 |\alpha_R(t) - \alpha_R(s)| \left(1 + \psi_w^s(z)^{\frac{1}{2}} \right), \tag{8}$$

$$\psi_{w}^{t}(\tilde{z}) - \psi_{w}^{s}(z) \\
\leq N_{1}(1+C_{R})^{4}(1+R)^{6} \left\{ |\alpha_{R}(t) - \alpha_{R}(s)|(1+\psi_{w}^{s}(z)) + |w(t) - w(s)|_{H} (1+\psi_{w}^{s}(z))^{\frac{1}{2}} \right. \\
+ |\alpha_{R}(t) - \alpha_{R}(s)|\varphi^{s}(0;w(s))^{\frac{1}{2}} (1+\psi_{w}^{s}(z))^{\frac{1}{2}} \right\}.$$
(9)

Proof. Taking w = w(s) in ($\Phi 5$), then for any $s, t \in [0,T]$ with $s \leq t$ and $z \in D(\varphi^s(w(s); \cdot)$ with $|z|_H \leq R$, there exists $\tilde{z} \in D(\varphi^t(w(s); \cdot))$ such that

$$|\tilde{z} - z|_H \le |\alpha_R(t) - \alpha_R(s)| \left(1 + \varphi^s(0; z)^{\frac{1}{2}}\right),$$
 (10)

$$\varphi^{t}(w(s);\tilde{z}) - \varphi^{s}(w(s);z) \\ \leq |\alpha_{R}(t) - \alpha_{R}(s)| \left(1 + \varphi^{s}(0;z) + \varphi^{s}(0;w(s))^{\frac{1}{2}}\varphi^{s}(0;z)^{\frac{1}{2}} + \varphi^{s}(0;w(s))^{\frac{1}{2}}\right).$$
(11)

It follows from $(\Phi 4)$ that

$$z \in D(\varphi^s(w(s); \cdot) = D(\psi^s_w), \quad \tilde{z} \in D(\varphi^t(w(s); \cdot)) = D(\psi^t_w).$$
(12)

Note that by $(\Phi 6)$ and $w \in E(T)$ we have

$$\varphi^{s}(0;z) \leq 2\varphi^{s}(w(s);z) + C_{R}^{2}|w(s)|_{H}^{2} \leq 2\psi_{w}^{s}(z) + C_{R}^{2}R^{2}.$$
(13)

Then, by (10) and (13) there is a positive number $N_2 > 0$ independent of w satisfying

$$\begin{aligned} |\tilde{z} - z|_{H} &\leq |\alpha_{R}(t) - \alpha_{R}(s)| \left(1 + \sqrt{2}\psi_{w}^{s}(z)^{\frac{1}{2}} + C_{R}R \right) \\ &\leq N_{2}(1 + C_{R}R)|\alpha_{R}(t) - \alpha_{R}(s)| \left(1 + \psi_{w}^{s}(z)^{\frac{1}{2}} \right). \end{aligned}$$
(14)

Moreover, we observe that by (11), (13), ($\Phi 6$) there is a positive number $N_3 > 0$ independent of w satisfying the following:

$$\psi_{w}^{t}(\tilde{z}) - \psi_{w}^{s}(z) \left(= \varphi^{t}(w(t); \tilde{z}) - \varphi^{t}(w(s); \tilde{z}) + \varphi^{t}(w(s); \tilde{z}) - \varphi^{s}(w(s); z) \right) \\
\leq N_{3}(1 + C_{R})^{2}(1 + R)^{2} \left\{ |w(t) - w(s)|_{H} \psi_{w}^{t}(\tilde{z})^{\frac{1}{2}} + |w(t) - w(s)|_{H} + |\alpha_{R}(t) - \alpha_{R}(s)|(1 + \psi_{w}^{s}(z)) + |\alpha_{R}(t) - \alpha_{R}(s)|\varphi^{s}(0; w(s))^{\frac{1}{2}}(1 + \psi_{w}^{s}(z))^{\frac{1}{2}} \right\}. (15)$$

From $\alpha_R \in W^{1,2}(0,T)$, $w \in E(T)$ and (15) it follows that

$$\psi_w^t(\tilde{z}) \le N_4 (1+C_R)^4 (1+R)^6 \left\{ 1 + \psi_w^s(z) + |\alpha_R(t) - \alpha_R(s)|^2 \varphi^s(0; w(s)) \right\}$$
(16)

for some constant $N_4 > 0$. Therefore, using (16) in the right hand side of (15), and by (12)-(14), we get this Lemma for some constant $N_1 > 0$ independent of w.

Proposition 1. For each $w \in E(T)$, $CP(w; u_0)$ has a unique solution u on [0, T].

Proof. We note that $CP(w; u_0)$ can be regarded as the Cauchy problem for the nonlinear evolution equation of the form:

$$\begin{cases} u'(t) + \partial \psi_w^t(u(t)) \ni f(t) - G(t, w(t)) & \text{in } H \text{ a.e. } t \in (0, T), \\ u(0) = u_0. \end{cases}$$

Here, from ($\Phi 6$) and (G2) we see that for each $w \in E(T)$ with $\sup_{t \in [0,T]} |w(t)|_H \leq R$

$$\begin{split} \int_0^T |G(t, w(t))|_H^2 dt &\leq \int_0^T \left\{ C_2 \varphi^t(w(t); w(t)) + C_3 \right\} dt \\ &\leq T \left\{ 2C_2 \sup_{t \in [0,T]} \varphi^t(0; w(t)) + \frac{C_2 C_R^2 R^2}{4} + C_3 \right\} < +\infty, \end{split}$$

which implies that $f - G(\cdot, w(\cdot)) \in L^2(0, T; H)$. Moreover, by Lemma 1 we get the timedependence of ψ_w^t . Therefore taking account of the assumption (Φ 1), we can apply the abstract theory established by Kenmochi [6]. Thus we get the existence-uniqueness of solution u for $CP(w; u_0)$. For detail proofs, see [6, Theorems 1.1.1, 1.1.2].

By Proposition 1, the boundedness (cf. [6, Theorem 1.1.2]) of solution to $CP(w; u_0)$, and (13), we can define a mapping , we can define a mapping $Q : E(T) \longrightarrow E(T)$ by Qw = u for each $w \in E(T)$, where u is a solution for $CP(w; u_0)$.

Lemma 2. There are positive constants T_0 , M_0 and R_0 such that Q is a self-mapping on $E(T_0, M_0, R_0)$, *i.e.*, $Qw(=u) \in E(T_0, M_0, R_0)$ for any $w \in E(T_0, M_0, R_0)$, where

$$E(T_0, M_0, R_0) \equiv \left\{ w \in E(T_0) ; \begin{array}{l} \sup_{t \in [0, T_0]} \varphi^t(0; w(t)) \le M_0, \quad |w'|_{L^2(0, T_0; H)}^2 \le M_0 \\ \sup_{t \in [0, T_0]} |w(t)|_H \le R_0, \quad w(0) = u_0 \end{array} \right\}.$$

Proof. Fix R > 0 for a while and take $w \in E(T)$ with $\sup_{t \in [0,T]} |w(t)|_H \leq R$. We shall give a boundedness of solution u to the problem $CP(w; u_0)$.

Now, multiplying $CP(w; u_0)$ by u(t) - h(t), we get

$$(u'(t), u(t) - h(t)) + \varphi^{t}(w(t); u(t)) - \varphi^{t}(w(t); h(t))$$

$$\leq (f(t) - G(t, w(t)), u(t) - h(t)) \quad \text{a.e. } t \in (0, T),$$
(17)

where h is the function in (Φ 7). Taking account of (Φ 2), (Φ 6) and (G2), we have

$$\frac{d}{dt}|u(t) - h(t)|_{H}^{2} - |u(t) - h(t)|_{H}^{2}
\leq N_{5} \left(|f(t)|_{H}^{2} + |h'(t)|_{H}^{2} + \varphi^{t}(0;h(t)) + \varphi^{t}(0;w(t)) + C_{R}^{2}R^{2} + 1\right),$$
(18)

for a constant $N_5 = N_5(C_2, C_3) > 0$. By applying Gronwall's inequality to (18), we obtain $\sup_{t \to 0} |u(t)|_{T}$

$$\sup_{t \in [0,T]} |u(t)|_{H} \\
\leq \sup_{t \in [0,T]} |h(t)|_{H} + e^{\frac{T}{2}} |u_{0} - h(0)|_{H} + e^{\frac{T}{2}} N_{5}^{\frac{1}{2}} \left\{ |f|_{L^{2}(0,T;H)} + |h'|_{L^{2}(0,T;H)} \right\} \\
+ e^{\frac{T}{2}} N_{5}^{\frac{1}{2}} T^{\frac{1}{2}} \left\{ \sup_{t \in [0,T]} \varphi^{t}(0;h(t))^{\frac{1}{2}} + \sup_{t \in [0,T]} \varphi^{t}(0;w(t))^{\frac{1}{2}} + C_{R}R + 1 \right\}.$$
(19)

Moreover, by Lemma 1 and arguments of [6, section 1], we see that the function $\psi_w^t(u(t)) = \varphi^t(w(t); u(t))$ is of bounded variation on [0, T] and satisfies

$$\psi_{w}^{t}(u(t)) - \psi_{w}^{s}(u(s)) + \int_{s}^{t} (u'(\tau) - f(\tau) + G(\tau, w(\tau)), u'(\tau)) d\tau$$

$$\leq N_{1}(1 + C_{R})^{4}(1 + R)^{6} \int_{s}^{t} |\alpha_{R}'(\tau)| |u'(\tau) - f(\tau) + G(\tau, w(\tau))| \left\{ 1 + \psi_{w}^{\tau}(u(\tau))^{\frac{1}{2}} \right\} d\tau$$

$$+ N_{1}(1 + C_{R})^{4}(1 + R)^{6} \int_{s}^{t} \left[|\alpha_{R}'(\tau)| (1 + \psi_{w}^{\tau}(u(\tau)) + |w'(\tau)|_{H} \left\{ 1 + \psi_{w}^{\tau}(u(\tau)) \right\}^{\frac{1}{2}} \right] d\tau$$

$$+ N_{1}(1 + C_{R})^{4}(1 + R)^{6} \int_{s}^{t} |\alpha_{R}'(\tau)| \varphi^{\tau}(0; w(\tau))^{\frac{1}{2}} \left\{ 1 + \psi_{w}^{\tau}(u(\tau)) \right\}^{\frac{1}{2}} d\tau \qquad (20)$$

for $0 \le s \le t \le T$ and $w \in E(T)$ with $\sup_{t \in [0,T]} |w(t)|_H \le R$.

Here we notice the following relations:

$$(u'(\tau) - f(\tau) + G(\tau, w(\tau)), u'(\tau)) \ge \frac{1}{2} |u'(\tau)|_{H}^{2} - |f(\tau)|_{H}^{2} - |G(\tau, w(\tau))|_{H}^{2},$$
(21)

$$\begin{aligned} &|\alpha_{R}'(\tau)||u'(\tau) - f(\tau) + G(\tau, w(\tau))|_{H} \left\{ 1 + \psi_{w}^{\tau}(u(\tau))^{\frac{1}{2}} \right\} \\ &\leq \delta |u'(\tau) - f(\tau) + G(\tau, w(\tau))|_{H}^{2} + \delta^{-1} |\alpha_{R}'(\tau)|^{2} \left\{ 1 + \psi_{w}^{\tau}(u(\tau)) \right\} \\ &\leq 3\delta |u'(\tau)|_{H}^{2} + 3\delta |f(\tau)|_{H}^{2} + 3\delta |G(\tau, w(\tau))|_{H}^{2} + \delta^{-1} |\alpha_{R}'(\tau)|^{2} \left\{ 1 + \psi_{w}^{\tau}(u(\tau)) \right\}, \end{aligned}$$
(22)

where in (22) we put $\delta := \frac{1}{12N_1(1+C_R)^4(1+R)^6}$. Using (21)-(22) in (20), we obtain

$$\psi_{w}^{t}(u(t)) - \psi_{w}^{s}(u(s)) + \frac{1}{4} \int_{s}^{t} |u'(\tau)|_{H}^{2} d\tau$$

$$\leq N_{6}(1+C_{R})^{8}(1+R)^{12} \int_{s}^{t} \left\{ X(\tau)(1+\psi_{w}^{\tau}(u(\tau))) + Y(\tau) \left\{ 1+\psi_{w}^{\tau}(u(\tau)) \right\}^{\frac{1}{2}} + |G(\tau,w(\tau))|_{H}^{2} \right\} d\tau \qquad (23)$$

for $0 \le s \le t \le T$, where the constant $N_6 > 0$ is determined only by N_1 , and we put

$$X(\tau) := |f(\tau)|_{H}^{2} + |\alpha_{R}'(\tau)|^{2} + 1, \quad Y(\tau) := |w'(\tau)|_{H} + |\alpha_{R}'(\tau)|\varphi^{\tau}(0;w(\tau))^{\frac{1}{2}}.$$

By $(\Phi 6)$, (G2) and (23), we obtain

$$\psi_{w}^{t}(u(t)) - \psi_{w}^{s}(u(s)) + \frac{1}{4} \int_{s}^{t} |u'(\tau)|_{H}^{2} d\tau$$

$$\leq N_{7}(1 + C_{R})^{10}(1 + R)^{14} \int_{s}^{t} \{X(\tau) + Y(\tau) + \varphi^{\tau}(0; w(\tau))\} \{1 + \psi_{w}^{\tau}(u(\tau))\} d\tau \quad (24)$$

for $0 \le s \le t \le T$, where $N_7 > 0$ depends on N_6 , C_2 and C_3 .

Applying Gronwall's inequality to (24), we obtain Γ^T

$$\sup_{0 \le t \le T} \psi_w^t(u(t)) + \frac{1}{4} \int_0^T |u'(t)|_H^2 dt
\le e^{N_7(1+C_R)^{10}(1+R)^{14} \left(|X|_{L^1(0,T)} + |Y|_{L^1(0,T)} + |\varphi^t(0;w(t))|_{L^1(0,T)}\right)}
\times \left\{ \psi_w^0(u_0) + N_7(1+C_R)^{10}(1+R)^{14} \left(|X|_{L^1(0,T)} + |Y|_{L^1(0,T)} + |\varphi^t(0;w(t))|_{L^1(0,T)}\right) \right\}.$$
(25)

Now we show that Q is the self-mapping on $E(T_0, M_0, R_0)$ for some chosen constants $T_0 > 0, M_0 > 0$ and $R_0 > 0$.

Note that by $(\Phi 6)$ we have

$$\varphi^{t}(0; u(t)) \leq 2\varphi^{t}(w(t); u(t)) + C_{R}^{2}R^{2} \left(= 2\psi^{t}_{w}(u(t)) + C_{R}^{2}R^{2}\right)$$
(26)

for any $w \in E(T)$ with $\sup_{t \in [0,T]} |w(t)|_H \le R$.

Here, we take $R_0 > 0$, $M_0 > 0$ so large that

$$2 \left[\sup_{t \in [0,T]} |h(t)|_{H} + e^{\frac{T}{2}} |u_{0} - h(0)|_{H} + e^{\frac{T}{2}} N_{5}^{\frac{1}{2}} \left\{ |f|_{L^{2}(0,T;H)} + |h'|_{L^{2}(0,T;H)} \right\} \right] \leq R_{0},$$

$$4 e^{2N_{7}(1+C_{R_{0}})^{10}(1+R_{0})^{14}} \left\{ \psi_{w}^{0}(u_{0}) + 2N_{7}(1+C_{R_{0}})^{10}(1+R_{0})^{14} \right\} + C_{R_{0}}^{2} R_{0}^{2} + C_{h}$$

$$\leq 4 e^{2N_{7}(1+C_{R_{0}})^{10}(1+R_{0})^{14}} \left\{ 2\varphi^{0}(0;u_{0}) + \frac{C_{R_{0}}^{2} R_{0}^{2}}{4} + 2N_{7}(1+C_{R_{0}})^{10}(1+R_{0})^{14} \right\}$$

$$+ C_{R_{0}}^{2} R_{0}^{2} + C_{h}$$

$$\leq M_{0}.$$

Next, we choose $T_0 > 0$ so small that $T_0 \leq T$, $|h'|^2_{L^2(0,T_0;H)} \leq M_0$, $|X|_{L^1(0,T_0)} \leq 1$,

$$|Y|_{L^{1}(0,T_{0})} + |\varphi^{t}(0;w(t))|_{L^{1}(0,T_{0})} \le T_{0}^{\frac{1}{2}}M_{0}^{\frac{1}{2}} + M_{0}^{\frac{1}{2}}T_{0}^{\frac{1}{2}}|\alpha'_{R_{0}}|_{L^{2}(0,T_{0})} + T_{0}M_{0} \le 1,$$

$$\sup_{t \in [0,T_0]} |h(t)|_H + e^{\frac{T_0}{2}} |u_0 - h(0)|_H + e^{\frac{T_0}{2}} N_5^{\frac{1}{2}} \left\{ |f|_{L^2(0,T_0;H)} + |h'|_{L^2(0,T_0;H)} \right\} \\ + e^{\frac{T_0}{2}} N_5^{\frac{1}{2}} T_0^{\frac{1}{2}} \left\{ \sup_{t \in [0,T_0]} \varphi^t(0;h(t))^{\frac{1}{2}} + M_0^{\frac{1}{2}} + C_{R_0} R_0 + 1 \right\} \le R_0.$$

Then, the estimates (19), (25) with (26) implies that Qw(=u) belongs to the set $E(T_0, M_0, R_0)$ for $w \in E(T_0, M_0, R_0)$, thus Q is the self-mapping on $E(T_0, M_0, R_0)$.

Lemma 3. Let $M_0 > 0$, $R_0 > 0$ and $T_0 > 0$ be constants obtained in Lemma 2. Let $\{w_n\} \subset E(T_0, M_0, R_0), w \in E(T_0, M_0, R_0)$ and u_n be the solution of $CP(w_n; u_0)$. Suppose $w_n \longrightarrow w \text{ in } C([0,T_0];H) \text{ as } n \longrightarrow +\infty.$ Then, there is a solution $u \text{ of } CP(w;u_0) \text{ on } [0,T_0]$ such that $u \in E(T_0, M_0, R_0)$ and $u_n \longrightarrow u$ in $C([0, T_0]; H)$ as $n \rightarrow +\infty$.

Proof. Since $\{w_n\} \subset E(T_0, M_0, R_0)$ and Lemma 2, we have

$$\sup_{t \in [0,T_0]} \varphi^t(0; u_n(t)) \le M_0, \qquad |u'_n|^2_{L^2(0,T_0;H)} \le M_0, \qquad \forall n = 1, 2, \cdots,$$
(27)

$$\sup_{t \in [0,T_0]} |u_n(t)|_H \le R_0, \qquad \forall n = 1, 2, \cdots.$$
(28)

By (Φ 3), (27), (28) there are a subsequence { n_k } of {n} and a function $u \in W^{1,2}(0, T_0; H)$ such that ı

$$u_{n_k} \longrightarrow u \quad \text{strongly in } C([0, T_0]; H),$$

$$\tag{29}$$

$$u'_{n_k} \rightharpoonup u'$$
 weakly in $L^2(0, T_0; H)$ (30)

as $k \to +\infty$. By ($\Phi 1$), (27)-(30) and the uniqueness of u_n , we easily observe that $u \in$ $E(T_0, M_0, R_0)$ and $u_n \longrightarrow u$ in $C([0, T_0]; H)$ as $n \to +\infty$.

Now, let us show that u is a solution of $CP(w; u_0)$ on $[0, T_0]$. To do so, we define $\Phi(w;z) = \int_0^{T_0} \varphi^t(w(t);z(t)) dt$. Then by the assumption ($\Phi 6$) we see that

$$\Phi(w_n; z) \longrightarrow \Phi(w; z) \text{ as } n \to +\infty$$
(31)

for any $z \in L^2(0, T_0; H)$ with $\varphi^{(\cdot)}(0; z(\cdot)) \in L^1(0, T_0)$. From (27), (29), (Φ 1), (Φ 2), (Φ 6) and the Fatou's lemma, it follows that

$$\liminf_{k \to +\infty} \Phi(w_{n_k}; u_{n_k}) = \liminf_{k \to +\infty} \{ \Phi(w_{n_k}; u_{n_k}) - \Phi(w; u_{n_k}) + \Phi(w; u_{n_k}) \}$$

$$\geq \liminf_{k \to +\infty} \Phi(w; u_{n_k}) \geq \Phi(w; u).$$
(32)

Moreover, by $\{w_n\} \subset E(T_0, M_0, R_0)$ and the demi-closedness (G3) we see that

$$G(\cdot, w_{n_k}(\cdot)) \rightharpoonup G(\cdot, w(\cdot))$$
 weakly in $L^2(0, T_0; H)$

hence

$$f - G(\cdot, w_{n_k}(\cdot)) \rightharpoonup f - G(\cdot, w(\cdot))$$
 weakly in $L^2(0, T_0; H)$ (33)

as $k \to +\infty$.

Now, let z be any function in $L^2(0, T_0; H)$ with $\varphi^{(\cdot)}(0; z(\cdot)) \in L^1(0, T_0)$. Since u_{n_k} is the unique solution of $CP(w_{n_k}; u_0)$, then the following inequality holds:

$$\int_{0}^{T_{0}} \left(f(t) - G(t, w_{n_{k}}(t)) - u_{n_{k}}'(t), z(t) - u_{n_{k}}(t) \right) dt \le \Phi(w_{n_{k}}; z) - \Phi(w_{n_{k}}; u_{n_{k}}).$$
(34)

Taking account of (29)-(33) and letting $k \to +\infty$ in (34), we get

$$\int_0^{T_0} \left(f(t) - G(t, w(t)) - u'(t), z(t) - u(t) \right) dt \le \Phi(w; z) - \Phi(w; u),$$

which implies that $f(t) - G(t, w(t)) - u'(t) \in \partial \varphi^t(w(t); u(t))$ for a.e. $t \in [0, T_0]$ (cf. [1, Proposition 3.3]). Thus u is the solution of $CP(w; u_0)$ on $[0, T_0]$.

Proof. [Proof of Theorem 1; Local existence] By Lemma 2, we can define a selfmapping $Q : E(T_0, M_0, R_0) \longrightarrow E(T_0, M_0, R_0)$ by Qw = u for each $w \in E(T_0, M_0, R_0)$, where u is a solution of $CP(w; u_0)$. Clearly, $E(T_0, M_0, R_0)$ is compact in $C([0, T_0]; H)$. Moreover, it follows from Lemma 3 that Q is continuous with respect to the topology of $C([0, T_0]; H)$. Therefore, the Schauder's fixed point theorem implies that the self-mapping Q has a fixed point u in $E(T_0, M_0, R_0)$, i.e. Qu = u. Clearly u is the solution of $CP(u_0)$, thus we can construct the local solution u of $CP(u_0)$ on $[0, T_0]$.

4 Proof of Theorem 2

In this section we shall prove Theorem 2, which is concerned with the global existence of solution to $CP(u_0)$.

First, we consider the inequality (17). By the local existence result in Section 3, we can take $w = u \in E(T_0, M_0, R_0), u$ being the solution of $CP(u_0)$ on a small time interval $[0, T_0]$ with $0 < T_0 \leq T$. Hence, by taking w = u in (17) it follows from (G2) and the additional assumption ($\Phi 8$) that

$$\frac{d}{dt}|u(t) - h(t)|_{H}^{2} + \varphi^{t}(u(t); u(t))$$

$$\leq N_{8}|u(t) - h(t)|_{H}^{2} + N_{9}\left(|f(t)|_{H}^{2} + |h'(t)|_{H}^{2} + \varphi^{t}(0; h(t)) + 1\right)$$
(35)

for some constants $N_8 > 0$ and $N_9 > 0$ depending only on C_1, C_2, C_3, C_4 . By applying Gronwall's inequality to (35), we obtain

$$\sup_{t \in [0,T_0]} |u(t)|_H \leq \sup_{t \in [0,T]} |h(t)|_H + \sqrt{e^{N_8 T}} |u_0 - h(0)|_H + \sqrt{N_9 e^{N_8 T}} \left\{ |f|_{L^2(0,T;H)} + |h'|_{L^2(0,T;H)} \right\} \\
+ \sqrt{N_9 T e^{N_8 T}} \left\{ \sup_{t \in [0,T]} \varphi^t(0;h(t))^{\frac{1}{2}} + 1 \right\} \equiv N_{10}.$$
(36)

Next, take a number R > 0 with $R \ge N_{10}$, and we now consider the inequality (23). Applying Schwarz inequality to the term $Y(\tau) \{1 + \psi_w^{\tau}(u(\tau))\}^{\frac{1}{2}}$ and using (G2), (Φ 8), we obtain

$$\psi_{w}^{t}(u(t)) - \psi_{w}^{s}(u(s)) + \frac{1}{4} \int_{s}^{t} |u'(\tau)|_{H}^{2} d\tau$$

$$\leq N_{11}(1+C_{R})^{16}(1+R)^{24} \int_{s}^{t} X(\tau)(1+\psi_{w}^{\tau}(u(\tau)))d\tau + \frac{1}{8} \int_{s}^{t} |w'(\tau)|_{H}^{2} d\tau$$

$$+ N_{12}(1+C_{R})^{8}(1+R)^{12} \int_{s}^{t} \varphi^{\tau}(0;w(\tau))d\tau \qquad (37)$$

for $0 \le s \le t \le T$, where $N_{11} > 0$ and $N_{12} > 0$ depend on C_1, C_2, C_3, C_4, N_6 .

Applying Gronwall's inequality to (37), we obtain

$$\psi_{w}^{t}(u(t)) + \frac{1}{4} \int_{0}^{t} e^{N_{11}(1+C_{R})^{16}(1+R)^{24} \int_{\tau}^{t} X(s)ds} |u'(\tau)|_{H}^{2} d\tau$$

$$\leq e^{N_{11}(1+C_{R})^{16}(1+R)^{24} \int_{0}^{\tau} X(s)ds} \left\{ \psi_{w}^{0}(u_{0}) + N_{11}(1+C_{R})^{16}(1+R)^{24} \int_{0}^{\tau} X(s)ds \right\}$$

$$+ \frac{1}{8} \int_{0}^{t} e^{N_{11}(1+C_{R})^{16}(1+R)^{24} \int_{\tau}^{t} X(s)ds} |w'(\tau)|_{H}^{2} d\tau$$

$$+ N_{12}(1+C_{R})^{8}(1+R)^{12} \int_{0}^{t} e^{N_{11}(1+C_{R})^{16}(1+R)^{24} \int_{\tau}^{t} X(s)ds} \varphi^{\tau}(0;w(\tau))d\tau. \quad (38)$$

Here, we can take $w = u \in E(T_0, M_0, R_0)$, u being the solution of $CP(u_0)$ on a small time interval $[0, T_0]$ with $0 < T_0 \leq T$. Then, by using (26), (36), (38) we get

$$\varphi^{t}(u(t); u(t)) + \frac{1}{8} \int_{0}^{t} e^{N_{11}(1+C_{R})^{16}(1+R)^{24} \int_{\tau}^{t} X(s) ds} |u'(\tau)|_{H}^{2} d\tau$$

$$\leq N_{13}(1+C_{R})^{16}(1+R)^{24} e^{N_{14}(1+C_{R})^{16}(1+R)^{24}} \left(1 + \int_{0}^{t} \varphi^{\tau}(u(\tau); u(\tau)) d\tau\right), \quad (39)$$

for $0 \le t \le T_0$, where $N_{13} > 0$, $N_{14} > 0$ are dependent only on the given data. By applying Gronwall's inequality to (39), we conclude that

$$\varphi^{t}(u(t); u(t)) + \frac{1}{8} \int_{0}^{T_{0}} |u'(t)|_{H}^{2} dt$$

$$\leq N_{15}(1+C_{R})^{32}(1+R)^{48} \exp(N_{16}(1+C_{R})^{16}(1+R)^{24} e^{N_{14}(1+C_{R})^{16}(1+R)^{24}}), \quad (40)$$

where $N_{15} > 0$ and $N_{16} > 0$ depends only on the given data and are independent of $T_0 (\leq T)$ and $R (\geq N_{10})$.

Now we shall prove Theorem 2 by employing the estimates (36) and (40).

Proof. [Proof of Theorem 2; Global existence] Assume that

 $T^* := \sup\{T_0; CP(u_0) \text{ has a solution on } [0, T_0]\} < +\infty.$

By the local existence result in Section 3, we note $T^* > 0$. By the definition of T^* , there is a function $u : [0, T^*) \to H$ such that for any T_0 ($< T^*$) u is the solution of $CP(u_0)$ on $[0, T_0]$. By (36) and (40) we have

$$u \in W^{1,2}(0, T^*; H), \quad \varphi^{(\cdot)}(u(\cdot); u(\cdot)) \in L^{\infty}(0, T^*).$$

Hence by assumptions (Φ 1), (Φ 3), (Φ 5), (Φ 6), we observe that the limit $u_0^* := \lim_{t \uparrow T^*} u(t)$ exists strongly in H such that

$$u_0^* \in D(\varphi^{T^*}(0; \cdot))$$

Now, taking u_0^* as the initial value at $t = T^*$, we can get the solution u beyond the time interval $[0, T^*]$. Thus we observe that the solution to $CP(u_0)$ exists on the whole time interval [0, T].

5 Application to a double obstacle problem

In this section we apply our abstract results (Theorems 1, 2, 3) to a parabolic variational inequality with time-dependent double obstacles.

Let Ω be a bounded domain in \mathbb{R}^N $(N \ge 1)$ with smooth boundary. Let g_1, g_2 be prescribed obstacle functions on $[0, T] \times \Omega$ so that

$$g_i \in L^{\infty}(0,T; H^1(\Omega)) \cap L^{\infty}([0,T] \times \Omega), \quad g'_i \in L^2(0,T; H^1(\Omega)) \cap L^2(0,T; L^{\infty}(\Omega))$$

for i = 1, 2, and

 $g_2 - g_1 \ge C_g$ a.e. on $[0, T] \times \Omega$ for some constant $C_g > 0$.

For each $t \in [0, T]$, we define the convex set K(t) by

$$K(t) := \{ z \in H^1(\Omega); g_1(t) \le z \le g_2(t) \text{ a.e. on } \Omega \}.$$

Now, let us consider the following interior time-dependent double obstacle problem. **Problem (P):** Find a function $u \in W^{1,2}(0,T;L^2(\Omega)) \cap L^{\infty}(0,T;H^1(\Omega))$ such that

$$u(t) \in K(t) \quad \text{for a.e. } t \in [0, T],$$

$$(u'(t) + b(t, \cdot, u(t)) - f(t), u(t) - z) + \int_{\Omega} a(x, u(t), \nabla u(t)) \cdot \nabla (u(t) - z) dx \le 0$$

for all $z \in K(t)$,

$$u(0) = u_0 \quad \text{in } \Omega,$$

where (\cdot, \cdot) is a usual inner product of $L^2(\Omega)$, $a = (a_1, ..., a_N)$ is an elliptic vector field, b and f are given functions.

The aim of this section is to consider the problem (P) as an application of the abstract evolution equation $CP(u_0)$. To do so, we suppose that

(A1) a(x, s, p) is continuous on $\Omega \times \mathbb{R} \times \mathbb{R}^N$ such that $a(x, s, p) = \partial_p A(x, s, p)$ for some potential function A(x, s, p). Moreover, there exist constants $\mu > 0$, $\nu_1 = \nu_1(a) > 0$ and $\nu_2 = \nu_2(a) > 0$ such that

$$[a(x, s, p) - a(x, s, \hat{p})] \cdot (p - \hat{p}) \ge \mu |p - \hat{p}|^2,$$
$$|a(x, s, p)|^2 + |A(x, s, p)| + |\partial_s A(x, s, p)|^2 \le \nu_1 (1 + |s|^2 + |p|^2),$$
$$|a(x, s, p) - a(x, \hat{s}, p)| \le \nu_2 (1 + |p|)|s - \hat{s}|$$

for all $x \in \Omega$, $s, \hat{s} \in \mathbb{R}$, $p, \hat{p} \in \mathbb{R}^N$.

(A2) b(t, x, s) is continuous on $[0, T] \times \Omega \times \mathbb{R}$ satisfying the following properties: there exist a constant $L_b > 0$ and a function $d \in L^1(0, T)$ such that

$$\begin{aligned} |b(t,x,s) - b(t,x,\hat{s})| &\leq L_b |s - \hat{s}|, \quad \forall t \in [0,T], \ \forall x \in \Omega, \ \forall s, \hat{s} \in \mathbb{R}, \\ \sup_{x \in \Omega} \left| \frac{\partial}{\partial t} b(t,x,0) \right| &\leq d(t) \quad \text{for a.e. } t \geq 0. \end{aligned}$$

As a direct application of Theorems 1, 2 and 3, we have:

Proposition 2. Assume (A1) and (A2). Then, for each $f \in L^2(0,T;L^2(\Omega))$ and $u_0 \in K(0)$, the problem (P) has a unique solution u on [0,T].

Proof. To apply Theorems 1, 2 and 3 to the problem (P), we choose $L^2(\Omega)$ as a real Hilbert space H, and define a function $\varphi^t(\cdot; \cdot) : L^2(\Omega) \times L^2(\Omega) \to \mathbb{R} \cup \{\infty\}$ by

$$\varphi^{t}(w;z) := \begin{cases} \int_{\Omega} A(x,w(x),\nabla z(x))dx + C_{\mu}(1+|w|^{2}_{L^{2}(\Omega)}), & \text{if } z \in K(t), \\ +\infty, & \text{otherwise,} \end{cases}$$

where $C_{\mu} > 0$ is a constant such that $\varphi^t(w; z) \ge \frac{\mu}{4} |z|^2_{L^2(\Omega)} + 1$ for all $t \ge 0, w \in L^2(\Omega)$ and $z \in K(t)$ (cf. [13, Lemma 3.1]).

Let us define an operator $G(t, \cdot) : L^2(\Omega) \to L^2(\Omega)$ by $G(t, z) := b(t, \cdot, z(\cdot))$ in $L^2(\Omega)$. And we define a function γ by $\gamma(z) := \int_{\Omega} z^+(x) dx$ for $z \in L^2(\Omega)$, where $z^+ := \max\{z, 0\}$. Now we put for any $t \in [0, T]$ and r > 0

 $\alpha_r(t) = k \int_0^t \left\{ |g_1'|_{L^{\infty}(\Omega)} + |g_2'|_{L^{\infty}(\Omega)} + |g_1'|_{H^1(\Omega)} + |g_2'|_{H^1(\Omega)} \right\} d\tau,$

where k > 0 is a (sufficient large) positive constant. Then, we easily verify $\{\varphi^t\} \in \Phi_{\gamma}(\{\alpha_r\})$. For instance, we can show (Φ 5) by taking

$$\tilde{z} := (z - g_1(s)) \frac{g_2(t) - g_1(t)}{g_2(s) - g_1(s)} + g_1(t)$$

for given $z \in K(s)$. Then, by the slight modification of [22, Lemma 5.1], we can show (Φ 5).

Moreover we easily see that $G(t, \cdot) \in \mathcal{G}_{\gamma}(\{\varphi^t\})$ and the assumption ($\Phi 8$) hold.

Clearly, the problem (P) can be reformulated in the evolution equation $CP(u_0)$. Thus, by applying Theorems 1, 2 and 3, we see that (P) has a unique global solution u.

6 Acknowledgements

The author wish to thank Professor Masahiro KUBO for his useful discussions and comments.

References

- H. Attouch, *Mesurabilite et monotonie*, Publication Mathematique d'Orsay No. 183-76-53, Universite Paris XI. U.E.R. Mathematique, Orsay, France, 1976.
- [2] H. Attouch and A. Damlamian, Problèmes d'évolution dans les Hilberts et applications, J. Math. Pures Appl., 54(1975), 53–74.
- [3] Ph. Bénilan, Equations d'évolution dans un espace de Banach quelconque et application, Université de Paris-Sud, Publication Mathématique d'Orsay, 1972.
- [4] H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam-London-New York, 1973.
- [5] N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), 304–331.
- [6] N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ., 39(1981), 1–87.
- [7] N. Kenmochi and M. Kubo, Periodic stability of flow in partially saturated porous media, pp. 127-152, in *Free Boundary Problems*, Int. Series Numer. Math., Vol. 95, Birkhäuser, Basel, 1990.
- [8] N. Kenmochi and M. Otani, Asymptotic behavior of periodic systems generated by time-dependent subdifferential operators, Funk. Ekvac., 29(1986), 219-236.
- [9] N. Kenmochi and M. Otani, Nonlinear evolution equations governed by subdifferential operators with almost periodic time-dependence, Rend. Accad. Naz. Sci. XL, Memorie di Mat., 10(1986), 65-91.

- [10] N. Kenmochi and N. Yamazaki, Global attractors for multivalued flows associated with subdifferentials, pp. 135-144, in *Elliptic and Parabolic Problems, Proceeding* of the 4th European Conference, Rolduc, Netherlands, Gaeta, Italy, 2001, ed. J. Bemelmans et al, World Scientific, 2002.
- [11] M. Kubo, Characterization of a class of evolution operators generated by timedependent subdifferentials, Funk. Ekvac., 32 (1989), 301–321.
- [12] M. Kubo and N. Yamazaki, Elliptic-parabolic variational inequalities with timedependent constraints, Hokkaido University Preprint Series in Mathematics, No. 630, 2004.
- [13] M. Kubo and N. Yamazaki, Quasilinear parabolic variational inequalities with timedependent constraints, Hokkaido University Preprint Series in Mathematics, No. 654, 2004.
- [14] F. Mignot and J. P. Puel, Inéquations d'évolution paraboliques quec convexes dépendant du temps: applications aux inéquations quasi-variationelles d'évolution, Arch. Rational Mech. Anal., 64 (1977), 59–91.
- [15] J.-J. Moreau, Sélections de multiapplications à rétraction finie, C. R. Acad. Sci. Paris, 265 (1973), 265–268.
- [16] M. Otani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations, 46(1982), 268-299.
- [17] M. Otani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, periodic problems, J. Differential Equations, 54(1984), 248–273.
- [18] M. Otani, Nonlinear evolution equations with time-dependent constraints, Adv. Math. Sci. Appl., 3(1993/94), Special Issue, 383–399.
- [19] M. Otani, Almost periodic solutions of periodic systems governed by subdifferential operators, Proc. Amer. Math. Soc., 123(1995), 1827–1832.
- [20] K. Shirakawa, A. Ito, N. Yamazaki and N. Kenmochi, Asymptotic stability for evolution equations governed by subdifferentials, pp. 287–310, in *Recent developments in domain decomposition methods and flow problems*, GAKUTO Internat. Ser. Math. Sci. Appl., 11, Gakkōtosho, Tokyo, 1998.
- [21] N. Yamazaki, Attractors of asymptotically periodic multivalued dynamical systems governed by time-dependent subdifferentials, Electron. J. Differential Equations, 2004(2004), No. 107, pp. 1–22.
- [22] N. Yamazaki, A. Ito and N. Kenmochi, Global attractor of time-dependent double obstacle problems, pp. 288–301, in *Functional Analysis and Global Analysis*, ed. T. Sunada and P. W. Sy, Springer-Verlag, Singapore, 1997.