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1 Introduction

We study an abstract nonlinear evolution equation in a real Hilbert space H of the form

u′(t) + ∂ϕt(u(t); u(t)) +G(t, u(t)) � f(t) in H , a.e. t ∈ (0, T ), (1)

where u′(t) := d
dt
u(t), G(t, ·) is a single valued perturbation small relative to ϕt, and f is

a given H-valued function. For each t ∈ [0, T ], a function ϕt(·; ·) : H × H → R ∪ {∞}
is given such that for all w ∈ H , ϕt(w; ·) : H → R ∪ {∞} is a proper, l.s.c. (lower
semi-continuous) and convex function, and ∂ϕt(w; ·) is its subdifferential operator, i.e.,
z∗ ∈ ∂ϕt(w; z) if and only if

z ∈ D(ϕt(w; ·)) and (z∗, y − z) ≤ ϕt(w; y)− ϕt(w; z) for all y ∈ H.

For a proper, l.s.c. and convex function ψt(·) : H → R ∪ {∞}, many mathematicians
studied the nonlinear evolution equation of the form

u′(t) + ∂ψt(u(t)) � f(t) in H , a.e. t ∈ (0, T ). (2)

For various aspects of (2), we refer to [2, 5, 6, 8, 9, 11, 18, 19]. For instance, Kenmochi
[6] showed the existence-uniqueness, stability and convergence of solutions to (2).

For the nonmonotone perturbation G(t, ·), Ôtani [16] has already shown the existence
of solution to

u′(t) + ∂ψt(u(t)) +G(t, u(t)) � f(t) in H , a.e. t ∈ (0, T ). (3)

The large-time behavior of solutions for (3) was discussed by [20] from the view-point of
attractors. For another works of (3), we refer to [10, 16, 17, 20, 21, 22], for instance.

The main object of this paper is to establish abstract results on existence-uniqueness
of solutions to (1). Note that the function ϕt(u; u) is not convex in u, hence we can not
apply the theory established by Ôtani [16]. So, by using the idea of Kenmochi-Kubo [7]
and Kubo-Yamazaki [12, 13], we shall show the existence of solution to (1) in this paper.
Namely, for the given function w : [0, T ] → H , let us consider the problem

u′(t) + ∂ϕt(w(t); u(t)) � f(t) −G(t, w(t)) in H , a.e. t ∈ (0, T ). (4)

Assuming some appropriate conditions on the t- and w-dependence of the function ϕt(w; z),
we can apply the result of Kenmochi [6]. Then we see that the equation (4) has a unique
solution u for each w, and that the mapping w �→ u has some compactness property.
Hence, by using a fixed point argument, we can get the existence of solution to (1).

In Section 2 we present our main results on existence and uniqueness of solution to (1),
and then the uniqueness (Theorem 3) is proved. In Section 3 we prove the local existence
result (Theorem 1). In Section 4, the global existence result (Theorem 2) is proved. In
the final Section 5 we apply our abstract results to a parabolic variational inequality with
time-dependent double obstacle constraints.
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Notation

Throughout this paper, let H be a real Hilbert space with norm | · |H and inner product
(·, ·). For a proper l.s.c. convex function ψ on H we use the notation D(ψ), ∂ψ and D(∂ψ)
to indicate the effective domain, subdifferential and its domain of ∂ψ, respectively. For
their precise definitions and basic properties, see a monograph by Brézis [4].

2 Assumptions and main results

We consider a Cauchy problem CP(u0) for (1) of the following form:

CP(u0)

{
u′(t) + ∂ϕt(u(t); u(t)) +G(t, u(t)) � f(t) in H a.e. t ∈ (0, T ),
u(0) = u0,

where T is a given positive number, a function ϕt(u(t); u(t)) is introduced in Section 1,
G(t, ·) is a single valued perturbation small relative to ϕt, f ∈ L2(0, T ;H) is a given
function, and u0 ∈ H is given data.

Definition 1. Given u0 ∈ H and f ∈ L2(0, T ;H), the function u : [0, T ] → H will be
called a solution to CP(u0), if u ∈ W 1,2(0, T ;H), u(0) = u0, u(t) ∈ D(∂ϕt(u(t); ·) and
f(t) − u′(t) −G(t, u(t)) ∈ ∂ϕt(u(t); u(t)) for a.e. t ∈ [0, T ], namely

(f(t) − u′(t) −G(t, u(t)), y − u(t)) ≤ ϕt(u(t); y)− ϕt(u(t); u(t))

for any y ∈ H, a.e. t ∈ [0, T ].

For a given positive number T , let {αr} := {αr; r > 0} be a family of functions
αr ∈W 1,2(0, T ), with parameter r > 0. With this family {αr}, we specify a class Φ({αr})
of all families {ϕt} := {ϕt; t ∈ [0, T ]} of time-dependent functions ϕt(·; ·) on H × H as
follows.

Definition 2. We denote by {ϕt} ∈ Φ({αr}) the set of all time-dependent functions
ϕt(·; ·) from H ×H into R ∪ {∞} satisfying the following seven conditions:

(Φ1) For each w ∈ H and t ∈ [0, T ], ϕt(w; ·) : H → R ∪ {∞} is a proper l.s.c. convex
function;

(Φ2) There exists a positive constant C1 > 0 such that

ϕt(w; z) ≥ C1|z|2H , ∀t ∈ [0, T ], ∀w ∈ H, ∀z ∈ D(ϕt(w; ·));

(Φ3) For each t ∈ [0, T ], w ∈ H and k > 0, the level set {z ∈ H ;ϕt(w; z) ≤ k} is compact
in H ;

(Φ4) D(ϕt(w; ·)) is independent of w ∈ H for any t ∈ [0, T ];
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(Φ5) For each r > 0, s, t ∈ [0, T ] with s ≤ t, w ∈ D(ϕs(0; ·)) with |w|H ≤ r and
z ∈ D(ϕs(w; ·)) with |z|H ≤ r there exists an element z̃ ∈ D(ϕt(w; ·)) such that

|z̃ − z|H ≤ |αr(t) − αr(s)|
(
1 + ϕs(0; z)

1
2

)
and

ϕt(w; z̃)−ϕs(w; z) ≤ |αr(t)−αr(s)|
(
1 + ϕs(0; z) + ϕs(0;w)

1
2ϕs(0; z)

1
2 + ϕs(0;w)

1
2

)
;

(Φ6) For each r > 0 there is a positive constant Cr > 0 such that

|ϕt(w1; z) − ϕt(w2; z)| ≤ Cr|w1 − w2|Hϕt(0; z)
1
2 ,

∀t ∈ [0, T ], ∀wi ∈ H with |wi|H ≤ r, (i = 1, 2), and ∀z ∈ D(ϕt(0, ·));
(Φ7) There is a function h ∈W 1,2(0, T ;H) with Ch := sup

t∈[0,T ]

ϕt(0; h(t)) < +∞.

Next, we introduce the class G({ϕt}) of time-dependent perturbation G(t, ·) associated
with {ϕt} ∈ Φ({ar}).
Definition 3. {G(t, ·)} ∈ G({ϕt}) if and only if G(t, ·) is a single valued operator from
D(G(t, ·)) ⊂ H into H which fulfills the following conditions (G1)-(G3):

(G1) D(ϕt(0; ·)) ⊂ D(G(t, ·)) ⊂ H for all t ∈ [0, T ] andG(·, v(·)) is (strongly) measurable
on J for any interval J ⊂ [0, T ] and v ∈ L2

loc(J ;H) with v(t) ∈ D(ϕt(0; ·)) for a.e.
t ∈ J .

(G2) There are positive constants C2 > 0, C3 > 0 such that

|G(t, z)|2H ≤ C2ϕ
t(z; z) + C3, ∀t ∈ [0, T ], ∀z ∈ D(ϕt(0; ·)).

(G3) (Demi-closedness) If {tn} ⊂ [0, T ], {zn} ⊂ H , tn → t, zn → z in H (as n → +∞)
and {ϕtn(0, zn)} is bounded, then G(tn, zn) → G(t, z) weakly in H as n→ +∞.

Now let us mention our main local existence result in this paper. In Section 3 we shall
prove Theorem 1.

Theorem 1. Let T be any positive number. Assume {ϕt} ∈ Φ({αr}), {G(t, ·)} ∈ G({ϕt})
and f ∈ L2(0, T ;H). Then, for each u0 ∈ D(ϕ0(0; ·)) there exists a positive constant
T0(≤ T ) such that CP(u0) has at least one solution u on [0, T0].

The next main theorem is concerned with the global existence result in this paper. In
Section 4 we shall prove Theorem 2.

Theorem 2. Let T be any positive number. Assume {ϕt} ∈ Φ({αr}), {G(t, ·)} ∈ G({ϕt})
and f ∈ L2(0, T ;H). Additionally, assume that
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(Φ8) There is a positive constant C4 > 0 such that

ϕt(w; z) ≤ C4(1 + |w|2H + ϕt(0; z)), ∀t ∈ [0, T ], ∀w ∈ H, ∀z ∈ D(ϕt(0; ·)).
Then, for each u0 ∈ D(ϕ0(0; ·)) there exists at least one solution u to CP(u0) on [0, T ].

To show the uniqueness of solution to CP(u0), we shall introduce subclasses of Φ({αr})
and G({ϕt}).
Definition 4. Let γ be a non-negative continuous and convex function on H such that
γ(z) + γ(−z) = 0 if and only if z = 0. Then
(1) {ϕt} ∈ Φγ({αr}) if and only if {ϕt} ∈ Φ({αr}) satisfies the γ-accretiveness (�) for ϕt

as follows:

(�) For any zi ∈ D(∂ϕt(zi; ·)) and z∗i ∈ ∂ϕt(zi; zi) (i = 1, 2), there is an element
w0 ∈ ∂γ(z1 − z2) so that (z∗1 − z∗2 , w0) ≥ 0, where ∂γ is the subdifferential of γ in H .

(2) {G(t, ·)} ∈ Gγ({ϕt}) if and only if for any positive number ε > 0, there is a positive
constant Cε > 0 such that

|(G(t, z1) −G(t, z2), w0)| ≤ ε(z∗1 − z∗2 , w0) + Cε{γ(z1 − z2) + γ(z2 − z1)},
whenever t ∈ [0, T ], zi ∈ D(∂ϕt(zi; ·)), z∗i ∈ ∂ϕt(zi; zi) (i = 1, 2), and

w0 ∈ ∂γ(z1 − z2) with (z∗1 − z∗2 , w0)H ≥ 0.

Now let us mention our main uniqueness result in this paper.

Theorem 3. Let T be any positive number. Assume {ϕt} ∈ Φγ({αr}), {G(t, ·)} ∈
Gγ({ϕt}) and f ∈ L2(0, T ;H). Then, for each u0 ∈ H the solution u to CP(u0) is
unique.

Proof. Let u and v be solutions to CP(u0). By the γ-accretiveness of ϕt, for a.e. τ ∈ [0, T ]
there exists z∗(τ) ∈ ∂γ(u(τ) − v(τ)) such that

(u∗(τ) − v∗(τ), z∗(τ)) ≥ 0 (5)

for any u∗(τ) ∈ ∂ϕτ (u(τ); u(τ)) and v∗(τ) ∈ ∂ϕτ (v(τ); v(τ)).
By {G(t, ·)} ∈ Gγ({ϕt}), for a number ε ∈ (0, 1] there is a constant Cε > 0 such that

| (G(τ, u(τ)) −G(τ, v(τ)), z∗(τ)) |
≤ ε(u∗(τ) − v∗(τ), z∗(τ)) + Cε{γ(u(τ) − v(τ)) + γ(v(τ) − u(τ))} (6)

for a.e. τ ∈ [0, T ].
From (5) and (6) it follows that

0 ≤ (u∗(τ) − v∗(τ), z∗(τ))

= ([f(τ) − u′(τ) −G(τ, u(τ))] − [f(τ) − v′(τ) −G(τ, v(τ))], z∗(τ))

≤ (−u′(τ) + v′(τ), z∗(τ)) + | (−G(τ, u(τ)) +G(τ, v(τ)), z∗(τ)) |

≤ − d

dτ
γ(u(τ) − v(τ))

+ε(u∗(τ) − v∗(τ), z∗(τ)) + Cε{γ(u(τ) − v(τ)) + γ(v(τ) − u(τ))},
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which implies that

d

dτ
γ(u(τ) − v(τ)) ≤ Cε{γ(u(τ) − v(τ)) + γ(v(τ) − u(τ))} for a.e. τ ∈ [0, T ].

Similarly we have

d

dτ
γ(v(τ) − u(τ)) ≤ Cε{γ(u(τ) − v(τ)) + γ(v(τ) − u(τ))},

hence we have

d

dτ
{γ(u(τ) − v(τ)) + γ(v(τ) − u(τ))} ≤ 2Cε{γ(u(τ) − v(τ)) + γ(v(τ) − u(τ))}, (7)

for a.e. τ ∈ [0, T ].
Now, applying Gronwall’s inequality to (7), we get

e−2Cεt{γ(u(t) − v(t)) + γ(v(t) − u(t))} ≤ 0 for any 0 ≤ t ≤ T,

which implies that u(t) = v(t) for all t ∈ [0, T ]. Thus Theorem 3 has been proved.

3 Proof of Theorem 1

In this section we shall show Theorem 1 by the fixed point argument. To do so, for a
given positive number T > 0, we put a Banach space

E(T ) ≡
{
w ∈W 1,2(0, T ;H) ; sup

t∈[0,T ]

ϕt(0;w(t)) < +∞
}
.

By the assumption (Φ7) we note that E(T ) �= ∅.
Now, for each w ∈ E(T ) let us consider a following Cauchy problem CP(w; u0):

CP(w; u0)

{
u′(t) + ∂ϕt(w(t); u(t)) � f(t) −G(t, w(t)) in H , a.e. t ∈ (0, T ),
u(0) = u0.

To show the existence-uniqueness of solution to CP(w; u0), we prepare the key lemma.

Lemma 1. For each w ∈ E(T ) we take a positive constant R > 0 such that
sup

t∈[0,T ]

|w(t)|H ≤ R. Put

ψt
w(z) := ϕt(w(t); z) for z ∈ H.

Then, there is a positive constant N1 > 0 independent of w satisfying the following:
for any s, t ∈ [0, T ] with s ≤ t and z ∈ D(ψs

w) with |z|H ≤ R, there exists z̃ ∈ D(ψt
w)

such that

|z̃ − z|H ≤ N1(1 + CR)4(1 +R)6|αR(t) − αR(s)|
(
1 + ψs

w(z)
1
2

)
, (8)

ψt
w(z̃) − ψs

w(z)

≤ N1(1 + CR)4(1 +R)6
{
|αR(t) − αR(s)|(1 + ψs

w(z)) + |w(t) − w(s)|H (1 + ψs
w(z))

1
2

+|αR(t) − αR(s)|ϕs(0;w(s))
1
2 (1 + ψs

w(z))
1
2

}
. (9)

6



Proof. Taking w = w(s) in (Φ5), then for any s, t ∈ [0, T ] with s ≤ t and z ∈
D(ϕs(w(s); ·) with |z|H ≤ R, there exists z̃ ∈ D(ϕt(w(s); ·)) such that

|z̃ − z|H ≤ |αR(t) − αR(s)|
(
1 + ϕs(0; z)

1
2

)
, (10)

ϕt(w(s); z̃) − ϕs(w(s); z)

≤ |αR(t) − αR(s)|
(
1 + ϕs(0; z) + ϕs(0;w(s))

1
2ϕs(0; z)

1
2 + ϕs(0;w(s))

1
2

)
. (11)

It follows from (Φ4) that

z ∈ D(ϕs(w(s); ·) = D(ψs
w), z̃ ∈ D(ϕt(w(s); ·)) = D(ψt

w). (12)

Note that by (Φ6) and w ∈ E(T ) we have

ϕs(0; z) ≤ 2ϕs(w(s); z) + C2
R|w(s)|2H ≤ 2ψs

w(z) + C2
RR

2. (13)

Then, by (10) and (13) there is a positive number N2 > 0 independent of w satisfying

|z̃ − z|H ≤ |αR(t) − αR(s)|
(
1 +

√
2ψs

w(z)
1
2 + CRR

)
≤ N2(1 + CRR)|αR(t) − αR(s)|

(
1 + ψs

w(z)
1
2

)
. (14)

Moreover, we observe that by (11), (13), (Φ6) there is a positive number N3 > 0
independent of w satisfying the following:

ψt
w(z̃) − ψs

w(z)
(
= ϕt(w(t); z̃) − ϕt(w(s); z̃) + ϕt(w(s); z̃) − ϕs(w(s); z)

)
≤ N3(1 + CR)2(1 +R)2

{
|w(t) − w(s)|Hψt

w(z̃)
1
2 + |w(t) − w(s)|H

+|αR(t) − αR(s)|(1 + ψs
w(z)) + |αR(t) − αR(s)|ϕs(0;w(s))

1
2 (1 + ψs

w(z))
1
2

}
.(15)

From αR ∈W 1,2(0, T ), w ∈ E(T ) and (15) it follows that

ψt
w(z̃) ≤ N4(1 + CR)4(1 +R)6

{
1 + ψs

w(z) + |αR(t) − αR(s)|2ϕs(0;w(s))
}

(16)

for some constant N4 > 0. Therefore, using (16) in the right hand side of (15), and by
(12)-(14), we get this Lemma for some constant N1 > 0 independent of w.

Proposition 1. For each w ∈ E(T ), CP(w; u0) has a unique solution u on [0, T ].

Proof. We note that CP(w; u0) can be regarded as the Cauchy problem for the nonlinear
evolution equation of the form:{

u′(t) + ∂ψt
w(u(t)) � f(t) −G(t, w(t)) in H a.e. t ∈ (0, T ),

u(0) = u0.

Here, from (Φ6) and (G2) we see that for each w ∈ E(T ) with supt∈[0,T ] |w(t)|H ≤ R∫ T

0

|G(t, w(t))|2Hdt ≤
∫ T

0

{
C2ϕ

t(w(t);w(t)) + C3

}
dt

≤ T

{
2C2 sup

t∈[0,T ]

ϕt(0;w(t)) +
C2C

2
RR

2

4
+ C3

}
< +∞,
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which implies that f −G(·, w(·)) ∈ L2(0, T ;H). Moreover, by Lemma 1 we get the time-
dependence of ψt

w. Therefore taking account of the assumption (Φ1), we can apply the
abstract theory established by Kenmochi [6]. Thus we get the existence-uniqueness of
solution u for CP(w; u0). For detail proofs, see [6, Theorems 1.1.1, 1.1.2].

By Proposition 1, the boundedness (cf. [6, Theorem 1.1.2]) of solution to CP(w; u0),
and (13), we can define a mapping , we can define a mapping Q : E(T ) −→ E(T ) by
Qw = u for each w ∈ E(T ), where u is a solution for CP(w; u0).

Lemma 2. There are positive constants T0, M0 and R0 such that Q is a self-mapping on
E(T0,M0, R0), i.e., Qw(= u) ∈ E(T0,M0, R0) for any w ∈ E(T0,M0, R0), where

E(T0,M0, R0) ≡

⎧⎪⎨
⎪⎩w ∈ E(T0) ;

sup
t∈[0,T0]

ϕt(0;w(t)) ≤M0, |w′|2L2(0,T0;H) ≤M0

sup
t∈[0,T0]

|w(t)|H ≤ R0, w(0) = u0

⎫⎪⎬
⎪⎭ .

Proof. Fix R > 0 for a while and take w ∈ E(T ) with sup
t∈[0,T ]

|w(t)|H ≤ R. We shall give a

boundedness of solution u to the problem CP(w; u0) .
Now, multiplying CP(w; u0) by u(t) − h(t), we get

(u′(t), u(t) − h(t)) + ϕt(w(t); u(t)) − ϕt(w(t);h(t))

≤ (f(t) −G(t, w(t)), u(t) − h(t)) a.e. t ∈ (0, T ), (17)

where h is the function in (Φ7). Taking account of (Φ2), (Φ6) and (G2), we have

d

dt
|u(t) − h(t)|2H − |u(t) − h(t)|2H

≤ N5

(|f(t)|2H + |h′(t)|2H + ϕt(0; h(t)) + ϕt(0;w(t)) + C2
RR

2 + 1
)
, (18)

for a constant N5 = N5(C2, C3) > 0. By applying Gronwall’s inequality to (18), we obtain

sup
t∈[0,T ]

|u(t)|H

≤ sup
t∈[0,T ]

|h(t)|H + e
T
2 |u0 − h(0)|H + e

T
2 N

1
2
5

{|f |L2(0,T ;H) + |h′|L2(0,T ;H)

}

+e
T
2N

1
2
5 T

1
2

{
sup

t∈[0,T ]

ϕt(0; h(t))
1
2 + sup

t∈[0,T ]

ϕt(0;w(t))
1
2 + CRR+ 1

}
. (19)

Moreover, by Lemma 1 and arguments of [6, section 1], we see that the function
ψt

w(u(t)) = ϕt(w(t); u(t)) is of bounded variation on [0, T ] and satisfies

ψt
w(u(t)) − ψs

w(u(s)) +

∫ t

s

(u′(τ) − f(τ) +G(τ, w(τ)), u′(τ))dτ

≤ N1(1 + CR)4(1 +R)6

∫ t

s

|α′
R(τ)||u′(τ) − f(τ) +G(τ, w(τ))|

{
1 + ψτ

w(u(τ))
1
2

}
dτ

+N1(1 + CR)4(1 +R)6

∫ t

s

[
|α′

R(τ)|(1 + ψτ
w(u(τ)) + |w′(τ)|H {1 + ψτ

w(u(τ))} 1
2

]
dτ

+N1(1 + CR)4(1 +R)6

∫ t

s

|α′
R(τ)|ϕτ (0;w(τ))

1
2 {1 + ψτ

w(u(τ))} 1
2 dτ (20)
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for 0 ≤ s ≤ t ≤ T and w ∈ E(T ) with sup
t∈[0,T ]

|w(t)|H ≤ R.

Here we notice the following relations:

(u′(τ) − f(τ) +G(τ, w(τ)), u′(τ)) ≥ 1

2
|u′(τ)|2H − |f(τ)|2H − |G(τ, w(τ))|2H, (21)

|α′
R(τ)||u′(τ) − f(τ) +G(τ, w(τ))|H

{
1 + ψτ

w(u(τ))
1
2

}
≤ δ|u′(τ) − f(τ) +G(τ, w(τ))|2H + δ−1|α′

R(τ)|2 {1 + ψτ
w(u(τ))}

≤ 3δ|u′(τ)|2H + 3δ|f(τ)|2H + 3δ|G(τ, w(τ))|2H + δ−1|α′
R(τ)|2 {1 + ψτ

w(u(τ))} , (22)

where in (22) we put δ :=
1

12N1(1 + CR)4(1 +R)6
. Using (21)-(22) in (20), we obtain

ψt
w(u(t)) − ψs

w(u(s)) +
1

4

∫ t

s

|u′(τ)|2Hdτ

≤ N6(1 + CR)8(1 +R)12

∫ t

s

{
X(τ)(1 + ψτ

w(u(τ))) + Y (τ) {1 + ψτ
w(u(τ))} 1

2

+ |G(τ, w(τ))|2H
}
dτ (23)

for 0 ≤ s ≤ t ≤ T , where the constant N6 > 0 is determined only by N1, and we put

X(τ) := |f(τ)|2H + |α′
R(τ)|2 + 1, Y (τ) := |w′(τ)|H + |α′

R(τ)|ϕτ (0;w(τ))
1
2 .

By (Φ6), (G2) and (23), we obtain

ψt
w(u(t)) − ψs

w(u(s)) +
1

4

∫ t

s

|u′(τ)|2Hdτ

≤ N7(1 + CR)10(1 +R)14

∫ t

s

{X(τ) + Y (τ) + ϕτ (0;w(τ))} {1 + ψτ
w(u(τ))} dτ (24)

for 0 ≤ s ≤ t ≤ T , where N7 > 0 depends on N6, C2 and C3.
Applying Gronwall’s inequality to (24), we obtain

sup
0≤t≤T

ψt
w(u(t)) +

1

4

∫ T

0

|u′(t)|2Hdt

≤ eN7(1+CR)10(1+R)14(|X|L1(0,T )+|Y |L1(0,T )+|ϕt(0;w(t))|L1(0,T ))

×{
ψ0

w(u0) +N7(1 + CR)10(1 +R)14
(|X |L1(0,T ) + |Y |L1(0,T ) + |ϕt(0;w(t))|L1(0,T )

)}
. (25)

Now we show that Q is the self-mapping on E(T0,M0, R0) for some chosen constants
T0 > 0, M0 > 0 and R0 > 0.

Note that by (Φ6) we have

ϕt(0; u(t)) ≤ 2ϕt(w(t); u(t)) + C2
RR

2
(
= 2ψt

w(u(t)) + C2
RR

2
)

(26)

for any w ∈ E(T ) with sup
t∈[0,T ]

|w(t)|H ≤ R.

9



Here, we take R0 > 0, M0 > 0 so large that

2

[
sup

t∈[0,T ]

|h(t)|H + e
T
2 |u0 − h(0)|H + e

T
2 N

1
2
5

{|f |L2(0,T ;H) + |h′|L2(0,T ;H)

}]
≤ R0,

4e2N7(1+CR0
)10(1+R0)14

{
ψ0

w(u0) + 2N7(1 + CR0)
10(1 +R0)

14
}

+ C2
R0
R2

0 + Ch

≤ 4e2N7(1+CR0
)10(1+R0)14

{
2ϕ0(0; u0) +

C2
R0
R2

0

4
+ 2N7(1 + CR0)

10(1 +R0)
14

}
+C2

R0
R2

0 + Ch

≤ M0.

Next, we choose T0 > 0 so small that T0 ≤ T , |h′|2L2(0,T0;H) ≤M0, |X |L1(0,T0) ≤ 1,

|Y |L1(0,T0) + |ϕt(0;w(t))|L1(0,T0) ≤ T
1
2
0 M

1
2
0 +M

1
2
0 T

1
2
0 |α′

R0
|L2(0,T0) + T0M0 ≤ 1,

sup
t∈[0,T0]

|h(t)|H + e
T0
2 |u0 − h(0)|H + e

T0
2 N

1
2
5

{|f |L2(0,T0;H) + |h′|L2(0,T0;H)

}

+e
T0
2 N

1
2
5 T

1
2
0

{
sup

t∈[0,T0]

ϕt(0; h(t))
1
2 +M

1
2
0 + CR0R0 + 1

}
≤ R0.

Then, the estimates (19), (25) with (26) implies that Qw(= u) belongs to the set
E(T0,M0, R0) for w ∈ E(T0,M0, R0), thus Q is the self-mapping on E(T0,M0, R0).

Lemma 3. Let M0 > 0, R0 > 0 and T0 > 0 be constants obtained in Lemma 2. Let
{wn} ⊂ E(T0,M0, R0), w ∈ E(T0,M0, R0) and un be the solution of CP(wn; u0). Suppose
wn −→ w in C([0, T0];H) as n→ +∞. Then, there is a solution u of CP(w; u0) on [0, T0]
such that u ∈ E(T0,M0, R0) and un −→ u in C([0, T0];H) as n→ +∞.

Proof. Since {wn} ⊂ E(T0,M0, R0) and Lemma 2, we have

sup
t∈[0,T0]

ϕt(0; un(t)) ≤ M0, |u′n|2L2(0,T0;H) ≤M0, ∀n = 1, 2, · · · , (27)

sup
t∈[0,T0]

|un(t)|H ≤ R0, ∀n = 1, 2, · · · . (28)

By (Φ3), (27), (28) there are a subsequence {nk} of {n} and a function u ∈W 1,2(0, T0;H)
such that

unk
−→ u strongly in C([0, T0];H), (29)

u′nk
⇀ u′ weakly in L2(0, T0;H) (30)

as k → +∞. By (Φ1), (27)-(30) and the uniqueness of un, we easily observe that u ∈
E(T0,M0, R0) and un −→ u in C([0, T0];H) as n→ +∞.

Now, let us show that u is a solution of CP(w; u0) on [0, T0]. To do so, we define

Φ(w; z) =
∫ T0

0
ϕt(w(t); z(t))dt. Then by the assumption (Φ6) we see that

Φ(wn; z) −→ Φ(w; z) as n→ +∞ (31)

10



for any z ∈ L2(0, T0;H) with ϕ(·)(0; z(·)) ∈ L1(0, T0). From (27), (29), (Φ1), (Φ2), (Φ6)
and the Fatou’s lemma, it follows that

lim inf
k→+∞

Φ(wnk
; unk

) = lim inf
k→+∞

{Φ(wnk
; unk

) − Φ(w; unk
) + Φ(w; unk

)}

≥ lim inf
k→+∞

Φ(w; unk
) ≥ Φ(w; u). (32)

Moreover, by {wn} ⊂ E(T0,M0, R0) and the demi-closedness (G3) we see that

G(·, wnk
(·)) ⇀ G(·, w(·)) weakly in L2(0, T0;H),

hence

f −G(·, wnk
(·)) ⇀ f −G(·, w(·)) weakly in L2(0, T0;H) (33)

as k → +∞.
Now, let z be any function in L2(0, T0;H) with ϕ(·)(0; z(·)) ∈ L1(0, T0). Since unk

is
the unique solution of CP(wnk

; u0), then the following inequality holds:∫ T0

0

(
f(t) −G(t, wnk

(t)) − u′nk
(t), z(t) − unk

(t)
)
dt ≤ Φ(wnk

; z) − Φ(wnk
; unk

). (34)

Taking account of (29)-(33) and letting k → +∞ in (34), we get∫ T0

0

(f(t) −G(t, w(t)) − u′(t), z(t) − u(t)) dt ≤ Φ(w; z) − Φ(w; u),

which implies that f(t) − G(t, w(t)) − u′(t) ∈ ∂ϕt(w(t); u(t)) for a.e. t ∈ [0, T0] (cf. [1,
Proposition 3.3]). Thus u is the solution of CP(w; u0) on [0, T0].

Proof. [Proof of Theorem 1; Local existence] By Lemma 2, we can define a self-
mapping Q : E(T0,M0, R0) −→ E(T0,M0, R0) by Qw = u for each w ∈ E(T0,M0, R0),
where u is a solution of CP(w; u0). Clearly, E(T0,M0, R0) is compact in C([0, T0];H).
Moreover, it follows from Lemma 3 that Q is continuous with respect to the topology of
C([0, T0];H). Therefore, the Schauder’s fixed point theorem implies that the self-mapping
Q has a fixed point u in E(T0,M0, R0), i.e. Qu = u. Clearly u is the solution of CP(u0),
thus we can construct the local solution u of CP(u0) on [0, T0].

4 Proof of Theorem 2

In this section we shall prove Theorem 2, which is concerned with the global existence of
solution to CP(u0).

First, we consider the inequality (17). By the local existence result in Section 3, we
can take w = u ∈ E(T0,M0, R0), u being the solution of CP(u0) on a small time interval
[0, T0] with 0 < T0 ≤ T . Hence, by taking w = u in (17) it follows from (G2) and the
additional assumption (Φ8) that

d

dt
|u(t) − h(t)|2H + ϕt(u(t); u(t))

≤ N8|u(t) − h(t)|2H +N9

(|f(t)|2H + |h′(t)|2H + ϕt(0; h(t)) + 1
)

(35)
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for some constants N8 > 0 and N9 > 0 depending only on C1, C2, C3, C4. By applying
Gronwall’s inequality to (35), we obtain

sup
t∈[0,T0]

|u(t)|H

≤ sup
t∈[0,T ]

|h(t)|H +
√
eN8T |u0 − h(0)|H +

√
N9eN8T

{|f |L2(0,T ;H) + |h′|L2(0,T ;H)

}

+
√
N9TeN8T

{
sup

t∈[0,T ]

ϕt(0; h(t))
1
2 + 1

}
≡ N10. (36)

Next, take a number R > 0 with R ≥ N10, and we now consider the inequality (23).

Applying Schwarz inequality to the term Y (τ) {1 + ψτ
w(u(τ))} 1

2 and using (G2), (Φ8), we
obtain

ψt
w(u(t)) − ψs

w(u(s)) +
1

4

∫ t

s

|u′(τ)|2Hdτ

≤ N11(1 + CR)16(1 +R)24

∫ t

s

X(τ)(1 + ψτ
w(u(τ)))dτ +

1

8

∫ t

s

|w′(τ)|2Hdτ

+N12(1 + CR)8(1 +R)12

∫ t

s

ϕτ (0;w(τ))dτ (37)

for 0 ≤ s ≤ t ≤ T , where N11 > 0 and N12 > 0 depend on C1, C2, C3, C4, N6.
Applying Gronwall’s inequality to (37), we obtain

ψt
w(u(t)) +

1

4

∫ t

0

eN11(1+CR)16(1+R)24
� t

τ
X(s)ds|u′(τ)|2Hdτ

≤ eN11(1+CR)16(1+R)24
� T
0 X(s)ds

{
ψ0

w(u0) +N11(1 + CR)16(1 +R)24

∫ T

0

X(s)ds

}

+
1

8

∫ t

0

eN11(1+CR)16(1+R)24
� t
τ X(s)ds|w′(τ)|2Hdτ

+N12(1 + CR)8(1 +R)12

∫ t

0

eN11(1+CR)16(1+R)24
� t
τ

X(s)dsϕτ (0;w(τ))dτ. (38)

Here, we can take w = u ∈ E(T0,M0, R0), u being the solution of CP(u0) on a small
time interval [0, T0] with 0 < T0 ≤ T . Then, by using (26), (36), (38) we get

ϕt(u(t); u(t)) +
1

8

∫ t

0

eN11(1+CR)16(1+R)24
� t
τ X(s)ds|u′(τ)|2Hdτ

≤ N13(1 + CR)16(1 + R)24eN14(1+CR)16(1+R)24
(

1 +

∫ t

0

ϕτ (u(τ); u(τ))dτ

)
, (39)

for 0 ≤ t ≤ T0, where N13 > 0, N14 > 0 are dependent only on the given data. By applying
Gronwall’s inequality to (39), we conclude that

ϕt(u(t); u(t)) +
1

8

∫ T0

0

|u′(t)|2Hdt

≤ N15(1 + CR)32(1 +R)48exp(N16(1 + CR)16(1 +R)24eN14(1+CR)16(1+R)24), (40)
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where N15 > 0 and N16 > 0 depends only on the given data and are independent of
T0(≤ T ) and R(≥ N10).

Now we shall prove Theorem 2 by employing the estimates (36) and (40).

Proof. [Proof of Theorem 2; Global existence] Assume that

T ∗ := sup{T0; CP(u0) has a solution on [0, T0]} < +∞.

By the local existence result in Section 3, we note T ∗ > 0. By the definition of T ∗, there
is a function u : [0, T ∗) → H such that for any T0 (< T ∗) u is the solution of CP(u0) on
[0, T0]. By (36) and (40) we have

u ∈W 1,2(0, T ∗;H), ϕ(·)(u(·); u(·)) ∈ L∞(0, T ∗).

Hence by assumptions (Φ1), (Φ3), (Φ5), (Φ6) , we observe that the limit u∗0 := limt↑T∗ u(t)
exists strongly in H such that

u∗0 ∈ D(ϕT ∗
(0; ·)).

Now, taking u∗0 as the initial value at t = T ∗, we can get the solution u beyond the
time interval [0, T ∗]. Thus we observe that the solution to CP(u0) exists on the whole
time interval [0, T ].

5 Application to a double obstacle problem

In this section we apply our abstract results (Theorems 1, 2, 3) to a parabolic variational
inequality with time-dependent double obstacles.

Let Ω be a bounded domain in R
N (N ≥ 1) with smooth boundary. Let g1, g2 be

prescribed obstacle functions on [0, T ] × Ω so that

gi ∈ L∞(0, T ;H1(Ω)) ∩ L∞([0, T ] × Ω), g′i ∈ L2(0, T ;H1(Ω)) ∩ L2(0, T ;L∞(Ω))

for i = 1, 2, and

g2 − g1 ≥ Cg a.e. on [0, T ] × Ω for some constant Cg > 0.

For each t ∈ [0, T ], we define the convex set K(t) by

K(t) := {z ∈ H1(Ω); g1(t) ≤ z ≤ g2(t) a.e. on Ω}.

Now, let us consider the following interior time-dependent double obstacle problem.

Problem (P): Find a function u ∈W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) such that

u(t) ∈ K(t) for a.e. t ∈ [0, T ],

(u′(t) + b(t, ·, u(t)) − f(t), u(t) − z) +

∫
Ω

a(x, u(t),∇u(t)) · ∇(u(t) − z)dx ≤ 0

for all z ∈ K(t),
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u(0) = u0 in Ω,

where (·, ·) is a usual inner product of L2(Ω), a = (a1, ..., aN ) is an elliptic vector field, b
and f are given functions.

The aim of this section is to consider the problem (P) as an application of the abstract
evolution equation CP(u0). To do so, we suppose that

(A1) a(x, s, p) is continuous on Ω × R × R
N such that a(x, s, p) = ∂pA(x, s, p) for some

potential function A(x, s, p). Moreover, there exist constants µ > 0, ν1 = ν1(a) > 0
and ν2 = ν2(a) > 0 such that

[a(x, s, p) − a(x, s, p̂)] · (p− p̂) ≥ µ|p− p̂|2,

|a(x, s, p)|2 + |A(x, s, p)| + |∂sA(x, s, p)|2 ≤ ν1(1 + |s|2 + |p|2),
|a(x, s, p) − a(x, ŝ, p)| ≤ ν2(1 + |p|)|s− ŝ|

for all x ∈ Ω, s, ŝ ∈ R, p, p̂ ∈ R
N .

(A2) b(t, x, s) is continuous on [0, T ] × Ω × R satisfying the following properties: there
exist a constant Lb > 0 and a function d ∈ L1(0, T ) such that

|b(t, x, s) − b(t, x, ŝ)] ≤ Lb|s− ŝ|, ∀t ∈ [0, T ], ∀x ∈ Ω, ∀s, ŝ ∈ R,

sup
x∈Ω

∣∣∣∣ ∂∂tb(t, x, 0)

∣∣∣∣ ≤ d(t) for a.e. t ≥ 0.

As a direct application of Theorems 1, 2 and 3, we have:

Proposition 2. Assume (A1) and (A2). Then, for each f ∈ L2(0, T ;L2(Ω)) and u0 ∈
K(0), the problem (P) has a unique solution u on [0, T ].

Proof. To apply Theorems 1, 2 and 3 to the problem (P), we choose L2(Ω) as a real
Hilbert space H , and define a function ϕt(·; ·) : L2(Ω) × L2(Ω) → R ∪ {∞} by

ϕt(w; z) :=

⎧⎪⎨
⎪⎩

∫
Ω

A(x,w(x),∇z(x))dx+ Cµ(1 + |w|2L2(Ω)), if z ∈ K(t),

+∞, otherwise,

where Cµ > 0 is a constant such that ϕt(w; z) ≥ µ

4
|z|2L2(Ω) + 1 for all t ≥ 0, w ∈ L2(Ω)

and z ∈ K(t) (cf. [13, Lemma 3.1]).
Let us define an operator G(t, ·) : L2(Ω) → L2(Ω) by G(t, z) := b(t, ·, z(·)) in L2(Ω).

And we define a function γ by γ(z) :=

∫
Ω

z+(x)dx for z ∈ L2(Ω), where z+ := max{z, 0}.
Now we put for any t ∈ [0, T ] and r > 0

αr(t) = k

∫ t

0

{|g′1|L∞(Ω) + |g′2|L∞(Ω) + |g′1|H1(Ω) + |g′2|H1(Ω)

}
dτ,

14



where k > 0 is a (sufficient large) positive constant. Then, we easily verify {ϕt} ∈
Φγ({αr}). For instance, we can show (Φ5) by taking

z̃ := (z − g1(s))
g2(t) − g1(t)

g2(s) − g1(s)
+ g1(t)

for given z ∈ K(s). Then, by the slight modification of [22, Lemma 5.1], we can show
(Φ5).

Moreover we easily see that G(t, ·) ∈ Gγ({ϕt}) and the assumption (Φ8) hold.
Clearly, the problem (P) can be reformulated in the evolution equation CP(u0). Thus,

by applying Theorems 1, 2 and 3, we see that (P) has a unique global solution u.
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