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Monge’s problem with a quadratic cost by
the zero-noise limit of h-pass processes
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July 10, 2003

Abstract

We study the asymptotic behavior, in the zero noise limit, of solu-
tions to Schrodinger’s functional equations and that of h-pass pro-
cesses, and give a new proof of the existence of the minimizer of
Monge’s problem with a quadratic cost.

1 Introduction.

Let L : R%+— [0,00) be convex, Py and P, be Borel probability measures on
R¢, and put

V(Py, P,) : 1nf{/ X)Py(dx) : Py((X) € dz) = Py(dx)}. (1.1)

The study of the minimizer of (1.1) can be considered as a special case of
Monge’s problem.

Kantorovich’s approach to Monge’s problem is to study the minimizer of
the following relaxed problem:



V(Py,P) := inf{ / /Rded L(y — z)pu(dady) (1.2)
: p(dr x RY) = Py(dx), u(R? x dy) = Py(dy)}.

If there exists a Borel measurable function v, on R¢, such that the minimizer

of (1.2) is Py(dx)dy(z)(dy), then V(Fy, 1) = V(F, P1) and ¢ is a minimizer
of (1.1).

This is called the Monge-Kantorovich problem and plays a crucial role in
many fields and has been studied by many authors (see [8, 20, 25] and the
references therein).

It is easy to see that the following holds:

V(P P) = inf{E[/JL(%Sf))dt } (1.3)

where the infimum is taken over all absolutely continuous stochastic processes
{¢(t) }o<i<1 for which P(¢(t) € dx) = Pi(dx) (t = 0,1). (In this paper we
use the same notation P for different probability measures for the sake of
simplicity when it is not confusing.) Indeed, the minimizer of (1.3) is linear
in t (see e.g. [5], [10, p. 35]).

This implies that Monge’s problem with a quadratic cost L(u) = |ul?
should be the zero noise limit of h-pass processes (see [7, p. 566]), which
enables us not to use Kantorovich’s approach to study (1.1).

To make the point clearer, we introduce Schrodinger’s functional equation
and then describe the h-pass process briefly. For ¢ > 0 and z € R¢, put

g:(z) :== ! y exp(—%), (1.4)

Protdy) i=( [, 9. = w)Pi(d2) )dy. (1.5

The following is a special case of Schrodinger’s functional equations: find
nonnegative Borel measures (v .,71,) for which

Pde) = ([, 9:a = ymcldy) o (da), (1.6)
Protdy) = ([, 0: = v)r(do) ). (dy).
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It is known that there exists a unique solution (v, 1) to (1.6) (see [13],
and also [22] for the recent development).

Let (Q2, B, P) be a probability space, {B;}:>o be a right continuous, in-
creasing family of sub o-fields of B, X, be a R%valued, By-adapted random
variable such that P(X,) ' = P, and {W(t)}:>o denote a d-dimensional
(B¢)-Wiener process (see e.g. [7], [10] or [12]).

The h-pass process on [0, 1] with an initial distribution Py and a terminal
one P; ., and with the diffusion matrix /e x (Identity matrix) is the unique
weak solution to the following (see [14]): for ¢ € [0, 1],

X.(t) = X, + /Ot b.(5, X.())ds - VEW (2), (1.7)

where

be(s, ) :=¢eD,log (/Rd Ge(1—s)( — y)l/ljg(dy)) ((s,2) € [0,1) x RY). (1.8)

Here D, := (0/0x;)d_,.
It is known that

P((Xc(0), Xe(1)) € dady) = pe(dady) := vo(dr)g:(x — y)vie(dy).  (1.9)

It is also known that the minimizer of the following is the h-pass process
in (1.7) (see [11]):

Vi(Py, Pr) = inf{E[/O1 |u(t)]2dt} } (1.10)

where the infimum is taken over all R%-valued, (B,)-progressively measurable
{u(t)Yo<i<1 for which the distribution of X, + f) u(s)ds + W (1) is Py,
provided that the right hand side of (1.10) is finite.

It seems likely that the limit of h-path processes as ¢ — 0 is the minimizer
of (1.3) with L(u) = |u|?. But it is not trivial that this limit is a function
of ¢t and X, since a continuous strong Markov process which is of bounded
variation in time is not always a function of the initial point and time (see
[23] and also [19]). Therefore we prove that the limit of X (1) ase — 0 is a
function of X,.



If Py(dz) is absolutely continuous with respect to dr and L(u) = |ul?,
then (1.1) and (1.2) have the unique minimizers Dy (z) and Py(dx)0 py(z)(dy)
respectively, where ¢ : R — (—o0, 00] is convex (see [3, 4], and also [8, 15,
16, 20, 21, 25] and the reference therein, and also [18, 19] for the continuum
limit of (1.3)).

In this paper, independently of known results on the Monge-Kantorovich
problem, we show that V.(Fy, P,.) converges to V (P, Py) and X.(1) con-
verges, in L?, to the minimizer of (1.1) as ¢ — 0, when L(u) = [ul>. As a
by-product, we give a new proof of the existence of the minimizer of (1.1)
with L(u) = |ul?.

From a probabilistic interest, replacing P; . by P in (1.6)-(1.10), we also
show the similar result to above.

When L(u) = |ul, in [9] they studied (1.2) by the “p — o0” limit of
the minimization problem for which the Euler-Lagrange equation is the p-
Laplacian PDE under the assumption that £, and P; have disjoint compact
supports, and in [6] and [24] they studied (1.2) by the “g | 1”7 limit of (1.2)
with L(u) = |u|? under the assumption that P, and P; have compact supports
(see also [1]).

In future we would like to study the zero noise limit of the minimizer of
(1.10) with a more general cost function L(u), instead of |u|*, and then apply
the result to Monge’s problem.

In section 2 we give our main result which will be proved in section 3.

2 Main Result.

In this section we give our main result. We first state assumptions.
(A.0) P, and P, are Borel probability measures on R® such that the following
holds:

/Rd 2 2(Py(dz) + Pi(dx)) < oo
(A.1) po(z) := Py(dz)/dz exists.
Then the following holds.

Theorem 2.1 Suppose that (A.0) holds. Then {pe}eso is tight, and any
weak limit point of {u.}eso as € — 0 is supported on a cyclically monotone
set.



For the readers’ convenience, we introduce the following.

Definition 2.1 The set A € R? x R? is called cyclically monotone if for
anyn>1 and any (z;,y;) € A (i=1,---,n),

n
Z < Yiy Tig1 — T >< 0 (2.1)
i—1
(see e. g. [25, p. 80]), where x,.1 = x1, and < -,- > denotes the inner
product in RY.

Since a cyclically monotone set in R? x R is contained in the subdiffer-
ential of a proper lower semicontinuous convex function on R¢ and since a
proper convex function is differentiable dx-a.e. in the interior of its domain
(see [25, pp. 52, 82]), we obtain the following.

Corollary 2.1 Suppose that (A.0) and (A.1) hold. Then for any weak
limit point p of {peteso as € — 0, there exists a proper lower semicontinuous
convex function ¢ : R% — (—oc, 00| such that

p(dzdy) = Po(dz)dpea) (dy)- (2.2)

Remark 2.1 If (A.1) holds and p,(y) := Pi(dy)/dy exists, then Corollary
2.1 qives a new proof of the existence to the following Monge-Ampeére equa-
tion:

po(x) = p1(Dyp()) det(D*p(x)) (2.3)
in the sense that Py(Dg)™' = Py, where D? := (8%/0x;0x;)¢

1,j=1"

The following which can be proved from Theorem 2.1 and Corollary 2.1,
independently of known results on the Monge-Kantorovich problem [1, 3, 4,
15, 16, 21], is our main result.

Theorem 2.2 Suppose that (A.0) and (A.1) hold, and that L(u) = |ul?.
Then

hn% V;(P(),PLE) = V(Po,Pl) < Q. (24)
e—



In particular, Do in Corollary 2.1 is the unique minimizer of (1.1), and the
following holds:

tim B[ b.(1,X.(0) — (Do(X) - X)Pdi) =0, (29)
g ELsup X.(0) = {X, + 1D (X) = X I =0, (26

e—0 OStSI

The following is known on (1.1)-(1.3) with L(u) = |ul?.
(1) Suppose that (A.0) holds. Then a probability measure supported on a
cyclically monotone set in R¢ x R? is a minimizer of (1.2) (see [15, 16] and
also [25, pp. 66, 82], [1, Theorem 3.2]).
(ii) Suppose that (A.0) and (A.1) hold. Then there exists a convex function
¢ such that Py(dz)0py()(dy) is the unique minimizer of (1.2) (see [3, 4]).
Using these facts, we have the following.

Corollary 2.2 (i) Suppose that (A.0) holds and that L(u) = |u|?>. Then
any weak limit point of {pc}eso as € — 0 is a minimizer of (1.2). (ii)
Suppose in addition that (A.1) holds. Then pi. weakly converges to the unique
minimizer of (1.2) ase — 0, and X, +t(Dp(X,) —X,) in (2.6) is the unique
minimizer of (1.3).

To replace a terminal distribution P, . by P, in Theorems 2.1-2.2, we need
extra assumptions.
(A.2) pi(z) := Py(dz)/dz exists.
(A.3)

/Rd log<P1£(sz)>P1(d:v) < 00.

_ Repalce Py by P, in (1.6)-(1.7). Then there exists the unique solution
X:(t) to (1.7) from (A.2), and V.(Fp, P) is finite from (A.3) (see Lemma
3.4). Besides, the following holds.

Proposition 2. 1 Suppose that (A.0)-(A.3) hold, and replace X. by X. in
(2.6). Then (2.6) still holds.



3 Proof.

In this section we prove our results stated in section 2.
We first state and prove technical lemmas to prove Theorem 2.1. For z,
y € RY m>1andes >0, put

< >+ < >
Hy, . (z,y) = 510g{// exp( i R 1 (3.1)
m (0) XU (0)

€
—M>u5(dz1dz2)},

Ll

0o = seldy) )+ 5= (07 =01, i 4 ), (32)

i) =<1 | :

Um (0
MO,m,e(dx) = ME(dx X Um(O)), Ul,m,s(dy) = ME(Um(O) X dy)7 (33)
where U,,(0) := {x € R?: |z| < m}. Then the following holds.

Lemma 3.1 (i) Forz,ye R, m>1ande >0,

—d
Hm,s (33', y) = HO,m,s (37) + Hl,m,&(y) +€ log 2e (34)

{ <X,20 >+ <Y, 21 >
= clog // exp(
U (0) XU (0) I

Hm,s(zla ZQ)

S (A2 e (d22)),

1
pe (dwdy) = exp<5(< x,y > —Hp o (w, y))>MO,m,E(dx)Ml,m,g(dy)a (3.5)
provided that pe(Uy(0) x Up(0)) > 0.

(it) Form > 1 and € > 0, (x,y) — Hy,.(z,y) is convex, and for any x and
y € RY,

[ Hoe(2,9)] < (2] + [yl)m + m® — £ log pe(Un(0) x Un(0)). (3.6)



Proof. The first equality in (3.4) and (3.6) can be obtained from (3.1)-(3.2)
easily. (3.5) holds from (1.9), the first equality in (3.4) and the following: for
t, 7 = 0, 1 for which ¢ # 7,

The second equality in (3.4) can be obtained from (3.1) and (3.5).
Q. E. D.

Remark 3.1 Forz ¢ R, m>1,e>0, andi, j =0, 1 (i # j),

1
Hipm:(z) =clog </
U,

1
exp(— <z,y>—Hjp Ay )M',m,e dy )
m(0) \/27T€d 5( ) ’ )

from (3.2) and (3.7).

Lemma 3.2 Suppose that (A.0) holds. Then for any sequence {&,}n>1 for
which e, — 0 asn — oo, there exist mo > 1 and subsequences {{€m n }n>1tm>mo
such that Hy, . . is convergent in C(R?Y x RY) as n — oo for all m > my,
and such that

{Emintn>1 CH{Emntnz1 (M2 mo). (3:8)

In particular, m — Hp, = lim,_,o Hp, ., , s nondecreasing on {mo, mo +

1, -},

(,9) = H(z,9) = lim Hn(2,9) € (=00, 0] (39

s a lower semicontinuous conver function,

<wz,y>-—H(z,y) <0 ((z,y) € supp(Po) x supp(Fr)), (3.10)

and the following set is cyclically monotone:

S = {(x,y) € supp(Py) x supp(P)| < x,y >= H(x,y)}. (3.11)



Proof. There exist mg > 1 such that for any m > mg, {Hp ., }n>1 is bounded
in Upi1(0) X Uggi(o) for any £ > 1 from (3.6) and from the following:

1 — pe(Upn(0) X Upy(0)) (3.12)
Jrasre (22 4 y]?) pe (dzdy) _ Jre |22 Po(dx) + Jre [y|* Pre(dy)
m?2 m2
Jra [2[*Po(dx) 4 flraxra |2 + yI* g (x)dx Py (dy)
Jre |7* Po(dx) + 2(ed + [ra ly[*Pr(dy))

<

— 0 (as m — oo from (A.0)).

Hence for any m > myg, {Hpp, }n>1 contains a uniformly convergent sub-
sequence on Uy(o) x Uy(o) (see [2, p. 21, Theorem 3.2]). By the diagonal
argument, {Hp,.,}n>1 contains a convergent subsequence {Hp, .. . }n>1 in
C(R?* x R%). In particular, we can take {&,,,},>1 0 that (3.8) holds.

m +— H,, is nondecreasing on {mgy, mgo+ 1,---} since

Hm+1,€m+1,n Z Hm,5m+1,n

for all m > mg from (3.1), and since H,,,.,, . — Hy as n — oo from (3.8).
Hence for any (z,y) € R? x RY, H,,(x,y) is convergent or diverges to oo as
m — oo.

As the limit of convex functions, H in (3.9) is convex in R% x R%. H is
also lower semicontinuous. Indeed, if (x,,y,) — (z,y) as n — oo, then

H(Inayn) > Hm(xnvyn) — Hm(x,y) (as n — oo, for all m > mO)
— H(z,y) (as m — o0)

since H,, € C(R? x R%) as a finite convex function (see (3.6)).
For any (z,y) € supp(FPy) x supp(P1), 7 > 0, m > r+ |z| + |y| + mg and
n > 1, from the second equality of (3.4),

Hiernn (T, 9) (3.13)

> inf <z, m>+<y s >—H,. (21,2
- (z1,z2)€Ur(x)><UT(y){ 2 Y =1 7m,n( 1 2)}

+e log{ 1o,m,erm.. (Ur(2)) tt1,merm. (Ur(y)) }-

9



Since Hy, ., . converges to H,, as n — oo, uniformly on every compact subset
of R¢ x RY,

lnf <37,Z >+< ,,Z >—Hm€mnz7z 314
(Zl,z2)EUT(x)><UT(y)( 2 Y= Em, (21,22)) ( )

inf <Tyzo >+ <y,z1>—Hpy(z,z as 1 — 0o
(Z1722)€UT(90)><UT(y)( 2 Y= m( 1 2)) ( )

— 2<uz,y>—Hy,(z,y) (asr—0)
— 2<ax,y>—H(z,y) (as m — 00).

From (A.0), for sufficiently large m > 1,

i inf {0 s (U (2) 1 (U (9))) > 0. (3.15)
Indeed,

110, (Ur () p1,moe (Ur (9))
= {P(U(2)) = pe(Up(x) X Upn(0)) HPrLe (Ur(y) — (U (0)° X Up(y)) }-

(€ + Jre |2 P1(d2))
m2

pe(U(o) % U0)) < — [ JaPPro(de) < °

as in (3.12), and

peUn(o) % U0)) < — [ |z Py(de).

m2
llgllglf Pl,fs(UT(y)) > PI(UT(y))
since P, . weakly converges to P, as ¢ — 0, and

(Py x P)(Up(z) x Up(y)) > 0.

(3.13)-(3.15) implies (3.10).
The set S is cyclically monotone. Indeed, for any k, n > 1, (z1,y1), -, (Zx, Yx) €
S and m > myg, putting x4 = 21,

10



k
Z(Hm,sm,,n (xi+17 yz) - Hm,ﬁm,n (xi7 yl)) =0 (316)

i=1
from the first equality of (3.4). Let n — oo and then m — co. Then from
(3.10),

k E
Z < Wiy Tir1 — T >< Z(H(%H,yi) — H(x,y;)) = 0. (3.17)
i=1 i=1

(Notice that H(z;,vy;) is finite for all i = 1,-- - k.)
Q. E. D.

Remark 3.2 If H(z,y) and H(a,b) are finite, then H(x,b) and H(a,y)
are also finite since for sufficienlty large m > 1, from (3.9) and (3.16),

—o0 < Hp(2,b) + Hp(a,y) < H(z,b) + H(a,y) = H(z,y) + H(a,b) < .

In particular,
H(Ivy) = H(Ivb) +H(a7y) o H(a’ab)

(Proof of Theorem 2.1.) {p}eso is tight from (3.12) (see e.g. [12, p. 7]).
Take a weakly convergent subsequence {., }n>1 and denote by p its weak
limit, where €, — 0 as n — oo.

By taking my > 1 and subsequences {c,,,}n>1 (m > my), construct a
convex function H as in Lemma 3.2.

From (3.10)-(3.11), we only have to show the following to complete the
proof:

p{(z,y)| <z,y>—H(z,y) <0}) = 0. (3.18)

By the monotone convergence theorem and Lemma 3.2,

pu{(z,9)| <2y > —H(z,y) <0}) (3.19)
= lim(lim p({(e,y)] <@,y > —Hn(z,y) < -1})).

11



For any m > myg, Hy, ., , converges to H,, as n — oo, uniformly on every
compact subset of R? x R% Therefore for any R > 0,

p(,y)| <2y > —Hnlz,y) < =1z, [y| < B}) (3.20)
< liminf ., ({(z, )| <2,y > —Hp(z,y) < —r 2| y| < R})
< li7£r_1>i£fexp(— 5mn> =0 (from (3.5)).

Notice that the set {(z,y)| < z,y > —H,,(x,y) < —r,|z],|y| < R} is open
since H,, € C(R? x R%) from Lemma 3.1, (ii).
Letting R — oo in (3.20), we obtain (3.18) from (3.19).
Q. E. D.

Next we prove Theorem 2.2.
(Proof of Theorem 2.2). The proof of (2.4) is devided into the following:

lll’IlloanE(Po, PI,E) Z V(P(), Pl), (321)

£—

limsup ‘/E(P(), PI,E) < V(P[), Pl) < 0. (322)
£—0

To prove (3.21), we only have to show that for any {e,},>1 for which
e, — 0 and E[f) |b., (s, X, (5))|?ds] is convergent as n — oo,

lim E] /0 b (5, X, (5))2ds] > V (P, P) (3.23)

n—0oco

(see (1.7) for notation). (3.23) holds since {X,, (-)},>1 is tight in C([0, 1]),
any weak limit point X (-) of {X., (:)},»>1 is an absolutely continuous stochas-
tic process (see e.g. [19, Lemmas 2-3]), and

lim FJ /0 b (5, X, () 2ds] (3.24)

o

from (1.9) and (2.2) (see e.g. [19, the proof of (3.17)]).

2

ds] > E[|X(1) = X(0)P’] > V(P P)

12



Next we prove (3.22). Take ¢ for which Pyyy~! = Py, which is possible
from (2.2). Then from (A.0),

V(Py, P) < E[Jp(X,) — X, 2] < z/Rd 2 2(Py(dz) + Pi(dz)) < co. (3.25)
Put

Xew(t) =X, + t((X,) — Xo) + VEW (). (3.26)

Then P(X, 4(1))™' = Py, which implies (3.22).

By (2.2), (2.4) and (3.24), Dy in Corollary 2.1 is a minimizer of (1.1)
with L(u) = |u|?. In particular, Dy is the unique minimizer. Indeed, if 1 is
a minimizer of (1.1) with L(u) = |u/?, then

El< Xo, (X,) >] = E[< X, Dp(X,) >]
= Elp(X,) + ¢ (Dp(X,))] = Elp(Xo) + ¢ (¥(X,))],

which implies that ¢(X,) € 0p(X,) a.s., where

" (y) == sup {< z,y > —p(2)},
reRH4

dp(x) = {p € R p(y) > p(x)+ < p,y —x > forall y € R'}.
Here we used the fact that for any (x,y) € R¢ x R,

<z, y>< @)+ ¢ (y),

where the equality holds if and only if y € Op(x) (see e.g. [25]). From (A.1),
Y(X,) = Dyp(X,) a.s. since a proper convex function is differentiable dz-a.e.
in the interior of its domain (see [25, pp. 52]).

(2.5)-(2.6) is an easy consequence of (2.4). For ¢ € [0, 1],

|X€(t) - {Xo + t(D(zO(Xo) - Xo)}| (327)
< [ bl Xel5) = (D(X,) = Xo)lds + V= sup [W(Q)]

0<t<1
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E[sup |W(t)|’] < 4d (3.28)

0<t<1

(see e.g. [12, p. 34]), and from (2.4),

B[ 105, X.(5)) — (Dpl(X,) = X,) ] (3.29)

= B[ el Xel9)Pds + [Dp(X,) = Xof
_ZE[< Xe(l) - Xo - \/EW(l), D(IO(XO) - Xo >]
— 2V(Py, Py) — 2E[< Dp(X,) — X0, Do(X,) — Xy >] =0 ase — 0.

Indeed,

E[< W(l)vDQO(Xo) - Xo >] =< E[W(l)]vE[DQO(Xo) - Xo] >=0.

For any R > 0, taking fr € C(R?: [0, 1]) for which fz(z) =1 (Jz] < R) and
fr(z) =0 (lz| = B+ 1),

)

El< Xe(1), Dp(X,) — X, >]
= El< X.(1), Dp(X,) — X > (1 = fr(X:(1)) fr(Xo))]
+E[< Xc(1), Dp(Xe(0) = Xe(0) > fr(Xe(1))Sr(Xe(0))]-

Bl < X.(1), Dp(X,) = Xo > (1 — fr(Xo(1)) fr(X,))]
< VEIDe(X,) - X B[ X.(1)2 - |X.(1)] > R
+EIX.)PIEID(X,) = XP 1 [X,| > B =0 as R0

uniformly in € € [0,1]. Since (X (0), X (1)) weakly converges to (X,, Dyo(X,))
as ¢ — 0 by the uniqueness of the minimizer of V(FPy, P;), one can assume,
by taking a new probability space (Q, B, P), that (X.(0), X,(1)) converges
to (X,, Dp(X,)) as € — 0, P-a.s., by Skhorohod’s theorem (see e.g. [12, p
9]). Put

14



A:={y e RYp(y) < o0, 00(y) = {Dp(y)}}.

Then X, € A a.s. from (A.1) and N,<¢0¢(U,(x)) = {Dp(x)} for any x € A
(see [25, p. 54]), from which the following holds:

B[< X.(1). DA(X.(0)) = X.(0) > fa(X.(1))
= E[< X:(1), Dp(X(0)) = X:(0) > fr(X:(1))fr
E[< Dg(X,), Dp(X,) = X, > [r(Dp(X,)) [r Xo L X, € 4]
(as € — 0)
— E[< Dp(X,),Dp(X,) — X, >] (as R — o0).

(3.27)-(3.29) implies (2.5)-(2.6).
Q. E. D.

We give technical lemmas and then prove Proposition 2.1.

Lemma 3.3 (see [17, Lemma 2.5]). Suppose that (A.2) holds and replace
Py, by Py in (1.6). Then for any ¢ > 0,

he(1, X.(1))
he (0, X (0)) )

where X, is the unique weak solution to (1.7),

he(t.a) = [ gz = )i a(dy),

and (Dye, 01,) is a solution to (1.6). Vo(Fy, Py) is also the infimum of

Vo(Py, P1) = 2¢E |log (3.30)

/ / b(t,x)|?q(t, z)dtdz (3.31)

over all (b,q) for which
q(t,x) >0 dz —a.e., /Rd q(t,z)de =1 for allt € ]0,1], (3.32)
q(0,z)dx = Py(dz), q(1,z)dz = P(dx), (3.33)
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and for which the following holds: for any f € C(R?) and any t € [0, 1],

[ F@)alt2) - q(0.2)de (3:34)
_ /Ot s /Rd (%Af(x)+ < b(t,), Df(z) >>q(s,x)dx,
where N\ = 4 02 /022.

Remark 3.3 Suppose that (A.1) and (A.2) hold and that supp(Py)Usupp(P)
is bounded. Then it is known that V (Py, Py) is the infimum of (3.81) over all
(b,q) for which (3.32)-(3.34) hold for e =0 and for which Up<z<15upp(q(t, -))
is bounded (see [5] or [25, p. 239]).

Lemma 3.4 Suppose that (A.0), (A.2) and (A.3) hold. Then for anye > 0,
V.(Po, Pr1) is finite. In particular, Vi(Py 1, P1) is finite.

Proof. Put fi.(dzdy) := iy (dx)g.(x — y)D1 (dy) (see (3.30) for notation).
Replace pi. by fi. in (3.1) and denote by H,, . a function obtained from (3.1).
Then, from (3.4), (3.7) and (3.30),

Ve(PO; Pl) = E[|X€(O)|2 + ’Xe(l)F - Zﬁoo,e(Xe(O)aXE(l))] (335)
dP1

d
+2e /Rd log(E> Py (dx) + 2¢log V2me .

From (3.1), (3.6), (3.12) and (A.0), for sufficiently large m > 1,

E[Hooe(X:(0), Xo(1))] 2 BlHime(X(0), Xo(1))] > —oo. (3.36)

Q. E. D.

(Proof of Proposition 2.1). Most part of the proof is almost the same as that
of Theorem 2.2. The only thing we have to prove is the following:

lim sup ‘/E(P()vpl) < V(POJ Pl) (337)

e—0
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Take ¢ for which Pyyy~! = P;, which is possible from (2.2). For r €
(0,1/2), solve Schrédinger’s functional equation:

Pl,s(l—r)(dx) = </Rd Ger (T — y)l/l,n&(dy)> VO,T,E(dx)> (3.38)

Pl(dy) = </Rd ger(x - y)Vo,r,g(d37)> Vl,r,e(dy)'

For ¢t € [0,1 — 7], put

Xo) — X,
Xoe(t) =X, + t% + VeW (t), (3.39)
-7
and solve the following: for ¢ € [1 —r, 1]
¢

Xoe(t) =X, c(1—7)+ bre(s, Xre(8))ds+e(W () —W(L—r)), (3.40)

1—7r

bre(s,) 1= Dalog ([ 9ot = p)vnrc(d)).

Then, from Lemma 3.3,

EHw(Xo) B Xoyz]
1—r

V.(Py, P) < +£[f 1_ by (5, Xoo(s)Pds] (341

since X,.(0) = X, and PX,.(1)"! = .
We prove the following to complete the proof: for any r € (0,1/2),

1

im B[ |be(s, X, .(s))?ds] = 0. (3.42)
g 1—r
pre(te) i= [ geonien (@ = y)Pi(dy) (3.43)

is a weak solution to the following: for ¢t € [1 — r, 1),

Opre(t,x) ¢ . {( £ >Dmpr€(t7 z) }
Preb®) _ N - £\ Zebrelh ) . 44
T 5 pre(t,x) — div 2 ) prlton) Pre(t, x) (3.44)
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Hence, from Lemmas 3.3 and 3.4, for ¢ < 1,

B[ s X, )]

1 D 2
< / it <3> Pre(t, T)
1-r JRe\2r/ p,.(t,x)
5

1 szl 1(8,.%’)
= [ g P
dr(1 —r) Ji—e—r) JRA P%J(S:x)

where we used the following change of variable:

e(1—=r)(1—1)

7

Pre(t, x)dz

2
p%J(S,I)dI — 0

=1-s,

and the following:

1
[ s
1—e(l—7) Rd
a:pl
< | fu ot

1sx

2

Dqpy (s, x)
—2 péjl(s, x)dx

pl()

2

References

(3.45)

(as e — 0),

p%71(3,x)d:v =Vi(P11, P) <0
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