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Momentum operators
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a winding gauge potential
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Japan

Considered is a quantum system of N (> 2) charged particles moving in the plane R?
under the influence of a perpendicular magnetic field. Each particle feels the magnetic field
concenrated in the positions of the other particles. The gauge potential which gives this
magnetic field is called a winding gauge potential. Properties of the momentum operators
with the winding gauge potential are investigated. The momentum operators with the
winding gauge potential are represented by the fibre direct integral of Arai’s momentum
operators [1]. Using this fibre direct integral decomposition, commutation properties of the
momentum operators are investigated. A notion of local quantization of the magnetic flux is
introduced to characterize the strong commutativity of the momentum operators. Aspects
of the representation of the canonical commutation relations (CCR) are discussed. There is
an interesting relation between the representation of the CCR with respect to this system
and Arai’s representation. Some applications of those results are also discussed.

1 Introduction

In Ref.[1, 2, 3, 4], A. Arai investigated commutation properties of two dimensional momen-
tum operators with a strongly singular gauge potential. In those papers, he showed some
interesting results. Especially, there exsists a beautiful relation between representations of
the canonical commutation relations (CCR) and the local quantization of the magnetic flux.

The main aim of this paper is to analyze a quantum system of N (> 2) particles moving
in R? under the influence of a special perpendicular magnetic field. In this system, each
particle feels the magnetic field concenrated in the positions of the other particles. The
gauge potential which gives this magnetic field is said to be a winding gauge potential,
and is strongly singular. We show that the momentum operators with the winding gauge
potential can be represented as the direct integral of Arai’s momentum operator. In this
sense, our result is a natural extension of Arai’s work[1, 2, 3, 4]. It is also important whether
the magnetic flux is locally quantized or not. Indeed, we see that the local quantization of
the magnetic flux is closely connected with the Schrodinger representation of the CCR’s. As
an application of those results, we study a class of Schrédinger operators with the winding
gauge potential. Moreover, there are some other important properties about this system. In
particular, we see that there is an interesting correspondence between bosons and fermions,
so called the statistical transformation.



The outline of the present paper is as follow. In Section 2, we introduce the winding
gauge potential and show the self-adjointness of the momentum operators with the winding
gauge potential. We also investigate the commutation relations (in the strong sense) of the
momentum operators with the winding gauge potential. To do this, we express the momen-
tum operators as direct integrals of Arai’s momentum operator. By using this expression,
we prove that the momentum operators strongly commute if and only if the magnetic flux
is locally quantized. In Section 3, we apply the preceding results to the theory of reperesen-
taion of the CCR. We show that the momentum operators with the winding gauge potential
and the position operators fulfills the Weyl relation if and only if the magnetic flux is lo-
cally quantized. Furthermore, we discuss a relation between direct integral representation of
Arai’s representation of the CCR and our system. In Section 4, we define the Hamiltonian
with the winding gauge potential and investigate the properties of this Hamiltonian. We
note that formal discussion of this Hamiltonian is foud in Ref [5, 6]. Moreover, we introduce
the statistical transformation and disscus some applications. This transformation gives the
correspondence between bosons and fermions, and comes from the two dimensionality of the
sytem.

2 Momentum operators with the winding gauge poten-
tial

2.1 Definition of the momentum operators with the winding gauge
potential
We consider a quantum system of N(> 2) charged particles with charge ¢ € R\{0}, where

each particle feels a perpendicular magnetic field B; (j = 1,---, N) given by a real distribu-
tion of the form

Bj(rla"')rN):725(ri—rj), rlv"'arN€R27 r]:(x]’y])7
i#]

where v € R and 4(r) is the Dirac’s delta distribution. Gauge potentials A; (j =1,---, N)
of the magnetic field B; are defined to be R?-valued functions A; = (4,1, 4,2) on the
domain

My = {(r1,~",rN) eR¥WN |r;#r1; (1759)}

such that
Bj(r17 Vi .’rN) = ijAjz —_ DyjAjl

in the sense of distribution on R?N, where D,, and Dy, denote the distribution partial
differential operators in z; and y;, respectively.
We denote by Aj (j =1,---,N) the Laplacian

Aj:=D3 +D2.
Using the well-known formula
Ajlogr; —ri| = 216(r; — 1) (k # J),
we see that the distribution

ZCHEROEDY % log |r; —r;
i<j



satisfies
Ajpn(r1, - - rN) = Bj(ry, -, TN).

From this fact, we can take as a gauge potential of the magnetic field
A'J :(A]17A]2):(_‘DngsN,DZ](ﬁN), j:l,...’N'

Explicitely, we have

Y Yi —Yi
Ajl(r17"'7rN) = _%ZI;—]T#7 (]‘)
A
5 Tj— Ty
Aja(ry, -+ rN) = %Zﬁ? (2)
7

for a.e. (r1,---,rn) € Mp.
Definition 2.1 Let A; = (41, A4;2) (j = 1,---N) be given by (1) and (2). The mapping
A=(Ay, - ,A,) : My — R2Y is called a winding gauge potential.

We use a system of units where the light speed ¢ and the Planck constant & are equal to 1.
Let
Dj1 1= — D:I:J’ Dj2 = _iDyj (.7 = 1»"'7N)7

in L2(R?Y). The momentum operator P; = (Pj1, Pj2) with the gauge potential A, is
defined by
Pja = Dja _quav (.7 = 1»""N7 o = 172)

in L2(R2?") with domain dom(Pj,) = dom(p;s) N dom(4;q).

2.2 Self-adjointness

Let
80 = {(ry ) € R | ri= (mom), v A3 (£9)),
sV = {(rl,---,rN)eRzN‘r¢=(xi7yi), T # T (i#j)}
and
Yi1(re, - rN) = ——;Arctan( ~—yz)’
i#j
Pio(r1, -, rN) = —ZArctan($J~zz)

Then it is easy to check that 1, € C’OO(S((XN)) and
Ajl = Dx.’l,/)jl on S(N) (3)
Ajs = Dy, on SV, (4)

Theorem 2.2 For each j = 1,---,N and a = 1,2, Pj, is essentially self-adjoint on
co(S8EM).



Proof. Since ¥jq € C°°(S,§¢N) ), e9%i= is a unitary operator such that
et (8EV) = 52 (SEV).

By (3), we have
Pja _ eiqd,japjae—iqwja on Cgo(SéN))

On the other hand, it is easy to see that p;, is essentially self-adjoint on C§° (S((XN)). Hence
we have the desired result. O

2.3 Commutation relations of the momentum operators with wind-
ing gauge potential
For r = (z,y) € R?, s,t € R, we introduce a path C(r; s,t) which is the rectangular curve:
r—r+(s,0)>r+(st) >r+(0,t) —r.

Let D(r; s,t) be the interior of C(r;s,t) and

. 1 (s>0)
@w={ 1 20

We denote the closure of Pj, by Fja
Theorem 2.3 For each s,t € R and j,k=1,---, N, we have
(l) eisﬁjl eitsz = exp(_qu)‘gjg‘)) eit—ﬁkg eisl_jjl’

(11) eistQ eit—I;;m = eit—ﬁlm eisﬁja (Ol - 1, 2)’

where, for each (r1,---,rn) € R with r; = (z;,y;) € R?, we define
B30 (x1, - 1)
| et #{i £k | vi € D(ewis )} (G ="k)

1e(s)e®)#{ (G k) | (e, 1) € D((ms, —yi=s,8)} (G # k)

Definition 2.4 ([1]) We say that the magnetic flux associated with the winding gauge
potential is locally quantized if @;5,’:) is a 27Z/g-valued function for all s,t € R.

Corollary 2.5 The momentum operators Pj, strongly commute to each other if ond only
if % € Z, where 6y := ZT” the flux quanta, equivalently, the magnetic flux associated with the
winding gauge potential is locally quantized.

To prove Theorem 3.2, we need some preparations. Let
RN =R? x ... x R%,
where each R? (i = 1,--+,N) is a copy of R2. For each j,k=1,---, N, we define

ij::{ R%X-..xﬁ,\ix...xﬁ\zx...xR?\I (J#k‘)

R?X...xf{‘?x...xR?\[ (J:k) ’
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where R? indicates the omission of R2.

Let wjg == (a1, +,8j-1, 841, **, Ak—1,8k+1, "+, an) € Qi (if j = k, then w;; is given
by wj; = (a1, --,a;-1,a541, - -,an) € ;;). Then we define the multiplication operators
Ajo(wsk) on L*(R2 x R}) (j # k) and Ajq(wj;) on L*(R3) by

Ajo(wik)(rjre) = Ajalai, -, aj—1,T5, 841, 81, Tk, Akt1, ", aN) (1 # k)

Aja(wjj)(x;) = Ajalas, -+, 81,15 8541, -, an),
respectively. We set
L*(R xR3) (j #k)
Hip = 2
s { L*(R =k

Then relative to the direct integral decomposition
®
L*(R*N) = / Hk dwjk, (5)
ij

we can represent the multiplication operators A;qo, Ak 8s

® &
Aja = / Aja(wjk) dwjk, Aka = / Aka(w]'k) dquk.
Qjk Qjn

On the other hand, it is clear that

5] D
Dja :/ Pja dquk, Pka = / Pka dwjk

Qjr Qjk
fora=1,2.
For each wji € (i, we define
Pia(wik) = DPia—Ajelwir),
dom(Pje(wjk)) = dom(pja) N dom(Aja(wjk))
and
Pka(wjk) = Dka — qu:a(wjk)’
dOIn(Pka((Ujk)) = dom(pka) N dom(Aka(wjk))'

Remark 2.6 If j = k, then the operator Pjq(w;;) is called Arai’s momentum operator ([1]).

Now, we have a following useful lemma.

Lemma 2.7 Let Pjo(wjk) and Pro(wjk) be as above.

(i) For all wjk € Qjx and a = 1,2, Pjo(wjk) and Pro(w;ji) are essentially self-adjoint.
(ii) The mappings wjr € Lk — Pja(wjk), Pra(wjk) are measurable.

Proof. (i) If j = k, then we can apply Theorem 3.2 in Ref. [1]. Hence we only prove the
assertion in the case j # k. For each wji = (a1,---,8j-1,841,"**,8k—1,341," " *,aN) €
Qjk, let

A~ ~

S5 (wik) = {(rj,rk) €R} xR} | yj # Uk, Y5 # 0izs (i:17“'»J"',ka”"N)}-



We introduce the function ;1 (w;x) by

Yi(wik) = j(ar,--- r;,--'rk,- -, an)

= —% {Arctan( ) Z Arctan ( Y — Z: ) }

for each (rj,rg) € 5,](11\1) (wjk)- Then it is easy to check that ;1 (wjx) € C°°(5’J(-11V) (wjx)) and
Day By (wsn) (05, 1x) = Apa () (xj,m) ((05,78) € 51" ()
Hence el?¥i1 (Wir) ig a unitary operator such that
e ) 05 (S (wir)) = G (ST (wsr)

and ) )
P]l(wjl) = eiq¢j1(wjk)pjae—iqipjl(w,-k)

on CSO(S’J(»JIV) (wjk)). Since C§° (S’(N) (Wik)) 2 C3°(R},) ®alg C§°(Lijk,1) (®alg denotes alge-
braic tensor product), where

ij:,l = {(yjark) GR;y XR% Yj #yka Yj %a'ﬂ (Z: 17"',37"'7]%""7N)}7

pj1 is essentially self-adjoint on 030(5](.’1\’) (wjk)). Hence we have the desired result. By the

similar way, we can prove the assertions about Pja(w;k), Pr1(wjx) and Pra(wjik)-

(ii) Let Aj;i be the algebra of decomposable bounded operators whose fibres are all
multiples of the identity of L(R; x R). Then it is clear that (Pjq(-) +1) 7%, (Pea () +i) ! €
Ay, where A’ is the commutant of A;x. Therefore applying Theorem XIII 84 in Ref. [9],

ik jk J
we have the desired result. O
By the above lemma, we can define the following two self-adjoint operators:

o ®
/ Pjo(wijk) dwj, / Py (wjk) dwii,
ij ij
where we denote the closure of Pjo(wjk) (resp. Pra(wjk)) by Pja(wjk) (resp. Pra(wjk)).
Proposition 2.8 For each j,k=1,---,N,a =1,2, we have
Pjo = / Pja(wjk) dwjk, Pra = Pyo(wijk) dwjk.
Qjk Qjk

Proof. We denote the operator in the right hand side of the equations on the proposition
by Cjq and Ckq, respectively. Suppose that ¥ is an element of C’°°( (N)) For each wj; =
(A1, @j—1,@41,° "+, Ak—1,8k41,**,aN) € g, we introduce ¥(w;x) € L? (R2 x R2)
defined by

\il(wjk)(rj,rk) =U(ay, - +,rj, Tk, aN), (Tj,T) € R? x R2.

Then relative to the direct integral decomposition (5), we have

@ ~
U= / \I/(wjk)dwjk‘
ij



It is not difficult to check that ¥(w;x) € dom(Pj,(w;x)) and

($3)
Pjp¥ = / Pjo(wjk)¥ (wjk)dwjk = Cja V.
ij

Since C§°( éN)) is a core of Fja, we have the desired result. Similarly, we can prove the

assertion about Pggy. O
Proof of Theorem 2.3: By Propostion 2.8, we have

o

exp(itPjq) = / exp(itPia(wjk)) dwjr (I =4, k)
ij

for each t € R. Hence it suffices to disscus the commutation relations in the theorem at
each fibre.
If j = k, then we can apply Thoerem 2.1 in Ref. [1] and obtain

exp(isPj1(wj;)) exp (it Pja(wj;))
= exp ((— 105" (wy;) ) exp(itPra(wsg)) exp(isPy(wss)),

where <I>§»fjft)(wjj) is a multipliation oprator defined by

25" (wi5)(x5)
= ye(s)e®#{i # | wis(i) € Dysalesist)},
where wj; = (w;;(1),- -, wj;(N — 1)) € Q;;. Hence we have the desired result in this case.

Next we prove the assertion in the case j # k. We can apply the Trotter product formula

(e.g., Theorem VIII 31 in Ref. [8]) to each Pio(w;k) (I = j, k) to obtain
o Py n
exp(itPo(wjk)) = s- nlgrgg (exp(itpla/n) exp(—ithla(wjk)/n)> (l=4,k)
for each t € R. Using the fact that
(eitpfl\ll)(rj,rk) = W(r; +(¢,0),rz) a.e.(r,rx) € R? x RZ, s € R,
we can show that
(exp (it Pj1(wsk)) ¥)(r;, r)
¢
= exp ( - iq/ Ajr(wir)(r; + (25,0),r8) dm})\ll(rj + (t,0),1x), ae.(rj,ry) € RZ x RE
0
for each ¥ € L?(R3 x R}). Similarly we have
(exp (it Pra(wsk)) ¥) (x5, Tk)

t
:exp(—iq / Ara(win) (rg, 1k + (0,45)) dy;)qf(rj,rk+ (0,8)), a.e.(rj,rs) € R2 x R2
0
for each ¥ € L?(R? x R}). Using these formulas, we obtain

exp(isP;1(wjk)) exp(it Pra(wjk))

= exp (— 12§51 (i) ) exp(itPra(wsn)) exp(isPy1(wii)),



where

0% (wik) (x7, k)

= /Os Aj((r; + (25,0, 18)) (i) dz +/0 Az ((r; + (,0), 1 + (0, 4k)) (ws) d

—/0 Apa((rj,rr + (0,5%))) (wir) dyk — /Os Aj1((rj + (},0), rx + (0, 5))) (wyk) dz

for a.e.(rj,rx) € R? x R}. To calculate @;s,’ct) (wjk), we introduce some notations:

Y Y — Yk Y Tep— T4
ANESTR) = _%Irjj——rly agk,2(F5 Tk) 1= 27 |rj — rk]|2>
Yj — Wik(t)2 'Y T — wik()1
bk (wik)(rs, Th) = —s= E Y5 —wik(t)2 Rzt Z T — wik(i)1

[rj — wjk (i) |2’ [rr — wik () IZ,

z;é k z;éyk

where we use the notations w;r = (w;x(1), - - '7@(\1), . ..,@, < wik(N)) € Qg win(i) =
(wjr(8)1,wjk(i)2) € RZ. Then it is clear that

Aj1(wik) = ajka + bk, Axa(wik) = ajk,2 + bik2(Wjk)-
Next, we introduce the new coordinate:
ik = (T5 ~Yk)s Tjk = (T, —Y5)

for each r; = (z;,y;) € R2, r = (zx,yx) € R}. Then we can regard ajk,o (a = 1,2) as the
function with two variable r i, Tx:

djk,a(rjk,ij) = ajk,a(rj, l‘k-), a=1,2.
On the one hand, we have

s t
/ Qjk, l(rJ + (‘T‘va O)a I‘k) dl‘; +/ ajk,2(rj + (S, 0)7 T ar (Oa y;c)) dy;c
0

t s
/ ajk,2(rj, v + (0, v%)) dyg -/ ajk1(r; + (25,0), 1% 4 (0, 5)) dz
0 0

I

/ &k (ip, Tjk) - drfe  (Ajk = (@jk,1, Bjk,2))
Ciik,12(rjk38,~t)

II

/ (Dyji 2 Bik,1 + Drjk’lajkvg)dr;-k (by Green’s theorem)
Djg,12(rjk;s,—t)

= ye(s)e(t)#{ (o k) | ik € Dikalezns s, =)},
where we use the notation rj; 1 = x;, 7jx,2 = —yr and the fact
Drjy.285k,1 (V5 Tjk) + Dryy 1 Gie2(F ks Tjk) = —70(x 0 — Fi)-

On the other hand, we obtain
[ biatonmtes + (50000 s+ [ bynalin)aser+ 0,34)
0

t s

—/ bjk,2(wik) (s, Tk + (0, 9%)) dyp —/ bjk,1(wik)(r; + (5,0), 1) dz
0 0

=1



Combining these facts, we have
550 (i) (x5, 7i) = Ye($)e)#{ (G B) | Tin € Dinalrsns s, 1)}

Therefore we have the assertion about —le,FkQ. By similar a way, we have the assertions
about Pj1, Py and sz, Py, O

3 Representation of the CCR

3.1 Schrodinger representation and local quantization of magnetic
flux

Let H be a Hilbert space, D be a dense subspace of H and {pj, Qj}?zl be a set of self-adjoint
operators on H. The set

m:=A{H, D, {pj¢;}j=1}
is called a representation of the CCR with n degree of freedom on D if it satisfies

(i) dom(p;),dom(q;) CD (j =1,---,n);
(i) pDCD, ¢ DCD(j=1,---,n);
(iil) {pj,g;}}j=, satisfy the CCR on D:

[pjv qk]¢ = _iajk'l/)v
[pjapk]wZOZ[Qjaqk]w (jvk:]-a’N)
for all ¢ in D.

We often write D(m) for D. Our main aim of this section is to investigate the momentum
operators with winding quage potential from the viewpoint of the representation of the CCR.

Proposition 3.1 Let Q;1,Qj2 (7 =1,---,N) be the multiplication operators by the coor-
dinate functions z; and y;, respectively. Then

TA = {LQ(R2N), C(?O(MN)v {—pjaﬂ QJO[ | .7 = 17 t 'vaa = 17 2}}
s an trreducible representation of the CCR of 2N degree of freedom.

Proof. Easy. O
As for the CCRs in the Weyl form, we have the following result.

Theorem 3.2 The set {?ja,Qm | i=1,---,N,a=1,2} of self-adjoint operators fullfills
the Weyl relations if and only if (;Y—o € Z, i.e., the magnetic flur is locally quantized.

Proof. In a similar way to the proof of Theorem 2.3, we can prove
exp(isQja) exp(it Prp) = exp(—istd;r0as) exp(it Prs) exp(isQja)

for all s,t e R, j,k=1,---,N, «,8 = 1,2. Combining these facts with Theorem 2.3, we
have the desired assertion. O

Let m = {H’lrl ) D("Tl)’ {p"l'lj’ q"rlj}_?:l} and mp = {Hﬂ'z’ D(ﬂ‘z), {pﬂ'ﬂ’ q"zj};’l=1} be repre-
sentation of the CCR of n degree of freedom. If there exists a unitary operator U from H,
onto H, such that

Upﬂ'lU* = Pna> Uqﬂ'lU* = qny>



for each j = 1,---,n, then we say that m; and my are unitarily equivalent.

To state a corollay of the above theorem, we need some notations. Let pj, be the free
momentum operators defined in the preveous section. Then it is not difficult to check that
Djar Qja are self-adjoint and satisfy the CCR on C§°(My). Hence

ms = { 2R, C(Mn), (Bja Qsali = 1,+++, Ny = 1,2}}
is an irreducible representation of the CCRs. wg is said to be the Schddinger representation
on CSO(MN)
Corollary 3.3 mwa is unitarily equivalent to ws if and only if % € Z. Furtheremore, the
unitary operator which gives this unitarily equivalence has the follwing formula:

U (60,7) = exp(igo—nm,

1 2k — Zj
nN(ry, -, IN) = Fl Zlog IZ—_ZJT
k<j k=<

where 2z = xi + iyx. That is, for each j=1,---, N,a=1,2,

Un (80, 7)PiaUN (00, 7)* = Pjay Un(80,7)Q;aUn(00,7)* = Qja-
Proof. The first half immediately follows from Proposition 3.1, Theorem 3.2 and Theorem
VIII 14 in Ref. [g] .

It is easy to see that % Cs2(SV)) = 05o(S™)). By direct calculation, we can check
that

2m
Dunu(rs, -+, tn) = = Ay, -+, ), (v, rv) € S,
Hence we have L L
e %™ pr1e” %™ = Py on C2(SMY).

By a similar way, we can show the assertion about Pyy. O

3.2 Fibre direct integral representation of the CCR and Arai’s rep-
resentation

Let m = {H, D, {p;,q;}7-1} be a representation of the CCR of n degree of freedom on D.
For each subset I = {i1,---,ix} C {1, -, n} (i1 < --- < i), we introduce

m(I) := {H, D, {p;,q;lj € I}}-

Then it is clear that w(I) is a representation of the CCR of #I degree of freedom (# I
means the cardinality of the set I).

In this subsection, we derive the direct integral decomposition of wa (I). To do that, we
need some prepartions. Let I = {i1,---,ix} C {1,---, N} be fixed. Then we introduce

Qr = fo---xﬁflx~--><f{?kx-~-xR%,,
2 — M2 2
R*(I) := Rj x---xRj.
For each wy = (a1, -,a;, --,8;, --,an) € Q, we define the multiplication operators

A, (wr) (i € I) on L2(R*(I)) by

Aia(wI)(rip" ',rik) = Aia(ala"'yriu"'7r’ik7"'vaN)«
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Relative to the direct integral decomposition

ARy = / ¢ L*(R2(I)) dw
I
Qr

it is not difficult to see that

® _ ®
Ajee = / Aia(wr) dwr, pia = / Pia dwr
Q[ QI

for each @« = 1,2, i € I. For each w; € Q, we define

-P'ia(wl) = pia_q/iia(wl), ~
dom(Pjq(wr)) = dom(pia) N dom(Aix(wr)).

Then by a similar way to the proof of Lemma 2.7, we can prove that for each wy € Qy,
P (wy) is essentially self-adjoint and measurable. Moreover,

®————-
Py, =/ Piy(wr) dwy, (1 €I, a=1,2).
Q

Let I = {i1,---,ix} (k < N) be a subset of {1,---,N}. For each w = (a1, ---,an-k) €
Q(I), we introduce

Mpy(w) = {(ril,-w,rik) € My I Fi. #a; (m=1,--,k, j= 1,---,N-k)}.
The following proposition can be easily proven.
Proposition 3.4 For each w € Qy,
a(w) = {L*(R*(D)), C§°(Mn (), {Pia(w), Qia | i € [, = 1,2}}
is a representation of the CCR of #1 x 2 degree of freedom.

Remark 3.5 If #I = 1 , then 7} (w) is called Arai’s representation.

Let £ = | ;B H du(X) be the direct intgral of H over a measure space (A, p). Suppose
that
7 ={K,D,{pi,qili =1,---,N}}

be a representation of the CCR of N degree of freedom. If for u-a.e.\ € A, there exsists a
representation of the CCR of NV degree of freedom

™ = {H>D>\a {p]()‘)’ q]()‘)l.] = ]-1 o >N}}

such that
(i) foreach j=1,---,N, the fields A € A — p;(}), ¢;(\) are measurable and

D D
p; = /A pi(A) du(A), ¢; = /A 4;(0) du(n),
(ii) for all ¥ € D, ¥(\) € Dy, p-a.e.,
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then we say that 7 is decomposable or direct integal of {mr}rea and write

®
7r:/ mx du(N).
A

Theorem 3.6 Let wa be the representation of the CCR defined in the preceeding subsection.
Then, for each I C {1,---, N}, we have

@

wa(l) :/ mh(wr) dwr.

Qr

Especially, if #I = 1, then wa (I) is a direct integral of Arai’s representations {mh (w)}weq, -

4 Applications

4.1 Schrodinger operators for systems with winding gauge poten-
tial

Let V(ry,---,ry) be a real valued Borel measurable function on R?N. Here, we investigate

the Schrédinger operator on L2(R2Y) defined by

N
HZjEl( 1Dw,+ er —I‘k|2) Z( * er _rk'2)2—|—V(r1,---,rN).

For this purpose, we introduce an operator Hy defined by
Hy:=-A+YV,

where A is the 2N dimensional Laplacian.
We assume the following conditions:
(A.1) Hp is essentially self-adjoint.
(A2) ¢ €Z
Theorem 4.1 Under the assumption (A.1) and (A.2), we have the followings.
(i) H is essentially self-adjoint.
(ii) o(H) = o(Hy), where o(A) denots the spectrum of the linear operator A.
(ii) op(H) = op(Ho), where o,(A) denots the point spectrum of A. Especially, if E €
op(Hop), then

ker(H — F) = {Hk<j(zk — 2;)7/%0 |2y, — 25|/ %@ | ¥ € ker(Ho — E)}

Proof. (i) The Hamiltonian H can be expressed as
N
H=)P?+V,
j=1
where P, := (Pj1, Pj2). Hence, by Cororally 3.3, we have
H= UN(007 W)HOUN(HCH 7)
on dom(H). Hence

Since H, is self adjoint, it follows that H is self adjoint. Parts (ii) and (iii) follows from (6).
0O
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4.2 Statistical transformation

Throughout this subsection, we assume the following condition:

Under this condition, the representation of the CCR
TA = {Lz(R2N)7 CSO(MN)7 {—ﬁjm Qja |j=1,,Nya= 172}}

is unitarily equivalent to the Schrédinger representation mg by Cororally 3.3. Hence, the
system satisfying (7) seems to be trivial at first glance. But there are some interesting

structures in this system.
Let H := L?*(R?). For each N > 2, it is well-known that L?(R?*") = ®VH. We introduce
the following closed subspaces of @ H:

NH = Sn(®VH),
NH = An(@VH),

where we denote by Sy ( resp.Ay ) the symmetrizer ( resp. the antisymmetrizer ) on @V H.
Proposition 4.2 Suppose that the condtion (7) is satisfied. Then we have
(i) if - is even, then
Un(60,7)Sn = SnUn(60,7), Un(6o,7)An = ANUn(60,7);

(i) of g- is odd, then
Un(60,7)An = SnUn(60,7)-

Hence, the unitary operator Un(8o,7) gives a natural correspondence between QN H
and N H.

Proof. Let Sy be the group of permutations of a set of cardinality V. For each ¢1,---,¢n €
‘H and o € Sy, we define

Usp1 ® - @ N = ¢o‘(1) ®®¢0(N)

Then it is easy to see that U, can be extended to a unitary operator on ®VH. We denote
it by the same symbol U, .
For each (r1,---,rny) € My, we have

2 — 2i \ /6o
Un(60,7)(r1,- - rn) = Hi<j(|_zz._—_73.|)
¢ 7

Hence if % is even, then for each ® € C§°(My), we have
UN(HO’ V)qu) = UG’UN(QO) ’7)@
Since C§°(My) is dense in ®VH, we obtain

Un(00,7)Us = UsUn (60, 7).
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On the other hand, if 910- is odd, we can easily check that
Un (60, 7)Us = sgn(o)UsUn (6o, 7)-

From these facts, we have the desired results. O
Let A be a self-adjoint operator acting in ®"VH. We denote the pure point spectrum of
A by op(A). Then we introduce the closed subspaces of ®@VH by

H(A) = P ker(A-))

A€op(A)
and
Hs(A) := SNH(A), Has(A) := AnH(A).

It is clear that

Ho(A) = P kers(4A-N),
A€op(A)

MHos(A) = @D keras(A—N),
A€op(A4)

where kerg(A — A) := Sy ker(A — A) and kerps(A — A) := Ay ker(A — A).

Proposition 4.3 Let H and Hy be the Schrédinger operators defined in the preceding
subsection. Suppose that the conditions (A.1) are satisfied. Moreover, if %Q is odd, we have
the following.

(i) For each ) € op,(Hy),

kers(H — \) = Un(6o,7) keras(Ho — N),
ker,s(H — \) = Un(60,7)kers(Ho — N).
(ii)
Hs(H) = Un(8o,7)Has(Ho),
7-[as (F) = UN(007 W)HS (FO)

Proof. These are simple applications of Theorem 4.1 and Proposition 4.2. O
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