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Value Problem with Mixed Type Boundary Condition
and Source Term
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Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan

1 Introduction

Let 2 C R" (n > 2) be a bounded domain with C? boundary T'. 2 is considered as a
conductive medium with conductivity:

(L1) Y= + Xpm

with matrices v = (70;;) € COHQ), 71 = (71;) € L®(Q). Here D is a bounded domain
with Lipschitz boundary 9D such that D C Q, Q\ D is connected, xp is the characteristic
function of D and C%!(Q) is the space of functions which are Lipschitz continuous on . We
assume that v = ('yw(x)) and vy = (%ij (x)) are symmetric matrices satisfying

> i(@)6g > Cile? (€= (&, ,&) R, z€0)
(1.2) wl
Z Vi ()&E > Cilé)? (6= (&, ,&) ER", ae. 1 €Q)

ij=1
for some constant Cy; > 0. Moreover, we assume that for any a € D, there exists a 6 > 0
such that either

(1.3) 3 nitils = GlelP (€= (&, &) € BY, ae. x € By(a) N D)

2,7=1
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or

(14) Z ’}/1”5263 S _02]§|2 (f = (51, s 7€n) € Rn, a.e. r € Bg(a) M D)

ij=1

holds for some constant Cy > 0, where Bs(a) := {z € R"; |x — a| < ¢}.
Let I' consist of two parts. That is

(1.5) ' =TpUTly,

where ['p, 'y are open subsets of I' such that I'pNI'y = ¢, I'p # ¢, I'y # ¢ and for n > 3,
the boundaries OT'p of T'p and OT'y of 'y are C2.
Consider the mixed type boundary value problem:

(Lyu)(z) == Z@i (vij(x)0ju(z)) = F(z) in Q

t,j=1
u=fonlp, dpu=gonlly

(1.6)

for given f € H

N =

(T'p),g € F_%(FN),F € L*(Q) where z = (z1,--- ,T,), 0; := 8/0x; and

(1.7) (Or,u)(z) == Z vivij(x)0iu(z)

ij=1

with the unit outer normal vector v = (v,--- ,1,) of I'. Here we have used the notations
given in [3] to denote Sobolev spaces.

By Appendix A, there exists a unique solution v = u(f, g, F) € ﬁl(Q) to (1.6) with the
estimate:

(18) el < € (113 ey, + a3 e, + I1F ).

where the constant C' > 0 does not depend on f, g, F.
Moreover, even for F' € W* with W := {w € ﬁl(Q); w=0 on FD} and supp F' C €,
we have a similar result except that ||F||,2(q) in (1.8) has to be replaced by || F||w-. Here-

after, the norm || - || and inner product ( , ) of W are those of ﬁl(Q), and the norm of
the dual space W* of W is denoted by || - ||w--

Next, we define the Dirichlet to Neumann map A, and the Neumann to Dirichlet map
II, as follows.



Definition 1.1  Let u(f, g, F) be the solution to (1.8).
1 — 1
(i) Fizing g and F, define A, : H*(I'p) = H *(I'p) by

(1.9) Ayf =0 u(f,g,F) on T'p.
(11) Fizing f and F, define 1L, :ﬁ_%(FN) — E%(FN) by

(1.10) ILg:=u(f, g, F) on I'y.

M

Remark 1.2 The trace of dp u(f, g, F) € H
supp F' C €.

() exists, because F € L*(Q) or F € W* with

Now, we consider the two kinds of inverse problems (IPI) and (IP2):

(IP1) Suppose 7, is known and ;, D are unknown. Reconstruct D from A,.
(IP2) Suppose 7, is known and ;, D are unknown. Reconstruct D from IL,.

Theorem 1.3 There are reconstruction procedures for the both inverse problems (IP1) and
(IP2).

Remark 1.4 o o B
Let 2 be subdomain of Q such that D C 2y CQy CQ, Q\Q and Q1 \ D are con-
nected and its boundary 0S€)y is Lipschitz smooth. Define the Dirichlet to Neumann map

Ay HQ(GQ) 2(0Q) by Ay = O, v(p) on O for any ¢ € H (09) where
v=0(p) € )il (Ql) is the solution to Lyv =0 in Qy, v = ¢ on 0. Knowing Ay, D can
be reconstructed from Ay, by an argument analogous to that given [5]. However, to relate
Ay to A, or 1L, the usual way is to solve Cauchy problem iteratively which is very ill-posed.
Therefore, we focuss on obtaining a reconstruction procedure which directly uses A, or IL,.

The probe method for the inverse boundary value problem with mixed type boundary
condition was shown in [6] for identifying cracks. Also, when 7, is conformal to -, and
v satisfies some Holder continuity near the boundary 0D of the inclusion in two or three
dimensional medium €2, an analogous result was obtained in [1]. A new ingredient of this
paper is an application of the Green function obtained in [2] (see Appendix B) for analyzing
the behavior of the indicator function given later in the next section. If I'y = ¢ and there
is no source term, we can analyze the behavior of the indicator function without using this
Green function. We also have to point out the closely related works done by Potthast and
his collaborators ([10]) which use singular solutions for reconstructing unknown scatterer.
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The inverse boundary value problem for identifying inclusions inside a conductive medium
was initiated by V. Isakov [8]. He proved the uniqueness for identifying D and ~; when
I'ny = ¢, F = ¢ and g, y; are isotropic.

The unique continuation property is essentially used in most of argument for identifying
the unknown boundary inside a known medium. v, € C%(Q) is the minimum regularity
assumption for L., to have the unique continuation property.

Therefore, our result given here is almost a final result about the uniqueness and recon-
struction for identifying D.

2 Reconstruction procedure

Definition 2.1 (needle) We call a nonselfintersecting piecewise C' curve C := {c(t);0 <t <1}
joining ¢(0),c(1) € T needle if it satisfies C \ {c(0),c(1)} C Q.

Definition 2.2 (singular solution)
(i) Fiz 2° € Q and G(z — z°) € D'(R™) be a fundamental solution of

(2.1) V- (%(z’)VG(z — 2°) + 8(zx — 2°) = 0 in R™.

(ii) Let H;(xz,2°) € D'(R?) (j =1,2) be solutions of

(2:2) Ly Hj(x,2°) +6(z —2°) = 0 in Q
such that

(2.3) Hi(w,2%) — Gz —2°) € H ()
and

o e

We call each Hj(z,2°) singular solution.

Remark 2.3 The construction of singular solution can be done similarly as Lemma 3 in [7]



Let C := {c(t);0 <t < 1} be a needle. By the Runge’s approximation theorem given in
Appendix C, there exist sequences of approximate functions {vi}, {vor} C EI(Q) such that
vik = 05+ Hy(-,¢(t)) (k= 00) in Ho(2\ ) for each j (5 =1,2),

L,vy =F in Q
2.9 7o
( ) {8L70v1k =g on FN

and

Lvor =F in Q)
(26) {U% =fonTp

where C; := {c(s);0 < s <t} and v} € EI(Q) (j = 1,2) are the solutions to

(2.7) L,vi=F in
' vp=0 onlp, Jp, v;=g only

and

(2.8) Lyvy=F in
' vy=f onlp, 0r, v;=0 only

(see Appendix C for the details).

Definition 2.4 (indicator function) Let C = {c¢(t);0 <t < 1} be a needle, t (0 <t < 1)
satisfy C;N' D = ¢ and {vj} C ﬁl(Q) (j = 1,2) be the sequences of approzimate functions
given above. Then, for t satisfying C;N D = ¢, we define two indicator functions I1(t,C) and
I,(t,C) associated with (IP1) and (IP2):

(2.9) L(1,C) == khjglo <(A7 - A70)<Ulk‘FD)’Ulk|rD>1
and
(2.10) L(t,C) = klgilo <<8Lyv2k) II'\N7 (I, — H70)<<8va2k)‘1“1\,)>2

1
2

where (, Y1 and (,)s are the pairings for the pair {H =(Tp), H

(U'p)} and for the pair
1 . -
{H *(Uy),H>(Ty)}, respectively.



Remark 2.5 From (5.6) and (D.8) given later, we can see that the definitions of the indi-
cator functions do not depend on the choice of {v;}.

Definition 2.6 (first hitting time) Let C = {c¢(t);0 < t < 1} be a needle such that
CN D #¢. We define T(C,D) by

(2.11) T(C,D):=sup{t;0<t<1, c(s)¢D (0<s<t)}

We call T(C, D) the first hitting time of C to D.

Definition 2.7 (detecting time) Let C be as in Definition 2.6. For the indicator functions
I;(t,C) (j =1,2), we define their detecting times t;(t,C) (j =1,2) by

(2.12) t;(C,D) == sup{O <t<1;sup [Li(s,C)] < oo}.
0<s<t
Then, we have our main theorem.

Theorem 2.8 For each j (j = 1,2), we have

(2.13) T(C,D)=t;(C,D) ifCND#¢.

Since we can reconstruct D by knowing ¢;(C, D) for all possible C, Theorem 2.8 implies
Theorem 1.3.

3 Estimates of indicator functions

In this Section we give some estimates for the indicator functions 7,;(¢,C) (j = 1,2).
Let uj € H (Q) (j =1,2 k € N) be

Uy 1= U<U1k‘p » 9, F)
(3-1) { Ugp = u(f7 (aLDvoUQk)‘FN’ F)7



where v = u(f, g, F) is the solution to (1.6). Also, let
(3.2) wjk = Uiy — Vi (j=1,2; k€ N).
Then, we have

(3.3) Lywjg =V - ((70 - V)ijk) in
’ Wik = 0 on PD, awajk =0 on FN.

More precisely, w;;, € W is the solution of the variational equation:

(3.4) / YVwj, - Vodz = /(70 — ¥V -Vedz (peW).
0 0
Since
(3.5) sup /(% = 1)V (vir — vir) - Ve dz| < [l llvie = villg ) = 0
lellw <1lJ @

as k,l = coby ;N D = ¢ and vy — v} + H;(-,¢(t)) (k — o) in FIIOC(Q\Ct), we have
from (1.8)

(36) |]w]k — wleﬁl(Q) — 0 (]{J,l — OO)

Hence, there exist limits w; := lim wj; € Fl(ﬂ) ( =1,2) and they satisfy

k—o0
(3.7) Lyw; =V - <(70 - v)V(U} + Hj(~,c(t)))) in
w; =0 on I'p, dp,w;=0 on [y.

Therefore, by Theorem D.1 in Appendix D, we have

(3.8) / Yo 'y (% VW) - (VW) do — / Fwydx + {g,w1)s < I1(t,C)
D Q

S/%VVlV‘/]dx—/ledx+(g,w1>2
D Q

and

(3.9) / %y (0 VVa) - (0 VVe) dr — / Fwy dz + (O, w2, f)1 < I(t,C)
D 0
< / 71VV2'VV2d$—/Fw2d$— (Or, w2, f)1,
D Q
where V; (j = 1,2) are defined by V; := v} + H;(-,c(t)) (j =1,2).
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4 Behavior of the indicator functions

In this Section we analyze the behavior of the indicator functions I;(t,C) as t T T'(C, D)
when C N D # ¢. Hereafter, constants C,C’ which will appear in the estimates are general
constants.

Let CND # ¢ and 0 <t < 1 satisfy C,N D = ¢.
Lemma 4.1 There exists a constant M > 0 independent of t such that

(4.1) lwsllize <M (G =1,2) as ¢+ T(C,D).

Proof For simplicity, put ¢y := T/(C, D) and a = c(t,). For 0 < t < t5, w = w(z,c(t)) be the
Green function given in Appendix B for A = L,.
w satisfies

(4.2) {iﬂ:u (—)% 5(()1-1 }c(t)) =0 in

Define V; (j =1,2) by
(4.3) Vi=w;+v;+ H;(- —c(t) (G =1,2).
Then, from (2.2), (2.4), (2.7), (2.8) and (3.7), we have

(4.4) LVi+6(-—c(t))=F in Q
) Vi :H1<,C(t)) on FD, aLV‘/I =g on FN

and

. Vo=f onTp, 8y Vy=0, Ha(-,c(t)) on Ty.

Hence, defining Z; (j =1,2) by

(46) Zj = V} - w,
we have
(4 L7 =F inQ
’ 7, = Hl(-,c(t)) on 'p, 0, Z1=g—0,,w only
and
(49) L,Zy=F in Q
. Zy=f onTp, 8y,7,=0r Hy(-,c(t)) — 0w on Ty.

8



1

Next we prove that dr, w is uniformly bounded in H *(T) as t 1 to. In order to do that
let n € C°(€2), n =1 in an open neighborhood of D and ¢ := 1 — 5. Then, we have
(4.9) Ly(Cw) = (2904;0:C05w + Biyoi O5Cw).
irj=1
Here, we can assume c(t) ¢ supp(. Hence, from (B.6), the right hand side of (4.9) is
uniformly bounded in L?(Q) as ¢t 1 ty. Then, (Cw)]F = 0 and the well-posedness of the

1

Dirichlet boundary value problem imply d;, w = 9y (Cw) is uniformly bounded in H *(I)
ast 1.

Now, by (1.6) and what we have just proven, we have that for each j (j = 1,2),
Z; is uniformly bounded in ﬁl(ﬂ) as t — to. Hence, by (2.3), (4.3), (4.6) and (B.12),
wj = Z; +w —vj — H(-,c(t)) is uniformly bounded in L*(Q) as ¢ 1 t,. O

Let v € C§°(Q) satisfy o = 1 in an open neighborhood of D and w; := w;—ow; (j = 1,2).
From (3.7) and supp(y — ) C D, we have

(4.10) (1-a)Lyw; =0 in Q
and
(4.11) L,oo= L.

Then w; satisfies

Lfy’&\]/j = F] in
(412) {IE] =0 on PD, aLWﬂJ/j =0 on PN,
where F; := —(L,a)w,; —2yVa-Vw; satistfies supp F; C Q and || Fj|[w~ is uniformly bounded

for any t (0 <t —ty <n). Therefore, by the continuity of the trace and 8L70w2 = O, Wy,

(113) ol s+ 192wl 3 oy <M a8 £ 7(C, D)

for another constant M > 0 independent of ¢.
Now it is easy to see that the dominant parts of/ Yo 'y (% VYY) - (% VV;) dr and
D

/ 1 VV;-VV,dx are / Yo Tyt (fyoVGj( . —c(t))) . (fyOVGj( . —c(t))) dx and
D DNBs(a)

/ 7 VG;( - —c(t)) - VG;( - —c(t)) do which are positive or negative according to (1.3)
DnNBs(a)
or (1.4) and blow up as ¢ 1 ty. Here we have used the identity:

(414) v '+ =+ 1) (e )T+ (o) e (e + )

Therefore, by (3.8), (3.9), (4.1) and (4.13),
(4.15) |1;(t,C)| = 00 (t1t0).

Finally, (2.13) can be proven by the standard argument given in [5], So we omit its proof.

9



Appendix

A Boundary value problem for forward problem

In this Appendix we give the proof of the well-posedness of the boundary value problem
(1.6).

Theorem A.1 If v € L>®(Q)) satisfies v > § in §Q, there exists a unique solution of (1.6).
Moreover u satisfies (1.8).

1 ~
Proof  For f € H*(I'p), there exists f € H
Let u € ﬁl(Q) be the solution to

L,u=0in Q
(A1) {ZZ: fonT.

1
2

(I') which is the extension of f.

Then, it is well known that

(A2) @0y < Ul gy < Mgt e,
and
(43) 190,71, 4y < Ol oy < NN

for some constant C,C' > 0 independent of f.
Put v :=u —u € W. This v has to satisfy

(A.4) {va:F in €

v=0 onl'p, 9drv=yg only,

where g = g — 9, u. Define

(A.5) (G, w) = (F,w) —/F gwdl’
and
(A.6) Blv,w] := / V- Vwdz

for any v, w € W.
By the Schwarz inequality,

(A7) Blv.ull < [ hIIVolI Vol ds < Mol ool

10



By the Poincaré inequality
(A.8) Blv,v] > /Q’)/]Vv|2 dx > §||Vu||r2q) > 5']|v|]ﬁl(m

for some constant ¢’ > 0 independent of v, w.

Now we remind the Lax-Milgram theorem.

Theorem A.2 (Lax-Milgram) Let X be a real Hilbert space and B : X x X — R be a
bilinear map satisfying

(A.9) B[z, yl| < ll=(lllyll
and
(A.10) Blz, x| > §|z]]?,

then there exists a unique bounded linear bijective operator S : X — X such that

(A.11) (@,y) = B[Sz,y] with [[S]|<d ", S <.

By applying Theorem A.2, there exists a unique bounded linear bijective operator S : W — W
such that

(A.12) (S7tv,w) = Blv,w] (v,w € W) with ||S|| < ()7 |87 < M.
As immediate estimates, we have

(A.13) [(F,w)| < || F]|w

w|lw

and

/FN gw dF’ < O<IIgIIH_;<FN) + ||aL7a||H_%(F)) ]|

< 0 (I 4y + 171, il

for some constants C,C' > 0 independent of f, g, F'. Hence, by (A.13) and (A.14),

(A.14)

(A.15) Gl < € (Wl g+ 1l gy, + 1Tl

H2(I'p "

11



By the Riesz’s representation theorem, the exists a unique v € W such that
(A.16) (G, w) =—(v,w), [v]lw=[Gllw-.

Let v e W be v =S"1u.
Then, by (A.12),

(A.17) Blv,w]+ (G,w) =0 (we W).

Therefore, v is the solution to (A.4). By the definition of v,

ol < 0l 0y + 1y < (Il + 1,
(A.18)
< /(161w + 1l e, ) = C"(Hf]l% ol 5y + 1Pl
for some constants C,C', C" > 0 independent of f, g, F. O

B The Green function

In this section we give the proof of the existence of the Green function which we used in
Lemma 4.1. In [2], the existence is only proven for n > 3. So we have given here the proof
of the existence including the case n = 2.

Let © be a bounded domain of R" (n > 2).

Definition B.1 For a measurable set A C Q2 and v € L'(A), we define

(B.1) ]{1udx = ﬁ/Audw

where i 1s Lebesgue measure in R™.
Definition B.2 For p > 0, we define LY(S2) and || f||r2q) by

(B2)  LP(Q) :={f:Q = RU{xoo}; measurable function such that ||f| r@q) < oo},

(B.3)

= sup{su({z € 05|/ (2)| > )7 .

Let a;; € L>(Q) (1 < 14,7 < n) satisfy

n

(B.4) D ()68 > MEP (e, £= (&, ,&) ERY)

ij=1

12



and

(B.5) Z aij(2)en; < AlElln| (z € Q, €= (&, &), n=(m, -+ ,m.) € R")
ij=1

for some constants 0 < A < A < 0.

Theorem B.3 There ezists a nonnegative function K :  x Q — R U {oo} such that for
each y € 2 and any r > 0
_1 _— . J—
(B.6) K(-,y) € H (Q\ B,(y)) nW"(Q)
and for all ¢ € C§°(QY)

(B.7) alK(-,y), 9] = ¢(y),

where a[u, v] = Z / aij(x)0udjv dx. This is called Green function for A- := Z 9 (ai;(z)0;+)
ij=179 i,j=1

and it satisfies the following properties:

For each fix y € Q, denote the function K(z) := K(z,y) by K. Let ¢ > 4 and define

xi (1=1,2,3) by

(B.8)
€ 2¢e
5 forn:Q 112 forn:Q % fOTﬂZQ
X1 = y X2 = y X3 =
n
P— Jorn >3 ; forn >3 n—2 forn>3.
_ n_

Then, we have
(B.9) K e LX(Q) with |K| ) < Cn)A™

for some constant C(n) > 0 depending only on n,

(B.10) VK € L)  with [VK|[pxq) < C(n, A A)
for some constant C'(n, A\, A) > 0 depending only on n, A, A,

(B.11) K e WY (Q) for each 1 <p < xa,
(B.12) K(z,y) < C(n, A/ Ha — y[ 7.

Here, C(n),C(n, A\, A) and C(n, A/)) are positive constants which depend only on n, {n, A, A}

and {n, A/}, respectively. Moreover, WP (Q) is the Sobolev space with” 7 having the same
meaning as " of H 3(Tp).
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Remark B.4 For n > 3, the uniqueness of K is given in ([2]).

Proof of Theorem B.3
Fix y € Q and p > 0. Write B, := B,(y).

For the proof of Theorem B.3, we need the following Fact B.5 and Lemma B.6.
Fact B.5 ([9]) Forp > 1,

(B.13) 10220 < 1/l

1

(B.14) £l ooy < (%) T Q)| fllppy for0<q<p—L.

Lemma B.6 (/2])
Let u € EI(Q) satisfy u > 0 in Q and

B.15 ;i (2)8ud;0 < 0 for any o € H'(Q) with ¢ > 0 in Q.
j j
Q

1,5=1

Then, there exists a constant C(n) > 0 depending only on n, such that for o > 1 and
B,(z) CcC Q,

2 n
A
(B.16) sup u* < C’(n)< < ) <—) ][ u® dy.
By(a) a=1/ \AJ I,

We define T', which is bounded linear function on ik (Q), by

(B.17) T(p) ::]é pdz.

For any u,v € H'(),

(B.18) afu, o] < AVl 2oy [Vl 20y < Alullg 10171y

(B.19) alu,u] > )\||Vu||%2(9) > /\IHUH%(Q)

for some constant \' > 0.
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By the Lax-Milgram theorem and the Riesz representation theorem, there exists G, € H'(Q)
satistying

(B.20) alG,, ¢ :]i wdx

o

for all ¢ € H'(Q). Taking |G,| € H'(Q) as a test function,

(B.21) 0,y G, = ]ia,, iz < f 16,/ dz = G G,
Put M = % > 1, then

(B.22) o[G,. G, = a[ﬁ—p],a,}} - a{GP, G }
From (B.22),

(B.23)

a[];};', ]GP]} AN A f:[)aij(x)ai]epyaj]apydx

ij=1

Ly ! G|
e W Z \/QU/Z](.'L‘)aZGpaij dx — WG[GP’GP] S (],]:Gp7GpJ e a/]:Gp7 ]\4_'0 :|

1,j=1

Vu in {2 € Q; u > 0}
Note that for u € ﬁl(Q), V|u| € L*(Q) with V]u| = 0 in{ze;u=0}
—Vu in {z € Q; u < 0}.

Then, we have

(B.24) a %_Gm |§\¥/;| _Gp] :a{%_Gm IS\ZA] _a[%)GP] <0.
ITence

|Gyl
(B.25) G,= M” > 0.

At first, we prove

(B.26) G,

i) < O(”))\_l

for some constant C'(n) > 0 depending only on n.

15



iy : 1 1\ 1 1
Fixing ¢ > 0, choose a test function p(x) = i = max) — = ,0¢0 .

Then we have
(B.27)

1
—2][ pdr =
t = Jy,

where Q, := {z € Q; G,(z) > t}. By Sobolev’s inequality,

s ([ %mﬁéscqu Zx:mml;WQﬁ<:ﬂm

G — M
for some constant C'(n) > 0 depending only on n. Hence,

& & 0,G VG, ?
A (1)0;G,0;0dx = i (2)0,G L= dx > )\/ — dz,
Z/QCLJ(CU) pUjp aT Z/Qtaj(x) p G,? Tz 0 G z

ij—1 i.j=1 g

G G
log Tp Vlog Tp

2x1 %
(B.29) tog2Pu0t < ([ o S| ar) " < e
Qg
Therefore,
1 2C(n) . 4
B. 2t (o)1 <
(B.30) () < (10g2)2)\

and this gives (B.26).
Now, we take G, € FI(Q) as a test function. Then we have

(B.31)
2 . 1
A IVGPdr < aij(2)8:G,0;G,dx =  G,do = G,dz
Q i1 B, 1(By) B,
1 1 L , _n
< B )|IGP|IL2X1(BP)M(Bp)1 21 < O)IVG,ll2@u(B,) 1 = C'(n)|VG[lL2@p .
o
for some constants C'(n),C'(n) > 0 depending only on n.
Thus
(B.32) / IVG,[>dz < C'(n)A2p %,
0

Next we will show
(B.33) Go(z) < C(n, A/NX o —y|™ if |z —y| > 2p.

Let R := |z — y[(> 2p).
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First we consider the case: B (z) C Q.
Since G, is the solution of Au =0in Q\ Bg, we have

(B.34) G, (2)* < Clayn, A/A) ][ G, dy

B§(I)

by using Lemma B.6. By (B.14) and (B.26), we have from n > 3,

a(n—2)
n _a(n=2)
B. o <" B n o <C )\aRnfa(nf2)
B35) [ s o tn(Be) T G < C0)

4
for some constant C(n,a) > 0 depending only on n, «. Hence, for (B.34) and (B.35),
(B.36) G,(z) < C(n, AJNXN TR ("2

for some constant C(n, A/A) > 0 depending only n, A/\.
For n = 2, we have from (B.14) and (B.26),

E 172Ta 4o
(6] < . < —& 2—?
(B.37) /BR@) G, dr < —=—u(By) NG5, < C@AR

4

for some constant C'(«) > 0 depending only on «.
Hence, for (B.34) and (B.37),

(B.38) G,(z) < C(A/MNAT'R:

for some constant C'(A/X) > 0 depending only on A/A. N N
Next we consider the case: Bg(x) ¢ Q. Consider a domain 2 such that Bg(a:) CQ

and extend operator A to Q. Then, likewise G, for A, we have ép for this extended A. By
restricting G, to {2, we have

(B.39) AG,—G,)=01in Q.
G,=0< G , on 0f2, therefore the maximal principle implies
(B.40) G,<G, in Q.

Since ép satisfies (B.33), we have

(B.41) Go(z) < Cn, A/NATTRT,
This completes the proof of (B.33).
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Next we will show
(B.42) VGl < C(A A)

for some constant C(\, A) > 0 depending only on A, A.
To show (B.42), we will show

(B.43) / VG, P dx < C(n, A, A)R
O\Bg

8

for some constant C(n, A, A) > 0 depending only on n, A\, A, where y, = — for n = 2,
€

Xe =n—2forn>3.

Choose a test function n € C*°(Q) satisfying n = 1in Q\ Bg, n =0 in Bz and V| < %
for some constant C' > 0.

Let R > 4p and take G,n* as a test function. Then, we have
(B.44)
Gpn dm-Z/am )8:G,0;(G ) dx

7,7=1
n

> ;i\ X 843 0;G dx + 2
Z/Q\BR (0)B:G,0,G,

22

Z / aij(2)0:;G,0;G,Gn dx.
O\Bj

1,7=1

1,7=1

This implies

(B.45)
)\/ VG, dr < Z/ ai;(2)0;G,0;G, dz < 2/1/ |VGp|£G,,ndx
O\Bp 52 ose Br\Byg R
2AC A 2A2C?
< = VGdeg—/ VG,|? dx + / G2 dx.

R BR\Bgl PI P 2 BR\Bgl PI )\RQ BR\B% 14

Hence
AN 2

B.46 / VG,|*dr < 4(—) —/ G, dz.
( ) Q\BR I PI /\ R2 BR\B% P

Combining this with (B.33), we have

CAR: for n=2
B.4 2dx <
(B47) /Q\BR VG, dz < {C’( ANA)R ™2 for n >3
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for some constants C'(A, A), C(n, A, A) > 0 depending only on {A, A}, {n, A, A}, respectively.
Next we consider the case R < 4p. From (B.32), we have

g — C’)\*Qp_g for n =2
B4 2 < X1 =
(B.48) /Q\BR VG ["de < Cn)A7p > { C(n)A2p~ ™2 for n>3

for some constant C' > 0 and some constant C'(n) > 0 which depends on n. Observe that,
for n > 3,

(B.49) Cn)A 2p 2 <C(n, )R "2
for some constant C(n, A) depending only on n, A and for n = 2,
(B.50) CA%p s <C(A)R™: < C(A)R™*

for some constant C(\) > 0 depending only on A. Therefore we obtain (B.43).
Next we return to the proof of (B.42). For n > 3, we set 0} := {z € Q; |VG,(z)| > t}

and R =t~ for fixed ¢ > 0.
From (B.47) and (B.49),

(B.51) (N (Q\ Bg)) < / VG, [2de < C(n, A, A)t=t
Q\Bg

for some constant C(n, A, A) > 0 depending only on n, A\, A. That is

(B.52) t(% N (Q\ Br))™ < C(n, A, A).

for some constant C(n, A, A) > 0 depending only on n, A\, A. Combining this with
(B.53) (€N Br) < u(Bg) = C(n)R" = (C'(n)t)™

for some constants C'(n), C'(n) > 0 depending only on n,

(B.54) tu(Q) < Cn, A, A).

for some constants C'(n, A, A) > 0 depending only on n, A\, A. Hence

: w1 <
(B.55) IVGll 1 ) < €A A)

for some constants C'(n, A, A) > 0 depending only on n, A, A.
For n =2, we set ) = {z € Q; |VG,(z)| >t} and R =1t 4+ for fixed ¢ > 0.
From (B.47) and (B.50),

(B.56) 20 N (Q\ Br)) < / VG2 ds < OO\, A)tsie
O\Bg
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for some constant C'(A, A) > 0 depending only on A, A. That is

(B.57) ()N (Q\ Br)) % < C'(), 4)

for some constant C’(A, A) > 0 depending only on A, A. Combining this with
(B.58) w(Q N Bg) < p(Bg) = nR2 = nt ire,

(B.59) tu(Q) F < C'(), 4)

for some constant C’(A, A) > 0 depending only on A, A. Hence
!
(B.60) HVGpHLf‘%(Q) < (A A)

for some constant C’(A, A) > 0 depending only on A, A.
Now by (B.13),

(B.61) |Gyl pxi@) S C()A™" and  ||VG,||pe@ < C(n, A, A)

for some constants C'(n), C(n, A, A) > 0 depending only on n, {n, A, A}, respectively.
Note that x; > x2 and x3 > 1, because 4256 < %, and s > 1. Hence,

(B.62) G, € W (Q).

Reminding 2 is bounded,

(B.63) G, e WH(Q) for 1 <s< xo.

Hence, fixing s € [1, x2] and applying Rellich’s compactness theorem, there exists K €
Wh#(Q) such that

(B.64) G, — K weakly in W*(Q) (1 <5< xa).
By (B.64) and,

(B.65) ][ pdr — p(y) as p—0
B,

for any ¢ € C§°(£2), we have

(B.66) alK(-,y), 9] = o(y).

Furthermore, from (B.26) and (B.42), we get (B.9), (B.10). Also, from (B.47) and (B.48),
we can prove (B.6).

Finally (B.12) is an easy consequence of (B.33), because K(-,y) is Holder continuous in
Q\ {y}. This follows from the famous De Giorgi-Nash-Moser regularity theorem, because
K(-,y) is the solution of Au =0 in Q\ Bg(y). O
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C Runge’s theorem

In this Appendix two Runge’s approximation theorems are given and they are applied

to construct the two sequences of approximate functions {vy} and {vy} given in Section 2.

Let Q,I,I'p,I'n, v and L., be as in Section 1. Then, we have the first Runge’s approx-
imation theorem.

Theorem C.1 Let U be an open subset of 0 such that U C Q and Q\ U is connected.
Define

X = {u]U;u € ﬁl(ﬁ),L%u =0 in an open neighborhood U of U}

(1) . |
Y = {U‘Q;?) e H(U),Lyv=0in QﬁLm”‘ﬁ, =0, supp(v]FD) C FO},

where U is an open subset of Q) depending on u such that

(C.2) UcUcUcQ

and Ty s a fived open subset of U'p. Then, Y is dense in X with respect to HI(U) topology.
Proof By the Hahn-Banach theorem, it is enough to prove

(C.3) FEH O, flv],) =0 (veY)= f(u|,) =0 (ueX).

Suppose f € FI(IN])*, f(v]U) =0 (vey).
Let y € I'y and take a small open ball B centered at y and €}y := QU B. We extend
v € C%1(Q) to a neighborhood of )y preserving its regularity. Also, let

(C.4) T:{Ceml (U); ¥, =0} >R, T(¥)=/(T],)

T has a bounded linear extension 7 € H (Q)*. Hence, by the unique solvability to variational
problem, there exists w € ﬁl(Q) such that w =0 in ['p and

(©.5) ~ [V Veas=T(w) (veT'(), v, =0).
Q
Therefore
—1
Define w by
- w in Q
(C.7) w—{o in Q\ Q.

21



Since

(C.8) wl., =0,
(C.9) @ e (D).
Now we the following.
Claim
(C.10) / WV - Vo= fel,) (peH@Q)
Qo

The proof of this claim will be given later.

From this claim,

©.11) Ly @ =0 in Q\T.
Note that

T=01in Q\ 2O W\U
(C.12) { Qo \ U is connected.

Hence, by the weak unique continuation theorem for L., due to v, € C% (), we have

(C.13) w=0in Qo \ U.
Therefore
(C.14) w=01in Q\U.

Now let v € X. Then, for some U which is an open neighborhood of U, there exists
u € ﬁl(U) such that B
Lyu=01in U, u‘U = .

By taking a cut off function, for some U C U which is an open neighborhood of U, there
exists u € H'(Q) such that
ﬂl: = u‘:.
U U

Hence, by reminding (C.6) and (C.14), w € H*(U) and L,,u =0 in U,

F(o) = f(ul,) = £(@l,) = / oV - Vil de

(C.15) Q

= /:’Yovw -Vudx = /:'yOVw -Vudr = 0.
U U
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Finally, we prove the Claim. For any ¢ € H' (),

(C.16) / YoVw - Vudr = / YoVw - Vudz + /
Qo Qo\ﬁ

vywVw-Vudr = / YoV - Vudzx.
Q Q

Let v € ﬁl(ﬂ) be the solution to

(C.17) { gzjzjv::o()lir; ¥;v, v=¢in ['p.
Clearly,

(C.18) v—goeﬁl(ﬁ), (v—go)]FD = 0.

By (C.6),

(C.19) —/Q”)/OVQU-V(U—QD)dLU:f(?)]U—QO]U).
Here note that U‘U €Y by supp(v‘FD) C Iy,

(C.20) f(v],) =0

On the other hand, remind that

(C.21) w E ﬁl(Q),w‘FD =0 and L,,v =0 in , 870U‘FN =0, v, =
By the definition of weak solution,

(C.22) /Q%Vw -Vvdz = 0.

By (C.7), (C.19), (C.20) and (C.22),

(C.23) — /Q YWV - Veodr = f(gp‘U).

O
Likewise the proof given in [5] we have the second Runge’s approximation theorem.

Theorem C.2 Let U be an open subset of 0 such that U C Q and Q\ U is connected.
Define the two spaces X,Y of functions by

X :=qu ;ueﬁllN],L u=20 in(N],
U Yo

Y= {v g VE HI(Q),L%U =0 in Q, supp(vlr) C Io},

(C.24)

where U is an open subset of Q depending on u such that U C Uc E CQand Ty is a fized
open subset of Uy. Then, Y is dense in X with respect to Fl(U) norm.
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Next we construct {v;x} (j = 1,2). By Theorems C.1, C.2, there exist {v],}, {v5,} C bin Q)
such that v, — H(-,c(t)) in H, (Q\ () for each j (j = 1,2),

loc

L. v = in Q
025 Yo Y1k
( ) {8%01)’2’16 =0 on Ty, supp(v], r) CTy
and
L.v!. =0 in
C.26 7026
(C.26) {Supp (vhi|,) € Dao,

where I'yg C I'p, T'9p C I'y are open subsets.
Then, we only have to define each {v;;} (5 =1,2) by

(C.27) g = Uy + Uy,

D Some preliminary estimates

In this Appendix we prove some estimates used in Section 3. Let u € iR (Q) be the
solution to (1.6) and v € ﬁl(Q) be the solution to (1.6) with v = 7. Then, we have

Theorem D.1

(i)

(D.1) (A=A ) fifn < / v Vv - Vvdr — / Fu—v)dx+ (g,u — v)y
D Q

and

D2) (A= A)fi 2 [ 30y 0V (V)vde — [ Flu=v)da + (g,u= o)

(i)
(D.3) (g,(IL, = 1L,,)g)2 < /Dlev -Vovdr — /QF(U —v)dx — (81% (u—wv), f)1
and

(D-4) (g, (,~TL,,)g)s > /

D Yoty (Vv (9 V) dx—/ F(u—v) dz—(0L,,(u=v), /1.

Q
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Proof ~ We use the inequality given in [5]:
(D5)  %V(v—1u) V(o —u)+(y=%)Vu-Vu> 5" (v = %)7 (0V) - (Vo).
We first prove (i). Observe that
(D.6) /{'yOV(u —v)-V(u—v)+(y—v)Vv- Vuv}dz
0
= / (vVu - Vo —2(yVu) - Vo) dz + / v Vv - Vudz
Q

Q

and
(D.7) /Q{’)/V(U —u)-V(v—u)+ (vo —v)Vu- Vu} dz
= / (voVv - Vo —2(%Vv) - Vu) dz + / YVu - Vudz.

By the definitions of the Dirichlet to Neumann map and the Neumann to Dirichlet map,
we have from (D.6),

(D.8) /Q{w(u ) V(=) + (o — 1)V - Vo) da

(Mg = A i + / F(o—u)dz — {g,0 — ),

(g, (T, — L) g)s + / F(o — ) dz + (9, (v — ), 1,

where do is the line segment for n = 2 and the surface measure for n > 3. Also, we have
from (D.7),

(D.9) /Q{%V(U ) V(v =) + (7 — ) V- Vuldo
(8 = Ao f)i+ [ Plu=v)ds = (g.u— o),

<97 (H’Y o H’)’O)g>2 +fQF(u - U) dx + <8L~,O<u o U)7f>1-

Reminding (1.2), we have (D.1) and (D.3) from (D.8). Also, by (D.5), we have (D.2) and
(D.4) from (D.9).
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