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We consider an inverse boundary value problem for identifying the inclusion inside a known
anisotropic conductive medium. We give a reconstruction procedure for identifying the in-
clusion from the Dirichlet-Neumann map or the Neumann-Dirichlet map associated with the
mixed type boundary condition.
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1 INTRODUCTION

Let 2 C R" (n = 2 or 3) be a bounded domain with C? boundary I'. Q is considered
as a conductive medium with conductivity:

Y=Y + XphYo (1.1)

with a matrix o = (7:;;) € C%(Q) and a real valued scalar function h € L*®(Q). Here D is
a bounded domain with Lipschitz boundary 0D such that D C ©, Q\ D is connected, xp
is the characteristic function of D and C%'(Q) is the space of functions which are Lipschitz
continuous on Q. We assume that 7o = (70;(2)) is a symmetric matrix satisfying

Z Yoii (2)&&5 > C’1|f|2 (f = (&, ,&)€ER", ae. x € ﬁ) (1.2)
2,j=1
for some constant C; > 0, and for any a € 0D, there exists a § > 0 such that either
h(z) > Cy (ae. z € Bs(a)) (1.3)
or
h(z) < —Cy (a.e. z € Bs(a)) (1.4)
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holds for some constant Cy > 0, where Bjs(a) := {z € R™;|z —a| < §}. Moreover, we assume

thatheC’O’“nearaDWithO<a<1forn:2and5<a<1forn:3.
Let I consist of two parts. That is

I'=TpUTy, (1.5)

where ['p, 'y are open subsets of I' such that TpNT'y = ¢, I'p # ¢, I'y # ¢ and for n = 3,
the boundaries OT'p, Oy of I'p, 'y are C?, respectively.
Consider the mixed type boundary value problem:

(Lyu)(z) := Z@i (vij(x)0ju(z)) = F(z) in Q

1,j=1
u=fonIp, Jpu=gonly

(1.6)

1 1
for given f € H*(T'p),g € H *(T'y), F € L*(Q) where z = (21, -+ ,x,), 0; := 0/0z; and

(Or,u) () =) viyij(2)0u(z) (1.7)

1,j=1
with the unit outer normal vector v = (v - - - 1,,) of I'. Here we have used the notations given
in [2] to denote Sobolev spaces.

By Appendix A, there exists a unique solution u = u(f, g, F) € ﬁl(Q) to (1.6) with the
estimate:

lullzs @ < C (17113

H2(FD) + ||g||ﬁ7%(1_‘1v) + ||F||L2(Q)), (].8)

where the constant C' > 0 does not depend on f, g, F.
Moreover, even for F' € W* with W := {w € ﬁl(Q); w=0 on FD} and supp F' C €,
we have the similar result that ||F||2(q) in (1.8) has to be replaced by ||F||w-. Hereafter,

the norm || - ||y and inner product (, ) of W are those of H (), and the norm of the dual
space W* of W is denoted by || - [[w=.

Next, we define the Dirichlet to Neumann map A, and the Neumann to Dirichlet map
11, as follows.

DEFINITION 1.1  Let u(f, g, F) be the solution to (1.6).
1 1
(i) Fizing g and F, define A, : H>(T'p) - H *(I'p) by
Ayf:=0p,u(f,g,F) onTp (1.9)

(ii) Fizing f and F, define IL, : H *(Ty) — H2(Ty) by
Il,9 :==u(f,g,F) on Iy. (1.10)



1
REMARK 1.2 The trace of 0 u(f,g,F) € H *(I'p) ewists, because F' € L*(Q) or F € W*
with supp F' C Q.

Now, we consider two kinds of inverse problems (IP1) and (IP2):

(IP1) Suppose ¥, is known and h, D are unknown. Reconstruct D from A,.
(IP2) Suppose g is known and h, D are unknown. Reconstruct D from II,.

THEOREM 1.3 There are reconstruction procedures for the both inverse problems (IP1)
and (IP2).

REMARK 1.4

If it is possible to relate A, or IL, to a Dirichlet to Neumann map Ay, defined on the
boundary of a subdomain € of Q such that Q, C Q,Q\ Q, is connected and its boundary
08y is Lipschitz smooth, then by a similar argument given in [3], D can be reconstructed
from A, . However, we are interested in obtaining a reconstruction procedure which directly
uses A, or IL,. For our reconstruction we need to analyze the behavior of the terms with
[, 9, F in the estimates of indicator functions given in (3.8) and (3.9). We have used the De
Giorgi-Nash-Moser theorem for doing this.

The probe method for the inverse boundary value problem with mixed type boundary
condition was shown in [4] for identifying cracks. A new ingredient of this paper is an
application of the De Giorgi-Nash-Moser theorem (see Appendix B) for estimating the indi-
cator function given later when the conductivity of the inclusion is Holder continuous near
boundary. We also have to point out that the inverse boundary value problem identifying
inclusions was initiated by Isakov [6] and there are closely related works done by Potthast
and his collaborators ([7]) which use singular solutions for reconstructing an unknown scat-
ter. Our reconstruction procedure without using any reduction to a known reconstruction
procedure is totally new.

2 RECONSTRUCTION PROCEDURE

DEFINITION 2.1 (needle) We call a nonselfintersecting piecewise C' curve
C = {c(t); 0 <t < 1} joining ¢(0),c(1) € I' needle if it satisfies C \ {c(0),c(1)} C Q.



DEFINITION 2.2 (singular solution)
(i) Fiz 2° € Q and let G(x — 2°) € D'(R") be a fundamental solution of

V- (1(z°)VG(z — 2°) + 6(z — 2°) = 0 in R™.
(ii) Let H;(x,2°) € D'(R?) (j =1,2) be solutions of
L H;(z,2°) +6(z —2°) =0 in Q

such that .
Hi(z,z°) — G(z — 2°) € H (Q)

and
3L70H1(x,330) =0 onTyn
Hy(z,2°) =0 on Tp.

We call each Hj(z,z°) singular solution.

(2.1)

(2.2)

(2.3)

(2.4)

REMARK 2.3 The construction of singular solution can be done similarly to Lemma 3 in

[9]

Let C := {c(t);0 < ¢t < 1} be a needle. By the Runge approximation theorem given in

Appendix C, there exist sequences of approximate functions {vi}, {ver} C FI(Q) such that

vje = v+ Hi (-, e(t)) (k= 00) in Hyo(Q\Cy) for each j (j = 1,2),

IJ,),O’UUC = F in Q
O, vk =g on Ty, supp(vig|. ) CTp

and

Lyvo, = F in Q
vor = f on I'p,

where C; := {c(s);0 < s <t} and v} € FI(Q) (j = 1,2) are the solutions to

Lyvy = F in Q

vi =0 on I'p, 81,701)’1 =gon 'y
and

Lyvy=F in Q

vh=f on I'p, 8L70v§ =0on I'y

(see Appendix C for the details).

(2.5)

(2.6)



DEFINITION 2.4 (indicator function) LetC = {c(t);0 <t < 1} be a needle, t (0 <t < 1)
satisfy C;N' D = ¢ and {vj.} C ﬁl(Q) (7 = 1,2) be the sequences of approximate functions
given above. Then, we define two indicator functions I,(t,C) and I5(t,C) associated with
(IP1) and (IP2):

I(tC) = klgrgo«A7 - AWO)(Ulker)’Ulker>1 (2.9)
and
Ig(t,C) = leI{.lo<(8L7U2k) |FN’ (H,y = nyo)((a[wvzk)‘r]v)>2 (210)

1

P 1 o
where (, )1 and {, )y are the pairings for {H 2(Tp), H*(T'p)} and {H *(Ty), Hz(Ty)},
respectively.

DEFINITION 2.5 (first hitting time) Let C = {c(?);0 <t < 1} be a needle such that
CND#¢. We define T(C,D) by

T(C,D):=sup{t;0<t<1, c(s)¢D (0<s<t)} (2.11)

We call T(C, D) the first hitting time of C to D .

DEFINITION 2.6 (detecting time) Let C be as in Definition 2.5. For the indicator
functions I;(t,C) (j = 1,2), we define their detecting times t;(t,C) (j =1,2) by

t;(C,D) := sup{() <t<1;sup |(s,C)| < oo}. (2.12)

0<s<t

Then, we have our main theorem
THEOREM 2.7 For each j (j = 1,2), we have

T(C,D)=t;(C,D) ifCND#¢. (2.13)

Since we can reconstruct D by knowing ¢;(C, D) for all possible C, Theorem 2.7 implies
Theorem 1.3.



3 ESTIMATES OF INDICATOR FUNCTIONS

In this Section we give some estimates for the indicator functions 7;(¢,C) (j = 1, 2).
Let ujz € H (Q) (j=1,2 k € N) be
Ugg = U(f, (6L70U2k)‘I‘N7F)7 .
where u = u(f, g, F') is the solution to (1.6). Also, let
wik =k —Vir (j=1,2; k € N). (3.2)

Then, we have

Lywjx =V (v —7) Vi in Q (3.3)
wjx =0 on I'p, O wj, =0 on I'y. ’
More precisely, w;; € W is the solution of the variational equation:
/ YVwjk - Vpdr = / (0 — 1)V - Vpdz  (p € W) (3.4)
Q Q
Since
sup | [ (0 =105~ v2) - Vioda| < M=oyl — vill g, +0 (39
llellw<1lJQ

as k,l = oo by ;N D = ¢ and vjy — v} + H;(-,c(t)) (k— o0) in ﬁlloc(Q\Ct), we have
from (1.8)
lwk — willg gy = 0 (k,1 — 00). (3.6)

Hence, there exist limits w; := klim Wip € Fl(Q) (7 =1,2) and they satisfy
—00

{ Lyw; =V - (0 = 7)V (v + H; (-, ¢(t))) in Q

w; = 0 on FD, aL.ij =0 on FN. (37)

Therefore, by Theorem D.1 in Appendix D, we have

/h’y_l(%VVl)'(%V%)dw—/Fw1 dz + (g,w1)s < I (t,C)
D Q

< / hyVVy - VVidx — / Fwydx + (g, w1)2 (3.8)
D Q

and

/ M (V) - (10 VVe) do — / Fwy dx + (0, w2, f)1 < Ix(t,C)
D 0

< / hyoVVa - Vs dm—/ng dz — (8L70w2,f>1, (3.9)
D Q

where V; (j = 1,2) are defined by Vj := v + H;(-,c(t)) (j =1,2).
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4 BEHAVIOR OF INDICATOR FUNCTIONS

In this Section we analyze the behavior of the indicator functions I;(¢,C) as t T T'(C, D)
when C N D # ¢. Hereafter, constants C,C" > 0 which will appear in the estimates are

general constants. .
Let CND +# ¢ and 0 <t < 1 satisfy C; N D = ¢.

LEMMA 4.1 There exists a constant M > 0 independent of t such that

|lwillp2@y <M (j=1,2) ast1T(C,D). (4.1)

Proof For simplicity, put to := T(C,D) and a = c(ty). For 0 < t < to, let z; € Fl(Q)
( = 1,2) be the solutions to

L,YZ]' = ’LUj
{zj =0on I (4'2)

Then, by (3.7) and z; € W, we have

/Q w;|* dz = — /Q YVw; - Vzjdz = /Dh%VVj - Vz;dz. (4.3)

It is easy to see that

/ hyoVv; - Vz;da
D

< Ollwjllezey  (44)

bl

/ hyoVH (z,c(t)) - Vzjdo
D\Bs(a)

as t 1ty for some constant C' > 0 independent of t. Since h € C%* near 0D with 0 < o < 1
1
for n =2 and 5 < a < 1 for n = 3, there exists n > 0 such that

|(h’yo)(ac) — (hvo) (c(t))‘ < K|z —c(t)|* (0 <tg—t<mn, z€ B(;(a)) (4.5)

for some constant K > 0 independent of ¢ and z. Hence,

‘ /DmB (a) ((h%)(x) B (h%)(c(t)))VH(xa c(t)) - BVz(z) dw

<CK |z — c(t)P|Vz(2)| dz, (4.6)

DﬂBg(a)
where § = —1+a forn =2, =2+« for n = 3 and C' > 0 is some constant independent of ¢.

1
By 0 < a <1 for n = 2 and 5 < a < 1 for n = 3, there exists a constant C' > 0 independent
of ¢ such that

/ 2 — )P ds < C (0<t—t<n). (@7)
DnNB;s(a)

T



Hence, we have from (4.6) and (4.7),

‘ / ((170)(@) = B0 (e(®) ) VH (2, ¢(8)) - BY2(2) da| < Clw;lzacay
DN Bs(a) (4.8)
(0<t—t <n)
for some constant C' > 0 independent of ¢. Moreover, by (2.3)
‘ /DmB5(a)(h%) (c(t))V(H(a:, c(t)) - G(z — c(t))) - Vzj(z) dr| < Cllwj||r2@) (49)
0<t—ty<nm)

for some constant C' > 0 independent of ¢. Therefore, the proof is complete if we show

/D IRICONE R ORSIOLE

< Cllwjllzz (0O<t—te<m)  (4.10)

for some constant C' > 0 independent of ¢.
Since V - 9 (c(t))VG(z — ¢(t)) = 0 in DN Bs(a),

/DmB (a)% (C(t))VG (3: N c(t)) - Vzj(x) do = / (’)’0 (C(t))VG(x, —c(t)) . I/) z;j do

a(DnBs(a))
N
(4.11)

By Theorem B.1 in Appendix B, there exist some 0 (0 < 0 < 1) and a constant C' > 0
depending only on n, C; and ||y||ge(n) such that

‘zj(:v) — &y (c(t))‘ < Clz —c(®)|”||wjllz2) (z € Bs(a), 0<t—ty <n). (4.12)

Hence,

[ we)Vole—e) - Va@da| <O [l o) dolwlinn
DNB;(a) o(DnBs(a))

< C'lwl| g2 ey (0<t—1to<n)
(4.13)

for some constants C,C’ > 0 independent of t. U



Let o € C§°(9) satisfy a = 1 in an open neighborhood of D and w; := wj—ow; (j = 1,2).
From (3.7) and supp(y — ) C D, we have

(1-a)Lyw; =0 in Q (4.14)

and
Lya = L. (4.15)

Then w; satisfies

L’y@j = Fj in Q
{lﬂj =0 on FD, aLVﬁJ/j =0 on PN, (416)
where Fj := —(L,a)w; —2yVa-Vw, satisfies supp F; C Q and ||F}j||w~ is uniformly bounded
for any t (0 <t —ty <n). Therefore, by the continuity of the trace and 8L70 Wy = 8L7@2,
loilgs g, + 190,y 02ll oy gy <M 25 £1T(C, D) (4.17)

for another constant M > 0 independent of ¢.
Now it is easy to see that the dominant parts of/ hy (% VV;) - (% VV;) dz and
D

/ hVV; - VV;dx are / hy~t (’yOVGj (z — c(t))) . (%VG]- (z — c(t))) dx and

D DNBs(a)

/ h0VG;(z — ¢(t)) - VG;(z — ¢(t)) duv which are positive or negative according to

DNB;s(a)

(1.3) or (1.4) and blow up as t 1 t,. Therefore, by (3.8), (3.9), (4.1) and (4.17),
(0] > 00 (t1to). (418)

Finally, (2.13) can be proven by the standard argument given in [3], so we omit its proof.

APPENDIX

A BOUNDARY VALUE PROBLEM FOR FORWARD
PROBLEM

In this Appendix we give the proof of the well-posedness of the boundary value problem
(1.6).

THEOREM A.1 Ify € L*>(RQ) satisfiesy > ¢ in 2, there exists a unique solution of (1.6).
Moreover u satisfies (1.8).



-

1 o
Proof  For f € H*(I'p), there exists f € H
Let %€ H. () be the solution to

(T") which is the extension of f.

Lyu=0in Q
uw=f on I.

Then, it is well known that

U Y 1
Il o < C”f“ﬁ%(r) s¢ Hf”ﬁ%(rp)

and

~ ~ !
190, 3,, < Ol oy < Ml

for some constant C, C’ > 0 independent of f.
Put v :=u —wu € W. This v has to satisfy

Lw=F inQ
v=0 onIp, Opv=yg on Iy,

where g = g — 0 u. Define

(G,w) = <F,w)—/ gw dl’

I'n

and
Blv,w] := / YVov - Vwdx
Q

for any v, w € W.
By the Schwarz inequality,

Blo.ull < | WIVolIVolde < Mol ool o
By the Poincaré inequality
2
Blv,v] > /Q’)/|Vv| dz > 6||Vv|| 2 > 6I||U||FI(Q)

for some constant ¢’ > 0 independent of v, w.

Now we remind the Lax-Milgram theorem.

10
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THEOREM A.2 (Lax-Milgram) Let X be a real Hilbert space and B : X x X — R be
a bilinear map satisfying

|Blz, y]| < vllz|lllyll (A.9)
and
Blz, z] > §||z]]?, (A.10)
then there exists a unique bounded linear bijective operator S : X — X such that
(z,y) = B[Sz,y] with ||S|| <d7, [[STH| <. (A.11)

By applying Theorem A.2, there exists a unique bounded linear bijective operator S : W — W
such that

(S™'v,w) = Blv,w] (v,w e W) with ||S|| < ()7} |IS7Y < M. (A.12)
As immediate estimates, we have
[(F,w)| < [|Flwe[lwllw (A.13)

and

[ gwar| < (ol g, + 108,71 1l

(A.14)
< _
(e T
for some constants C,C" > 0 independent of f, g, F'. Hence, by (A.13) and (A.14),
G0 < C (Il gy + Nl g + 1P ) ol (419
By the Riesz representation theorem, the exists a unique v € W such that
(Gw) = —(0,w), [[vllw=[Gllw- (A.16)
Let v e W be v = S~ tw.
Then, by (A.12),
Bv,w] + (G,w) =0 (w e W). (A.17)
Therefore, v is the solution to (A.4). By the definition of v,
Il < ol + Wby < € (I + 1z
(A.18)
! "
< (161w~ + Wiy, ) < €" (Wb, + Wl + 1)
for some constants C,C’,C"” > 0 independent of f, g, F'. OJ
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B DE GIORGI-NASH-MOSER THEOREM

We provide the De Giorgi-Nash-Moser theorem for the readers’ convenience. For its
proof see [1].

THEOREM B.1 Let Q be as given in Section 1 and v = (v;;(z)) € L™(Q) be a symmetric
matriz satisfying (1.2). For a given f € L1(Q) for some q > %, let u € FI(Q) satisfy

/ YiiOuudyp de = / fods (€ H\@) (B.1)
Q Q

Then, u € C%(Q) for some o (0 < o < 1) depending only n, q, C and_||7||L°°(Q). Moreover,
for any compact K C §2 and open ball Br with radius R such that Bp C K, we have the
estimate:

T — y 7 _n B
) - u()] < O(E ) (@ F oy + B lwa) (v By) (B2

where B%, Bpr are equicentered and C > 0 is a constant depending only onn, q, K, Cy, |||z (q)-

REMARK B.2 Q can be any domain in R™ with n > 2; n € N.

C RUNGE’S THEOREM

In this Appendix two Runge’s approximation theorems are given and they are applied

to construct the two sequences of approximate functions {vy;} and {ve} given in Section 2.

Let ,I',I'p,I'n, v and L., be as in Section 1. Then, we have the first Runge’s approx-
imation theorem.

THEOREM C.1 Let U be an open subset of Q such that U C Q and Q\ U is connected.
Define

X = {u|U;u € Fl(ﬁ),qu =0 in an open neighborhood U of U}

— o (C.1)
¥ = {v v €H (U),Lyv=0in Q’aL’YOU‘I‘N =0, Supp(U|FD) C FO},
where U is an open subset of  depending on u such that
UcUcUcQ (C.2)

and Iy is a fized open subset of I'p. Then, Y is dense in X with respect to EI(U) topology.

12



Proof By the Hahn-Banach theorem, it is enough to prove

feH (U), f(v],)=0 veY)= f(ul,) =0 (ueX).

Suppose f € Fl(ﬁ)*, f(v|U> =0 (vey).

(C.3)

Let y € T'y and take a small open ball B centered at y and €y := QU B. We extend

Y € C%(Q) to a neighborhood of Qg preserving its regularity. Also, let

T:{VeH (U); ¥, =0} >R, T(¥)=[(¥[,)

(C.4)

T has a bounded linear extension T € H (€2)*. Hence, by the unique solvability to variational

problem, there exists w € ﬁl(Q) such that w =0in I'p and

_/%vw-vwxzf(\y) (v e ' (@), ¥|, =0).
Q

Therefore
[T - sl (@R @), 9], -0)
Q
Define w by
-~  Jw in Q
YT10 in Q\ Q.
Since
w|FD =0,
weH ().

Now we claim the following.
Claim

/Q WV Vo= fol,) (peH'@)

The proof of this claim will be given later.

From this claim, .
Ly,w=0in Qp\U.

Note that _ —
w=01in Q\ Q2D \U
Qo \ U is connected.

(C.11)

(C.12)

Hence, by the weak unique continuation theorem for L., due to vy € C%(Qy), we have

w=0in Q\ U.

13
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Therefore o
w=0in Q\U. (C.14)
Now let v € X. Then, for some U which is an open neighborhood of U, there exists
u € Fl(U) such that N
Lyu=0in U, u‘U:v
By taking a cut off function, for some U c U which is an open neighborhood of U, there
exists & € H'(Q2) such that

u|::u‘
U

Hence, by reminding (C.6) and (C.14), w € H'(U) and L,u=0 in U,
F(v) = f(ul,) = £(@l,) = / oV - Vi ds
Q

(C.15)
= /:%Vw -Vudr = / YVw - Vudzr = 0.
U

cR

U

Finally, we prove the claim. For any ¢ € H' (),

/ YVw - Vudr = / YoVw - Vudx + / YoVw - Vudxr = / YVw - Vudz. (C.16)
Qo 20\Q Q Q0

Let v € H () be the solution to

{L,mv =0 1in €,

8L70U =0inI'y, v=¢in I'p.

(C.17)
Clearly,
=
v—yp e H (Q), (v—cp)|FD =0. (C.18)
By (C.6),
—/”yOVw-V(v—go)das—f(U|U—cp|U). (C.19)
Q
Here note that U‘U €Y by supp(v’FD) C T,
f(v],) =0 (C.20)
On the other hand, remind that
—1 .
weH (Q),w|rD =0 and L,,v=01in Q, 0 0v|rN =0, v, =¢. (C.21)
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By the definition of weak solution,

/ YoVw - Vudr = 0. (C.22)
Q

By (C.7), (C.19), (C.20) and (C.22),

— /Q’Y()VITI -Vodr = f(ap‘U). (C.23)

OJ
Likewise the proof given in [3] we have the second Runge’s approximation theorem.

THEOREM C.2 Let U be an open subset of Q such that U C Q and Q\ U is connected.
Define the two spaces X,Y of functions by

—1,~ o . =
{X = {uly; we H (U),Ly,u=0 in U}, (C.24)

Yi={v|,; ve FI(Q),L%U =0 in Q, supp(v|.) C Lo},

where U is an open subset of Q depending on u such that U C UcC 5 C Q and Ty is a fized
open subset of I'y. Then, Y is dense in X with respect to FI(U) norm.

Next we construct {v;x} (j = 1,2). By Theorems C.1, C.2, there exist {v],}, {v5,} C )ia ()
such that v} — H(-,c(t) in EIIOC(Q \ C;) for each j (j =1,2),

Ly, =0 in Q

{a%fugk =0 on 'y, supp (Ui’k‘r) c Ty (C.25)

and . _
{L%v% =0 in Q (C.26)

supp (Ulglk‘F) C Iy,
where ['yg C I'p, I'yp C 'y are open subsets.
Then, we only have to define each {v;;} (j =1,2) by

Vi 1= v + Vg, (C.27)

D SOME PRELIMINARY ESTIMATES

In this Appendix we prove some estimates used in Section 3. Let u € Fl(Q) be the
solution to (1.6) and v € Fl(ﬂ) be the solution to (1.6) with v = 7. Then, we have
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THEOREM D.1
(i)
(Ay = M), )1 < / h Ve Vo ds — / Flu—w)de+lgu—us  (DI)
D Q

and
(= A)fo P2 [ 7 G- (0V)vda - [ Fu=)do+ (g u=vhe (D2

(i)
(g, (L, — TL,)g)s < /Dh%w ol — /QF(u —w)de— (O, (w—v), ) (D3)

and

(9, (IL, — L, )g)s > /D Wy (109)0 - (10V v da - / F(u—v)dz — {9y, (u—v), . (D.4)

Proof ~ We use the inequality given in [3]:
%0V (v —u) - V(v —u)+ (y = %) Ve Vu> 7" (y = %)7 " (Vo) - (Vo).  (D.5)
We first prove (i). Observe that
/{’yoV(u —v)-V(u—v)+ (y—v)Vv-Vuv}de
0
= / (vVu - Vv —2(yVu) - Vv) dz + / Vv -Vudz (D.6)
Q

Q
and

/Q{W(v —u) - V(o —u)+ (v —7)Vu- Vu}dz
= / (fyon - Vv —2(nVv) - Vu) dr + / YVu-Vudz. (D.7)

By the definitions of the Dirichlet to Neumann map and the Neumann to Dirichlet map,
we have from (D.6),

/ﬂ{vV(u —v)-V(u—v)+ (v —7v)Vv-Vu}de

(Ao — A N —|—/F(v —u)dx — (g,v — u)s

<g7 (HW —Hv)g)2+/:F(v—u) dx+<aL~,0(U_u)7f>1:

(D.8)
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where do is the line segment for n = 2 and the surface measure for n = 3. Also, we have
from (D.7),

/Q{’)/()V(’U —u)-V(v—u)+ (y—7)Vu-Vu}dx
(4 = A, P+ [ Plu=v)do = (g,u— v

{9, Iy = TLy0)g)a + /ZF(U —v)dz + (9, (u = v), 1.

(D.9)

Reminding (1.2), we have (D.1) and (D.3) from (D.8). Also, by (D.5), we have (D.2) and
(D.4) from (D.9).
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