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Abstract. Let A be a uniform algebra on X and P a set of all probability
measures on X. For each p in P, H?(u) is the closure of A in L*(p) and T} is a
Toeplitz operator on H?(u) for a continuous function ¢ on X. In this paper we study the

invertibility and the spectrum of Ty = Z &) Tqﬁ‘ . We show that if Ty is invertible then
MEP
the index of ¢ is zero and if the converse is true for an arbitrary continuous function ¢

then A is a Dirichlet algebra on X. Moreover we study the spectrum of T.



§1. Introduction

Let X be a compact Hausdorff space, C = C(X) an algebra of all continuous
complex-valued functions on X, and A a uniform algebra on X. P denotes the set of all
positive Borel measures on X with total mass 1. For each pu, H?*(u) is defined as the
closure of A in L?(p). Let P* be the orthogonal projection from L?(u) onto H?(u). For
¢ in C and f in H?*(p), put

T:f = PH($f).

In this paper, we study Toeplitz operators T, on the Hardy space H? for ¢ in C, where

Ty= Y @®T) and H> =) @H*(u).

peP HEP

0(Ty) denotes the spectrum of T4 and then o(Ty) 2 | J o(T}). For ¢, ¢ in C T)T) =
HEP
PPT,Ty|H?(p) and so Ty is a power dilation of T || Tyl = sup|¢(z)| and ||T}]| =
zeX

p — esssup|g(z)|. Ty is the local part of Ty and Ty is more strongly related with A than
reX

T}. The local part of Ty has been studied in [7] for arbitrary uniform algebra.

When X is the unit circle 0D, A is the disc algebra A and p is the normalized
Lebesgue measure df /27, H* = H?*(u) is the classical Hardy space and Ty = T} is the
usual Toeplitz operator on H2. When 1 is a finite positive Borel measure on 0D, H?(u) is
called a weighted Hardy space. In this classical case, our result shows that o(Ty) = o(T})
for arbitrary ¢ in C. When X is the closed unit disc D, A is the disc algebra A and pu
is the normalized area measure rdrdf/w, L2 = H?(u) is the Bergman space and T} = T}
is the usual Toeplitz operator on L?. In this case, 0(Ty) # o(T}). By definition, T is
strongly related with the uniform algebra, that is, A|0D or A|D but Ty or T; is related
with df/2m or rdrdf/m. Suppose the classical Hardy space H* is the weak  closure of
Ain L*® = L*°(u) with p = df/2r. When X is the maximal ideal space of L™, A is
the Gelfand transform of H* on X and p is a representing measure on X for the origin,
H?(u) is also the classical Hardy space H? and Td’f is the usual Toeplitz operator 7. Our
result implies that o(Ty) = o(Ty) for arbitrary ¢ in C' = the Gelfand transform of L.

Let A be an arbitrary uniform algebra on X and M (A) the maximal ideal space
of A. For a function ¢ in C, we say that the index of ¢ is zero if there exists a nonvanishing
function g in C(M(A)) such that ¢g has a continuous logarithm on X. By the Arens-
Royden theorem [3, p89], we can choose g as an element in A~'. When A is a natural
uniform algebra on the complex plane, our definition of the index of ¢ is same to the
classical case (see [4, p281]).

In Section 2, we show that Ty is invertible if and only if there exist a positive
constant § and a function g in A~! such that

Repg > 6 >0 on X.

This result is similar as that of the classical Toeplitz operator by Widom and Devinatz
(see [2]). That is, T} is invertible if and only if there exist a positive constant ¢ and a
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function g in H*(u)~! such that Re¢g > § > 0 a.e. on 0D, when ¢ is in L*°(u) and
p = df/2n. When C' is a commutative C*-subalgebra of L*(x), our theorem implies
that if ¢ is a function in C' and Ty is invertible then there exist a positive constant
§ and a function g in H*®(u)™' N C such that Re¢g > § > 0 on dD. In the general
setting, our result shows that if Ty is invertible then the index of ¢ is zero. When A
is a Dirichlet algebra on X, if the index of ¢ is zero then T, is invertible. We show
that the converse is also true. If Ty is always invertible for an arbitrary function ¢ in
C with index ¢ = 0, then A is a Dirichlet algebra on X. In Section 3, we show that
#(X) C{Ae ; index (¢ —A) # 0} C o(Ty) C the convex hull of ¢(X). Moreover
when ¢ is in A or ¢ is real-valued in C, o(Ty) is completely described.

In this paper, AL denotes the set of all annihilating measures on X and M (A)
denotes the maximal ideal space of A. M(A) is called simply connected when the first
Cech cohomology group of M(A) with integer coefficients is zero. R(¢) is the range ¢(X)

of ¢ in X. (f,9), = / fgdu is the inner product in L?(u) and || f||, = ((f, £).)/% || F|| is
x
the norm of F in H?. ||f||x = sup|f(z)| and ||f + A||x = ir€1£||f +9|lx- |/|T4||| denotes the
T€X 9

norm of the operator Ty on H? and |T}| denotes the norm of the operator T} on H?(1).

§2. Invertibility of Ty

For each p in P, let I* be the identity operator on L?*(u). For ¢ in C and f in

H?(p), put Hy f = (I* — P*)(¢f) and Hy = > & Hj. Lemma 1 is similar to a theorem

HEP
of Nehari [8]. Lemma 2 is similar to a result of Nakazi [6] which was proved by Widom

and Devinatz [2] when ¢ is unimodular. Theorem 1 is an analogue of a theorem of Widom
and Devinatz [2] in the classical case.

Lemma 1. If ¢ is a function in C, then ||Hy||| = ||¢ + A||x.

Proof. It is clear that |[|[Hy||| < ||¢ + A||x. Fix ¢ € C with ¢ ¢ A. By the
Hahn-Banach theorem and the Riesz representation theorem, there exists a finite Borel
measure v € AL with [|v|| = 1 such that

6+ Allx = [ gdv.
Put F = d|v|/dv and pu = |v|, then F € L?*(u) N AL. Hence
I+ Allx = [ ¢-1- Fdy = (H{1, F), < || < ||[H]|

Lemma 2. Suppose ¢ is a function in C. Ty is left invertible if and only if there
exists a positive constant € and a function g in A such that

6 +gl* <|¢]"—e on X.
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Proof. The ‘if’ part is easy. In fact,
HH; + T3Ty = T2

because (Hg)*Hy + (T3)*T), = Ty for all u € P. Hence

H;Hcﬁ = H:;>+gH¢+g < T|<z>+y|2 < T|¢|2—6
and so
T;T¢ = T4p — H;H(p > T..

Now we will show the ‘only if” part. If Ty is left invertible, then there exists ¢ > 0 such
that T3Ty > T 5. Hence (T3)*T) > T/ for all 4 € P and so

[16Pdn =2 [IfPan (1 € )

or all p € P. erefore > 2 > 0. ence < 2_9e < 2_. and so
f 11 P. Theref ¢|? 2 0. H H’;H(,, Ty Ty d
|HF||> < ||(T)g2—c)/?F||* for all F € H? Therefore for any y € P, f € A and
g € L*(du) N A+,

2

= [HL,9ul” < IHL Sl
< (T S DI < [ =)\ Pdn [ lgPd

because ||Hj f|7? < [|(T}._.) /*fII}, for all f € A. If v’du € P and v is an invertible

function in C, then for any f € A and G € L?(v3du) N A+

[ ofadu

[ ss6va < [0 - D sPoan [ 161

It is easy to see that v?(L2(vidu) N At) = L%(du) N At. Hence for any f € A and
g € L*(dp)n At

2

[ eraan| < [(o - 2)\rPodu [ 1gPo-2d

because G = g/v? belongs to L?(vidu) N A*+. Put a™! = /(|qﬁ|2 — &)%dy and v? =

a(|p|> — )~'/2, then /vzd,u =1 and so v*du € P by the definition of P in Introduction.

Then v? is an invertible function in C because |¢|?> > 2¢ > 0. Hence for any f € A and
g € L*(dp) N A+

[ esadu| < [(16 — ) 2alfPdu [ (6 — )"0~ gPd. (+

Put u = (|¢|? —¢)'/2, then (A-u™)* N (C-u™')* = {ud) ; A € A+} where * denotes the
dual. By the Hahn-Banach theorem,

inf{||(¢ +h)u"t||x ; h€ A} :sup{‘/qﬁd)\’ ; A€ At and /ud|)\| < 1}.

5



If ¢ ¢ A then there exists a nonzero v € A+ with / ud|v| =1 such that

inf [|(¢ + h)u~Y||x = /¢dy.

Put F' = d|v|/dv, then F € L?(dv) N A+ and 1 € A, hence by (%)

[odv=[¢-1-Faw| < [(6F - &) 2dly| = [udlv| =1.

Thus inf ||(¢ + h)u™t||x < 1. If &1 < &, then for some § > 0 |p|> — &1 > (1 +6)(|¢]* — €)
and hence there exists a function g in A

6" —e1 2 (1+0)(18] —€) > |¢ + 9.

Lemma 3. Suppose ¢ is a function in C. Ty is left invertible if and only if there
exists a positive constant § and a function g in A such that

Regg > 6> 0 on X.

Proof. If Ty is left invertible, then by Lemma 2 there exists g in A such that
|p|> > €%+ |¢ — g|? for some constant € > 0. Then, |¢|> > €%, and so 1 > &%/|¢|?> > &1 > 0

for some constant £,. Hence
2 2
€
L—&j & 1—3y= &
[

g

1=

Therefore there exist constants eq,e3 such that Re% > g5 > 0 and so Regg > &5|d|> >

= )

g9e2 > 0. Conversely if Regdg > § > 0, then 0 < 3 < |¢| < v < 0o and so Re% > —>0.
Y

Hence there exist two positive constant 4 and e5 such that 54% — 1‘ < 1 —¢e5. Hence

leag — 12 < (1 —e5)|4|* and so

leag — B|* + e5e? < |eag — 9> + &510)° < |9

Lemma 4. Suppose ¢ is a function in C. Ty is invertible if and only if Tlﬁs_l and
3

T\g are invertible.

Proof. If T, is invertible, and Ty = T is also invertible and so by Lemma 3
there exists a constant §; and a function g in A such that

Regg > 6, > 0.



Then ¢ is invertible in C' and so there exists a constant d, such that

¢
Re——g > 05 > 0.
[
Hence by Lemma 3 T4 and Ty are invertible. The converse can be proved similarly
by Lemma 3.

Theorem 1. Suppose ¢ is a function in C. Then, T is invertible if and only if
there exist a constant 6 and a function g in A~' such that

Regpg >0 >0 on X.

Proof. By Lemma 4, we may assume that ¢ is unimodular. If T, is invertible,
then by Lemma 2 there exists a function g in A such that ||¢+g|| < 1 and so ||1+¢g]| < 1.
Hence T 3T, is invertible and so T is invertible because T} = Tj is invertible. Therefore
gH?(uu) = H?(u) for any p € P and so g~* belongs to H*(x). Lemma 4 implies that g~ €
C. We will show that g~! belongs to A. Then the proof of Lemma 3 implies the theorem.

If g7' ¢ A, there exists a finite measure A in A+ such that ||A|| = 1 and /g‘ld)\ = 1,
Let F' = d)\/d|)\|, then F is orthogonal to H?(|\|). Since /g_leI)\| #0, g7t ¢ H*(])\]).

This contradiction implies that g=! € A. Conversely if there exist a constant § and a
function ¢g in A=! such that Re¢g > § > 0, then there exists a constant §' such that

Regﬁﬁ > ¢ > 0. Hence Re%% > ¢ > 0 where f = g~!. By lemma 3, Ty is invertible.
g

Corollary 1. Let ¢ be a function in C. If Ty is invertible, then there exists a
function g in A™! such that ¢g has a continuous logarithm on X, that is, the index of ¢
18 2€ro.

The converse of Corollary 1 is not true as Corollary 2 shows.

Corollary 2. If Ty is always invertible for an arbitrary function ¢ in C with
index ¢ = 0, then A is a Dirichlet algebra on X.

Proof. If v € C is real-valued and ¢ = e*, then index ¢ = 0. By hypothesis, Ty
is invertible and so by Theorem 1 there exists a function g in A such that Reg¢ > 0 on
X. Corollary 4.7 in [5] shows that A is a Dirichlet algebra.

§3. Spectrum of T,

Let B be a subset of C~!. We define a generalization of the convex hull of the
range R (@) of ¢ in C. That is, Hull {R(¢), B} is a set of all complex numbers A which
satisfy the following : There do not exist a constant ¢ and a function g in B such that
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Re(¢p — N)g > 6 > 0 on X. Hull {R(¢), B} need not be determined by R(¢) and B in
general. Hull {R(¢), B} contains R(¢). If B={A € £ ; A # 0}, then Hull {R(¢), B} is
the convex hull of R(¢). If B = C™!, then Hull {R(¢), B} = R(¢). If B = expC, then
Hull {R(¢),B} ={A € £ ; ¢ — A does not have a continuous logarithm on X}. In this
section, we are interested in Hull {R(¢),exp A} and Hull {R(¢), A~'}. If ¢ is in A then
Hull {R(¢), A~'} = $(M(A)). This is proved in the proof of (4) of Theorem 2. (2) and
(4) of Theorem 2, and Corollaries 3 and 4 are similar to theorems in [1, Chapter 7]. For

example, (2) of Theorem 2 is an analogue of a theorem of Hartman-Wintner (cf.[1, 7.20
Theorem)]).

Theorem 2. Let ¢ be a function in C.

(1) o(Ty) = Hull {R(8), A}

(2) R(¢) C o(Ty) C the conver hull of R(p).

(3) o(Ty) D {N € 05 inden(d— ) £ 0},

(4) If ¢ is in A, then 0(Ty) = p(M(A)).

(5) If ¢ is real-valued, a = min¢ and b = max ¢, then o(Ty) O R($) > a,b
and 0(T4) C [a,b]. Moreover A € [a,b]\c(Ty) if and only if xg, belongs to A where
Ex={zx€ X ; ¢(x) — > 0}.

Proof. (1) is clear by Theorem 1. (2) is a result of (1). (3) is a result of (1) and
the definition of the index. (4) If A ¢ o(Ty), then by Theorem 1 there exist a positive
constant 6 and g € A™! such that Re(¢p — A\)g > & > 0. Hence there exists a function
f € Asuch that (§—)g = e and so p— A € A~'. Therefore \ ¢ $(M(A)). Conversely if
A ¢ $(M(A)), then p— X € A7L. Put g= (¢ — \)~! and § = 1, then Re(d — N)g =6 > 0.
Hence Theorem 1 implies that A ¢ o(Ty). (5) (1) implies that o(Ty) DO R(¢) > a,b and
o(Ty) C [a,b]. If XA € [a,b]\c(Ty), then by (1) there exist 6 and g € A~" such that
Re(¢p — A)g > 6 > 0. Since (¢ — A)/|¢p — A| = 2xg, — 1, Reg > 6/|¢ — A| on E) and
Reg < —d/|¢ — A| off E). A theorem of Runge implies that x g, belongs to A. Conversely
if xg, € A, then g = 2xp, — 1 belongs to A™! and so Re(¢ — A)g > § > 0. (1) implies
that A € [a,b]\o(Ty).

Corollary 3. Suppose xg is a characteristic function of a subset E in X, and a
and b are real numbers with a < b. If ¢ = axg + bxge is in C, then 0(Ty) = {a,b} when
X is in A and 0(Ty) = [a,b] when xg is not in A.

Corollary 4. Suppose A is antisymetric. If ¢ is a real-valued function in C' with
a =min¢ and b = max ¢, then o(Ty) = [a,b].

Corollary 5. Suppose A is a Dirichlet algebra on X and ¢ is a function in C.

(1) o(Ty) C{A € L ; ¢ — X does not have a continuous logarithm on X}.

(2) If M(A) is simplly connected, then o(Ty) = {X € £ ; ¢ — X does not have
the continuous logarithm on X}.

Proof. (1) If log(¢ — A) € C, then there exist two real-valued functions u,v



such that ¢ — A = e“*™. Since A is a Dirichlet algebra, there exists f € A such that
|lv — Imf|| < 7/2. Put g = e/ then Re(¢ — \)g > d > 0 for some constant § and
g € A7'. By Theorem 2, A belongs to o(Ty)¢. (2) Since M(A) is simply connected, by
the Arens-Royden theorem A~! = exp A. Hence (1) of Theorem 2 imply (2).
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