Spectra Of Toeplitz Operators And Uniform Algebras

Takahiko Nakazi and Tomoko Osawa

Series #581. January 2003

HOKKAIDO UNIVERSITY PREPRINT SERIES IN MATHEMATICS

- #555 S. Izumiya and N. Takeuchi, New special curves and developable surfaces, 10 pages. 2002.
- #556 S. Izumiya, K. Saji and N. Takeuchi, Singularities of line congruences, 17 pages. 2002.
- #557 S. Izumiya, D. Pei and M. C. Romero Fuster, The lightcone Gauss map of a spacelike surface in Minkowski 4-space, 21 pages. 2002.
- #558 S. Izumiya, D. Pei and M. C. Romero Fuster, Umbilicity of spacelike submanifolds of Minkowski space, 14 pages. 2002.
- #559 S. Izumiya, D. Pei and M. Takahashi, Curves and surfaces in Hyperbolic space, 16 pages. 2002.
- #560 J. Kato, On the uniqueness of nondecaying solutions for the Navier-Stokes equations, 19 pages. 2002.
- #561 M. Jinzenji and T. Sasaki, An Approach to $\mathcal{N}=4$ ADE gauge Theory on K3, 29 pages. 2002.
- #562 T. Nakazi and T. Yamamoto, Norms of some singular integral operators on weighted L^2 spaces, 27 pages. 2002.
- #563 A. Harris and Y. Tonegawa, A $\bar{\partial}\partial$ -poincaré lemma for forms near an isolated complex singularity, 8 pages. 2002.
- #564 M. Takahashi, Bifurcations of ordinary differential equations of Clairaut type, 23 pages. 2002.
- #565 G. Ishikawa, Classifying singular Legendre curves by contactomorphisms, 17 pages. 2002.
- #566 G. Ishikawa, Perturbations of Caustics and fronts, 17 pages. 2002.
- #567 Y. Giga and O. Sawada, On regularizing-decay rate estmates for solutions to the Navier-Stokes initial value problem, 12 pages. 2002.
- #568 T. Miyao, Strongry supercommuting serf-adjoint operators, 34 pages. 2002.
- #569 Jun-Muk Hwang and K. Yamaguchi, Characterization of Hermitian symmetric spaces by fundamental forms, 10 pages. 2002.
- #570 H. Ishii and T. Mikami, Convexified Gauss curvature flow of bounded open sets in an anisotropic external field: a stochastic approximation and PDE, 37 pages. 2002.
- #571 Y. Nakano, Minimization of shortfall risk in a jump-diffusion model, 10 pages. 2002.
- #572 K. Izuchi and T. Nakazi, Backward Shift Invariant Subspaces in the Bidisc, 8 pages. 2002.
- #573 S. Izumiya, D. Pei and M. C. Romero-Fuster, The horospherical geometry of surfaces in Hyperbolic 4-space, 17 pages. 2002.
- #574 S. Izumiya and M. C. Romero-Fuster, The hyperbolic Gauss-Bonnet type theorem, 10 pages. 2002.
- #575 S. Izumiya and S. Janeczko, A symplectic framework for multiplane gravitational lensing, 19 pages. 2002.
- #576 S. Izumiya, M. Kossowski, D. Pei and M. C. Romero-Fuster, Singularities of C^{∞} -lightlike hypersurfaces in Minkowski 4-space, 18 pages. 2002.
- #577 S. Izumiya, D. Pei and M.Takahashi, Evolutes of hypersurfaces in Hyperbolic space, 21 pages. 2002.
- #578 Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equation with subcritical nonlinearity, 29 pages. 2002.
- #579 M. Tsujii, Physical measures for partially hyperbolic surface endomorphisms, 71 pages. 2003.
- #580 Y. Giga and K. Yamada, On viscous Burgers-like equations with linearly growing initial data, 19 pages. 2003.

Spectra Of Toeplitz Operators And Uniform Algebras

by

Takahiko Nakazi*

and

Tomoko Osawa*

*This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education

Mathematics Subject Classification $2000:46~\mathrm{J}$ 10, $46~\mathrm{J}$ 15, $47~\mathrm{A}$ 10, $47~\mathrm{B}$ 35

 $\,$ Key words and phrases : Toeplitz operator, uniform algebra, spectrum, convexhull, index

Abstract. Let A be a uniform algebra on X and \mathcal{P} a set of all probability measures on X. For each μ in \mathcal{P} , $H^2(\mu)$ is the closure of A in $L^2(\mu)$ and T^{μ}_{ϕ} is a Toeplitz operator on $H^2(\mu)$ for a continuous function ϕ on X. In this paper we study the invertibility and the spectrum of $\mathbf{T}_{\phi} = \sum_{\mu \in \mathcal{P}} \oplus T^{\mu}_{\phi}$. We show that if \mathbf{T}_{ϕ} is invertible then the index of ϕ is zero and if the converse is true for an arbitrary continuous function ϕ then A is a Dirichlet algebra on X. Moreover we study the spectrum of \mathbf{T}_{ϕ} .

§1. Introduction

Let X be a compact Hausdorff space, C = C(X) an algebra of all continuous complex-valued functions on X, and A a uniform algebra on X. \mathcal{P} denotes the set of all positive Borel measures on X with total mass 1. For each μ , $H^2(\mu)$ is defined as the closure of A in $L^2(\mu)$. Let P^{μ} be the orthogonal projection from $L^2(\mu)$ onto $H^2(\mu)$. For ϕ in C and f in $H^2(\mu)$, put

$$T^{\mu}_{\phi}f = P^{\mu}(\phi f).$$

In this paper, we study Toeplitz operators \mathbf{T}_{ϕ} on the Hardy space \mathbf{H}^2 for ϕ in C, where

$$\mathbf{T}_{\phi} = \sum_{\mu \in \mathcal{P}} \oplus T^{\mu}_{\phi} \text{ and } \mathbf{H}^2 = \sum_{\mu \in \mathcal{P}} \oplus H^2(\mu).$$

 $\sigma(\mathbf{T}_{\phi})$ denotes the spectrum of \mathbf{T}_{ϕ} and then $\sigma(\mathbf{T}_{\phi}) \supseteq \bigcup_{\mu \in \mathcal{P}} \sigma(T_{\phi}^{\mu})$. For ϕ , ψ in C $T_{\phi}^{\mu}T_{\psi}^{\mu} = P^{\mu}\mathbf{T}_{\phi}\mathbf{T}_{\psi}|H^{2}(\mu)$ and so \mathbf{T}_{ϕ} is a power dilation of T_{ϕ}^{μ} . $\|\mathbf{T}_{\phi}\| = \sup_{x \in X} |\phi(x)|$ and $\|T_{\phi}^{\mu}\| = \mu - ess\sup_{x \in X} |\phi(x)|$. T_{ϕ}^{μ} is the local part of \mathbf{T}_{ϕ} and \mathbf{T}_{ϕ} is more strongly related with A than T_{ϕ}^{μ} . The local part of \mathbf{T}_{ϕ} has been studied in [7] for arbitrary uniform algebra.

When X is the unit circle ∂D , A is the disc algebra \mathcal{A} and μ is the normalized Lebesgue measure $d\theta/2\pi$, $H^2=H^2(\mu)$ is the classical Hardy space and $T_\phi=T_\phi^\mu$ is the usual Toeplitz operator on H^2 . When μ is a finite positive Borel measure on ∂D , $H^2(\mu)$ is called a weighted Hardy space. In this classical case, our result shows that $\sigma(\mathbf{T}_\phi)=\sigma(T_\phi)$ for arbitrary ϕ in C. When X is the closed unit disc \bar{D} , A is the disc algebra \mathcal{A} and μ is the normalized area measure $\mathrm{rd} r d\theta/\pi$, $L_a^2=H^2(\mu)$ is the Bergman space and $T_\phi'=T_\phi'$ is the usual Toeplitz operator on L_a^2 . In this case, $\sigma(\mathbf{T}_\phi)\neq\sigma(T_\phi')$. By definition, \mathbf{T}_ϕ is strongly related with the uniform algebra, that is, $\mathcal{A}|\partial D$ or $\mathcal{A}|\bar{D}$ but T_ϕ or T_ϕ' is related with $d\theta/2\pi$ or $\mathrm{rd} r d\theta/\pi$. Suppose the classical Hardy space H^∞ is the weak * closure of \mathcal{A} in $L^\infty=L^\infty(\mu)$ with $\mu=d\theta/2\pi$. When X is the maximal ideal space of L^∞ , A is the Gelfand transform of H^∞ on X and μ is a representing measure on X for the origin, $H^2(\mu)$ is also the classical Hardy space H^2 and T_ϕ^μ is the usual Toeplitz operator T_ϕ . Our result implies that $\sigma(\mathbf{T}_\phi)=\sigma(T_\phi)$ for arbitrary ϕ in C= the Gelfand transform of L^∞ .

Let A be an arbitrary uniform algebra on X and M(A) the maximal ideal space of A. For a function ϕ in C, we say that the index of ϕ is zero if there exists a nonvanishing function g in C(M(A)) such that ϕg has a continuous logarithm on X. By the Arens-Royden theorem [3, p89], we can choose g as an element in A^{-1} . When A is a natural uniform algebra on the complex plane, our definition of the index of ϕ is same to the classical case (see [4, p281]).

In Section 2, we show that \mathbf{T}_{ϕ} is invertible if and only if there exist a positive constant δ and a function g in A^{-1} such that

$$\operatorname{Re} \phi g \geq \delta > 0$$
 on X .

This result is similar as that of the classical Toeplitz operator by Widom and Devinatz (see [2]). That is, T^{μ}_{ϕ} is invertible if and only if there exist a positive constant δ and a

function g in $H^{\infty}(\mu)^{-1}$ such that $\operatorname{Re}\phi g \geq \delta > 0$ a.e. on ∂D , when ϕ is in $L^{\infty}(\mu)$ and $\mu = d\theta/2\pi$. When C is a commutative C^* -subalgebra of $L^{\infty}(\mu)$, our theorem implies that if ϕ is a function in C and \mathbf{T}_{ϕ} is invertible then there exist a positive constant δ and a function g in $H^{\infty}(\mu)^{-1} \cap C$ such that $\operatorname{Re}\phi g \geq \delta > 0$ on ∂D . In the general setting, our result shows that if \mathbf{T}_{ϕ} is invertible then the index of ϕ is zero. When A is a Dirichlet algebra on X, if the index of ϕ is zero then \mathbf{T}_{ϕ} is invertible. We show that the converse is also true. If \mathbf{T}_{ϕ} is always invertible for an arbitrary function ϕ in C with index $\phi = 0$, then A is a Dirichlet algebra on X. In Section 3, we show that $\phi(X) \subseteq \{\lambda \in \mathcal{C} : \text{index } (\phi - \lambda) \neq 0\} \subseteq \sigma(\mathbf{T}_{\phi}) \subseteq \text{the convex hull of } \phi(X)$. Moreover when ϕ is in A or ϕ is real-valued in C, $\sigma(\mathbf{T}_{\phi})$ is completely described.

In this paper, A^{\perp} denotes the set of all annihilating measures on X and M(A) denotes the maximal ideal space of A. M(A) is called simply connected when the first Ćech cohomology group of M(A) with integer coefficients is zero. $\mathcal{R}(\phi)$ is the range $\phi(X)$ of ϕ in X. $\langle f, g \rangle_{\mu} = \int_{X} f \bar{g} d\mu$ is the inner product in $L^{2}(\mu)$ and $||f||_{\mu} = (\langle f, f \rangle_{\mu})^{1/2}$. ||F|| is the norm of F in \mathbf{H}^{2} . $||f||_{X} = \sup_{x \in X} |f(x)|$ and $||f + A||_{X} = \inf_{g \in A} ||f + g||_{X}$. $||\mathbf{T}_{\phi}||$ denotes the norm of the operator \mathbf{T}_{ϕ} on \mathbf{H}^{2} and $|T_{\phi}^{\mu}|$ denotes the norm of the operator T_{ϕ}^{μ} on $H^{2}(\mu)$.

$\S 2$. Invertibility of \mathbf{T}_{ϕ}

For each μ in \mathcal{P} , let I^{μ} be the identity operator on $L^{2}(\mu)$. For ϕ in C and f in $H^{2}(\mu)$, put $H^{\mu}_{\phi}f = (I^{\mu} - P^{\mu})(\phi f)$ and $\mathbf{H}_{\phi} = \sum_{\mu \in \mathcal{P}} \oplus H^{\mu}_{\phi}$. Lemma 1 is similar to a theorem of Nehari [8]. Lemma 2 is similar to a result of Nakazi [6] which was proved by Widom and Devinatz [2] when ϕ is unimodular. Theorem 1 is an analogue of a theorem of Widom and Devinatz [2] in the classical case.

Lemma 1. If ϕ is a function in C, then $|||\mathbf{H}_{\phi}||| = ||\phi + A||_X$.

Proof. It is clear that $|||\mathbf{H}_{\phi}||| \leq ||\phi + A||_X$. Fix $\phi \in C$ with $\phi \notin A$. By the Hahn-Banach theorem and the Riesz representation theorem, there exists a finite Borel measure $\nu \in A^{\perp}$ with $||\nu|| = 1$ such that

$$\|\phi + A\|_X = \int \phi d\nu.$$

Put $F = d|\nu|/d\nu$ and $\mu = |\nu|$, then $F \in L^2(\mu) \cap A^{\perp}$. Hence

$$\|\phi + A\|_X = \int \phi \cdot 1 \cdot \bar{F} d\mu = \langle H_{\phi}^{\mu} 1, F \rangle_{\mu} \le |H_{\phi}^{\mu}| \le |\|\mathbf{H}_{\phi}\||.$$

Lemma 2. Suppose ϕ is a function in C. \mathbf{T}_{ϕ} is left invertible if and only if there exists a positive constant ε and a function g in A such that

$$|\phi + g|^2 \le |\phi|^2 - \varepsilon$$
 on X .

Proof. The 'if' part is easy. In fact,

$$\mathbf{H}_{\phi}^{*}\mathbf{H}_{\phi} + \mathbf{T}_{\phi}^{*}\mathbf{T}_{\phi} = \mathbf{T}_{|\phi|^{2}}$$

because $(H^{\mu}_{\phi})^*H^{\mu}_{\phi} + (T^{\mu}_{\phi})^*T^{\mu}_{\phi} = T^{\mu}_{|\phi|^2}$ for all $\mu \in \mathcal{P}$. Hence

$$\mathbf{H}_{\phi}^*\mathbf{H}_{\phi} = \mathbf{H}_{\phi+g}^*\mathbf{H}_{\phi+g} \leq \mathbf{T}_{|\phi+g|^2} \leq \mathbf{T}_{|\phi|^2-\varepsilon}$$

and so

$$\mathbf{T}_{\phi}^*\mathbf{T}_{\phi} = \mathbf{T}_{|\phi|^2} - \mathbf{H}_{\phi}^*\mathbf{H}_{\phi} \ge \mathbf{T}_{\varepsilon}.$$

Now we will show the 'only if' part. If \mathbf{T}_{ϕ} is left invertible, then there exists $\varepsilon > 0$ such that $\mathbf{T}_{\phi}^* \mathbf{T}_{\phi} \geq \mathbf{T}_{\sqrt{2\varepsilon}}$. Hence $(T_{\phi}^{\mu})^* T_{\phi}^{\mu} \geq T_{\sqrt{2\varepsilon}}^{\mu}$ for all $\mu \in \mathcal{P}$ and so

$$\int |\phi f|^2 d\mu \ge 2\varepsilon \int |f|^2 d\mu \quad (f \in A)$$

for all $\mu \in \mathcal{P}$. Therefore $|\phi|^2 \geq 2\varepsilon > 0$. Hence $\mathbf{H}_{\phi}^* \mathbf{H}_{\phi} \leq \mathbf{T}_{|\phi|^2 - 2\varepsilon} \leq \mathbf{T}_{|\phi|^2 - \varepsilon}$ and so $\|\mathbf{H}_{\phi} F\|^2 \leq \|(\mathbf{T}_{|\phi|^2 - \varepsilon})^{1/2} F\|^2$ for all $F \in \mathbf{H}^2$. Therefore for any $\mu \in \mathcal{P}$, $f \in A$ and $g \in L^2(d\mu) \cap A^{\perp}$,

$$\begin{split} \left| \int \phi f \bar{g} d\mu \right|^2 &= |\langle H^\mu_\phi f, g \rangle_\mu|^2 \leq \|H^\mu_\phi f\|_\mu^2 \|g\|_\mu^2 \\ &\leq |\langle T^\mu_{|\phi|^2 - \varepsilon} f, f \rangle \|g\|_\mu^2 \leq \int (|\phi|^2 - \varepsilon) |f|^2 d\mu \int |g|^2 d\mu \end{split}$$

because $\|H^{\mu}_{\phi}f\|^2_{\mu} \leq \|(T^{\mu}_{|\phi|^2-\varepsilon})^{1/2}f\|^2_{\mu}$ for all $f \in A$. If $v^2d\mu \in \mathcal{P}$ and v is an invertible function in C, then for any $f \in A$ and $G \in L^2(v^2d\mu) \cap A^{\perp}$

$$\left| \int \phi f \bar{G} v^2 d\mu \right|^2 \le \int (|\phi|^2 - \varepsilon) |f|^2 v^2 d\mu \int |G|^2 v^2 d\mu.$$

It is easy to see that $v^2(L^2(v^2d\mu)\cap A^{\perp})=L^2(d\mu)\cap A^{\perp}$. Hence for any $f\in A$ and $g\in L^2(d\mu)\cap A^{\perp}$

$$\left|\int \phi f \bar{g} d\mu\right|^2 \leq \int (|\phi|^2 - \varepsilon)|f|^2 v^2 d\mu \int |g|^2 v^{-2} d\mu$$

because $G=g/v^2$ belongs to $L^2(v^2d\mu)\cap A^\perp$. Put $a^{-1}=\int (|\phi|^2-\varepsilon)^{-1/2}d\mu$ and $v^2=a(|\phi|^2-\varepsilon)^{-1/2}$, then $\int v^2d\mu=1$ and so $v^2d\mu\in\mathcal{P}$ by the definition of \mathcal{P} in Introduction. Then v^2 is an invertible function in C because $|\phi|^2\geq 2\varepsilon>0$. Hence for any $f\in A$ and $g\in L^2(d\mu)\cap A^\perp$

$$\left| \int \phi f \bar{g} d\mu \right|^2 \le \int (|\phi|^2 - \varepsilon)^{1/2} a|f|^2 d\mu \int (|\phi|^2 - \varepsilon)^{1/2} a^{-1} |g|^2 d\mu. \tag{*}$$

Put $u = (|\phi|^2 - \varepsilon)^{1/2}$, then $(A \cdot u^{-1})^{\perp} \cap (C \cdot u^{-1})^* = \{ud\lambda \; ; \; \lambda \in A^{\perp}\}$ where * denotes the dual. By the Hahn-Banach theorem,

$$\inf\{\|(\phi+h)u^{-1}\|_X \; ; \; h \in A\} = \sup\left\{\left|\int \phi d\lambda\right| \; ; \; \lambda \in A^{\perp} \; \text{ and } \; \int u d|\lambda| \le 1\right\}.$$

If $\phi \notin A$ then there exists a nonzero $\nu \in A^{\perp}$ with $\int ud|\nu| = 1$ such that

$$\inf \|(\phi + h)u^{-1}\|_X = \int \phi d\nu.$$

Put $F = d|\nu|/d\nu$, then $F \in L^2(d\nu) \cap A^{\perp}$ and $1 \in A$, hence by (\star)

$$\int \phi d\nu = \int \phi \cdot 1 \cdot \bar{F} d|\nu| \le \int (|\phi|^2 - \varepsilon)^{1/2} d|\nu| = \int u d|\nu| = 1.$$

Thus inf $\|(\phi + h)u^{-1}\|_X \le 1$. If $\varepsilon_1 < \varepsilon$, then for some $\delta > 0$ $|\phi|^2 - \varepsilon_1 \ge (1 + \delta)(|\phi|^2 - \varepsilon)$ and hence there exists a function g in A

$$|\phi|^2 - \varepsilon_1 \ge (1+\delta)(|\phi|^2 - \varepsilon) \ge |\phi + g|^2.$$

Lemma 3. Suppose ϕ is a function in C. \mathbf{T}_{ϕ} is left invertible if and only if there exists a positive constant δ and a function g in A such that

$$\operatorname{Re}\bar{\phi}g \ge \delta > 0$$
 on X .

Proof. If \mathbf{T}_{ϕ} is left invertible, then by Lemma 2 there exists g in A such that $|\phi|^2 \geq \varepsilon^2 + |\phi - g|^2$ for some constant $\varepsilon > 0$. Then, $|\phi|^2 \geq \varepsilon^2$, and so $1 \geq \varepsilon^2/|\phi|^2 \geq \varepsilon_1 > 0$ for some constant ε_1 . Hence

$$1 - \varepsilon_1 \ge 1 - \frac{\varepsilon^2}{|\phi|^2} \ge \left|1 - \frac{g}{\phi}\right|^2.$$

Therefore there exist constants ε_2 , ε_3 such that $\operatorname{Re} \frac{g}{\phi} \geq \varepsilon_2 > 0$ and so $\operatorname{Re} \overline{\phi} g \geq \varepsilon_2 |\phi|^2 \geq \varepsilon_2 \varepsilon^2 > 0$. Conversely if $\operatorname{Re} \overline{\phi} g \geq \delta > 0$, then $0 < \varepsilon_3 \leq |\phi| \leq \gamma < \infty$ and so $\operatorname{Re} \frac{g}{\phi} \geq \frac{\delta}{\gamma} > 0$. Hence there exist two positive constant ε_4 and ε_5 such that $\left| \varepsilon_4 \frac{g}{\phi} - 1 \right|^2 \leq 1 - \varepsilon_5$. Hence $|\varepsilon_4 g - \phi|^2 \leq (1 - \varepsilon_5) |\phi|^2$ and so

$$|\varepsilon_4 g - \phi|^2 + \varepsilon_5 \varepsilon^2 \le |\varepsilon_4 g - \phi|^2 + \varepsilon_5 |\phi|^2 \le |\phi|^2.$$

Lemma 4. Suppose ϕ is a function in C. \mathbf{T}_{ϕ} is invertible if and only if $\mathbf{T}_{\frac{\phi}{|\phi|}}$ and $\mathbf{T}_{|\phi|}$ are invertible.

Proof. If \mathbf{T}_{ϕ} is invertible, and $\mathbf{T}_{\phi}^* = \mathbf{T}_{\bar{\phi}}$ is also invertible and so by Lemma 3 there exists a constant δ_1 and a function g in A such that

$$\operatorname{Re} \phi g \geq \delta_1 > 0.$$

Then ϕ is invertible in C and so there exists a constant δ_2 such that

$$\operatorname{Re} \frac{\phi}{|\phi|} g \ge \delta_2 > 0.$$

Hence by Lemma 3 $\mathbf{T}_{\phi/|\phi|}$ and $\mathbf{T}_{|\phi|}$ are invertible. The converse can be proved similarly by Lemma 3.

Theorem 1. Suppose ϕ is a function in C. Then, \mathbf{T}_{ϕ} is invertible if and only if there exist a constant δ and a function g in A^{-1} such that

$$\operatorname{Re} \phi q > \delta > 0$$
 on X .

Proof. By Lemma 4, we may assume that ϕ is unimodular. If \mathbf{T}_{ϕ} is invertible, then by Lemma 2 there exists a function g in A such that $\|\phi+g\|<1$ and so $\|1+\bar{\phi}g\|<1$. Hence $\mathbf{T}_{\bar{\phi}}\mathbf{T}_g$ is invertible and so \mathbf{T}_g is invertible because $\mathbf{T}_{\phi}^*=\mathbf{T}_{\bar{\phi}}$ is invertible. Therefore $gH^2(\mu)=H^2(\mu)$ for any $\mu\in\mathcal{P}$ and so g^{-1} belongs to $H^2(\mu)$. Lemma 4 implies that $g^{-1}\in C$. We will show that g^{-1} belongs to A. Then the proof of Lemma 3 implies the theorem. If $g^{-1}\notin A$, there exists a finite measure λ in A^{\perp} such that $\|\lambda\|=1$ and $\int g^{-1}d\lambda\neq 0$. Let $F=d\lambda/d|\lambda|$, then \bar{F} is orthogonal to $H^2(|\lambda|)$. Since $\int g^{-1}Fd|\lambda|\neq 0$, $g^{-1}\notin H^2(|\lambda|)$. This contradiction implies that $g^{-1}\in A$. Conversely if there exist a constant δ and a function g in A^{-1} such that $\mathrm{Re}\phi g\geq \delta>0$, then there exists a constant δ' such that $\mathrm{Re}\phi \frac{g}{|g|}\geq \delta'>0$. Hence $\mathrm{Re}\bar{\phi}\frac{f}{|f|}\geq \delta'>0$ where $f=g^{-1}$. By lemma 3, \mathbf{T}_{ϕ} is invertible.

Corollary 1. Let ϕ be a function in C. If \mathbf{T}_{ϕ} is invertible, then there exists a function g in A^{-1} such that ϕg has a continuous logarithm on X, that is, the index of ϕ is zero.

The converse of Corollary 1 is not true as Corollary 2 shows.

Corollary 2. If \mathbf{T}_{ϕ} is always invertible for an arbitrary function ϕ in C with index $\phi = 0$, then A is a Dirichlet algebra on X.

Proof. If $v \in C$ is real-valued and $\phi = e^{iv}$, then index $\phi = 0$. By hypothesis, \mathbf{T}_{ϕ} is invertible and so by Theorem 1 there exists a function g in A such that $\text{Re}g\bar{\phi} > 0$ on X. Corollary 4.7 in [5] shows that A is a Dirichlet algebra.

§3. Spectrum of T_{ϕ}

Let B be a subset of C^{-1} . We define a generalization of the convex hull of the range $\mathcal{R}(\phi)$ of ϕ in C. That is, Hull $\{\mathcal{R}(\phi), B\}$ is a set of all complex numbers λ which satisfy the following: There do not exist a constant δ and a function q in B such that

Re $(\phi - \lambda)g \geq \delta > 0$ on X. Hull $\{\mathcal{R}(\phi), B\}$ need not be determined by $\mathcal{R}(\phi)$ and B in general. Hull $\{\mathcal{R}(\phi), B\}$ contains $\mathcal{R}(\phi)$. If $B = \{\lambda \in \mathcal{L} : \lambda \neq 0\}$, then Hull $\{\mathcal{R}(\phi), B\}$ is the convex hull of $\mathcal{R}(\phi)$. If $B = C^{-1}$, then Hull $\{\mathcal{R}(\phi), B\} = \mathcal{R}(\phi)$. If $B = \exp C$, then Hull $\{\mathcal{R}(\phi), B\} = \{\lambda \in \mathcal{L} : \phi - \lambda \text{ does not have a continuous logarithm on } X\}$. In this section, we are interested in Hull $\{\mathcal{R}(\phi), \exp A\}$ and Hull $\{\mathcal{R}(\phi), A^{-1}\}$. If ϕ is in A then Hull $\{\mathcal{R}(\phi), A^{-1}\} = \hat{\phi}(M(A))$. This is proved in the proof of (4) of Theorem 2. (2) and (4) of Theorem 2, and Corollaries 3 and 4 are similar to theorems in [1, Chapter 7]. For example, (2) of Theorem 2 is an analogue of a theorem of Hartman-Wintner (cf.[1, 7.20 Theorem]).

Theorem 2. Let ϕ be a function in C.

- (1) $\sigma(\mathbf{T}_{\phi}) = Hull \{ \mathcal{R}(\phi), A^{-1} \}.$
- (2) $\mathcal{R}(\phi) \subseteq \sigma(\mathbf{T}_{\phi}) \subseteq \text{the convex hull of } \mathcal{R}(\phi).$
- (3) $\sigma(\mathbf{T}_{\phi}) \supseteq \{\lambda \in \mathcal{L} : index(\phi \lambda) \neq 0\}.$
- (4) If ϕ is in A, then $\sigma(\mathbf{T}_{\phi}) = \hat{\phi}(M(A))$.
- (5) If ϕ is real-valued, $a = \min \phi$ and $b = \max \phi$, then $\sigma(\mathbf{T}_{\phi}) \supseteq \mathcal{R}(\phi) \ni a, b$ and $\sigma(\mathbf{T}_{\phi}) \subseteq [a, b]$. Moreover $\lambda \in [a, b] \setminus \sigma(\mathbf{T}_{\phi})$ if and only if $\chi_{E_{\lambda}}$ belongs to A where $E_{\lambda} = \{x \in X : \phi(x) \lambda > 0\}$.

Proof. (1) is clear by Theorem 1. (2) is a result of (1). (3) is a result of (1) and the definition of the index. (4) If $\lambda \notin \sigma(\mathbf{T}_{\phi})$, then by Theorem 1 there exist a positive constant δ and $g \in A^{-1}$ such that $\text{Re}(\phi - \lambda)g \geq \delta > 0$. Hence there exists a function $f \in A$ such that $(\phi - \lambda)g = e^f$ and so $\phi - \lambda \in A^{-1}$. Therefore $\lambda \notin \hat{\phi}(M(A))$. Conversely if $\lambda \notin \hat{\phi}(M(A))$, then $\phi - \lambda \in A^{-1}$. Put $g = (\phi - \lambda)^{-1}$ and $\delta = 1$, then $\text{Re}(\phi - \lambda)g = \delta > 0$. Hence Theorem 1 implies that $\lambda \notin \sigma(\mathbf{T}_{\phi})$. (5) (1) implies that $\sigma(\mathbf{T}_{\phi}) \supseteq \mathcal{R}(\phi) \ni a, b$ and $\sigma(\mathbf{T}_{\phi}) \subseteq [a, b]$. If $\lambda \in [a, b] \setminus \sigma(\mathbf{T}_{\phi})$, then by (1) there exist δ and $g \in A^{-1}$ such that $\text{Re}(\phi - \lambda)g \geq \delta > 0$. Since $(\phi - \lambda)/|\phi - \lambda| = 2\chi_{E_{\lambda}} - 1$, $\text{Re}g \geq \delta/|\phi - \lambda|$ on E_{λ} and $\text{Re}g \leq -\delta/|\phi - \lambda|$ off E_{λ} . A theorem of Runge implies that $\chi_{E_{\lambda}}$ belongs to A. Conversely if $\chi_{E_{\lambda}} \in A$, then $g = 2\chi_{E_{\lambda}} - 1$ belongs to A^{-1} and so $\text{Re}(\phi - \lambda)g \geq \delta > 0$. (1) implies that $\lambda \in [a, b] \setminus \sigma(\mathbf{T}_{\phi})$.

Corollary 3. Suppose χ_E is a characteristic function of a subset E in X, and a and b are real numbers with a < b. If $\phi = a\chi_E + b\chi_{E^c}$ is in C, then $\sigma(\mathbf{T}_{\phi}) = \{a, b\}$ when χ_E is in A and $\sigma(\mathbf{T}_{\phi}) = [a, b]$ when χ_E is not in A.

Corollary 4. Suppose A is antisymetric. If ϕ is a real-valued function in C with $a = \min \phi$ and $b = \max \phi$, then $\sigma(\mathbf{T}_{\phi}) = [a, b]$.

Corollary 5. Suppose A is a Dirichlet algebra on X and ϕ is a function in C.

- (1) $\sigma(\mathbf{T}_{\phi}) \subseteq \{\lambda \in \mathcal{C} : \phi \lambda \text{ does not have a continuous logarithm on } X\}.$
- (2) If M(A) is simply connected, then $\sigma(\mathbf{T}_{\phi}) = \{\lambda \in \mathcal{C} : \phi \lambda \text{ does not have the continuous logarithm on } X\}.$

Proof. (1) If $\log(\phi - \lambda) \in C$, then there exist two real-valued functions u, v

such that $\phi - \lambda = e^{u+iv}$. Since A is a Dirichlet algebra, there exists $f \in A$ such that $||v - \operatorname{Im} f|| < \pi/2$. Put $g = e^{-f}$ then $\operatorname{Re}(\phi - \lambda)g \ge \delta > 0$ for some constant δ and $g \in A^{-1}$. By Theorem 2, λ belongs to $\sigma(\mathbf{T}_{\phi})^c$. (2) Since M(A) is simply connected, by the Arens-Royden theorem $A^{-1} = \exp A$. Hence (1) of Theorem 2 imply (2).

References

- 1. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York and London, 1972.
- 2. A. Devinatz, Toeplitz operators on H^2 spaces, Trans.Amer.Math.Soc., 112(1964), 304-317.
- 3. T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969
- 4. T. Gamelin, J. Garnett, L. Rubel and A. Shields, On badly approximable functions, J. Approx.Th. 17(1976), 280-296.
- 5. D. H. Luecking, On badly approximable functions and uniform algebras, J. Approx.Th. 22(1978), 161-176.
- 6. T. Nakazi, Absolute values of Toeplitz operators and Hankel operators, Canad.Math.Bull., 34(1991), 249-253.
- 7. T. Nakazi and M. Yamada, Invertible Toeplitz operators and uniform algebras, Acta Sci.Math.(Szeged) 59(1994), 173-185.
- 8. Z. Nehari, On bounded bilinear forms, Ann. of Math. 65(1957), 153-162.

Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
e-mail: nakazi@math.sci.hokudai.ac.jp

and

Mathematical and Scientific Subjects Asahikawa National College of Technology Asahikawa 071-8142, Japan