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PHYSICAL MEASURES FOR PARTIALLY HYPERBOLIC
SURFACE ENDOMORPHISMS

MASATO TSUJII

ABSTRACT. We consider dynamical systems generated by partially hyperbolic
surface endomorphisms of class C" with one-dimensional strongly unstable
subbundle. As the main result, we prove that such a dynamical system gener-
ically admits finitely many ergodic physical measures whose union of basins of
attraction has total Lebesgue measure, provided that r > 19.

1. INTRODUCTION

In the study of smooth dynamical systems from the standpoint of ergodic theory,
one of the most fundamental questions is whether the following preferable picture
is true for almost all of them: The asymptotic distribution of the orbit for Lebesgue
almost every initial point exists and coincides with one of the finitely many ergodic
invariant measures that are given for the dynamical system. The answer is expected
to be affirmative in general[12]. However it seems far beyond the scope of researches
at present to answer the question in the general setting. The purpose of this paper
is to provide an affirmative answer to the question in the case of partially hyperbolic
surface endomorphisms with one-dimensional strongly unstable subbundle.

Let M be the torus T = R?/Z? or, more generally, a region on the torus whose
boundary consists of finitely many C?curves: e.g. an annulus (R/Z) x [-1/3,1/3].
We equip M with the standard Riemannian metric ||| and the Lebesgue measure m
that are inherited from R?. In this paper, we call a Clmapping F : M — M a
partially hyperbolic endomorphism if there are positive constants A and ¢ and a
continuous decomposition of the tangent bundle TAM = E¢ & E* with dim E°® =
dim E* = 1 such that, for all z € M and n > 0,

L || DFgu(z|| > exp(An — ¢) and

2. |DF"ge(s)ll < exp(=An 4 ¢)||[DF"|gu(s).

The subbundles E¢ and E* are called the central and strongly unstable subbundle
respectively. Notice that we do not assume these subbundles to be invariant in
the definition above. The set of partially hyperbolic C"endomorphisms on M is an
open subset in the space C"(M, M), provided r > 1.

A physical measure for a continuous mapping F : M — M is an F-invariant
probability measure whose basin of attraction

n—1
1 -
By =B F):=32e M | — E dpi(zy — p weakly as n — oo o,
n
i=0

has positive Lebesgue measure. One of the main results of this paper is
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2 MASATO TSuJII

Theorem 1.1. A partially hyperbolic C"endomorphism on M generically admits
finitely many ergodic physical measures whose union of basins of attraction has total
Lebesque measure, provided that r > 19.

More detailed versions of this theorem will be given in the next section. Here we
explain the ideas behind the results of this paper. First of all, the readers should
notice that we do not claim in the theorem above that the physical measures are
hyperbolic. Instead, we will show that the physical measures for a generic partially
hyperbolic endomorphism have nice properties even if they are not hyperbolic. This
is the novelty of the argument in this paper.

For a partially hyperbolic endomorphism F : M — M Lyapunov exponent takes
two distinct values at each point: The larger is positive and the smaller is indefinite.
The latter is called the central Lyapunov exponent, as it is attained by the vectors
in the central subbunle. An invariant measure is hyperbolic if the central Lyapunov
exponent is non-zero almost everywhere with respect to it. In the former part of
this paper, we will analyze hyperbolic invariant measures by using the techniques in
Pesin theory or smooth ergodic theory. As conclusions, we will prove the following
facts under generic conditions on F: Let x > 0 be a positive number, which may
be arbitrarily small. Then there are only finitely many ergodic physical measures
whose central Lyapunov exponent is larger than y in absolute value. Further, if
X is the complement of the union of their basins of attraction, and if u is a weak
limit point of the sequence n~1 Z;:o] m|x o F~%, then the absolute value of the
central Lyapunov exponent is not larger than x for p-almost every point. These
facts are far from trivial. But the argument in the proofs does not deviate far from
the existing ones in the smooth ergodic theory.

The key claim in the argument of this paper is that, if the number x is small
enough, the measure p as above for a generic partially hyperbolic endomorphism
is absolutely continuous with respect to Lebesgue measure and the density satis-
fies some regularity conditions. The regularity conditions on the density enables
us to show that p is a convex combination of finitely many ergodic physical mea-
sures whose union of basins of attraction has total measure with respect to m|x.
With these facts and those mentioned in the preceding paragraph, we conclude the
theorem above.

The conclusion of the key claim may appear unusual, since the measure p may
have neutral or even negative central Lyapunov exponent while we usually meet
absolutely continuous invariant measures as a consequence of expanding property
of dynamical systems in all directions. Intuitively, we can explain the conclusion
as follows: As a consequence of the dominating expansion in the strongly unstable
directions, the limit measure p should have some smoothness or uniformity in those
directions. In fact, we can show that the natural extensions of u and its ergodic
components to the inverse limit are absolutely continuous along the strongly un-
stable manifolds. So, for each ergodic component p’ of p, we can cut a curve ~v out
of a strongly unstable manifold so that p' is attained as a weak limit point of the
sequence 11 Z:;_ol v, 0 F~% where v, is a smooth measure on 7. Since F expands
the curve v uniformly, the image F™(~) for large n should be a long curve which is
transversal to the central subbundle E¢. Imagine to look into a small neighborhood
of a point in the support of p/. Then the image F™(~v) should appear as a bunch
of short pieces of curve in that neighborhood. The number of the pieces of curve
should grow exponentially as n gets large. And they would not concentrate in the
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central direction strongly, as the central Lyapunov exponent is nearly neutral al-
most everywhere with respect to p’. These suggest that the ergodic component p’
should have some smoothness or uniformity in the central direction as well as in
the strongly unstable direction and, hence, the measure ;1 should be absolutely
continuous with respect to Lebesgue measure.

On the technical side, an important idea in the proof of the key claim is that
we look at the angles between the short pieces of curve mentioned in the preceding
paragraph rather than their positions. As we perturb the mapping F, it turns out
that we can control the angles between those pieces of curve to some extent, though
we can not control their positions by the usual problem of interference. And we can
show that the pieces of curve satisfy some transversality condition generically. In
order to show the conclusion of the key claim, we relate the transversality condition
to absolute continuity of the measure pu. To this end, we make use of an idea in
the paper[13] by Peres and Solomyak, which treat a problem in fractal geometry
posed by Erdés. Since we can not explain the idea in short, we will illustrate it in
the beginning of section 6 by using a simple example. Actually we have used the
same idea in our previous paper[19], which the reader can regard as a study for this
work. Lastly, the author would like to note that the idea in {13] can traces back to
the papers of Falconer[5] and Simon and Pollicot[16].

Acknowledgment: I would like to thank Jéréme Buzzi and Mitsuhiro Shishikura
for valuable comments in writing this paper.

2. STATEMENT OF THE MAIN RESULTS

Let PH" be the set of partially hyperbolic C"endomorphisms on M and PHj
the subset of those without critical points. We consider the subset R” of mappings
F € PH" that satisfy the following two conditions:

(1) F admits a finite collection of ergodic physical measures whose union of basins
of attraction has total Lebesgue measure on M, and
(2) a physical measure for F is absolutely continuous with respect to Lebesgue
measure if the sum of its Lyapunov exponents is positive.
In this paper, we claim that almost all partially hyperbolic C"endomorphisms on M
satisfy the conditions (1) and (2) above or, in other words, belong to the subset R”.
The former part of our main result is stated as follows:

Theorem 2.1. (I) The subset R" is a residual subset in PH', provided r > 19.
(IT) The intersection R™ NPH is a residual subset in PHY, provided r > 2.

The conclusions of this theorem mean that the complement of the subset R” is
a meager subset in the sense of Baire’s category argument. However the recent
progress in dynamical system theory has thrown serious doubt that the notion of
genericity based on Baire’s category argument may not have its literal meaning. In
fact, it can happen that the dynamical systems in some meager subset appear as
subsets with positive Lebesgue measure in the parameter spaces of typical families.
For example, compare Jakobson’s theorem[21] and the density of Axiom A[l1, 17]
in one-dimensional dynamical systems. For this reason, we dare to state our claim
also in a measure-theoretical framework, though no measure-theoretical definition
that corresponds to the notion of genericity has been firmly established yet.

Let B be a Banach space. Let 7, : B — B be the translation by v € B, so
that 7,(x) = x + v. A Borel finite measure M on B is said to be quasi-invariant
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along a linear subspace L C B if M o 7,1 is equivalent to M for any v € L. In
the case where B is finite-dimensional, a Borel finite measure on B is equivalent to
the Lebesgue measure if and only if it is quasi-invariant along the whole space B.
But, unfortunately enough, it is known that no Borel finite measures on an infinite-
dimensional Banach space are quasi-invariant along the whole space[22]. This is
one of the reasons why we do not have obvious definitions for the concept like
Lebesgue almost everywhere in the cases of infinite-dimensional Banach spaces or
Banach manifolds such as the space C"(M, M). Nevertheless, there may be Borel
finite measures on B that is quasi-invariant along dense subspaces. In fact, on the
Banach space C" (A, R?), there exist Borel finite measures that are quasi-invariant
along the dense subspace CTT2(M,R?). (Lemma 3.16.) For integers s > r > 1,
we will denote by QT the set of Borel probability measures on C”(M,R?) that are
quasi-invariant along the subspace C'*( M, R?) and regard the measures in these sets
as substitutions for the (non-existing) Lebesgue measure.

Let us consider the space C"(M,T) of C"mappings from M to the torus T,
which contains the space C™(M, M) of C"endomorphisms on M. For a mapping G
in C"(M, T), we consider the mapping
(1) dg: C"(M,R?) - C™(M,T), Fw G+F
We say that a subset X C C"(M, M) is shy with respect to a measure M on
C7(M,R?) if ®;'(X) is a null subset with respect to M for any G € C™(M,T).
This is a slight modification of the notion of shyness introduced by Hunt, Sauer

and Yorke [8, 9]. (See also [20].)
Put 8§ :=PH"\R". The latter part of our main result is stated as follows.

Theorem 2.2. (I) The subset S is shy with respect to a measure M, in Q% if
the integers r > 2 and s > r -+ 3 satisfy

(2) (r2)(r+1)<(ru2)<2(r3)

for some integer 3 < v < r — 2. Moreover, 8™ is shy with respect to any measure
in QF_ 1 if r > 2 and s > r + 3 satisfy the condition (2) with s replaced by s+ 2 for
some integer 3 < v < r— 2.

(I) S" N PHY is shy with respect to any measure in QF for s > r > 2.

v

(2.9ru+1)>

Remark. The inequality (2) holds for the combinations (r,s,v) = (19,22,3) and
(21,26, 3) for example. But it does not hold for any s > r+3and 3 <v <r —2
unless r > 19.

As an advantage of the measure-theoretical notions introduced above, we can
derive the following corollary on the families of mappings in PH", whose proof
is given in the appendix. Let us regard the space CT(M x [~1,1]%, M) as that
of C"families of endomorphisms on M with parameter space [—1, 1}"' . We can
introduce the notion of shyness for the Borel subsets in this space in the same way
as we did for those in C"(M, M). Let mgx be the Lebesgue measure on RX.

Corollary 2.3. The set of C" families F(z,t) in CT(M x [~1,1]*, M) such that
mps ({t € [-1,1)* | F(-,t) € S7}) > 0

is shy with respect to any Borel finite measure on C™ (M x [—1,1]*,R?) that is quasi-
invariant along the subspace C5~1(M x|[—1,1]% R?), provided that the integers T > 2
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[24

and s > r -+ 3 satisfy the condition (2) with s replaced by s + 2 for some integer
<y <r—2.

We give a few comments on the main result above. The restriction that the
surface M is a region on the torus is actually not very essential. We could prove
theorem 2.1 with M being a general compact surface by modifying the proof slightly.
The main reason for this restriction is the difficulty in generalizing the notion of
shyness to the spaces of endomorphisms on general compact surfaces. Since the
definition depends heavily on the linear structure of the space C” (M, R?), we hardly
know how we can modify this notion naturally so that it is consistent under the non-
linear coordinate transformations. The generalization or modification of the notion
of shyness should be an important issue in the future. Besides, the restriction on
M simplifies the proof considerably and does not exclude the interesting examples
such as the so-called Viana-Alves maps[1, 23].

The assumptions on differentiability in the main theorems are crucial in our
argument especially in the part where we consider the influence of the critical
points on the dynamics. We do not know whether they are technical ones or not.

As we called attention in the introduction, the main theorems tell nothing about
hyperbolicity of the physical measures. Of course, it is natural to expect that the
physical measures are hyperbolic generically. The author think it not too optimistic
to expect that R" contains an open dense subset of PH" in which the physical
measures for the mappings are hyperbolic and depend on the mapping continuously.

Generalization of the main theorems to partially hyperbolic diffeomorphisms on
higher dimensional manifolds is an interesting subject to study. Our argument
on physical measures with nearly neutral central Lyapunov exponent seems to be
complementary to the recent works[2, 3] of Alves, Bonatti and Viana. However, as
far as the author understand, there exist essential difficulties in the case where the
dimension of the central subbundle is higher than one.

The plan of this paper is as follows: We give some preliminary arguments in
section 3. We first define some basic notations and then introduce the notions of
admissible curve and admissible measure, which play central rolls in our argument.
The former is taken from the paper of Viana[23] with slight modification and the
latter is a corresponding notion for measures. Next we introduce two conditions
on partially hyperbolic endomorphisms, namely, the transversality condition on
unstable cones and the no flat contact condition. At the end of section 3, we
shall give a concrete plan of the proof of the main theorems using the terminology
introduced in this section. In section 4, we study hyperbolic physical measures
using Pesin theory. Section 5 is devoted to basic estimates on the distortion of the
iterates of partially hyperbolic endomorphisms. Then we go into the main part of
this paper, which consists of three mutually independent sections. In section 6,
we prove that a partially hyperbolic endomorphism belongs to the subset R” if it
satisfies the two conditions above. In section 7 and 8 respectively, we prove that
each of the two conditions holds for almost all partially hyperbolic endomorphisms.

3. PRELIMINARIES

In this section, we prepare some notations, definitions and basic lemmas that we
shall use frequently in the later sections.

3.1. Notations. Throughout this paper, we assume r > 2. Let F': M — M be a
C™mapping and C(F) the critical set of F'. For a non-zero tangent vector v € T, M
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at a point z € M, we define
D.F(z.v) = [[DF:(v)|/|v]]

and
D*F(z,v) = (det DF,)/ D, F(z,v) if DF(v) # 0.

Then we have |D*F(z,v)| = || DF*(v*)|| / [[v*]] for any cotangent vector v* # 0 at

F(z) that is normal to DF(v). We shall write D, F(v) and D*F(v) for D.F(z,v)

and D*F(z,v) respectively in places where the point z is clear from the context.
For a C"mapping F : M — R?, the C"norm of F is defined by

oot
prerTme)
Jexdby
where (z,y) is the coordinate on T that is induced by the standard one on RZ,
Similarly, for C"mappings F' and G in C"(M,T), the C"distance is defined by

aa+bF (f)a%—bG
dexdby  9exdby } ’

For a tangent vector v € TM, we denote by v+ the tangent vector that is obtained
by rotating v by the right angle in the counter-clockwise direction. For two tangent
vectors u and v, we denote by Z(u, v) the angle between them even if they belongs
to the tangent spaces at different points. Let exp, : T,T — T be the exponential
mapping, which is defined simply by exp,{v) = z + v in our case. For a point z of
an metric space and a positive number §, let B(z, d) be the open disk with center at
z and radius §. Likewise, for a subset X in a metric space, let B(X, ) be its open
d-neighborhood. For a positive number ¢, we define a lattice I.{4) as the subset of
points (x,y) in T whose components,  and y, are multiples of 1/({1/6]+1), so that
the disks B(z, §) for points z € IL(J) cover the torus T.

|F|lcr = max max
zeM 0<a+b<r

de(F,G) = max max {d(F(z), G(2)), | Jnax

3.2. Some open subsets in PH". In this subsection, we introduce bounded open
subsets in the space PH" in which the mappings enjoy some uniform estimates. For
the proof of the main theorems, we can restrict ourselves to such open subsets. This
simplifies the argument considerably.

Let 8§ be the subset of mappings F in PH" that violate either of the conditions:
(Al) The image F(M) is contained in the interior of Af;
(A2) The function z — det DF, has 0 as its regular value;
(A3) The restriction of F' to the critical set C(F) is transversal to C(F).
Notice that the condition (A2) and (A3) are trivial if the mapping F has no critical
points. To prove the following lemma, we have only to apply Thom’s jet transver-
sality theorem[6] and its measure-theoretical version[20, Theorem C].

Lemma 3.1. The subset 8§ is a closed nowhere dense subset in PH™ and shy with
respect to any measure in QF for s > r > 2,

Remark. The terminology in [20] is different from that in this paper. But we can
put theorem C and other results in [20] into our terminology without difficulty.

Consider a C"mapping Fy in PH" and let TM = E° @ E* be a decomposition
of the tangent bundle which satisfies the conditions in the definition of partially
hyperbolic endomorphism for F' = F;. Notice that, though the central subbundle
E? is uniquely determined by the conditions in the definition, the strongly unstable
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subbundle E* is not. Indeed any continuous subbundle transversal to E® satisfies

the conditions in the definition possibly with different constants A and ¢. Making

use of this arbitrariness, we can assume that E* is a C*°subbundle. Further, by
taking E* nearly orthogonal to E€ and by changing the constants A and ¢, we can
assume that there exist positive-valued C'*functions 8¢ and 8* on M such that the
cone fields

SU(z) ={v e T.M\ {0} | Z(v,E*(2)) < 6%(z)} and

S¢(z) = {v e .M\ {0} | Z(v',E¥(2)) < 6°(2)}

satisfy the following conditions at every point z € M:

1) 8%(2) N8*(z) = 0;

) E°(z)\ {0} is contained in the interior of the cone S¢(z);

3) DFj(S“( }) is contained in the interior of S*(Fy(z));

B4) (DFy)71(S¢(Fi(2))) is contained in the interior of S¢(2);

B5) For any v € 8¥(z) and n > 1, we have
(1) [ DI (z,0)[| > exp(An —¢)  and
(2) I1D"F(z,v)|| <exp(—An + )| DF (2, v)]|.

Suppose that the mapping Fy does not belong to ). Then we can take a small

number p > 0 and a large integer A > 0 so that the following conditions hold for

any C"mapping F satisfying de-(F, Fy) < 2p:

(C1) The conditions (B3), (B4) and (B5) with Fj replaced by I7;

(C2) The parallel translation of E¢(Fy(z)) to F(2) is contained in S¢(F(z)) U {0}
for any z € M;

(C3) d(F(M),0M) > p;

(C4) The function z + det DF, has no critical points on B(C(F), p) and it holds
{det DF,| > p-d(z,C(F)) for z € B(C(F), p);

(Ch) If a point z € M satisfies d(z,wy) < p and d(F(z),wz) < p for some points
wy,wy € C(F) and if v € S%(z), the angle between DF(v) and the tangent
vector of C(F) at ws is larger than p;

(C6) #F1(z) < A and |[DF,| < A for any z € M.

We can choose countably many pairs of a C"mapping F; in PH"\ S and a
positive number p as above so that the open subsets

U={FecC (M M)|de(F;, F) < p}

(B
(B2
(B
(
(

cover PH" \ &. In order to prove the main theorems, theorem 2.1 and 2.2, it is
enough to prove their claims by restricting ourselves to each of such open subsets U.
Therefore we henceforth fix a C"mapping Fy in PH" \ Sp, subbundles E€¢ and E*,
C*functions §¢ and 6*, cone fields 8°(-) and S*(.) and positive numbers A, ¢, p
and A as above, and consider the mappings in the corresponding open subset .

3.3. Remarks on the notation for constants. In this paper, we shall introduce
various constants that depend only on the integer » > 2 and the objects that we
fixed at the end of the last subsection. In order to distinguish such kind of constants,
we make it as a rule to denote them by symbols with subscript g. Obeying this
rule, we shall denote Ay, ¢q, pg and A, for the constants A, ¢, p and A4 hereafter.
Notice that, once we denote a constant by a symbol with subscript g, we mean
that it is a constant of this kind. In order to save symbols for constants, we shall
frequently use a generic symbol Cy for large positive constants of this kind. Note
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that the value of the constants denoted by €y may be different from place to place
even in a single expression. For instance, ridiculous expressions like 2C, < C, can
be true, though we shall not really meet such ones. Also note that we shall omit
the phrases on the choice of the constants denoted by C, in most cases.

Also we can and do introduce a constant A, > 0 such that
3) 41 |D*F™(z,w)| < Z(DF™(u), DF™(v)) < 4, [D*F"™(z,w)|

9 D.Fn(z,w) Z{u,v) D.Fn(z,w)

forany z € M, n > 1 and tangent vectors u, v, w ¢ S*(z). We shall use the following
relations frequently: For any FF € U, z € M, v € 8*(z) and n > 1, we have
4) C'g_1 ~d(z,C(F)) < |det DF,| < exp(Ay)||[D"F"(z,v)|| < Cy -d(z,C(F)),

(5)  C,' <|ID.F"(z0)l| < |DEY| < Gy DoF™(z,0)]

and, if z ¢ C(F'), also
6) LD F (=) < [(DFD) Y < 1D F(2,0)

3.4. Adimissible curves. In this subsection, we introduce the notion of admissible
curve. From the forward invariance of the unstable cones S*, the mappings in
U preserve the class of C'curves whose tangent vectors belong to S*. We shall
investigate such class of curves and find a subclass which is uniformly bounded in
CTlsense and essentially invariant under the iterates of mappings in &. We shall
call a curve in this subclass an admissible curve.

In this paper, we always assume that the curves are regular and parameterized
by length. Let v : [0,a] — M be a C"curve such that v'(t) € S*(v(¢)) for t € [0, al.
As we assume ||[7'(¢)]] = 1, the second differential of ~ is written in the form

d2 - _ d2 ~7 1

L0 = () (7 (1)
where d?v : [0,a] — R is a C"function. We define d*~(¢) for 3 < k < r as the
(k — 2)-th differential of the function d?vy(t).

Let Fi.v : [0,a'] — M be the image of the curve v under a mapping F € U.
Notice that F,v is not simply the composition F o~, because we assume F.v to be
parameterized by length. The right relation between v and F.v is given by

(7) Foy(p(t) = F(v(1))

where p : [0,a] — [0,d/] is the unique C"diffeomorphism satisfying p(0) = 0 and
4 p(t) = D, F(y(t),7/(t)). Differentiating the both sides of (7), we get the formula

D.F(v(1),7'(t)) - (Fey) (p(t) = DE,y (7'(2))
for t € [0,a]. Differentiating the both sides again and considering the components
normal to (Fvy) (p(t)), we get
* "~ // o~ // . i

(8) (Z2F*7(p(t)) - D F(/(wv,)/ (IL> Qz(,(t)ﬂ (é)F‘Z

D.F((t),7'(t)) D, F(~(t),'(t))
where 2(a,b; F') is a polynomial of the components of the unit vector b whose
coeflicients are polynomials of the differentials of F' at a up to the second order.
Likewise, examining the differentials of the both sides of (8), we obtain

o DG () Q).+ (1) {1 (1)) F)
O P = 5 GG DGO

/

>2 - d?y(t) +

dFy(t) +
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for 3 <k <r, where Q(a, b, {(:i}f:_;; F) is a polynomial of the components of the
unit vector b and the scalars ¢; whose coefficients are polynomials of the differentials
of F at a up to the k-th order.

Remark. In addition, we can check that Qp for 2 < k < r is written in the form
DuF(y(1),7/ ()% 2 0" (D F)a(b,b, -+ . 0)) + Qula, b {ei} 125 F)

where v™ is a unit cotangent vector at the point F'(a) that is normal to DF,(b) and

Qrla,b,{ Cj}f:_;; F) is a polynomial of the components of b and the scalars ¢; whose

coefficients are polynomials of the differentials of F at a up to the (k — 1)-th order.

Fix an integer ng > 0 such that ngAg — ¢4 > 0. From the condition (C1) in
subsection 3.2 and from the formulae (8) and (9) above, we can get
Lemma 3.2. There exist constants Kéw > 1 for 2 < k <r such that, if a curve
v :[0,a] — M of class C™™1 satisfies
(a) 7 (1) € SU(+(1)) for t € [0,a],
(b) |d*y (1) < Kék) for2<k<r-—1andtel0,a], and

(¢) the function d"~'v satisfies Lipschitz condition with constant K_,ST) :
A"y () = d" My (s)| < K{g”\t - g for any 0 <s <t <a.

then F'v for n > ng satisfies the same conditions.
Henceforth we fix the constants K g(,k) , 2 <k <7, in lemma 3.2 and put

Definition. A C"'curve v is called an admissible curve if v satisfies the conditions
(a), (b) and (c) above.

Corollary 3.3. If a C" 'curve v is admissible, so is FI'y for n > n,.

For a positive number a, let AC’'(a) be the set of Clcurves v : [0,a] — M
such that 7/(t) € S%(~v(¢)) for ¢t € [0,a], and AC(a) the set of admissible curves in
AC'(a). Note that AC(a) is a compact subset with respect to the C"~!topology.
For an interval J C (0, 00), we define the set AC(J) (resp. AC'(J)) as the disjoint
union of the product spaces AC(a) x [0, a] (resp. AC'(a) x [0,a]) for a € J:

AC(JT) = ag]AC(a,) x [0, a] (resp. AC/(J) = aIGIJ.AC/(a,) x [0,a] ).

We equip the space AC(J) with the distance dac defined by

dac((m,t1), (v2,t2)) = [t2 —tal + lv2 = millor— + (22122(7, Ké’”) “laz — ay
for (v, t;) € AC(a;) x [0,a;], 4= 1,2 in AC(J), where |[v2 —

{ d0a(0) ), 2010050). | x| ld*10) - 0] }.

2<k<r—

ol is

max
0<f<min{a;,az}
Then the space AC((0, o0)) with this distance is a complete separable metric space.
The space AC(J) for an interval .J is compact if and only if J is compact.
Each mapping F € U naturally induces the continuous action
F,: AC'((0,00)) — AC'((0,0))

that maps a point (v,t) € AC'(a) x [0,d] to (F.y,p(t)) € AC'(a') x [0,a’], where
is the length of the curve F.v and p: [0,a] — [0,¢] is the unique diffeormorphism
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that satisfies p(0) = 0 and %p(t) = D.F(y(t),~(t)) for t € [0,a]. Corollary 3.3
implies that the iterate F* for n > ng, maps the subset AC((0, 00)) into itself.

We define the mapping 11 : AC'((0,00)) — M by II(7, ) = v(t). Then we have
the commutative relation:

AC/((0,00)) B AC'((0,00))

(10) IIJ( IIJ/

3.5. Admissible measures. In this subsection, we introduce the notion of admis-
sible measure. Let Za¢ be the partition of the space AC((0,00)) into the subsets
{7} x[0,q] for a > 0 and v € AC(a). On each element £ = {v} x [0, a] of Eac, we
consider the measure mg¢ that corresponds to Lebesgue measure on [0, a] through
the bijection (vy,t) — ¢. For a Borel finite measure ji on AC((0,20)), let {fi¢ }eczac
be the conditional measures with respect to the partition Zac.

For a positive number L > 0, let us consider the following condition on a Borel
finite measure 1 on AC((0, o0)):

(*) the conditional measure fi¢ is absolutely continuous with respect to m¢ and
the density dfi¢ /dme has a version such that log(djie /dme) satisfies Lipschitz
condition with constant L, for fi-almost every £ € Zac.

Since the iteration of the mappings in U is expanding on the admissible curves
uniformly, we can show the following lemma by using the standard argument on
the iteration of expanding maps.

Lemma 3.4. There cxists a positive constant L, such that, if a Borel finite measure
it on AC((0, 00)) satisfies the condition () for L = Ly and if F € U, then the image
fto F™ for n > n, satisfies the same condition.

Henceforth we fix the constant Ly in lemma 3.4 and put the following definition:

Definition. A Borel finite measure ji on AC((0,00)) is called an admissible mea-
sure if it satisfies the condition (x) for L = L,.

For an interval J C (0,00), let AM(J) be the set of admissible measures that is
supported on AC(J). Then we can see

Lemma 3.5. If a measure i belongs to AM([a,0)) for some a > 0 and if F € U,
then fio F[™ belongs to AM([d’, 00)) for n > ng where a’ = aexp(Agn —¢q) > a.

Lemma 3.6. The subset AM(J) for a closed interval J C (0,00) is closed in the
space of Borel finite measures on AC((0, oc)).

Definition. A Borel finite measure u on M is said to have an admissible lift if there
is an admissible measure fi € AM((0, 00)) such that fio II"! = . The measure /i
is called an admissible lift of .

For an interval J C (0, 00), let AM(J) be the sets of Borel finite measures on A/
that have admissible lifts in AM(J). Lemma 3.5 implies

Corollary 3.7. If u € AM([a,00)) for somea > 0 and if F' € U, then the measure
o F~™ belongs to AM([a',00)) for n > ng where o/ = aexp(Agn —¢4) > a.
Especially, if an invariant measure for F' € U has an admissible lift, it belongs to
AM([a, ) for any a > 0.
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For a > 0, let A, : AC([a,0)) — AC(]a,2¢]) be the mapping that brings an
element (v, ¢) € AC(b) x [0,8] to

(11) Au((7:1) = (Vim@y,m@+o/myt —m(t) € AC(b/n) x [0,b/n]
where n = [b/a] and m(t) = [tn/b](b/n). Then we have Il o A, = II and, for any
i € AM([a, 00), the image 1o A7 belongs to AM([a,2a]). Thus we obtain

Lemma 3.8. AM([a,0)) = AM([a,2a]) for a > 0.

From this lemma and lemma 3.6, it follows

Lemma 3.9. The set AM([a,o0)) fora > 0 is a closed subset in the space of Borel
finite measures on M. Especially, for a mapping F € U, the set of F-invariant Borel
probability measures that have admissible lifts is compact.

Suppose that P is a small parallelogram on the torus T whose center z belongs
to M and two of whose sides are parallel to the unstable subspace E¥(z). Then
the restriction of Lebesgue measure m to P has an admissible lift, provided that
P is sufficiently small. Moreover the linear combinations of such measures have
admissible lifts. Thus we obtain

Lemma 3.10. For any Borel finite measure v on M that is absolutely continuous
with respect to Lebesgue measure, there exist a sequence b, — —+0 and measures
Vn € AM([by, o)) such that |v — v,| — 0 as n — oo. Further we can take the
measures vy, so that the densities dv, /dm are square integrable.

The following is a consequence of the last two lemmas and corollary 3.7.

Lemma 3.11. Let F' be a mapping in U and v a probability measure on M that is
absolutely continuous with respect to m. Then any weak limit point of the sequence
n! Z?:_ol vo F~* is contained in AM([a,o0)) for any a > 0. Especially, physical
measures for I are contained in AM(a,oc)) for any a > 0.

Finally we prove

Lemma 3.12. Let F' be a mapping in U. If an F-invariant Borel probability mea-
sure has an admissible lift, so do its ergodic components.

Proof. From lemma 3.9, it is enough to show the following claim: If an F-invariant
measure p that has an admissible lift splits into two non-trivial F-invariant measures
11 and po that are totally singular with respect to each other, then the measures jq
and g9 have admissible lifts. We are going to show this claim. From corollary 3.7,
we can take an admissible 1ift /i of p that is supported on AC([1, >0)). Counsider the
mapping G = AjoF" : AC([1,00)) — AC([1,2]), where A is the mapping defined
by (11). Replacing i by fi o G~!, we assume that ji is supported on AC([1,2]).
From the assumption, we can take an F-invariant Borel subset X C M such that
p1(M\X) = po(X) = 0. Then, by the relation F™soll = IToG, the set X := 7~ 1(X)
is G-invariant. If we prove that X is a Zac-set, that is, a union of elements of the
partition Za ¢, modulo null subsets with respect to fi, then the claim above follows
because the restriction of the measure i to X is an admissible lift of ;.

Put Z, = Zac and define the sequence Z,, n = 1,2,... inductively by the
relation Z,41 = G’](En) V Z1. Then =, is increasing with respect to n and
the limit \/,_; Z, is the partition into individual points. Thus the conditional
expectation & (f( |=,,) with respect to [ converges to the indicator function of X as
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n — o0, fi-a.e. Note that the restriction of G™ to each element of the partition =,
is a bijection onto an element of Z; and its distortion is uniformly bounded. Hence,
using the assumption that ji is an admissible measure and the invariance of X, we
can see that the conditional expectation E(X|Z;) equals to the indicator function
of X, or X isa ZEac-set modulo null subsets with respect to ji. O

3.6. The no flat contact condition. In this subsection, we consider the influence
of the critical points on ergodic behavior of partially hyperbolic endomorphisms.
We first explain a problem that the critical points may cause. And then we give a
mild condition on the mappings in U, the no flat contact condition, which allows
us to avoid that problem. In the last part of this paper, we will prove that this
condition holds for almost all partially hyperbolic endomorphisms in U.

Let xo(z; F) < xu(z; F') be Lyapunov exponents of a mapping F € Y at z € M.
For a mapping F' € U and a Borel finite measure p on M, we define

o
X F) = oo / log | DF

Ee(z)ll dp(z)  and

1/
Xu(; F) = m/log(ldct DF.|/|DF|ge) dp(z).

These are called the central and unstable Lyapunov exponent of u, respectively.
If i is an ergodic invariant measure for F' € U, Lyapunov exponents x.{z; ') and
xu(2; F) take constant values yo(u; F) and v, (u; F) respectively, p-a.c.

Let F be a mapping in U and p,, n = 1,2,---, a sequence of ergodic invariant
probability measures for F' that have admissible lifts. Suppose that p,, converges
weakly to some measure fin, as n — oo. Then i, has an admissible lift from
lemma 3.9. Tt is not difficult to see that the Lyvapunov exponent o (un; F) always
converges to Y (fieo; F). However, for the central Lyapunov exponent, we only have
the inequality
(12) limsup xe(pn; F) < Xeltoo: F)

11— 00
when F has critical points, because the function log || DF'|ge(.)|| is not continuous
at the critical points. Though the strict inequality in (12) is not likely to hold often,
we can not avoid such cases in general. And, once the strict inequality holds, the
ergodic behavior of F' can be wild.

Remark. Tt is not easy to construct examples in which the strict inequality (12)
holds. For example, consider the direct product of the quadratic mappings given
in the paper[7] and an angle multiplying mapping 6 — d - 6 on the circle.

In order to avoid the irregularity described above, we introduce a mild condition:

Definition. We say that a mapping F &€ U satisfies the no flat contact condition
if there exist positive constants C = C(F), ng = ng(F) > ng and § = S(F) such
that, for any admissible curve v € AC(a), n > ng and € > 0, it holds

mg ({t € [0,a] ; d(F™((t)),C(F)) < €}) < C - €’ max{a, 1}
where myp is the Lebesgue measure on R. If F has no critical points, we regard
that d(z,C(F)) = +oc for z € M and that F satisfies the no flat contact condition.

Remark. The definition above is motivated by the argument in a paper of Viana[23],
in which the condition as above for 8 = 1/2 is considered.
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Below we give simnple consequences of the no flat contact condition. For F € U
and z € M, we define

(13) L(z F) :=log ( Hslilz ) [ D*F(z, v)]) e RU{—o0}.
vESU (2

This function is continuous outside the critical set C(F") and satisfies
Lz F) > logd(,C(F)) - C,
from (4), provided that C(F) # (). Thus we can get the following lemma.

Lemma 3.13. Suppose that F' € U satisfies the no flat contact condition and let
ng = ng(F) be that in the condition. For any § > 0 and a > 0, we can choose a
positive number h = h(d,a; F) such that

/ min{0, L(z; F) + h} d(po F7™)(z) > —6 - |y

for any p € AM(Ja,00)) and n > ng.

Using the inequality log [|[DF|ge(;)|| > L(z; F') — Cy, which follows from (4),
together with lemma 3.13, corollary 3.7 and lemma 3.9, we can obtain

Corollary 3.14. Suppose that F € U satisfies the no flat contact condition. Then
the central Lyapunov exponent x.(u; F) considered as a function on the space of
F-invariant probability measures that have admissible lifts is continuous and, hence,
uniformly bounded away from —oc.

This corollary implies that the irregularity of the central Lyapunov exponent men-
tioned above do not take place under the no flat contact condition.

3.7. Multiplicity of tangencies between the images of the unstable cones.
By an iterate of a mapping F' € U, the unstable cones S¥(z) at many points z will
be brought to one point and some pairs of their images may tangent, that is, have
a half-line in common. In this subsection, we introduce quantities that measure the
multiplicity of such tangencies and then formulate a condition, the transversality
condition on unstable cones, for mappings in U.

First we introduce analogues of Pesin subsets. Let x = {x., X/, Xy X } be a
quadruple of real numbers that satisfy
(14) Xe <Xe <Xy < Xu-
Let € be a positive number. For a mapping F' € U, an integer n > 0 and a real
number k > 0, we define a closed subset A(x, €, k,n; F) of M as the set of all points
z € M that satisty

Xo(j—1) —eln—j) —k <log|D*F/7"(v)| < xF(j —i) +e(n—j)+k
and
Xo (G —i)—e(n—7) —k <logD.F'"(v) < xt(j— i) +e(n—j) + k

for any 0 < i < j < n and v € S¥(F¥2)). Applying the standard argument in
Pesin theory[14, 15] to the inverse limit, we can show

Lemma 3.15. If u is an invariant probability measure for F € U and if
Xe <Xe(zF) <x{ and x, < xu(zF)<xy p-oe,

we have limyg_ .o iminf, .o n(A(x, € k,n; F)) = 1.
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The subset A(x, €, k,n; F) is increasing with respect to k& and €, and satisfies
(15) FYA(x,6,k,n; F)) C Alx,6,k,n —i; F) and
(16) Al e,k F) C A, e,k +ei,n—i; F) for 0<i<n.
From (3), we can and do take a constant H, such that
, |D*F™(z,w)]
17 Z(DF"(u), DF™"(v)) < Hj——7—+
( ) ( (U) (7“)) g D*FR(Z,U))

for any z € A(x, e, k,n; F) and u,v,w € S*(z). For z € M, let £(z;x, ¢, k,n; F) be
the set of all pairs (w, w’) of points in F7"(2) N Ay, €, k,n; F) such that

(18) Z(DF™(E*(w')), DF™(E*(w))) < 5Hgexp((xF — x5 )n + 2k).

< Hgexp((xd — X, )n + 2k)

Note that, if a pair (w,w’) of points in F~"(z) N A(x, €, k,n; F') does not belong to
E(zyx, e, k,n; F), we have
(19) Z(DF™(u), DF™(u')) > 3Hy exp((xd — xy )n + 2k)
for any u € S(w) and v’ € S(w’), from (17).
As a measure for the multiplicity of tangencies, we consider the number

N(x, e, k,n; F) = " Hw,w') € E(z x 6, ks F)
(XG 1 ) 5%%61( 'wGF*”(z;]fflﬁ?\}({x,e,k,n;l*‘)#{w ‘(uu) (ZXG T )}

This is increasing with respect to £ and e.
Definition. Let X = {x(¥) ?’:] be a finite collection of quadruples of numbers

x(6) = {x; (), xF(0),x, (£).x:(£)} that satisfy (14). We say that a mapping
F € U satisfies the transversality condition on unstable cones for X if

lim lim liminf max{ 710g(N(>f(£>"67kgb;F>) X 11 <e< KO} <1
c—+0 k—o0w n—oo | (X(' (f) + Xu (€> — X¢ (f) — X4 (6))

where X3 () = 2 (6) — xz (6) and x2(0) = x£(6) — xz (0.
3.8. Measures on the space of mappings. In this subsection, we give some
additional argument concerning measures on the space of mappings. Recall that
we denote by 7y : C™(M,R?) — C"(M,R?) the translation by ¢ € C"(M,RR?). For
an integer s > 0 and a positive number d > 0, we put
(20) D*(d) = {G € C(M,R) | |Glo < d).
The following lemma gives measures on C” (M, R?) with nice properties.
Lemma 3.16. For an integer s > 3, there exists a Borel probability measure M
on C*~3(M,R?) such that

(1) My is quasi-invariant along CS~1(M,R?) and

(2) there exists a positive constant p = ps(d) for any d > 0 such that
dMsor, h

dM,

for any ¢ € C*(M,R?) with ||¢||c- < p.

IN

1
3 <2 Mg-a.e. on D*3(d)

We give the proof of lemma 3.16 in the appendix at the end of this paper, one
because the lemma itself has nothing to do with dynamical systems and one because
the proof is merely a combination of some results in probability theory.

Henceforth, we fix the measures M, for s > 3 in lemma 3.16. Note that the
measure M, belongs to Q) ; when s > 7 + 3.
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Lemma 3.17. Suppose s > v+ 3. If a Borel subset X in C™(M, M) is shy with
respect to the measure Mgy o, then X is shy with respect to any measure in Q) _ .

Proof. Take an arbitrary measure A in Q7 ;. The measure M, 5 is supported on
the space C*~1(M,R?), along which A is quasi-invariant. Hence the convolution
N x Mo is equivalent to A/ From the assumption, we have

N Mua(@6 (0)) = [ Moo 7 (85! (0NN ()

- / My pa(@Gh (X)) () = 0
for any G € C"(M,T). Thus X is shy with respect to A. O

In order to evaluate subsets in C™(M, T) with respect to the measures Mg, we
will use the following lemma:

Lemma 3.18. Let s > v+ 3 and d > 0. Suppose that mappings ¢; € C5(M,R?)
and positive numbers T; for 1 < i <m satisfy

m

(21) sup
t:|<Ts

< ps(d)
o

tiths
1

=

where pg(d) is that in lemma 3.16. If a Borel subset X in CT(M,T) satisfies, for
some 3 > 0, that

(22)  mgm ({(ti),}"] € H[—Ti,T;]

for every ¢ € X, then we have

m m
¢+Zt¢1{>i eX}) <[3H2Ti
=1

i=1

M(DGHX) ND*3(d)) < 2™ 3. M (D5 (Y)) <23
for any G € C™(M,T), where

m
Y = {’U + Ztﬂ«]z

i=1

veX, |t < Z}/?}

Proof. Put Z = &' (X) N D*3(d) and denote by 1 the indicator function of Z.
Using Fubini theorem and the properties of M, we get

m TY 7 i N
/mRm ({tER ]ti‘ < ?, L+Zt7tz €Z}> dMg(U)
- 1Z 1;‘ -+ t/[‘,//‘/L dMg(lZ‘)) dmgm (t)
/{t;ti1<7‘i/?} </ ( Z )
= / M (Z — ZQLLJ dmpn (t) > 27 M (2) HT‘
{ i=1

]3| <T:/2}

The integrand of the integral on the first line is positive only if 1,2' belongs to @51 )
and bounded by S]]", 27T; from the assumption (22). Thus we obtain the lemma.
O
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3.9. The plan of the proof of the main theorems. Now we can describe
the plan of the proof of the main results, theorem 2.1 and 2.2, more concretely
by using the terminology introduced in the preceding subsections. We split the
proof into two parts. In the former part, which will be carried out in sections 4, 5
and 6, we study ergodic properties of partially hyperbolic endomorphisms in U/ that
satisfy the no flat contact condition and the transversality condition on unstable
cones for some finite collection of quadruples. The conclusion in this part is the
following theorem: For a finite or countable collection X = {x(¢)}scr, of quadruples
x(6) = {xz(0), xT(£)), x5, (&), x (£)} that satisfy the condition (14), we denote by
|X| the union of the open rectangles (x. (£),xT(£)) x (x5 (£), X (£)) over £ € L.

Theorem 3.19. Let X be a finite collection of quadruples that satisfy (14),
(23) Xe tXu >0, xc <0

and also

(24) {0} x [Ag, Ag] C |X| C (—2A4,244) x (0,24,).

Suppose that a mapping F in U satisfies the no flat contact condition and the
transversality condition on unstable cones for X. Then F admits a finite collection
of ergodic physical measures whose union of basins of attraction has total Lebesgue
measure on M. In addition, if an ergodic physical measure u for F satisfies either
(xelps F)o xulps F)) € |X] or xc(u; ') > 0, then p is absolutely continuous with
respect to Lebesque measure.

In the latter part of the proof, which will be carried out in section 7 and 8, we
show that the two conditions assumed on the mapping F in the theorem above hold
for almost all partially hyperbolic endomorphisms in U, provided that we choose
the finite collection X of quadruple appropriately. On the one hand, we will prove
the following theorem in section 7: For a finite collection X of quadruples that
satisfy (14), we denote by S1(X) the set of mappings F € U that does not satisfy
the transversality condition on unstable cones for X.

Theorem 3.20. There exists a countable collection X = {x(£)}32, of quadruples
satisfying (14) and (23) such that
(a) |X]| contains the subset {(Te,y) € R? | @e + 3y > 0,2y <y < Agoze <0},
(b) IX] is contained in (—2A4,2A4) x (0,2A), and
(c) the subset $1(X') for any finite sub-collection X' C X is shy with respect to
the measures My for s > r -+ 3 and is a meager subset in U in the sense of
Baire’s category argument.

On the other hand, we will show the following theorem in section 8. Let Sz be
the set of mappings I € U that does not satisfy the no flat contact condition.

Theorem 3.21. If an integer s > v+ 3 satisfies the condition (2) for some integer
3 <v <r—2, then the subset Sy is shy with respect to the measure M. Moreover,
S is contained in o closed nowhere dense subset in U, provided that r > 19.

It is easy to check that the three theorems above imply the main theorems:
Consider a countable set of quadruples X = {x(¢)}72, in theorem 3.20 and put
Xm = {x(O}, for m > 0. Theorem 3.19 implies that the complement of
(U _181(X)) U8y in U is contained in R”. Thus the main theorems, theorem 2.1
and 2.2, restricted to U follow from theorem 3.20, 3.21 and lemma 3.17. As we
noted in subsection 3.2, this is enough for the proof of the main theorems.
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4. HYPERBOLIC PHYSICAL MEASURES

In this section, we study hyperbolic physical measures for partially hyperbolic
endomorphisms. Throughout this section, we consider a mapping F in U that
satisfies the no flat contact condition.

4.1. Physical measures with negative central exponent. In this subsection,
we study physical measures whose central Lyapunov exponent is negative.

Lemma 4.1. If an ergodic probability measure p with negative central Lyapunov
exponent has an admissible lift, then it is a physical measure.

Proof. The central Lyapunov exponent of the measure p is bounded way from —oo
by corollary 3.14. From Oceledec’s theorem and the assumption that g has an
admissible lift, we can find an admissible curve v such that almost all points with
respect to the smooth measure on it are forward Lyapunov regular for . According
to Pesin theory, the so-called Pesin’s local stable manifold exists for each of such
points on 7. These local stable manifolds are transversal to v and contained in
the basin B(u) of p. Further, the union of them has positive Lebesgue measure
from absolute continuity of Pesin’s local stable manifolds[15, §4]. Therefore yx is a
physical measure. O

From this lemma and lemma 3.12, we can get

Corollary 4.2. If an F-invariant probability measure u has an admissible lift, it
has at most countably many ergodic components with negative central Lyapunov
exponent, each of which is a physical measure and absolutely continuous w.r.t. .

The basin of an ergodic physical measure with negative central Lyapunov ex-
ponent may not have interior even though we ignore null subsets with respect to
3 . Nev Wi v
Lebesgue measure. Nevertheless, we have

Lemma 4.3. For an ergodic physical measure pu with negative central Lyapunov
exponent, there is an open subset U with (U) = 1 such that
(25) v(B(u)) >0 if and only if limsupro F7"(U) >0

n—00

for a Borel finite measure v which has an admissible lift.

Proof. Recall the proof of lemma 4.1. From absolute continuity of Pesin’s local
stable manifolds, there exists an open neighborhood U, for p-almost every point
z such that, if an admissible curve v : [0,a] — M with length a > 2 satisfies
Y([L,a = 1)) N U, # @, the inverse image v~ 1(B(u)) has positive Lebesgue measure.
Let U be the union of such neighborhoods U,. If limsup, .. v o F~™(U) > 0 for
a Borel finite measure v that has an admissible lift, we have v(B(u)) > 0 from
the choice of the neighborhoods U, and corollary 3.7. The reverse implication is a
consequence of the fact p(U) = 1. O

Lemma 4.4. Let i, i = 1,2,..., be a sequence of mutually distinct F-invariant

Borel probability measures each of which has an admissible lift. If u; converges to
some measure Uy, as i — 00, we have x.{z; F) > 0 for pe-almost every z € M.

Proof. From lemma 3.9, p~ has an admissible lift. If the conclusion of the lemma
were not true, there should be an ergodic physical measure p_ < 1. with negative
central Lyapunov exponent, from corollary 4.2. Take the open set U in lemma 4.3
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for pl.. On the one hand, p/ (U) = 1 and hence pso(U) > 0. On the other hand,
since p; # pl, except for one ¢ at most, we should have p;(B(ul,)) = 0 and hence
1:{U) = 0. These contradict the fact that u; converges to fioo- O

From this lemma and corollary 3.14, it follows
Corollary 4.5. For any negative number y < 0, there exist at most finitely many
ergodic physical measures for F that satisfies y.(u; F) < x.
Finally we show
Lemma 4.6. Let v be o Borel finite measure that is absolutely continuous with

respect to Lebesque measure and 1 o limit point of the sequence n™! ZZ:()] voF™ ™,
n=1,2,.... Then we have either
(a) xe(2; F) > 0 for p-almost every point z € M, or
(b) there is an ergodic physical measure p' < u with negative central Lyapunov
exponent and v(B(p')) > 0.

Especially, for a physical measure p for F, we have either (a) or

(b') p is ergodic and has negative central Lyapunov exponent.

Proof. Suppose that (a) does not hold. Then, from corollary 4.2, there exists an
ergodic physical measure ' < p with negative central Lyapunov exponent. Take
the open set U in lemma 4.3 for p/. We have ¢/ (U) = 1 and hence p(U) > 0. Thus

n—1
limsupn ! Z vo F ™U) > u(U) > 0.
n—oQ i=0

Though the measure v may not have an admissible lift, we can use the approxima-
tion in lemma 3.10 to conclude v(B(u')) > 0. O

4.2. Physical measures with positive central exponent. In this subsection,
we investigate physical measures with positive central Lyapunov exponent. We
shall prove the following three propositions.

Proposition 4.7. Any physical measure p with positive central Lyapunov exponent
is ergodic and absolutely continuous with respect to Lebesgue measure. Moreover
the basin B(u) is an open set modulo Lebesgue null subsets.

Proposition 4.8. For any positive number x > 0, there exist at most finitely many
ergodic physical measures for F that satisfies x.(u; F) > x.

Let BT (F) (resp. B~ (F)) be the union of the basins of ergodic physical measures
with positive (resp. negative) central Lyapunov exponent.

Proposition 4.9. Suppose that a Borel probability measure v on M is absolutely
continuous with respect to Lebesque measure and supported on the complement of
B~ (F)UB™(F). If v is a weak limit point of the sequence n™! Z;:Ol voF7,
n=12,..., then we have x.(2; F) = 0 for ve-almost every point z. .

We derive the propositions above from the following single proposition: Let X (4),
i =1,2,---, be Borel subsets in M with positive Lebesgue measure. We denote
by mx ;) the normalization of the restriction of Lebesgue measure m to X (7). For
each i > 1, let p;,00 be a weak limit point of the sequence n™* Z;L;Ol my ) o F -7,
n=1,2,---. Assume that the sequence y; ~, converges weakly to some measure fi
as i — 00. Also assume that x.(poo; F)) > 0 and that x.(z; F) > 0, pioe-a.e.
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Proposition 4.10. In the situation as above, there erist an ergodic physical mea-
sure Vi o and a disk D; in M for sufficiently large i such that

(8) Vioo € Hioo ONd V400 € M,

(b) Xe(Vi,03 F) >0,

(¢) the radius of D; is independent of 1,

(d) Vioo(D;) > 0 and D; C B(v; o) modulo Lebesgue null subsets.

Below we prove proposition 4.7, 4.8 and 4.9 using proposition 4.10.

Proof of proposition 4.7. Let u be a physical measure such that x.(u; F) > 0. From
lemma 4.6, we have x.(z; F') > 0 for p-almost every point z. Apply proposition 4.10
to the situation where X (i) = B(y) and pic = Hoo = i for all ¢ > 1. And let
Vi~ and D; be those in the corresponding conclusion, which we can assume to be
independent of i. Consider the open set V = ("  F"(D;). Then B(v;o0) =V
modulo Lebesgue null subsets. Since v; oo(V) > v 00(D;) > 0 and since v; oo < p,
we have u(V) > 0. Hence

n—1
mp(,) (B(Viso)) = nlgrﬁlC nt Z mpy © FTH(B(Vi)) = u(V) > 0.
i=0
This implies p = v; o.. We have proved proposition 4.7. |

Proof of proposition 4.8. Suppose that there exist infinitely many ergodic physical
measures fi;, i = 1,2, -, that satisty x.(u;; F) > x > 0. By taking a subsequence,
we assume that p; converges to an invariant probability measure po, as i — o0.
Then we have x.(ptoo; F') > x > 0 from corollary 3.14. From lemma 4.4, we have
Xe(z: F) > 0 for pec-almost every point z. Thus we can apply proposition 4.10 to
the situation where X (i) := B(u,) and jt; oo = p; for ¢ > 1. Since p; are ergodic, the
disks D; in the corresponding conclusion are contained in B(;) modulo Lebesgue
null subsets and hence mutually disjoint. But this is impossible because the radii
of the disks D; are positive and independent of i. [

Proof of proposition 4.9. Let X = M\ (B7(F) U BT(F)). For the proof of the
proposition, it is enough to show the claim in the case m(X) > 0 and v = my.
Let 1o, be a weak limit point of the sequence n™! Z;L:—ol vo F~J. From lemma 4.6,
it holds xc(z; F) > 0 for ve-almost every z € M. Thus we have only to prove
Xe(Voo; F) < 0. Suppose that we have x.(Voo; F) > 0. Then we can apply proposi-
tion 4.10 to the situation where X (i) := X for all i > 1. Let v; o € Voo and D; be
those in the corresponding conclusion, which we can assume to be 1nd()p011dcnt of
i. We should have
V(B 00)) > limsup v(F7"(D;)) > voo(D;) > 0.
n-—rC

But this contradicts the definition of X because v, o is an ergodic physical measure
with positive central Lyapunov exponent. [

We proceed to the proof of proposition 4.10. For positive numbers y, €, k and a
positive integer n, we define a closed subset T'(x, €, k,n; F') as the set of all points
z € M such that, for any 0 < m < n and any v € S*(F™(z)),

(T'1) |D*F=™(v)| > exp{x{n —m) — k) and
(I'2) |D*F(v)| > exp(—e(n —m) — k).
For the points in T'(x, €, k, n; F'), we have the following estimates on distortion:
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Lemma 4.11. For positive numbers x > 0, 0 < e < x/10 and k > 0, there exists a
positive constant o = a{x, €, k), which depends only on x, € and k besides the objects
that we fized in subsection 3.2, such that, for anyn > 0 and z € T'(x, €, k,n; F'), the
restriction of F™ to some neighborhood V' of z is a diffeomorphism onto the disk
B(F"(z),«) and we have

(D) [(DEH M > Cytexp(xn — k) forw e V. and

w
(2) |log|det DF}| —log|det DF || <1 for w,w' € V.

Proof. Fix v € S%(z) and put §(i) = |[D*F"* {(DF(v))|"! for 0 < i < n. Let
D,, be the disk in the tangent space Tpn(,)M with center at the origin and radius
a. We define the regions D; C Tpi;)M for 0 < i < n so that DF(D;) is the
d(#)a-neighborhood of D;y;. Then we have

diamD,; < H DF" Z - H a+z H DFIJ;IHAZ H 0(j)

for 0 < i < n. Using the relation (6), we can check
H(DFJ“ 0! H ) < C, - |D*F(DFI(0))] 71 6(i).
Thus, from the conditions (T'1) and (T'2), it holds
diamD; < Cyn -exp(e(n — ) + k)6{i) - a < Cgn - exp(—(x —€)(n — i) + 2k) -
From the condition (I'2) and the relation (6), we have
| DF.. (Z ]]"1 >Cy Lexp(—e(n —i) — k).

Also we have the estimates

H()Xp;f 1) OF 0 exppi(zy(v) = DFpi(s) (v)
< Cy(diamD;)? < Cyn?exp(—(x — 2¢)(n — i) + 3k)d(i)a”

for v € D; and

HD(GXPF'}*M oF oexpri(z))u — DFyiz)
< CydiamD; < Cyn - exp(—(x — €)(n — i) + 2k) - a

for v € T,y M. Hence, if we take sufficiently small a depending only on x, €, k
and Cj, the restriction of I to exp FL-(Z)(DZ-) is a diffeomorphism onto a neighbor-
hood of exppi-1(y) (D;41) for 0 <4 < n. This implies the first claim of the lemma.
We can check the other claims, (1) and (2), by straightforward estimates. O

From now to the end of this section, we consider the situation in proposition 4.10.
For each 7, we take a subsequence n(j;i) — oo (j — o¢) such that the sequence
nanras nf i3 —1 g -1 =M oy oq ne i T
of measures n(j;7) Zrn:() my o F converges to fii oo as j — oo. The
following is the key lemma in the proof of proposition 4.10.

Lemma 4.12. There exist x > 0, 0 < e < x/10 and k > 0 such that

(451)—1
1" ,
(26) liminf —— Z mx (L6 k,m; F)) >0 for sufficiently large i.

0 2
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The point of this lemma is that we can take x, € and k uniformly for sufficiently
large i. Before proving this lemma, we finish the proof of proposition 4.10 assuming
it.

Proof of proposition 4.10. Let x, ¢ and k be those in lemma 4.12 and o = a(x, ¢, k, F)

that in lemma 4.11. We consider a large integer ¢ for which (26) holds. Then we
can take a compact subset K C X (¢) and a point zg € M such that

n(g;i)—1
Z (m‘KﬂF(X,e,k,m;F) o F—m)(B(ZO, (}/2)) > 0.

m=0

27 liminf ——
@) g—oc n(Jii)
Let Dy, be the union of the connected components of F~™(B(z,«/2)) that meet
Knl(x, € k,m; F). Then, on each of the connected components of D,,,, the mapping
F™ is a diffeomorphism onto B(zg, @/2) and satisfies the estimates in lemma 4.11.

Let v be a limit point of the sequence n(j;i)~! Z:;(i;é)*] (mlp, ) o F~™. Then we

have v <m(X (7)) - phi,00 and v < m and, further,
—1 v(B(z0,a/2)) - dv - v(B(z,/2))
% ————— — e  —————————
m(B(zg,0/2)) — dm — m(B(z,/2))

We can check that v is ergodic and x.(z; F)) > 0 for v-almost every point z. (See the
remark below.) Hence there is an ergodic component v; o, of ft; o such that v <
Vioo K i The measure v; o and disk D; = B(zg, a/2) satisfy the conditions in
proposition 4.10. O

Remark. Actually, it is not completely simple to prove that v is ergodic and that
Xe(2: F) > 0 for v-almost every point z. But there are a few standard ways for it.
For example, we can argue as follows: Consider the inverse limit space of I’

Mp = {(2)-co<i<o | zi € M. F(2) = zi41}

and the projection 7 : Mp — M defined by 7((#) ~oo<i<o) = 20. Let [i; oo be the
natural extension of y; ».. We can check that the part & of fi; o, that corresponds to
v is supported on a union of local unstable manifolds, each of which is projected onto
the disk B(zg, «/2) by w. Further, the conditional measures on those local unstable
manifolds given by U are absolutely continuous with respect to the smooth measures
on them. For any continuous function ¢ on M, the backward time-average of gom
is constant on each of the local unstable manifolds. From the ergodic theorem, the
forward time-average coincides with the backward time-average almost everywhere
with respect to ¥ < fi; o0, and is the pull-back of a function on M by 7. Thus
it must be constant -almost everywhere. This implies that v is ergodic. The
positivity of the central Lyapunov exponent is obtained by considering Lyapunov
exponents with respect to the backward iteration.

In the remaining part of this subsection, we prove lemma 4.12. To begin with,
we fix several constants: Fix xg > 0 and 0 < sg < 1 such that

(28) too({z € M | xe(2) > x0}) > s

Also fix a positive number €y such that 0 < ey < 107 %sgxg. Recall that we are
considering a mapping F' € U that satisfies the no flat contact condition. From
lemma 3.13, we can take and fix a large positive constant hg > x¢ such that

/ min{0, L(z; F) + ho} d(p o F7™)(2) > —10"'s0¢0
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for any measure y in AM([1,0c)) and n > ng(F), where L(z; F) is the function
defined by (13) and ng(F) is the constant in the definition of the no flat contact
condition. From (28) and the assumption that x.(z; F) > 0 for uy-a.e. z, we can
take and fix a constant kg > hg such that

too({z € M| D*F™(v)| > exp(xon — ko), Vv € 8%(2),Vn > 0}) > 50
and

foo({z € M; | D*F"(v)] > exp(—eon — ko), Vo € S¥(2),Vn > 0}) > 1 — -0

10}L0 ’

Finally we fix a positive integer myg that satisfies egmg > 10kg.
Next we introduce the following subsets of M:

A={ze M; |D"F™(v)| > exp(xom — 2ko), Vv &€ 8“(2),0 < Vm < my},
B={ze M ; |D"F"(v)| > exp(—egm — 2ko),Yv € 8*(2),0 < ¥m < mg} D A,
C=M\B and D={zcC|L(zF)<—hy}CC.

Note that A and B are open subsets. From the assumption that the sequence p; o
converges to Lo, as i — 0o, we have

n(j;i)—1
(29) liminf n(j; 4~ > my(F™(A)) > s, and
e m=0
n(y;i)—1 soco
« . o Soy—1 y— S0€
(30) lim inf n(j: ) Z:o o (F7"(B)) > 1 - 2

for sufficiently large 7.

Below we fix a large integer i for which (29) and (30) hold. Using lemma 3.10,
we can find a small number by > 0 and a probability measure pg in AM([bg, o))
such that

(31) \mX(i) — /,L()‘ < 50/10,
n(538)—1

(32) liminfn(j;i)~* Z o(FT™(A)) > sg, and
Jroo o

- - ,..._1"(]'”')7] Fomigy o S0

(33) im inf (1) 2:0 po(F~™(B)) > " T0hg”

By modifying the measure pug slightly if necessary, we can and do assume
no (F)

Z /min{O,L(F"‘(z); F) + ho}dug > —oc

m=0 "

in addition. Then, from corollary 3.7 and the choice of hg, we have also

(7:9)-1 ,
(34) liminf n(j;4) " Z min{0, L(F™(2); F) + ho}due > _2oco,
J—o 10
m=0
For z € M and integers m < n, we denote, by A,(m,n) B,(m,n), C.(m,n) and
D.(m,n), the set of integers m < ¢ < n for which F9(z) belongs to A, B, C and

D respectively. Then we have

Lemma 4.13. A point z € M belongs to T(sgxo/40,4eq, 6kg,n; F) for n >0 if
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(A) #A.(m,n) > soln—m)/10  for any 0 <m < n,
(C) #C(m,n) <eg(n—m)/hg for any 0 <m < n, and

(D) Z min{0, L{(F9(z); F) + ho} > —eg(n —m) for any 0 < m < n.
geD.(m,n)

Proof. Consider a point z € M and an integer n that satisfy the conditions (A),
(C) and (D). Let 0 < m < nand I = {mm+1,...,n— 1}. We call a set

of mg consecutive integers {¢,q + 1,...,q -+ mo — 1} is an A-interval (resp. a
B-interval) if the smallest element ¢ belongs to A (m,n) (resp. By(m,n)). If
{g.q+1,...,q+mo — 1} is an A-interval, we have

mo—1
(35) Z l()g ‘D*F(DFJ (U))‘ 2 Xomo — 2ko > (X() - 6())’”1/() + 2ko

j=0

for v € S*(F9(z)), where the second inequality follows from the choice of my.
Similarly, if {¢,q +1,..., g -+mg — 1} is a B-interval, we have

7n0—1
(36) > log |[D*F(DF/(v))| > —eqmo — 2kg > —2egmyg
j=0

for v € S¥(F9(z)).

Take mutually disjoint A-intervals that cover A,(m,n) and let T4 be the union
of them. Then take mutually disjoint B-intervals that cover B,(m,n)\ I4 and let
Ip be the union of them. We can and do take the B-intervals in Ip so that their
smallest elements are not contained in /4. Note that T4 and I are not necessarily
contained in 1.

Counsider an arbitrary vector v € S*{F™(z)). Then DF? ™(v) belongs to
S*(F1(z)) for ¢ > m. From (35) and the fact that all the A-intervals in I4 but one
is contained in I, we have

> log |[D*F(DFI™@))| > (xo — €0)#(Ia N 1) + 2ko((#1a/m0) — 1) — 2k

gelanl

Each A-interval in 14 meets at most one B-interval in Ig. Thus the number of
B-intervals in I whose intersection with I\ I4 has cardinality less than my is at
most (#14/mg) + 1. From this and (36), we obtain

S log| D F(DFC™(0))] > —2eqdt(Ip N (I\ 14)) — 2ho((#1a/mo) + 1),
g€lpn(INIa)

Since the complement of Iz U4 in I is contained in C,(m, n), the condition (I'1) in
the definition of the set I'(sqx0/40, 4eq, 6kg, n; F') follows from the two inequalities
above, the assumptions (A),(C) and (D) and the choice of 5. If m belongs to
B, (m,n), the condition (I'2) holds obviously. Otherwise, the condition (I'2) follows
from (D) because we have eg(n—m)/hg > #C,(m,n) > 1 in that case from (C). O

In order to prove lemma 4.12, we see how often the assumptions (A), (C) and (D)
in the lemma above hold. For this purpose, we prepare the following elementary
lemma, which we shall use again in section 6.
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Lemma 4.14. Let p be a measure on a measurable space X and ¥y, m=0,1,...,
a sequence of non-negative integrable function on X. For a positive number o > 0
and an integer n > 0, let Y,,(«) be the set of points y € X such that

n—1

Z wely) > a(n—m)  for some 0 < m < n.

£=m
Then it holds, for any n > 0,

n—1 n n—1

> @) < 3" ul¥mla)) <a' 37 / o

m=0 m=0 m=0
Proof. For each point z € M, we define integers
n=qo(z) 2 p1(2) > q(2) 2 p2(2) > q2(2) > -~ 2 pj(z) > Qi) 2 1

in the following inductive manner: Suppose that ¢;(z) has been defined. If there
exist integers p < ¢;(2) such that FP(z) € Y,(«), let p;11(z) be the maximum of
such integers and g;41(z) the smallest integer ¢ < p;11(2) such that

pjs1(z)—1

(37) > wely) = alpa(z) —a).

L=q
Otherwise we put j(z) = j and finish the definition. Consider the subsets
Zm ={z€ M| q;(z) <m < pj;(z) for some 1 < j < j(2)}

for 0 < m < n. Then we have Y,,(a) C Z,,_1. From (37), we obtain

n—1 n—1 i
Z /w'm,du‘ Z «Q Z /L(Z’m) Z « Z /‘l(}/tm«(a)) D
m=0" m=0 m=0

Now we can complete the proof of lemma 4.12.

Proof of lemma 4.12. Forn > 0, let A,,, C,, and D,, be the set of points z € M for
which the condition (A), (C) and (D) does NOT hold, respectively. First, apply
lemma 4.14 to the case where a = 1 — s9/10, n = n(j;4) and ¥, is the indicator
function of the complement of F~™(A). Then, from (32), we obtain

1 n(ji)—1 B 1 1 n{j;i)—1
— po(Am(2)) < 5 —— po(M\ F~™(A))
n(j;) 7;) 1 — 18 n(7:1) mz::o
1750
< 50 < *1—050
T 10

for sufficiently large j. Second, apply lemma 4.14 to the case where o = €g/hg,
n = n(j;i) and ¢, is the indicator function of the set F~™(C) = M \ F~™(B).
Then, from (33), we obtain

n{jsi)—1

Z UO(CN(m(Z» <

m=0

n{j;i)—1

> me(FE) £ 55

m=0

h L0 1

€0 n(J;1)

n(j:i)



PARTIALLY HYPERBOLIC ENDOMORPHISMS 25

for sufficiently large 7. Third, apply lemma 4.14 to the case where o = €, n =
n(j;4) and ¥, (2) = —min{0, L(Fm( )i ) + ho}. Then, from (34), we obtain

1 n(jii)—1 3 1 1 n(]%) 1
— 0( D (2)) < — —— /mmOLFm F) 4+ holdug (2
5 2 HelPn) < (0, L™ (2 F) + hobdo(2)
< 1
< 1030

for sufficiently large j. From the three inequalities above and (31), we conclude

! n(j:fl( (AU CpUD)) <12
m ; m m m — TS
(i) i VN 107

for sufficiently large j. Since the complement of fim U C’m U [?m is contained in the
subset I'(spx0/40, 4eg, 6kg, m; F') from lemma 4.13, this implies lemma 4.12. O

5. SOME ESTIMATES ON DISTORTION

In this section, we give some basic estimates on distortion of the iterates of
mappings in Y. The estimates are straightforward and may look rather tedious.
But we need to check that some constants in the estimates can be taken uniformly
for the mappings in ¢. This is important especially in our argument in section 7,
where we consider perturbations of mappings in U.

Let x = {xz, X Xus X } be a quadruple satisfying (14) and (23), and € > 0 a
small positive number satisfying

(38) e <107 min{xg + X, IXc | X — Xa s Al

In the argument below, we will take several constants that depend only on x and €
besides the integer 7 and the objects that we have already fixed in subsection 3.2.
In order to distinguish such kind of constants, we denote them by symbols with
subscript e. Also we will use a generic symbol C, for large positive constants of this
kind. The usage of these notations is the same as those introduced in subsection 3.3.
The following lemma is the main ingredient of this section.

Lemma 5.1. There exist positive constants 0 < pe < 1, ke > 1 and x4 > 1 such
that the following claim holds for any F € U, k > 0, n > 1, z5 € A(x, ¢, k,n; F)
and 0 < p < pg where

39 . /74€n72k D* F7 i
(39) PO 1= pee oJn Uesﬁrﬁn l (v)]

> peexp((x, — be)n — 3k) :
For every mapping G € C"(M, M) that satisfies den (F,G) < p, we can take a point
2(G) and its neighborhood V,(G) 3 z(G) in a unique manner so that
(i) 2(G) depends on G continuously and z(F) = zg,
(if) G"(2(@)) = F™(z) and
(iil) the restriction of G™ to V,(G) is a diffeomorphism onto B(F™(zy), p).
Fuyrther it holds
(iv) diam(V,(G)) < kgpexp(—xon + k),
(v) B(2(G), kg pexp(—xfn — k)) C Vy(G),
(vi) V,(G) C Alx,e,n. k+1; F),
(vii) (D("“(E“(u’)),DF"(E”(ZO))) < kee?kp for any point w € V,(G), and
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(viii) any admissible curve in B(zo, 5, ') meets V,(F) in a single curve.

Proof. First of all, check that the inequality in (39) follows from the assumption
20 € A(x, €, k,n; F'). We will give the conditions on the choice of the constants p,
ke and kg4 in the course of the argument below. For 0 <4 < n, we put (i) = F*(zp)
and

p-exple(n — i) + k)
min;< <y Minyege () [D*FH )|

8(i) =

Then it holds

(40) p < pexple(n —i) + k) <6(i) < pcexp(—3en — k) for 0 <i <n.
Using the relation (6), we can see

-\ miny<p<p Mityege o)) [P (v)]

(41) %; < exp(—e(j -

min<p<n Milyege(e()) [D*FI(v)]
< Cgexp(—e(j —))I[(DFL ) I
for0<i<j<n,and
o(1 min{1, min; n MiNgyegue@) |[D*FTH v
(42) (+1) — exp(—c {1, ming1<ec s (¢ ))*\ i ()]}
o(1) ming41<¢<n Milyess(g@i+1y) [D*F 1 (v)]
> C’;] exp(—e) min{1, ]](DFC(Z-))*l =1}

for 0 <7< n.

We put D, = B(0, p) C T¢(yM and define the region D; C Ty M for 0 <i <n
inductively so that DFeqy(D;) is the 25(i + 1)-neighborhood of D1 C Ty M.
Put B; = expe(; (D;). Then

n
(43)  diamB, = diamD, < 2p- [(DE) M+ Y 46(3) - [(DFIH
j=i+1

< C0(i) < Cepeexp(—3en — k)
for 0 < i < n, where the second inequality follows from (41) and the third from (40).
Since ¢(0) = zp € A(x, ¢, k,n; F), we have
(44) ]](DFC@)*]H*] > C;l exp(—e(n—1) —k) for0<i<n
by (6). Therefore, if we take the constant p. sufficiently small, we can obtain
DGy — DFey|| < p+ Cy - diamB; < [[(DFge) 7!

and

d(G(w),expe(it1) D Fe( © expC_é)(w)) < p+Cy- (diamB;)? < 26(i + 1)
for 0 < i < n, w € B(((i),diamB;) and G € U satisfying do:i (F, G) < p < py,
where we used the relation

(diamB;)? < C,6(i)? < Cyp. exp(—2en)d(i + 1)

which follows from (40), (42) and (44). These two inequalities imply that the
mapping G restricted to B({(i),diamB;) O B; is a diffeomorphism and maps B,
onto a neighborhood of B, for 0 < i < n. Put V,(G) = N"_,G~*(B;). Then the
restriction of G™ to V,(G) is a diffeomorphism onto B;,, = B(F"(z0), p). Let 2(G)
be the unique point in V,(G) that G™ brings to F™(zy). Clearly 2(G) and V,(G)
satisfy the conditions (i), (ii) and (iii).
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We show the conditions (iv)-(viii). Using (5) and (6), we can check that (iv)
and (v) follows from (vi). We prove (vi) and (vii). Let G € U be a mapping that
satisfies den (F,G) < p < pp and w a point in V,(G). We put w(i) = G*(w) for
0 < i < n. Consider an integer 0 < ¢ < n and tangent vectors v € S*(((¢)) and
u e S%(w(i)). For 0 <m <n — i, we have

(DG (w), DET (v) < Z(DEEG) (w), DEE (v))

w

+ Y ADFLT (DG (), DEL (DG, ) ().

j=1
Remark. In the expression above, we identified tangent vectors with their paral-
lel translations and abused the notation slightly. Actually, DF[; o J (DG i)

should have been written DFT'(‘L+JJ)( (DGj y(1)) where 7 is the parallel transla-

tion from w(i + j) to ((i + j). We (ontlnu(‘ t() use such identification below.
Since w(i +j — 1) € Bit;-1 and DG >( u) € S*(w(i + j — 1)), the parallel
translation of DG ! (u) to ¢(i +j — 1) does not belongs to S¢(C(i + 7 — 1)),

w(3)
provided that we take sufficiently small p.. Also we have

L(DFeiyj-1)(DGY, -1 (u)) DG{U (v)) < Cy (diam(B;yj-1) + den (F, G))

w(1) ()

for 0 < j < n —i. Using these and (3) in the inequality above, we obtain

(45) (DG (w), DFL (v)
|,

[ D*F™(v) [D*F™ I F](U))] y
<A — D P ) (u,v) +Cy Z D P (DFI(0)) (diamB;yj-1 + p)
m—1
< Cgexp(—Agm)/(u,v) + Cy Z exp(—Ag(m — 7))(diamB;, ;1 + p).
j=1

In order to prove the condition (vil), we consider (45) in the case where i = 0,
m =n and v and u are unit tangent vectors in E%(z) and E*(w), respectively. In
this case, we have

|D*F" 7 (DF? (v))]
D, F»=i(DFi{v))

|\D*F"=31(DFI(v))]
~ D.F*"I(DFi{v))
) |D*F*=4(DF*(v))| |D*F(DFI~1(v))|~!
< Cepexple(n = 5) + k) max - Fr{(DF(v)) D.FCi(DFi(v))
< Cepexp(—(Ag — 2¢)(n — j) + 2k)

- (diamB;_1 + p) < ~Ced(j —1)

for 1 < j < n, where we used (40) and (43) in the first inequality, (6) in the second,
and the assumption zg € A(x, ¢, k,n; F) in the third. Likewise, using the estimate
Z(v,u) < Cyd(2, w) < CydiamBy, we can show
|D*F™(v) |D*F™(v)
D, Fn(v) D, Fn(v)

Zu,v) < - CydiamBy < Cepexp(—(Ag — 2¢)n + 2k).
Putting these inequalities in (45), we obtain the condition (vii).

Next we prove the condition (vi). Consider an integer 0 < i < n and a vector
u & S*(w(i)). Since w(i) belongs to B;, there is a vector v € S*({(7)) such that
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Z(u,v) < CydiamB;. From this, (43) and (45), we obtain

|D*G(DGry5)(v)) — D*F(DFf(w))]

< Cylder (F,G) + diamBye + Z(DGY i (v), DFy (w)) + Z(DG Y4 (0), DF{E (u))

< Cypeexp(—3en — k)

for 0 < £ <n—1i-1. Thus, using (44), we can obtain
DIt D*G DG

(46) log 7G.;(U) ( [ ( )
D*Fi—(u) D= F(DF i )(u))

j—i—1

Z log

provided that we take the constant p. sufficiently small. Likewise, we can get
D,.G7™(v)
D, Fi=(u)
The condition (vi) follows from these two inequalities and the assumption that zg

belongs to A(x, e, n, k; F).
Finally we check the condition (viii). Let  be an admissible curve in B(zg, £, ').

<1l for0<i<yj<n,

<1 for0<i<j<n.

log

From the argument in subsection 3.4, the curvature of Fv for 0 < i < n is bounded
by some constant Cy, even though Fv for 0 < i < n, may not be admissible. Thus
we can take the constant k, so large that any arc in F'y with length less than
4Agﬁ,gl meets any ball with diameter not larger than 2;{;1 in a single sub-arc with
length less than 4/<,g1. The diameter of B; is bounded by 2&;1 provided that we
take the constant p. sufficiently small. Thus, by induction on 0 < j < n, we can
check that v; = v N ((_y F4B(¢(¢), diamBy))) consists of a single arc. We
obtain the condition (viii) as the case j = n. O

Note that the claim of lemma 5.1 remains true even if we get the constant p.
smaller and k. and k4 larger. By letting the constant p. smaller and k. larger if
necessary, we can show the following claim in addition:

Addendum to lemma 5.1 Suppose that FF € U, n > 1 and k > 0. Then there
exists a neighborhood W (z) for each point z € A(x, €, k,n; F') such that

(ix) The restriction of F™ to W(z) is a diffeomorphism onto the image. Further,
it W(z)NW(w) # 0 for some w € A(x, e, k,n; F), then F™ is injective on the
union W{z) U W{w).

(x) m(W(2)) > r_Lexp(—(x} + max{x/},0} + 7e)n — 6k).

Proof. We consider a point zg € A(x, €, k,n; F') and continue to use the notations
in lemma 5.1 and its proof. Let v be the curve in V,, (F) that F”™ maps onto the
segment {((n) +¢-e%(((n)) | |t| < po} C B({(n), py) where e(-) is a unit vector
in E¢(-). From backward invariance of the central cones S¢(-), the tangent vectors
of v is contained in the central cones, provided that we take sufficiently small p..
From (46) and (6), the length of Fly satisfies

\Elvy] < Cypol|(D Fg‘ml) Y| < Cype exp(—den — 2k)

and, for the case i =0,

1> € nl(DF) ™ > €t i pee™ 2 (DEL) ™ I(DFY )|

> C'g"lpE exp(—max{xT,0}n — Ben — 4k).
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Next consider the family of parallel segments
Y(t) =y +t-e“(z0), [t < peexp(—(xi + 2e)n — 2k)

parameterized by the points y € -, where e%(zj) is a unit vector in E*(zp). And
we define W(zp) as the region that this family of segments sweeps. From the
estimate on the length of v above, we can see that W(z) satisfies the condition
(x), provided that we take sufficiently large constant k.. Since the mapping F is
uniformly expanding in the unstable directions, we can show

|Elvy| < Cypeexp(—(xih + 2€)n — 2k) D F'(€¥(20)) < Cyp exp(—en — k)
for 0 < i < n. Hence the diameter of F*(W(zg)) is bounded by

| Flry| 4 max |[Flyy| < 2C,pe exp(—en — k).

If W(z) N W{w) #£ 0 for some point w € Aly,e,n,k; F), the diameter of the
image F*(W(z9) U W (w)) is bounded by 4C,p. exp(—en — k). On the other hand,
the distance from ((4) to the critical set C(F) is not less than Cy ! exp(—en — k)
from (44). Thus, if we take sufficiently small constant pe, the restrictions of F to
FYW (29) UW (w)) for 0 <i < n are diffeomorphisms and hence (ix) holds. |

The condition (ix) implies that, if two points z and w in A(x, €, k, n; F) satisfy
F*(z) = F™(w), the neighborhoods W (z) and W(w) are disjoint. Thus we obtain
the following corollary from the condition (x).

Corollary 5.2. Forany Feld, n>1, k>0 and ( € M, we have
H(A(x, 6. k,n; F)YNF™™(C)) < reexp((x) + max{xF,0} + 7e)n + 6k).

6. PHYSICAL MEASURES WITH NEUTRAL CENTRAL LYAPUNOV EXPONENT

In this section, we study physical measures with nearly neutral central Lyapunov
exponent. The goal is the proof of theorem 3.19, which will be carried out in the
last three subsections.

6.1. An illustration of the idea of the proof. The argument in this section
is based on a new idea that relate the transversality condition on unstable cones
to absolute continuity of physical measures with nearly neutral central Lyapunov
exponent. In this first subsection, we illustrate the idea using a simple example,
one because it is quite new in the study of dynamical systems, as far as the author
understands, and one because the argument in the following subsections is rather
involved in spite of the simplicity of the idea.

As a simplified model of partially hyperbolic endomorphism, we consider the

skew product F :[0,1) x R — [0,1) x R defined by
Flz,y)=(d -z,a;x+by+c) onli/d{(i+1)/d) xR, i=0,1,2,---,d—1,

where d > 2 is an integer and a;, b; and ¢; are real numbers. And we assume that

o |b;| <dfor 0 <i<d,sothat F is partially hyperbolic with E¢ = (J/0y),
o |b;| >d ! for 0 <i < d,sothat F is volume-expanding, and
. Z;j:—(]l log |b;] < 0, so that most of the orbits are bounded.
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Put = maxi<;<q|a;]/(d — |b;]) and bmax = maxi<i;<g|b;|- Then F brings a
segment with slope less than 8 in absolute value to a union of segments with the
same property. Assume in addition that

(47) la; —ay| > 30 - bmax for any i # 4.

This is a much simplified analogue of the transversality condition on unstable cones.
Indeed, if £, is a segment in [i,/d, (i, + 1)/d) x R for ¢ = 1,2, and if their slopes
are bounded by # in absolute value, then (47) implies that the difference between
the slopes of their images under the mapping F is larger than 0 - byax/d, provided

i1 £ is.
We prove the existence of an absolutely continuous invariant measure for ¥ with
negative central Lyapunov exponent. First of all, observe the following fact: if

Lebesgue integrable functions ¥y and 3 on {0, 1] x R take constant values on lines
with slopes ky and ky respectively or, in other words, satisly ¢, (z, y) = (0, y—k;x)
for 0 <z <1 and y € R, then we have

(1, ) s — / (Wi, ) davdy

= /u1 (0,9) - 20,9 + (k1 — k2)z)dzdy  where y' =y — kiz
S ‘kl — k2]71 HT;“?] ]]lﬂ ]]7;‘92“[11 provided k] 7& /{32.

Let ¢(z,y) be an L? function on [0,1] x R and suppose that it is the sum of
non-negative functions ¢;(y), 7 = 1,2,--- ,m, that take constant values on lines
with slopes k; with |k;| < 6 respectively. Let Pp and P;, 0 < i < d, be the
Perron-Frobenius operator associated to F' and its restriction to [i/d, (i +1)/d] x R
respectively, so that Pp = Zf:_g P;. By using the transversality condition (47) and
the fact we observed above, we can obtain

(48) [Prl3 =Y IPlFe + > (P, Putd) o
i it
1 ; d .
< ———|¥ll7: + ——¥]3:.
= d. mln{]bll} HU]]L2 + 0. Brnax HUHLl

Note that the coeflicient 1/(d - min{|b;|}) is smaller than 1 from the assumption.
The Perron-Frobenius operator Pr preserves L' norm of non-negative functions and
not dissipative because of the assumption Z;j;[} log |b;] < 0. Since the images PR}
again satisfy the condition that we assumed for ¥, we can apply the inequality (48)
repeatedly and see that PR(v), n = 1,2, ..., are uniformly bounded with respect to
the L?norm. Thus we can find a non-trivial fixed point of Pr in L2([0,1] x R) as a
L?-weak limit point of the sequence n=t 3" ]o Pi(¢), n=1,2,.... The measure
1 having this fixed point as density is an absolutely continuous invariant measure
for I, whose central Lyapunov exponent is d~* Z;i:] log |b;| < 0.

In the argument above, we used the assumption Zle log |b;] < 0 only to ensure
that the Perron-Frobenius operator P is not dissipative. So, if we consider mappings
on compact surfaces, the same argument should be valid in the case where the
central Lyapunov exponent is neutral or even slightly positive. This is the key idea
that we will develop in the following subsections.
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6.2. Semi-norms on the space of measures. For a Borel finite measure u on
M and 0 < 6 < 1, we define the function

. _ pBw,d) 1 |
Jsp T — R, J()‘,U/(w) .:T :W! 16(%72)d/i(2)
where
1, if 0. 2 .
1;: Tx T — R, Ls(w,z) =4 i d(u,./)<5,
0, otherwise.

And we put, for Borel finite measures 1 and v on M,

(s v)s = (s, Jsv) r2(my,  itlls = v/ (s 1t)s = || Jspe

Obviously || - ||s is a semi-norm and satisfies

L2(m)-

]
(49) lplls < —-
w2
lls for a measure g is essentially decreasing with respect to the
auxiliary parameter §. More precisely, we have

The semi-norm

Lemma 6.1. There is an absolute constant Cy > 1 such that
(50) lls < Collpll,
for any 0 < p < 3§ <1 and any Borel finite measure fi.

Proof. There is an absolute constant C' such that, for any 0 < p < § < 1, we can
cover the disk B(0,d) in R? by disks B(w;, p), 1 < i < [C§%/p?], by choosing the
points w; appropriately. Using Schwarz inequality, we obtain

2

i . (108207
1|3 = 72—154 / w(B(z,6))*dm(z) < %/ 2 w(B(z +wy,p)) | dm(z)
1 52 [©8%/p%)
<o O X [uBl ) im) < lul;
for any Borel finite measure p on M. O
We will make use of the following properties of the semi-norm | - ||s.

Lemma 6.2. If we have liminfs_ .o ||ulls < o0 for a Borel finite measure p, then
the measure pu ts absolutely continuous with respect to Lebesgue measure m and it
holds lims o [|itl|s = ||dp/dml|| 12 ().

Proof. The assumption implies that there exists a sequence (i) — +0 such that
Js(iyp is uniformly bounded in L?(m). Taking a subsequence, we can assume that
Js@ym converges weakly to some 1 € L?(m) as i — oo. Since (f, V)r2(m) =
lim o [ f - Ty dm = [ fdp for any continuous function f on M, we have
© =1 -m. Now the last equality is standard. O

Lemma 6.3. If a sequence of Borel finite measures i, © > 1, converges weakly to
some Borel finite measure fis. then we have ||foolls = limy oo ||1til|s for & > 0.
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Proof. We have poo(9B(z,6)) = 0 for Lebesgue almost every point z, because
//JOQ(O?B( ))dm(z / oo (w)dm(z) /m (0B{(w, 8))dptoo (w) = 0.
(z,w)=46

This implies that Jsu; converges to Jsuoo Lebesgue almost everywhere as ¢ — oc.
i|ls, ¢ > 1, are uniformly bounded from (49), the lemma
follows from Lebesgue’s convergence theorem. O

6.3. Two lemmas on the semi-norm | - |[s. Let x = {x7,x7. x5, x5} be a
quadruple satisfying the conditions (14) and (23), and e a small positive constant
satisfying (38). For simplicity, we put
A e A ; o

Xe =Xe —Xe»  Xu = Xa ~ Xa-
Let F' be a mapping in U, k a positive number, n a positive integer and p a Borel
finite measure on M that is supported on the subset A(x,e¢, k,n; F). The aim of
this subsection is to give two lemmas that estimate [0 F~"|5. Below we shall use
the notation in section 5

Suppose that the measure i is absolutely continuous with respect to Lebesgue
measure m and that the density dp/dm is square integrable. Then it holds

lld(p o F‘")/deiz(m) <m-exp(—(xg + Xo )0+ 2k)|dp/dm iz(m)
where m = max{#(F "(w) N Alx, e, k,n; F)) | w & M }, because
{det DF™| > exp{(x, + x,)n—2k) on A(x, €k, n; F).

The following lemma is a counterpart of this simple fact for the semi-norm || - || ..
Recall the constants 0 < p. < 1 and k¢, k4 > 1 in lemma 5.1.

Lemma 6.4. Let p be a positive number satisfying

0 < p < peexp({x7 — 5e)n — 3(k + 1))/(10&5)
and put

§ = 10kgpexp(—x . n+k+1).

Suppose that a measure p in AM([5,00)) is supported on a Borel subset X in
Alx. e, k,n; F). Then we have
(51) o P < g meexp((—xe —Xu +Xe T xa)n + 6k)|ul3
for some constant I; > 0, where m = max{#(F ™ (w) N B(X,0)) | w € M}.

Remark. The point of the lemma above is that the auxiliary parameter of the semi-
norm on the right hand side of (51), that is §, is larger than that on the left hand
side, that is p. If the auxiliary parameter on the right hand side were allowed to
be much smaller than that on the left hand side, the inequality (51) would hold
without the assumption that p has an admissible lift.

Proof. For each point y € A(x, e,k + 1,n; F), there is a unique neighborhood V {y)
such that F™ restricted to V(y) is a diffeomorphism onto the disk B(F"(y), p),
according to lemma 5.1. Note that the diameter of V(y) is smaller than 6/10 from
lemma 5.1(iv) and the definition of §. Let U be the union of the neighborhoods
V(y) for y € X. Then U is contained in B(X,d/10) and also in A(x, e,k +1,n; F)
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from lemma 5.1(vi) because X is a subset of A(x, €, k, n; F). From the definition of
U and the assumption that p is supported on X, it follows

—nN/, o 1 —n , _ 1
Jo(po F )(w)fmqu (B(w,p))fﬂ—p2 EF;)OU#(V(Z»

for w € M. Suppose that we have proved

_ _ P2 .
(52) pV(2)) < Coexp(=(xz +xz)m+26) (5) n(B(z0))

for any z € Ay, ¢, k+ 1,n; F). Then it follows

(53)  Jplno F)w) < Cooxp(—(xi +xan+2%) S su(e)
zEF—(w)NU

for each w € M. As we have
|det DF"| < exp((x§ +xt)n+2k+2) onUCA(x,6,k+1,n;F),

we can obtain the inequality (51) from (53) by integrating the squares of the both
sides and using Schwarz inequality. Therefore, in order to prove the lemma, it is
enough to show the inequality (52). Since the both sides of (52) is linear with
respect to u, we may assume without loss of generality that p has an admissible
lift that is supported on a single element of the partition Zac in AC([d, 0)).

Let v : [0,a] — M be an admissible curve with length @ > ¢ and z a point
in A(x, e,k + 1,n; F). Consider a connected component I of v71(V(2)) and let
J be the connected component of y71(B(z,4)) D v~ 1(V(2)) that contains I. As
d < 1{51, lemma 5.1(viil) tells that the interval I is the unique connected component
of v~ 1(V(2)) in J. For the length of I, we have

my (1) = Y]] < [F(v[n)exp(=x,n +k +2) < Cgpexp(—x,n+k+2)
where the first inequality follows from the fact that +|; is an admissible curve in
V(z) € Alx, e,k + 2,n; F) and the second from the fact that F'(v|r) is a curve
in F"(V(z)) = B(F™(z),p) whose tangent vectors are contained in the unstable
cones S*. For the length of J, we have mg(J) > 6/2 because the curve | ; meets

V(z) C B(#,0/10) while the length of 7 is not less than §. These estimates hold
for each connected component of v~1(V(z)). Thus we obtain

-1 — 2
mg(y (V(2))) pexp(—x,n+k) p -
- C - < Cy= exp(— + n+ 2k),
mR("/—l(B(z,()))) g § gog p( (Xc Xu) )
where we used the definition of § in the second inequality. From this and the
definition of admissible measure, we can conclude (52) for any measure p that has
an admissible lift supported on {v} x [0, a]. i

The next lemma is a counterpart of the inequality (48). Recall the definition of
N(x,e€, k,n; F) in subsection 3.7.
Lemma 6.5. Let p and § be positive numbers that satisfy
prexp((—x; +e)n) <30 <exp((xc — 2xy — 3¢)n).

Suppose that a measure p in AM([d, 00)) is supported on A(x, €. k,n; F). Then we
have

o Fol? < N(x, e k+ 1,05 F)|ull; L ep((=2xc +26)n) ul?
? 7 exp((xe +xu — X2 —x& —20)n) 92 ’
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provided that n is larger than some integer n. = n.(x, €, k) which depends only on
X, € and k besides the objects that we have fized in subsection 3.2.

Proof. Put py :=exp((x, — x{ — €)n) and choose n. = n.(x, €, k) so large that

pr < peexp((x, — 5e)ns — 30k +1))/(10K2).

We shall impose additional conditions on the choice of n, in some places below.
Consider an integer n > n, and the lattice L{p1) which we defined at the end of
subsection 3.1.

For w € L(p1), let Dsg(w,i), 1 < i < m(w), be the connected components of
F™(B(w,3p1)) that meet A(x,€ k,n; F). By lemma 5.1 and the choice of n,
above, we can check that the restriction of F™ to Ds(w,i) is a diffeomorphism
onto B(w, 3py) and that Ds(w,4) is contained in A{x, e,k + 1,n; F). Let Dq(w,4)
and Ds(w, 1) be the part of D3(w,i) that F™ maps onto B(w, p1) and B(w,2p;)
respectively. For o = 1,2,3, let D,(w) be the union of Dy (w,) for 1 <i <m(w).

Since the disks B(w, p1) for w € L(p;) cover the torus T, we have

poFTM< 3T (e F ) B
wEL(pl)

The function J,((¢t 0 F'7™)|Bw,p,)) is supported on the disk B(w, 2p1) as p < p1
from the assumption on p. And the intersection multiplicity of the disks B(w, 2p;)
for w € LL(p;) is bounded by 10? at most. Thus we obtain, by Schwarz inequality,

2
L2
Hqu Hpg Z (o F™™)B upl))() dm(z)
wel{p1)
< 10? / > (oo F ) Bgen)(2) dm(2)
wel{p1)
=10° Y (o F) Bl
weL(p1)

Since the intersection multiplicity of the regions Do(w) for w € L(p1) is also

bounded by 10?, we have Zu@ (o1) [L‘Dg(w) < 10%p and hence

> Il = [ 3 (i) dmz)

weL{p1) " welL(p)
< [0 () dmiz) < 107l
Therefore we can deduce the inequality in the lemma from its localized version:
N &k + L F)|plp, )}

exp((xe +Xu — X2 — X2 —e)n)

exp((=2xT +e)n :
e 2+ ") (D))

(54)  [l(o F)npn| <

for w € L(p;), provided that we take the constant n, so large that exp(en.) > 10°.
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Below we fix w € L{p;) and prove the inequality (54). From the definition of
D3(w,i) and the assumption that p is supported on A(x, €, k,n; F), we have

m(w)

(o F™) [Bwp) = D (lpiwa) o F 7
=1

Hence the left hand side of the inequality (54) is written in the form
(55) > (i) © F7™) (b wy) 0 F 7)o
1<, j<m(w)
For 1 < i < m(w), let z; be the unique point in Ds(w,1) such that F"(z;) = w,
which belongs to A(x, e, k+ 1,n; F). For 1 <i,j < m(w), we write ¢ rh j if the pair
(24 27) does not belong to the subset E(w; x, €, k + 1,n; F), that is,
Z(DF"(B"(2;)), DF™(E"(2;))) > 5Hgexp((x¢ — Xo )n + 2(k + 1)

)-

(See subsection 3.7 for the definition of the set £(-).) We split the sum (55) into
two parts according to the condition ¢ M j and reduce the inequality (54) to the
following two inequalities:

N(x, €,k +1,1; F)||it| py ) |2
> (D) © F7™ (] py wgy) © F7™)p < 20) lp

irj exp((xe + xu — X2 —x2 —e)n)
and
1 — exp((—2xF + e)n) .
Z((“]’)l i) @ F7 (D)) © F7)p < 5; ) (1(D2(w)))?.
irhj

We denote the sums on the left hand sides of these two inequalities by > % and Do
respectively.
We prove the first inequality. By Schwarz inequality, we have

)OF 7L112+]](/1‘D1 UJ,J))OF nii[Q)

H ,Ui[) (w,1)
Z > —— 2

g
Since each term H (U D; (w,iy) o F~™| , appears for at most 2-N(x, €, k41, n; F') times
on the right hand side, this implies

m(w)
ZSN(X,G,]{#»LTZ;F Z /L‘Dl(wz) OF nHi
1 i=1

m (w

Besides, we have > 1] p, (w,5) 112 < el oy ) H 5+ Therefore it is enough to show

]]lL‘DQ (w, %) Hp

exp(xe + Xu — X2 —XE —€)
We show this inequality by using lemma 6.4. Unfortunately, we can not apply
lemma 6.4 directly to the measure p|p, () because some part of its admissible
lift may be supported on the part of AC((0,00)) that corresponds to very short
admissible curves, as a consequence of the restriction. We argue as follows: Observe
that F™ brings any C'lcurve with length less than 6 in D3(w,1) C A(x, €, k+1,1; F)
to a curve with length less than p; from the assumption on ¢ and (5), provided that

n. is larger than some constant which depends only on ¢, k and the constant C,
in (5). Suppose that an admissible curve v with length ¢ > 6 meets Dy(w, 1) and
that a connected component I of 'y_l(DQ(w,i)) has length less than . Then the

(56) 1l Dy () 0 E15 <
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curve | meets the boundary of Da(w, i) and hence F*(v];) meets the boundary
of B(w,2p;). From the observation above, FI*(v|;) does not meet B(w, p;) and
hence 7| does not meet D;(w,4). Using this fact, we can construct a measure
it in AM([8,00)) that satisfies p|p,w,iy < ft < ipy(w,s) by discarding the part
of the admissible lift of u|p,, ) that is supported on AC((0,9)). Note that the
observation above implies also that the §-neighborhood of Ds(w, 1) is contained in
Ds(w,i), so that max{#(F™"(z) N B({Dz(w,i),d)) | z € M} = 1. Now we apply
proposition 6.4 to & and X = Dy(w,i). Then the corresponding conclusion and
(50) imply (56), provided that n. is larger than some constant which depends only
one, k, pe, kg and I,.
Next we prove the second inequality. It is enough to show

((#‘Dl(w,i)) o FM, (/’L‘Dl(7lf7j)> © Fﬁn),,

57 .
(57) <5 2exp((—2xF + e)n) - u(Da(w, i) - w(Dolw, 7))

for 1 < i,7 < m(w) such that i M 7. The both sides of this inequality are linear
with respect to jt|p,(w,s) and p|p,.j)- Hence, without loss of generality, we can
assume that (1| p, (w,s) (resp. pt|p,(w,5)) has an admissible lift supported on a single
element {v,} x [0, a;] (resp. {7;} x [0, a;]) of the partition Zac and that the curve
v; (resp. 7;) is a connected component of the intersection of an admissible curve
with length > § with Da(w, ) (resp. Da{w, j)). From the argument in the proof
of the first inequality above, if the length of the curve v; (resp. 7;) is less than 4,
it can not meet Dq(w, ) (resp. Di(w, 7)) and hence the inequality (57) is trivial.
Thereby, we can assume also that the lengths of ; and ~y;, that is, a; and a;, are
not less than 4.

By the definition of admissible measure and that of the semi-norm || ||,, we have

((:U’]Dl(w,i)) [} F—n7 (#‘Dl(w,j)> © F_n)p
1(Da(w,4)) - p(Da(w, j))

Cy /
< — 1,(F™ omi(t), y) - 1,(F" ovi(s), y)dm(y)dids
aia;(7p%)* Jrx(0,a:)x[0,a;] ol (£): 3) - Lol (s): y)dm(y)
< 095—2’)—2/ Lop(F™ 07(t), F™ 0 v4(s))dtds.
[0,a:]%[0,a;]

We estimate the last term by using the assumption i h j. From (17), it holds
Z(DE™E“(v(1))), DF™(i(t))) < Hyexp((x& — xz)n +2(k + 1))
for t € [0, a;]. From lemma 5.1(vii), it holds
Z(DFM(E*(2)), DF"(B*(%,(1))) < ree2+D) - 20,
< Hgexp((xd — X )n +2(k +1))
t € [0,a;], where the second inequality follows from the definition of p; provided
that n, is larger than some constant which depends only on €, x. and H,. Thus we
have
Z(DF™(E"(2,)), DF"((1))) < 2H, exp((x¢ — xu)n+2(k+1)) for ¢ € [0,a,
and the same estimate with the index i replaced by j. Therefore the condition i h j
implies that, for any t € [0,q,] and s € [0, ¢ ],

Z(DFE™M (1), DF™(7;(5))) > Hyexp((xd — xo)n +2(k + 1))
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By simple geometric consideration using this fact, we can see that the part of
the curve F['vy,; that is within distance 2p from the curve F['v; has length less

than Cypexp(—(xt — xu)n — 2(k + 1)). Since v; and 7; are admissible curves in
Alx, e,k + 1,n; F), we obtain

Copexp(—(xd —xy)n —2(k +1))
exp(xun — (k+1))
= Cypexp(—xin —(k+1))

mp{t € [0,a;] | d(F"(7:(t), Fi'v;) < 2p} <

and the same inequality with the indices i and j exchanged. These imply
/[ oy Lo F D) P (s))tds < Cyp? expl—xin — 20+ 1)
0,a1]x[0,a»

Therefore we can conclude (57) by taking the constant n, larger if necessary. O

6.4. The proof of theorem 3.19: Part 1. We give the proof of theorem 3.19
in the following three subsection. From this point to the end of this section, we
consider the situation assumed in the theorem: Let X be a finite collection of
quadruples x(¢) = {xz (€),xF (€), xz (0, x¢ (O}, 1 < € < o, satisfying (14), (23)
and (24); Let F be a mapping in U that satisfy the no flat contact condition and
the transversality condition on unstable cones for X. The aim of this subsection is
to derive the conclusions of theorem 3.19 from the following proposition:

Proposition 6.6. Let u,;, i > 1, be a sequence of Borel probability measures on M.
We assume either
(A) every u; is invariant and has an admissible lift, or
(B) p; =n(i)~! Z;Lg*l my o F~7 for some subsequence n(i) — oo, where my is
the normalization of the restriction of Lebesgue measure to some Borel subset
X C M with positive Lebesgue measure.
Further, we assume that j; converges weakly to a Borel probability measure jis aS
i — oo and that the pair of Lyapunov exponents (x.(z; F), xu(z; F)) is contained
in the region |X| for peo-almost every point z. Then, for sufficiently large i, there
exists a measure v; < u; such that
(a) |v > 1/3 and
(b) v; is absolutely continuous with respect to Lebesque measure and the L*-norm
of the density dv;/dm is bounded by a constant that is independent of i.

We assume proposition 6.6 and prove theorem 3.19.

Proof of theorem 3.19. First, note that, if an ergodic invariant measure p has an
admissible lift, and if the pair of Lyapunov exponent (x.(u; F), xu(p; F)) of p is
contained in | X[, then p is absolutely continuous with respect to Lebesgue measure
and, hence, is a physical measure. This follows immediately from proposition 6.6 if
we set [; = Lo = p in the assumption (A).

We show that there exist at most finitely many ergodic physical measures. Sup-
pose that there exist infinitely many mutually distinct ergodic physical measures
Hi, i =1,2,---. By taking a subsequence, we can assume that y, converges weakly
to some measure fin, as i — 00. We have x.(jin; F) = 0 from corollary 4.5, propo-
sition 4.8 and corollary 3.14. Moreover, we have x.(z; F') = 0 for pi-almost every
point z. In fact, otherwise, there should be an ergodic physical measure . < fix
with negative central Lyapunov exponent from lemma 4.6 and hence u; = pl_
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for sufficiently large i from lemma 4.3, which contradicts the assumption that pu;
are mutually distinct. Since Ay < x,(2; F) < A, for any point z € M from the
choice of the constants A, and A,, the assumption (24) implies that the pair of
Lyapunov exponents (x.(z; F), xu(z; F)) is contained in |X]| for p-almost every
point 2. Therefore we can apply proposition 6.6 with assumption (A) to the se-
quence p; and conclude that there is a measure v; < p; for sufficiently large ¢ such
that [v;| > 1/3 and |dv;/dml|2(m) < C for a constant C that is independent of i.
For these measures v, Schwarz inequality gives

(1/3)% < [wi]* < m(B(ua)) | dvi/dm|| 2 (i < C*m(B(us)).

Obviously this contradicts the fact that the basins B(y;) are mutually disjoint.

Let B° be the union of the basins of ergodic physical measures whose central
Lyapunov exponent is neutral. Below we prove that the Lebesgue measure of the
subset X := M \ (B~ UB" U B") is zero. Again the proof is by contradiction.
Suppose that the subset X has positive Lebesgue measure. Then, by choosing a
subsequence n(i) — oo appropriately, we can assume that the sequence of measures
pi =mn(i)™t Z?Sg—l my o FF7J converges to some measure jlo as i — oo. Note that
the measures ul are supported on X, for F(X) € X. From proposition 4.9, we have
Xe(z; F) = 0 for poo-almost every point z. Thus the assumption (24) imply that the
pair of Lyapunov exponents (x.(z; F), xu(z; F)) is contained in |X] for peo-almost
every point z. Each ergodic component of i, has an admissible lift from lemma
3.12 and hence it is a physical measure with neutral central Lyapunov exponent from
the fact we noted in the beginning. Especially po is supported on B°. Now apply
proposition 6.6 with assumption (B) to the sequence p; and then let v; be those
in the corresponding conclusion. Since the density ¢; := di;/dm has uniformly
bounded L’norm for sufficiently large i, we can assume that 1; converges weakly
to some o, € L?(m), by taking a subsequence of n(i). Note that v, is not trivial
because

(Yoor L2 (m) = 1m (i, 1) p2(m) = lim Jof > 1/3.

On the one hand, we have [ ;dju = 0 since v; < p; is supported on X C M\ B°.
On the other hand, we should have

lim | ¥idpse > lim | Yithoodm = lim (¥, Vo) 12 = || ¥

T— 0 . 11— 00 . 11— 00

%2 (m) >0

because 1., - m < 1. We have arrived at a contradiction.

We have proved that there exists only finitely many ergodic physical measures
for F' and that the union of basins of them has total Lebesgue measure. The last
statement of theorem 3.19 follows from proposition 4.7 and the fact we noted in
the beginning. O

6.5. The proof of theorem 3.19: Part II. In this subsection, we give the proof
of proposition 6.6, assuming a lemma, lemma 6.8, whose proof is left to the next
subsection. Let y; and o, be those in proposition 6.6. We denote

Xa () =x3 () —xg(0) and xZ(0) =x5() —xg (&) for 1 <L <4y,

To begin with, we take and fix several constants in the following order:
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(K1) Take 0 < € < 1 so small that (38) hold for all the quadruples x € X and that

lim liminf max — 1Og(7N(X(£)’6’/{’n:’F)) <1
k—oo n—oo 1<6<bo - (Xe (€) + Xu (£) — X2 (€) — x§(£) — 100¢)
This is possible from the transversality condition on unstable cones for X.
(K2) Take positive constants p, so small and k. so large that lemma 5.1 and
lemma 6.4 hold for all the quadruples y € X and € above.
(K3) Take a positive constant 1 so small that

10Agn <e and 7 <1077 <1077
(K4) Take positive constants kg and mg so large that ho > A, > 1, mg > ng and
/min{(), L(F™(2); F) + ho} du(z) > —% i

for any p € AM([1,00)) and n > myg, where L(-) is the function defined in
(13). This is possible from lemma 3.13.
(K5) Take a positive constant kg such that ko > h¢ and that

Zy \
oo (egl A(x(£), e, ko — 1,n; F)) >1 - ZOghO for any n > 0.

This is possible from lemma 3.15, and the assumption on fise.
(K6) Take a large positive integer pg such that
(2) N(x(6)s ¢, ko +2,p0; F) < exp((xe () +x,, (6) —x2 (£) — x (£) — 100¢)po),
(b) Po > nX(X(E) €, ko + 1)
for 1 < £ < £y where n.(-) is that in lemma 6.5. This is possible from the
choice of € and the fact that N(x(£), €, k, pg; F') is increasing with respect to k.
Hereafter we will never change the constants taken in (K1)-(K5). Note that we can
choose the integer pg arbitrarily large in the condition (K6) above. In some places
below, we shall put additional conditions that pg is larger than some numbers that
depend only on X, ¢4, Ay, Ay, g, €o and the constants taken in (K1)-(K5).
For a point z € M, we define

kiz) =min< k€ Z | k> koand z € U Alx(8), e, k,po: F) » > ko
1<e<ty

and k(z) = oo if the set {-} above is empty. Also we define

1(s) 0, ?f. k(z) = ko;
1, if k(Z) > k.

This is the indicator function of the complement of U1<£<Z<, A(x(0), e, ko, po; F).
Let m be a positive integer and write it in the form m = q(m) - pg + d(m) where
q(m) = [m/pg], so that 0 < d(m) < pg. We define the subset R(m) as the set of
points z € M that satisfy
—_ n- _
R1) #{1<j<qg|W(F™IP(z)) =1} < 1]0—hq for 1 < ¢ < gq(m);
0

q
(R2) Y (K(F™97(2)) — ko) <n-qpo for 1 < ¢ < q(m); and

j=
(R3) k(z) — ko < nym.

oy
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The following lemma gives a sufficient condition in order that R{m), m =1,2,---
are not very small with respect to a measure pu.

Lemma 6.7. Let p be a Borel probability measure pp on M and n a positive integer
such that n > 10pg. Assume that

8) > [P @) 10 ) dute) < T

and that

nn
5 F7 .
(59) Z / ) duz) < qom

7=0

Then we have n™1 Zm o (R(m)) > 1/2.

Proof. For 0 < m < n, let Q1(m), Q2(m) and Qs(m) be the sets of points z that
violate the condition (R1), (R2) and (R3) respectively. We are going to estimate
the measures of these subsets by using lemma 4.14. First we give the estimate on
the subset Q1(m) for 0 < m < n. If z € Q1(m), we have

q
ZI Fm Jp<; >> n-q
= — 10hg

for some 1 < ¢ < g(m). Using lemma 4.14 with the assumption (59), we obtain

n—1 po [(n—d)/po)
Z (Q1(m) Z Z p(Qi1((n —d) — jpo))
m=0

(n—d)/pol

2. [ 104 —d)—ipo )
< Z 0! jzo /I (F( d)—jp (z)> du(z) | < %

Next we give the estimate on the union Q(m) U Qsz(m). Let us put
P(2) = (|L(z; F)| + 5Ay) - I(z) for j > 1.

We claim that
po—1 -

(60) k(z) —ko < Y w(FU(2))  forz€ M.
i—0

For a point z, take the smallest integer 0 < p < po such that k(FP(z)) = ko, and
set p = py if there are no such integers. If p = 0, the inequality (60) is trivial. So
we assume p > 0. In the case 0 < p < pg, we choose an integer 1 < £ < {5 so
that A(x(¢), e, ko, po; F') contains FP(z). In the case p = pg, we choose 1 < £ < £
arbitrarily. For 0 < ¢ < ¢ < p and v € S*(F(z)), we have the following obvious
estimates:

ZL Fi(2); F) <log|D*F" *(v)] < Ag(i" — 1), and

— Ay < —¢g <log |DLF "1 w)| < Ag(i' — ).
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Using these estimates and the fact that FP(z) € A(x(£),¢, ko, po; F) in the case
p < pg, we can check that z belongs to A(x(¢), ¢, k, po; F) for

p—1
k=ko+ | > (IL(FI(2); F)|+3Ag +€)| +1.
j=0

This implies (60).
If a point z belongs to Qa(m) or Qs(m) for pg < m < n, we have, from (60),

m—1
Z Y(F7(2)) > n(m —m’) for some 0 < m' < m.

j=m/

As hg > Ay, the assumptions (58) and (59) imply

> [otrienan) < &
=0

Therefore, by using lemma 4.14, we can obtain

n—1

Z u(Qz(m) U Qs(m)) < %

m=po

Note that we have 7 1(Qa(m) U Qs(m)) < po < n/10 from the assumption
on n. Since R(m) is the complement of Q1(m) U Qs(m) U Qz(m), we can conclude
the lemma from the estimates above. O

The following lemma is the key step in the proof of proposition 6.6.

Lemma 6.8. Let u be a Borel finite measure on M and n a non-negative integer.
If i has an admissible lift ji such that ji o F belongs to AM(lexp(—nn),o0)) for
0 <i < n, then we have

[l r ) o F7"p < Clu| + Cexp(=en) |l s exp(—10mn)

for 0 < p < exp(—10Agpo), where C > 0 is a constant that does not depend on the
measure 4 nor the integer n.

Remark. Actually, the constant C' > 0 above depends only on €, pg, ¢g and Ag.

We give the proof of this lemma in the next subsection. Below we assume this
lemma and complete the proof of proposition 6.6.

Proof of proposition 6.6. First consider the case where the assumption (A) holds.
From the choice of kg, we have

KU
M (U A(X(€>7€vk()7])()§F)> > 1 N
=1

 100hg

or, in other words,

. \
1(2)dys
/ ()i < To0m0
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for sufficiently large 4, because A(x(£), €. ko, po; F') contains an open neighborhood of
the compact subset A(x(£), €, ko—1,po; F'). The measure yi; belongs to AM([1, 00))
from corollary 3.7. Thus, it follows from the choice of hg that

n

/ min{0, L(z; F) + ho }dpi(z) > ~100°

Hence

n n n
Lz F)| - T{2)du;, hg - e
[ 1 P @) < o g + 15 <

Now we can apply lemma 6.7 to the measure p; for sufficiently large ¢, and obtain

for n. > 10pyg.

N =

n S w(RG)) >
5=0

We put

n—1

1 s
Vipn = E ZO(’LLL]RO)> oF J S i forn 2 ].,
j=

so that |v; ] > 1/2 for n > 10py. Obviously the measure i, has an admissible lift
that satisfies the assumption of lemma 6.8 for any n > 0. Thus it holds

n—1 n—1

1 p C )
Hui,n]]ﬂ < ; Z H(/u"i]”fi(j)) © FﬁJHp < C+— Zexp(ffj)]]ﬂ‘iHpcxp(—l()nj)
g

n
J=0

for 0 < p < exp(—10Agpy). This, together with (49) and the choice of n, im-
plies limsup,, o [|#inll, < C. Let v; be a weak limit point of the sequence v; 5,
n = 1,2,.... Then it holds v; < p; and || > 1/2. Also we have |y, < C for
0 < p < exp(—10Agpg) from lemma 6.3. From lemma 6.2, this implies that v; is
absolutely continuous with respect to Lebesgue measure and the density satisfies
lldvi/dm||p2(ym) < C. Thus the measures v; satisfy the conditions in proposition
6.6.

Next we consider the case where the assumption (B) holds. Let ng = no(F) > n,
be that in the definition of the no flat contact condition. Let X and mx be those in
the assumption (B). Using lemma 3.10, we can find a small positive number b > 0
and a probability measure w’ € AM([b, 00)) such that

o Imyx — | < 1073n/hy,
o ' o F7™ jg absolute continuous with respect to Lebesgue measure, and
o the density d(w’ o F7™)/dm is square integrable.

We put w = w’ o F7™ and
n(i)—1
Wi =mn(i)~t Z woFI, fori=1,2,....

§=0

Then, for sufficiently large i, we have

i — pl| < 107*n/hg and hence

Z()
’ Ax(0), €. kg, po: F 11 thatis, [ I(2)dy "
K (U (X(6): € ko, pos )> Z T T00h, A / ()1 < 507
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from the choice of ky. From corollary 3.7, w o F~7 belongs to AM([1,00)) for
sufficiently large 7. Thus we have
e ’ n n n
/ [L(z; F)|  I(z)dpi(z) < hg - 007, + 106 < 1o
for sufficiently large i, from the choice of hg. Now we can apply lemma 6.7 to y = w
and n = n(i) and obtain
n—1
n(i)~! Z w(R(m)) > 1/2
m=0
for sufficiently large i. Let &’ be an admissible lift of w’ that belongs to AM(]b, 00))
and put @ = @' o F_ ™, Then & is an admissible lift of w. Take a large positive
integer ny that satisfies exp(—n-ny) < b (:Xp(—(:g). From lemma 3.5, the measures
o F"=3&" o F_ "™ for i > 0 belongs to AM([exp(—nn),o0)), provided n > n;.
Thus we can apply lemma 6.8 to w, and obtain
[(wlr@my) o F"[p < Clw| 4 Cexp(—en)|[wllpexp(—10mn)
for 0 < p < exp(—10Agpy) and n > ny. We put
n(i)—1

, 1
ui:m Z(w

Jj=n

Ry o FTT <yl i=1,2,.. ..

Then, for sufficiently large ¢, we have |v/]| > (2/5) and
n(i)—1
]]V;Hp <C+ m Z eXP(*GJ')lelpoxp(—mm‘)

J=n1

for 0 < p < exp(—10Agpg). Letting p — +0 in the last inequality, we obtain

dv! no ! dw
dmi|;, — + n(7) jz: exp(=cj) dml|;,
=71

by lemma 6.2. Since we have |p} — p;| < 1072 and v} < pf, we can find a Borel
measure v; such that v; < v}, v; < p; and |v;| > 1/3 for sufficiently large i. These
measures v; satisfy the conditions in proposition 6.6. O

6.6. The proof of theorem 3.19: Part ITI. In this subsection, we give the proof
of lemma 6.8 and complete the proof of theorem 3.19. Let n, p and i be those in
lemma 6.8. Recall the mapping II : AC’((0,00)) — M and the commutative
relation (10) in subsection 3.4. Below we divide the measure § into many parts so
that we can evaluate the semi-norms of their images under the mapping Ilo F by
the two inequalities in subsection 6.3.

We write the integer n in the form n = q(n)pg + d(n) where g(n) = [n/po], so
0 <d(n) < po. For integers —1 < g < ¢(n), we put

@ qpo +d(n), in the case 0 < g <gq(n);
7(q) =

! 0, in the case ¢ = —1,

so that 7(¢(n)) = n, and

5(a) exp (—4n(n —7(q)) — TAgpo —cq), in the case 0 < g < ¢(n);
q) = ' :
! exp (—4nn — TAgpo) , in the case ¢ = —1.
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Take and fix a number 0 < p < exp(—10Agpp) arbitrarily and put

plq) = pexp(—10n(n — 7(q))) for —1 < g <q(n).

Also we put W = AC([exp(—nn), o)), so jio F* for 0 < i < n are supported
on W, from the assumption.
We begin with constructing measurable partitions £(q), —1 < g < g(n), of the

space W such that

(Z1) &(q) subdivides the partition Zac on W, which is defined in subsection 3.5.
And £(g) is increasing with respect to ¢, that is, £(¢ + 1) subdivides £(g).

(22) Each element of the partition £(q) is of the form {~v} x J where v is an
admissible curve in AC(a) with a¢ > exp(—nn) and J is an interval in [0, a
such that 5(q) < |F7“(~],)| < 26(q).

The construction is done by induction on ¢ easily. Since §(—1) < exp(—nn), we

can construct a partition £(—1) that satisfies (£1) and (Z2) by subdividing the

partition Zac on W. Let 0 < g < ¢(n) and suppose that we have constructed the

partitions £(j) for —1 < j < ¢. For each element {~} x J of (¢ — 1), the length of

the curve F, (q)(ﬂ/i J) 1s not less than

(g — 1) -exp(Ag(7(g) —7(g — 1)) — ¢g) > 0(q),
provided that we take the constant py so large that (A\g — 4n)ps > ¢4. (Recall
the remark on the choice of the constant py in the last subsection.) Hence we can
construct the partition £(q) satisfying (Z1) and (£2) by subdividing £(q — 1).

A Borel measurable subset in W is said to be a £(g)-subset if it is a union of
elements of £(¢). Note that, if Y is a £(¢)-subset, the measure (fi|y ) o FT@ ot
is contained in AM([6(q), 26(q)]) from the condition (£2).

For —1 < ¢ < g(n) and an element P = {7} x J of the partition £(¢), we define

k,(P) := min{k(F™@ (v(t))) |t € T } > ko,
where k() is that defined in the last subsection. For simplicity, we denote
7], = ||[#oll7|, for a measure ¥ on W.

The following is a consequence of the two inequalities in subsection 6.3.

Sublemma 6.9. Let Y be a &(q)-subset in W for some —1 < g < q(n) and k an
integer such that

(61) ko <k < ko+nin—71(q)).
If ko(P) <k for all P € &(q) inY, we have

|y e BTOD|| < exp(6Agpo + 3(k — ko)) |(Gily) o o7

]p(q+1) pla)

Moreover, if k = ko and ¢ > 0 in addition, we have either

() o P70 | < exp(—a8epy) || (aly) o BT

o(g+1) olq)

or

[y o F7O | < 5(g) exp(38Agmo) - (Y).
plg+1)
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Proof. We put p = 7(¢ + 1) — 7(q) < pp so that p is smaller than py only if

g = —1. From the assumption, we can divide the subset Y into £(q)-subsets Y (¢),

1 < €< £y, so that TTo FT 9 (PYNA(x(£), e k,po; F) # 0 for each P € &(q) in Y (£).

The measures (fily () o F~7@ oTI~! belong to AM([5(q), 00)), as we noted above.
We prove the first claim. By using (61) and (24), we can check

20(q) < fig ' peexp((xc () = X (€) — 5e)po — 4k),

provided that py is larger than some constant that depends only on kg, p, Kg
and Ag. This and the claim (v) and (vi) of lemma 5.1 imply that the subset
o F7@ (Y(£)) is contained in A(x(£),e,k + 1,po; F) and, hence, is contained in
Alx(8), e,k + 1+ epo,p; F) even in the case p < pg, by (16).

We have 6(q) > 6 := 10x4p(q + 1) exp(—x. (£)p + k + epo +2) > p(g) and

0 < plg+1) < peexp((xz (£) — 5e)p — 3(k + 2+ epo))/(1082)

from (61) and (24), provided that pg is larger than some constant which depends
only on kg, pe. kg, ¢g and Ag. Also we have

, —D (o () . =P, ) .
max #HF(F7P(w)n Bl o F*(Y(£)),6)) < max (F7P(w)) < exp(Agpo)

from the choice of Ay. Therefore we can apply lemma 6.4 and obtain

- —T(CI-H)H2
o F,
H(MY(@)) p(a+1)

2
<1y -exp(11Agpo + 6(k +epy + 1)) H(my(&) o FIT@ )

2
< (% exp(12A,0 + 6k — ko)) (i) o P
using (50), provided that pg is larger than some constant which depends only on I
ko, £o and Ag. Summing up the square root of the both sides over 1 < ¢ < 4y, we
obtain the first claim.

We prove the second claim by using lemma 6.5. Note that IT o Fy (q)(Y(ﬂ)) is
contained in A(x(€), €, ko + 1,po; F) in this case, from the argument above. We can
check

p(q+ 1) exp((—x; (£) + €)po) < 8(q) < exp((x. (£) — 2x; (£) — 3€)po),

provided that pg is larger than some constant which depends only on ¢, and A,.
Recall that we took pg so large that po > n.(x(4), €, ko + 1) in the condition (K6).
Hence we can apply lemma 6.5 and obtain

2 2

H(MY(E)) o F*—T(Q'i"l)

< exp(—98epo) H(ﬂ]yw)) o FTY H
plg+1)

+0(a) " exp((—2x () + 2¢)po) - A(Y (0))?,

where we used the condition (K6)(a) in the choice of pg. This implies

p(g+1)

(v @) o P70 < exp(~49epo) | Gily) o P27

plg+1) plg+1)

+0(q) ™ exp((—xd (0) + €)po) - A(Y).
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Summing up the both sides for 1 < £ < ¢y and using (50), we conclude

H(ﬁ\y) o F T H < Colo - exp(—49¢po) HWY) o FT H

plg+1) pla)

+ Lo - 6(q) " exp((2Ag + €)po) - A(Y).

The second claim follows from this inequality, provided that pg is larger than some
constant that depends only on 4y, A, and e. 0

g—1

For integers —1 < ¢’ < ¢ < q(n), let K(¢', ¢) be the set of sequences o = (0;);_,/

of (¢ — ¢’) integers that satisfy

(62) 0<o; <nin—70)) for ¢’ <j<aq.

In the case ¢’ = ¢, we regard that K(q', q) = K(q, q) consists of one empty sequence,
which we denote by 0,. We put

K(g) =J{K(d.9) | -1<¢ <q}

for 0 < ¢ < ¢(n). Below we construct subsets D(o) in W for o € Uz(znz] K(q) so
that the following conditions hold:

(D1) D(o) for o € K(q) are mutually disjoint £(q — 1)-subsets.

(D2) The union of D(o) for o € K(q) contains the subset II7H(R(n)) N W.

(D3) For -1 <¢' <¢<g(n)and o= (aj)?;;, € K{(q',q), we have

|(#loge)) o £

< exp(6Agpo + 304-1) H(ﬂ]@(a')) o F Tl

p(q) H/)(q—l)

where ¢’ = (Uj)g;j, € K(q',q—1) (soo’ =0, if ¢ = q—1). Further, we have

in the case where ¢ > 1 and 0,1 = 0.
(D4) For the empty sequence 0, € K(g,q) for ¢ > 0, we have

(o)) o BT

< exp(—48epo) ‘
p(a)

~ —T(q—l)H
1 o)) © F*
(itlpo) pla—1)

H(MD(M(,)) o F;T(q) Hp(q) <d(g—1)71 exp(3Agpo) - l(D(0y))-
The construction is done by induction on g. For the case ¢ = —1, we just define
D(@_1) = W. For the case ¢ = 0, we have to define D(o) for o = fy € K(0,0) and
o= (o_y) € K(—1,0), where 0 < o_; < nn from (62). We put D(llp) = 0 and

D((o-1)) = (P €&(-1) | kiy(P) = ko + 01} for 0 <oy <nn.

Then the conditions (D1) and (D4) hold obviously. The condition (D2) follows
from the condition (R3) in the definition of the subset R(n). The first claim of
sublemma 6.9 implies that the condition (D3) holds also.

Next, let ¢ > 1 and suppose that we have defined D(o) for o € K{(¢g — 1) so
g—1

that the conditions (D1)-(D4) hold for them. Consider an element o = (05)_,, in

K(¢',q) with ¢" < g and put ¢’ = (Jj)j-;j/. Let us set

(63) D.(o) = J{Pe€&lq—1)| P CD(0’) and kg 1(P) = ko + 041}
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In the case g4-1 > 0, we define D(o) = D.(c¢). In the case 041 = 0, we define
D(o) in the following manner: From the second claim of sublemma 6.9, we have
either

(64) H(ﬂiv*@) o F @)

< exp(—48epg) H(ﬂ,\p*(a)) o F{T(qq)H

p(a) plg—1)

or
|y F0 <60 =1) exp(8Agpo) - A(D.(0)):

We define D(g) = D.(c) in the case where (64) holds, and D(o) = ) otherwise.
Finally we define D({)y) as the union of D.(o) for the sequences ¢ = (0;)7_ ;, in
U 1<« £(d's @) = K(g)\ {0} such that o1 = 0 and that (64) does not hold. As
a consequence of this definition, the condition (D4) holds for the empty sequence
4. The condition (D1) holds obviously. We can check the condition (D2) by using
the condition (R2) in the definition of the subset R(n). The condition (D3) follows
from the first claim of sublemma 6.9 and the construction above. We have finished
the definition of the subsets D(c).

For —1 < ¢ < ¢(n), let K.(¢") be the set of sequences o = (Uj)z(;;)fl in
K(q',q(n)) that satisfy

o lolop:=#{¢ <j<qn)|j>0and g; >0} <nlg(n) —¢'), and

o lol =323 oy < 2n(a(n) — ¢po.

Then, from the definition of the subsets R(n) and D(c), we have

q(n)
nRe)ynwe ) U

¢'=—10ck.(q")

and hence

q(n)
(o mmy) "< Z Z /1\7; o F ™

—1loekK.

(J(")

For cach o = (0);_,,

in K,(¢") with ¢’ > 0, we can obtain

)o F:T(Q("))

(D) o F|, = HWDW ‘p@(n))

< exp (6A g polalo + 3|o] — 48¢e(g(n) — q" —lolo)pa) - H(//]D(@ )) o FL T

p(q")

from the conditions (D3) and, hence,

[(Blp(oy) o FT|, < exp(—4Te(a(n) — ¢')po + 11Agpo + ¢g) - |l

from the condition (D4) and the choice of . Similarly, for o = (Uj)?(:nl;l in Ku(—1),
we can obtain

[(lp()) o F|| ) < exp (6Agpo(lolo + 1) + 3lol — 48e(a(n) — [olo)po) - 12l 51y
and hence

H([J,\D(U)) o F*—an < exp(—47en + 8Agpo) - Hlﬂip(q) .
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For the cardinality of the set K.(¢"), we have

HK () < ( atn) = > : ([%po(Q(n)Q’)} + nlg(n) q’ﬂ)
[m(g(n) —4')] (n(q(n) —¢)]
where the first factor on the right hand side is an upper bound for the number
of possible arrangements of integers j > 0 for which ¢; may be positive and the
second factor is an upper bound for the cardinality of o € K.(¢") when one of such
arrangements is given. For positive numbers «, 3 > 0 and an integer m > 1 such
that am > 1 and Sm > 1, we have

p

am + Ggm Is) . «
g < amlog 2\ L 8mlos «
log ( Bm > < amlog (1 + a) -+ Amlog (1 + 5) + Ay

from Stirling’s formula, where Ag is an absolute constant. Hence we can obtain

log #K.(¢')

a(n) — ¢ < —(1—mn)log(l —n) —nlogn

1
+ 2npg log (1 + §> +nlog(l + 2pg) + 24,
0

for —1 < ¢’ < ¢{n). This implies

#K.(q") < explepoq(n) —¢')) for =1 < ¢’ < q(n),

provided that pg is larger than some constant which depends only on € and 1. Now
we can conclude

(i) © FﬂLHp = [[(Elr 1 (remy) © F;”Hp

q(n)
(X X Mo E, ) | S e e £,
q'=00cK.(q") oK (1)
q(n)
< Z exp(—46e(q(n) — ¢ )po + 11Agpo + ¢4)|pt| + exp(—46en + 8Agpo) |l p(~1)-
q’'=0

This implies the inequality in lemma 6.8.

7. GENERICITY OF THE TRANSVERSALITY CONDITION ON UNSTABLE CONES

In this section, we consider multiplicity of tangencies between the images of the
unstable cones under iterates of mappings in U, and investigate to what extent we
can resolve the tangencies by perturbation. The goal is the proof of theorem 3.20.
The point of our argument in this section is that the dominating expansion in the
unstable direction acts as uniform contraction on the angles between subspaces in
the unstable cones. This enables us to control the images of the unstable cones in
perturbations of mappings in U. Notice that the content and the notation in this
section is independent of those in the last section.

7.1. Reduction of theorem 3.20: The first step. In this subsection and the
next, we reduce theorem 3.20 to more tractable propositions in two steps. For a

quadruple x = (X2, X, Xu» X )» We put

) LA . o LA . o
xe Tr=mmax{xg,0h xe=xd —xe and XG = XG - X
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For a quadruple y satisfying (14) and a positive number €, let S1(x. €) be the set
of mappings I’ € U that satisfy
(65) limsupn~ log N(x, e, en,n; F) > x5 + x5 — X5 — x5 — €

n-—ro0
The first step of the reduction is simple. We show that we can deduce theorem 3.20
from the following proposition:

Proposition 7.1. The subset S1(x,¢€) is shy with respect to the measure M for
s> 71+ 3, if the quadruple x = (X2, XT> Xu: Xa ) salisfies the conditions (23),

(66) =20, < xo <X < Xu < xi < 2A,
(67) X5+ Xe < Xo + X
and
oyt
-~ - Xe |+ Xa
(68) xu+xcx2“+>( — A+1>~(X§+x§)
Xe + Xu — Xe¢ — X%

and if € > 0 is smaller than some constant which depends only on x and s besides
the integer r > 2 and the objects that we fized in subsection 3.2.

Below we prove theorem 3.20 assuming this proposition.

Proof of theorem 3.20. For any point (x., x.) in the subset given in the claim (a):
{ (xcvxu) €R2 ] Ze+ Ty >0, )\g < Ty §A97 I'CSO},
we can take a quadruple x = (x7, X7, x5, Xi ) satisfying the conditions (23), (66),
(67) and (68) so that the rectangle (x7, xF) X (X, Xi ) contains the point (Ye, Xu)-
Thus we can choose a countable collection X of quadruples that satisfy (23), (66),
(67) and (68) so that the conditions (a) and (b) in theorem 3.20 hold. We are going
to show the condition (c) in theorem 3.20. We fix s > r+3. Let X’ be an arbitrary
finite subset of X. Then we can take positive number ¢ > 0 so small that the

conclusion of proposition 7.1 holds for all the quadruples in X’. For each y € X/
and n > 1, let 8§(x,¢e,n) be the closed subset of mappings F' € U that satisfy

N(x,e.;en,m F) > exp ((xg +Xxu — X5 —Xo —€)n).

If & mapping F' € U belongs to $1(X’), or F' does not satisfy the transversality
condition on unstable cones for X’, then it holds

{ log(N(x, €, €n, n; F))
n-(Xe +Xu = XE —XD)
because N(x, ¢, k, n; F) is increasing with respect to € and k. Hence we have

S:(X) U ﬂ U Si(x,e,n) C U Si(x,€).

m>0n>m xyeX’ xeX!

lim inf max
nN—00

; x:(x(?-,xi-,xiyx;f)EX’} >1

From proposition 7.1, the subset UXeX' S1(x, €) is shy with respect to the measure

P Y iy 1R / o o » 3 3 9 (0 1Q
M and, hence, so is §1(X'). Further, the closed subset (1,,.,,, Uyex: ST(x, €. n) s
nowhere dense, because it is shy with respect to the measure Mg, Thus §;(X) is
a meager subset in U/ in the sense of Baire’s category argument. |
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7.2. Reduction of theorem 3.20: The second step. The second step of the
reduction is rather involved. We reduce proposition 7.1 to yet another proposition,
proposition 7.3, which will be proved in the remaining part of this section. Be-
low we consider an integer s > r + 3, a quadruple ¥ = {xz,xJ,x5,x.} and a
positive number e. We assume that the quadruple x satisfies the assumptions in
proposition 7.1, that is, the conditions (23), (66), (67) and (68).

In this section, we will introduce several constants that depends only on the
quadruple x and the integers s > r > 2 besides the objects that we fixed in
subsection 3.2. In order to distinguish such kind of constants, we will denote them
by symbols with subscript x. Also we will use a generic symbol Cy for large positive
constants of this kind. The usage of these notations is the same as those introduced
in subsection 3.3 and section 5.

The choice of the number € > 0 is important for our argument not only in
this subsection but also in the remaining part of this section. We claim that our
argument in this section is true if ¢ is smaller than some constant ¢,. Below we will
assume 0 < ¢ < ¢, and give the conditions on the choice of €, in the course of the
argument.

From the condition (68), we can take and fix a positive constant h, such that

Xat X
Xe +Xa — X5 — X8

hy+1>

and that

Xu T xe X > (e 2 (E + )
Then we fix a positive integer ¢, such that
2000 —xe) T —xg txE 2
Xu +xe X (y +2) (X8 +x)
Also we put 7y = 100(hy + 1)?AZ/A,.

gy >

Definition. For integers 0 < p < n and a point z € M, let S1(x,€,n,p, z) be the
set of mappings F° € U such that there exist a subset {w; }7X, in F~P(z) and subsets
E;, 0<i < gy, in F7"P(w;) C F7™(z) that satisfy the following three conditions:
(S1) The subsets E; for 0 < < ¢, are contained in A(y, ¢, 2(h, + 1)en, n; F), and
BB, = [exp((xz + x5 — X5 — x5 — )] + 1.

(S2) For any points y and ¥’ in the union J*, E;, we have

Z(DF™(E*(y)), DF™(E*(y))) < exp((xF — x5 + 6€ + hy (x> + X5 + 4€))n).
(S83) For 0 < j <pand 0 <i.4 <gy, we have

FI(B(w;, 10exp(—ryen)) N B(wy, 10exp(—ryen)) =0
but for the case where both i = ¢’ and j = 0 hold.
For an integer n > 1, we consider the lattice
Ly = Lexp((xe — x5 )n))

where L(-) is that defined at the end of subsection 3.1. The following lemma is the
main ingredient of this subsection:
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Lemma 7.2. We have

(69) Si1(x, €) ¢ limsup (U U Sﬂx,e,n,p,z)) ,
e\ p ozel,

where Uy, indicates the union over integers p satisfying

(70) 3hy (Ag/Ag)en < p < 3hy(hy + 1)(Ag/Ag)en + 1.

Proof. Let F be a mapping in S1(x, €). We show that there are an arbitrarily large
integer n, an integer p satisfying (70) and a point z € L, such that F belongs to
S1(x, €, 1, p, z). From the definition of S;{x, €), there are infinitely many integers m
that satisfy

N(x, e em, m; F) > exp((xe +Xo — X2 — Xap — 29)m).

In the argument below, we consider a large integer m that satisfy this condition.
We shall replace it by larger one if necessary. From the definition of IN(-), there
exist a point ¢ € M and a subset P in A(x, ¢, em,m; F) with cardinality

#P > exp((X; + Xy — Xe — X — 26)m)
such that F™(P) = {(} and that
Z(DF™(B*(w)), DF™ (B“(w'))) < 10H, exp((x — x5 + 26)m)
for w,w’ € P. We put p := [3h,(Ag/Ag)em] + 1 and consider the subsets of P,
Py(w) = {w' € P| F" (') = F™ P (uw)}

for 0 < ¢ < [m/p] and w € P. Since the subset Pp(w) is contained in the subset
A(x, e, (m+ fp)e,m — Ip; F) from (16), we have

(71) #P(w) < ke exp((xi, + x5 + Te)(m — Lp) + 6(m + £p)e))
< exp((xy +xd "+ Te)(m — Lp) + 7(m + £p)e))

from corollary 5.2, where the second inequality holds when m is sufficiently large.
Especially, for the case £ = [m/p], we have

#Pinyp)(w) < exp((xy + xd 7+ Te)p+ 1dem)) < exp(—[m/p| - ep) - #P

where the second inequality holds if €,, is smaller than some constant that depends
only on x, hy, A, and A, and if m is sufficiently large. Thus there exist integers
0 < £ < [m/p] such that

(72) max # Pry1(w) < exp(—ep) max #Pe(w).

Let 4o be the smallest integer 0 < £ < [m/p] such that (72) holds. Then we have
max # Py, (w) > exp(—elop) - #P.
we P

Take a point wg € P such that # Py, (wo) = maxyep # P, (w), and put n = m—~Lop,
z = F"(wy), E = Py, (wg). It holds
H#E = 4Py, (wo) = exp(—e(m — n))#P > exp((xg + Xy — Xe — Xa — 39)m).
Comparing this with (71) for £ = £, we obtain
XX

m < n<(h,+1)n
Xe +Xu — X2 — x5 — 17e (o +1)
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where the second inequality follows from the choice of A, provided that ¢, is smaller
than some constant that depends only on x and hy. Hence n and p satisfy the
condition (70) and it holds

E C A, e,em,m; F) C Alx, e, (m + op)e,m — bop; F') C A(x €, (2hy + D)en,n; F).
From (3), we can obtain, for any points w and v’ in FE,
Z(DF™(E*(w)), DF™(E*(uw")))
< 4, DiF _ (e, (£ (w)))
|D*Fm=n (e (F™(w)))]

< Agexp((—xe +xu)(m —n) +2em) - 10Hg exp((xe — xu + 2¢)m)
= 10H A, exp((XT — X +4e)n + (Axe + Axy + de)(m — n))
<exp((xd — xq + 56+ h (X2 + x5 +4e))n)

Z(DE™(EY(w)), DF™(E*(w")))

provided that m is sufficiently large.

Denote the points in the subset F7P(z) by w;, 1 < i <ig, and divide the set E
into the subsets E; = {y € E| F" P(y) = w;}, 1 <14 <ig. Then ig = #FP(z) is
bounded by exp(A,p) from the choice of the constant A,. By changing the index i,
we assume that the cardinality of the subset F; is decreasing with respect to . Let
i1 be the smallest positive integer such that

)

1 _#E
;#Ej > 5;#& =5

Then we have #E;, - (io —i1 +1) > Y. #E, > #E/2 and hence, for 1 <i <y,

-
#E #E _ - A A
E,>#FE;, > —> ——— >ex Xy — X — — ry€)n),
#E > #E, > s > e (Aop) P(Xc T Xu = Xe = Xu — TxEN),;
where the last inequality follows from the definitions of p and r,, provided that m
is sufficiently large. Also we have

o DL AE | #E i)
#FE, 24#FE; 2
from the condition (72) for £ = 4.

Notice that the point z that we took above may not be contained in L,,, while
it have to. So we want to shift it to the closest point in L,,. The distance from the
point z to the closest point in L, is bounded by exp({x. — x5 )n) and hence by
peexp((x, — 5e — 3(2h, + 1)e))n), provided that €, is smaller than some constant
which depends only on x and that we took sufficiently large m in the beginning.
Thereby, by virtue of lemma 5.1, we can move the points w,; and those in F;
accordingly so that the relations FP{w;) = z and F" P(FE;) = {w;} are preserved.
Henceforth, we consider the points z € L,, w; and the subsets F; thus obtained.
Lemma 5.1 guarantees that the subsets E; are contained in A(x, €, 2(hy+1)en, n; F)
and that

Z(DF™E"(w)), DF"(E*"(w")) < exp((x{ — X + 5 + hy (X2 + x5 +4€))n)
+2rcexp((Xe — Xy + (4hy +2)e)n)
<exp((x§ — xg + 6e + hy (x5 + x5 +4e))n)
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for any points w,w’ € U?: 1 &, provided that m is sufficiently large. Up to this
point, we have found arbitrarily large integer n, an integer p, points z, w;, 1 < ¢ < iy,
and subsets E;, 1 < ¢ < {3, that satisfy the conditions (70), (S1) and (S2). It
remains to choose (g, + 1) points among w,, 1 < ¢ <4y, so that the condition (S3)
holds.

Put W = {w;1 <0 <41} and § = 40p - exp(2A4p — ryen). Note that the
points w; belong to A(x, €, 2(hy + 1)n, p; F) by (15). We can check

26 < H;lpe exp((—x¢ + Xz — 56)p — 8(hy + 1)en)

by using the definition of p and r, and the condition (70), provided that m is
large enough. Thus F? is a diffeomorphism on the 2d-neighborhood of each point
in W from lemma 5.1(v). This implies that the distances between the points in
W C F~P(z) are not less than 25. Let L C W be the set of points in W that are
within distance § to either of the points F7(z), 0 < j < p. Then we have #L < p
obviously.

Consider a sequence J = (4, )2, of integers such that 1 < j, < pfor 0 <v < .
We denote the sum of the integers in J by |J| := Y""°  j,. For z,2’ € W\ L, we
denote x -y z’ if there is a sequence of points ©g = z, 21, -+« , Tpyp1 = ' In W\ L
such that

FI(B(z,,10exp(—ryen)) N B(zy 11, 10exp(—ryen)) # 0 for 0 < v < .

From the definition of § above, it is easy to see that we have d(F!/!(z),2") < § if
x =y @' for some J with |J| < 2p. Hence, given a point = € W \ L and an integer
1 <4 < 2p, there is at most one point 2’ in W\ L that satisfies 2 > ; 2/ for some
sequence J with |J] = 4.

The relation = >y 2’ holds for some points z, 2’ in W\ L only if |J| < p. In
fact, otherwise, there should be a sequence J with p < |J| < 2p and points z,z’
in W\ L such that = >; «’ and hence d(FI"I=?(2),z') = d(FI"I(x),2’) < §. But,
since 0 < |J| — p < p, this contradicts the definition of L.

The relation x > 7 z' never holds if x = 2’. In fact, if z > ; = for some J, the
relation & = j» x should hold for any n > 1 where J" is the iteration of J for
n times. But this obviously contradicts the fact proved in the preceding paragraph.

Let us denote x > & for z, 2" € W\ L if either z = 2/ or x >, 2’ for some
sequence J = (j,).0, satisfying 1 < j, < p. Then, from the argument above, this
relation is a partial order on the set W\ L and, for each z € W \ L, there exist at
most p points ' in W\ L such that z > 2'. Let Wiyax be the set of the maximal
elements in W\ L with respect to the partial order >. Then we have

#OVNL) _ (osp(en)/2) D) _

p - p -
provided that m is large enough. Take (g, + 1) points {wi};ﬁo from Wiax, then
the condition (S3) holds for them. We have completed the proof of lemma 7.2. O

#FWmax =

((Jx +1)

Using lemma 7.2, we can deduce proposition 7.1 from the following proposition:

Proposition 7.3. Let s > r+3. Suppose that o quadruple x satisfies the conditions
(23), (66). (67) and (68) and that a positive number e satisfies 0 < € < €,,. Then,
Jor any d > 0 and any mapping G in C"(M,T), there exists an integer ng such that

2

(73) M&((Dal (81 (X7 €D, Z)) N DS-3((]/>) < (}Xp((QXc— - 2X1: - 6)”)
forn > mng, z € L, and 0 < p < n that satisfies the condition (70).
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Remark. ®c and D*73(d) above are those defined by (1) and (20) respectively.

In fact, because we have #L, = (lexp((—x. + xz)n)] + 1)?, it follows from
proposition 7.3 and (69) that

M (@51 (Si(x,€))ND* 3(d)) =0 for any d >0 and G € C"(M,T).

Since the measure Mg is supported on C*73(M,R?) = |, o D*73(d), this implies
that the subset S (x, €) is shy with respect to the measure M.

7.3. Perturbations. In this subsection, we introduce some families of mappings
and give estimates on the variations of the images of the unstable subspaces E*(z)
under iterates of the mappings in the families. Henceforth, in this subsection and
the next, we consider the situation in proposition 7.3: Let s > r + 3; Let x a
quadruple that satisfies the conditions (23), (66), (67) and (68) and e a positive
number € that satisfies 0 < e <e,.

Take and fix a C* function ¢y : R? — R such that

P

x, if ||lw] < 1/10;
P(w) = {I’ if fJwll < 1/10; for w = (z,y) € R

cr < 1 and that

0, iffwj>1
For each point z € M, we consider an isometric embedding

0. {weR? | |Jw| <1} - T

that carries the origin to z and the z-axis R x {0} to E“(z). For an integer n > 1,
we put &, = exp(—ryen).

Recall that we took the subset U of mappings as a neighborhood of a C"mapping
F; in subsection 3.2. For an integer n > 1 and a point z € M, we define the
C*mapping ¢y, , : M — R2 by

{5;?’3 (7 Hw)/0n) - eS(Fy(2)), if d(w, z) < dp;

P, (w) = .

0, otherwise

where e°(+) is either of the two unit vectors in the central subspace E¢(-). Note

that, for any mapping F € U, the parallel translation of the vector e*(Fy(z)) to

F(z) is contained in S°(F(z)) from the choice of the constant p, in subsection 3.2.
Let n and p be positive integers that satisfy the condition (70), S = {z;}%,

an ordered subset of the lattice I.(4,/40) and F' a mapping in Y. The family of

mappings that we are going to consider is

Ix
Fi(w) = F(w) + Zf‘ Yy, (W) M —T

i=1
where t = (¢;) € R% is the parameter that ranges over the region
R={t = () € R [ [t;| <exp(x,n)}
For this family, we have

(74) den(Fu, F) < Cy - gy 8,721t |

v

From this inequality in the case £ = 0, we obtain

o fort e Rand 0 < £ <s.

(75) deo(FI,F7)y <p exp(Agp) - Cy - ¢, 05 exp(xon) < dy
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[U18
[S24

for0 < j <pandt € R, where the second inequality follows from the condition (70)
and the definition of r, provided that n is larger than some constant N.. (Recall
the notation introduced in section 5.)

Denote by 0; the partial differentiation with respect to the parameter ¢;. Then

(76) |0:Fe(w)] < 67"

and

(77) 10:(DF)(V)II < Cy - 07|

for any w € M, v € S*{w) and t € R. If d(w, x;) < 6,/10 in addition, we also have
(78) V(O(DE(W))| = Cgt - 6772 v

where v* is the unit cotangent vector at Fi(w) that is normal to DF(v).
In the following argument, we assume that
for 0 <i,i < ¢, and 0 < j < p but for the case where both ¢ =4’ and 7 = 0 hold.
Note that (79) and the estimate (75) imply
(80) FI(B(x4,6,)) N B(xy.8,) =0 for t € R.

Counsider a point z € M and families of points y;(t) € M, 0 <14 < g,, parame-

terized by t € R continuously. Suppose that it holds
(Y1) Fr(u(t) =
(Y2) yi(t) € Alx, e (2hy + 3)en, n; Fy), and
(Y3) d(FP P(y:(t)), 1) < 6,/10
for 0 <i<gq, and t € R. Let us put
OW\D FP U DR (et (y:(1))]

D.FY (DE "7 (e (y,(t)))

for 1 < i < ¢y, where e%(z) is either of the two unit tangent vectors in E*(z).
Then we can show the following estimate, in which we take the constant N, larger
if necessary:

Ay(t) =

Lemma 7.4. If n > N, we have

Cy ' Ai(t) < [0, 4(DFP(E"(y:(t))), E*(2))| < CyAy(t)
for 1 <4 <gqy, and also

|0; Z(DEF (B (1:(1))), B (2))] < Cg exp(—Agp) Ai(t)
for 0 <i< g, and 1 < j < g, provided i # j.

Proof. Let 1 <1 < ¢y, and 0 < j < gy. For 0 < m < n, we denote by e,,
the unit tangent vector in the direction of DF™(e*(y,;(t))) and by e, the unit
cotangent vector that is normal to e,,. We can and do choose the orientation of
the cotangent vectors e, so that (DF" ™)*(e}) = D*F" ™(e,,) - e},. Also we
denote z, = F{"(y;(t)) for simplicity. Notice that €nm, €5, and z, depend on the
parameter t.

We first give simple consequences of the conditions (Y1) and (Y3). From (80) and
the condition (Y3), the point 2., is not contained in B(z;,d,) forn —2p <m < n
but for the case where both m = n — p and 7 =i hold. Since z,, ¢ UZL() B(zy, 6,)

for n —p < m < n especially, the condition (Y1) implies that the point 2, does not
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depend on the parameter t. For 0 < m < n — p, differentiation of the both sides of
the identity F" T ™ (20) = 2n_py1 gives

n—p+1

@zn) + 3 (DET"P) (@5F)(200) = 0.

f=m-+1

(DFn—p-{~1—m>
t Zm
Applying (DFtTth*m);}L to the both sides of this identity and using (76) and (6),
we obtain

n—p+1 n—p+1 C ()*s+3

(U Dzl < Y GlDE ™) et < Y

A l—m .
{=m+1 f=m+1 ]D*Ft m(em)]

Now we are going to estimate

€0,(DF (e)))

0, L(DFY (B (y(0)), B (2)) = 9y (0 B (2)) = =275 S s

Differentiating the both sides of

DE(eo) = (DF)., 0 (DF)s, , 00 (DFy)z(eo)

Zn—2

and using the relation DF{™(eq) = D, F{"(eq) - €1, we can obtain

n—1
0;(DF"eg)) = > _(DF™™ "), (0;(DF).,, )(em)) - DoF{™(ep)
m=0
n—1
+ > (DET™Y,,  (D?Fe(em, 952m)) - Do F (eg)
m=0

+ (DFtn)Zo(Deu(a7ZO>>
From this and the relation (DF" ™)*(e}) = D*F" ™(ey, )e;,, it follows

n—1
€ (0;(DF(e))) = > DF ™ Hem1) - €541 (95(DF)s,, )(em)) D F™ (e0)
m=0
n—1
-+ Z D*Ftnimil (em+1> ) efn+1 (Dth(emv ajzrn))D*Ffm(e(J)
m=0

+ D*F}'(e0) - €§(De"(9;20)).

Note that we have (9, £))z, = 0forn— , < n but for the case m =n—
Note that we have (8;(DFy)).,, = 0 for n—2p < m < n but for the case m = n—p,
and 0jz, = 0 for n — p < m < n as we noted above. Thus we obtain

(82) e:(aj(DFtn(e()))) D~ Fp 1(en p-{~1) e;—p+1((aj(DFt>zn, p)(en—p»
D*Ftn(eO) D F (en p+1> D*Ft(en,p)
_ ZQ D™ Nemin) € (03(DF)s,)(em))
m=0 D F” " 1( m+]) D*Ft(em>

+ ”z:p D*Fn me 1 em+1) . ejn+l(D2Ft(eTnﬂajZTrL))
D.F ™ Nemy) D.F(em)

m= ()
D*F{'(eo)

—_— De" (0,
D*Ft"(eo) 0( ( U))
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From (77), the first sum on the right hand side is bounded in absolute value by

D e i)l NN
— exp(—Ag(n —p+1—m+2¢))
D*Ftp (exfpjtl) mz:(j

< Cg - Ai(t) exp(—Agp).

s+2
Cq 5n )

By the estimate (81) on 9;2,, and the condition (Y2), the second sum on the right
hand side is bounded in absolute value by

C gnfl ‘D*FTL m— (eﬁl-}'l)‘ 6;€L+:3
m=04¢=m-+1 Ft;” "L( ’rn) ]D*Fteim‘(e,mﬂ
—O —m = .
m=04f=m-+1 ‘D Fn [ ) D*Ft[ (em)]D*Ft(em)]

L —p n—p-+1
sovs D" P enpi1)| i exp(—Ag(n —p+ 1 —m + 2¢y))

D,FP e, _ pt1) a0 exp(—(2hy + 4)en)
< CgA;(t) - 0 exp((2hy + 4)en) < CyA;(t) exp(—Agp),

< Cy

where the last inequality follows from the definition of the constant r, and the
condition (70) on p. Similarly, we can show that the last term on the right hand
side is bounded by

n—p-+1 5s+3

|D*F{ (e l
Ai t)e —AgP)-
Cy E D.Fr(e0) D Filoo)] < CgAi(t) exp(—Agp)

From (77) and (78) we have
Clost? < lef 1 (0;DF(en—p))| < Coog*?  ifj=i

and 0;DFi(e,_,) = 0 otherwise. Using these estimates in (82), we can conclude
the lemma, by taking the constant N larger if necessary. O

Consider the mapping ¥ : R — R% defined by
u 7 u qX
(83) U(t) = (LDF (B (yi(6). DEM(E" (o(t))))

As a consequence of the lemma above, we have the following corollary, where we
take the constant N, still larger if necessary.

Corollary 7.5. The mapping ¥ is injective and there is a constant B, such that
|det DU(t)| > exp(—Byen) fort e R,
provided that n > N..

Proof. Let us denote by DU(t),; the (i,j)-entry of the representation matrix of
DU (t) with respect to the standard coordinate on R%. Lemma 7.4 tells that the
diagonal entries satisfy

C M Ai(t) < [DU(t)y| < CyAy(t)
while the off-diagonal entries satisfy

|[DW(t);;| < Cgexp(—=Agp)A;(t), J#1.
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These imply that ¥ is injective on R and |det D¥(t)| is bounded from below by
;1;1 CyA;(t), provided that n is larger than some constant C,,.. Therefore we have

x
|det DU (t)] > (Og exp((xs — Xo)p — (dhy +6 + (s + 2>T'X)6TL)>

from the condition (Y2). Using the condition (70), we can obtain the corollary. O

7.4. The proof of proposition 7.3. In this subsection, we complete the proof
of theorem 3.20 by proving proposition 7.3. Let G be a mapping in C"(M,T) and
d > 0 a positive number. We consider a large integer n > N, an integer p satisfying
the condition (70), and a point z in the lattice L,,. We put d,, = exp(—ryen) as in
the last subsection. Let S = {,;}iX, be an ordered subset in the lattice (4, /40).
We denote by S1(x, €, n,p, z;.5) the set of mappings F' in 81(x,€,n,p, z) such that
the subset {w; }:X, in the definition can be taken so that

(S4) d{w;, ;) < 0,/20 for 0 < ¢ < g,.

The subset S1(x,€,n,p,z) is contained in the union of S;(x,¢€,n,p,2;S) over all
ordered subsets S = {x;}X, of the lattice L(6,/40). And the number of such
ordered sets S is bounded by (4061 + 1)2(xTY | Therefore, in order to prove the

inequality in proposition 7.3, it is enough to show
(84)
M (D51 (S1(x, 6,0, 2.8)) ND*2(d)) < exp((2(xz — Xu) — 2rylax +2)e)n)

when n is sufficiently large.

Take a mapping F in S1(x,€,n,p,2;5) arbitrarily and consider the family of
mappings Fy defined for the ordered subset S in the last subsection. Note that the
conditions (79) and (80) follows from the conditions (S3) and (S4) for F'. Let Y be
the set of continuous mappings

YiR—MxMx--x M y(t)= (%),

that satisfy the conditions (Y1), (Y2) and (Y3) in the last subsection. A family
y(t) in Y is uniquely determined once y(0) is given because of the conditions (Y1)
and (Y2). Thus we have

#Y < FHAQG € (2hy + )en,ni F) 1 P77 (2))) 0
< reexp((xy +x¢ "+ Te+6(2hy +3)e)(gx + 1)n)
< exp((xy + x5 ) (g + )n+ Cyen)

for sufficiently large n, from corollary 5.2 and the condition (Y2).
For a family y € ), we denote by Z(y) the set of parameters t € R such that
)

Z(DF(E*(y:(t))), DFY (E* (50 (t))))
<exp((xd — xu + 66+ ha(x2 + xi +4e))n)
for all 1 <i <g,. Then lemma 7.5 implies that we have
m(Z(y)) < exp((xg — Xy + i (X2 +X0))axn + Cyen)

provided that n > N.
Suppose that Iy belongs to Sy{x, €, n,p, z;5) for a parameter s € R. Then there
are points w; € F; P(z) and subsets E; C F‘sf(nfp) (w;), 0 <7 < ¢y, which satisty
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the conditions (S1)-(S4) with F replaced by Fs. Consider a combination (y;)i%, of
points such that y; € E; for 0 <¢ <g¢,. From (74), we can check that

der (Fy, Fs) < peexp((x, — be)n — 3 - 2(hy + 1)en) for any t € R
provided n is sufficiently large. Thus, the condition (S1) and lemma 5.1, we can
check that there exists a unique element y(t) = (y;(y)) o in Y such that y;(s) = y;
for 0 < i < gy. The condition (S2) implies that s belongs to the subset Z(y).

Therefore, if Fg belongs to S1(x, €, n,p, 2; ), the parameter s belongs to the subset
Z(y) for at least

ax

[I#E: > exp(0c +x —x& —xi —x(ax +1)n)
=0

elements y in V. Now we arrive at the estimate
< Zyey m(Z(y))
B o #E;
< exp((0cd =X + Ay (& +xi))ax + Ol + x ) (gx + 1)n + Cyen)
- exp((Xe +Xu — X& — X — ) (ax +1)n)
Note that we have this estimate uniformly for the mappings I in S1(x, €, n,p, 2; S).
Put m = q,, T; = exp(x. n) and ¢ = ¥y, 4, for 1 < i < g, in lemma 3.18. Then
the assumption (21) holds provided that n is sufficiently large. The conclusion is
M (@5 (S1(x,€,n,p,2:S)) ND*73(d))
<20 exp (& —xe —xa + (g +2) (X +x3))axn)
x exp((xd ™ = xo + X8 +2x5 + Cxen).

m({te R|F, € S1(x.e,n,p,2;5)})

Using the condition in the choice of ¢,, we obtain (84) for sufficiently large n,
provided that we take sufficiently small ¢, .

8. GENERICITY OF THE NO FLAT CONTACT CONDITION

In this section, we consider the situation where the images of admissible curves
under an iterate of a mapping F € U have flat contacts with the curves in the
critical set C(F), and investigate whether we can resolve all of such flat contacts by
perturbations. Our goal is the proof of theorem 3.21, which will be carried out in
the last subsection. The key idea in the proof is that the non-flatness of contacts
between curves is easier to establish if we assume higher differentiability. The reader
should notice that the content and the notation in this section is independent of
those in the last two sections.

8.1. The jet spaces of curves. We begin with formulating a sufficient condition
for the no flat contact condition in terms of jet. For an integer 1 < ¢ < r and
apoint z € M, let T'? be the set of germs of C%urves v : (R,0) — (M, z) at z.
Recall that we always assume the curves to be parameterized by length. Two germs
v and 7o in I'? are said to have contact of order ¢ if d(vi(t),72(¢))/[t]? — 0 as
t — 0. This is an equivalence relation on the space I'?. The equivalence classes are
called g-jets of curve and the quotient space is denoted by J9I",. Suppose that a
g-jet j of curve at z € M is represented by v € I'Y. Then the the tangent vector

%7(0) € T,M at z does not depend on the choice of the representative -, and
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neither do the differentials d“,(()), 2 < i < ¢, which are defined in subsection 3.4.
Thus we put

d v .
jO =z jU= EA,/(O) and @ = d*~v(0) for 2 <i <q.

The jet space of curves of order ¢ is the disjoint union J9I" := 11,4,/ J9T,, which
is equipped with the distance defined by

ds(i1.d2) = maoe {7 37, £ 357) max {158 =37k 2 < i <q} )
Then the following mapping is a homeomorphism:
j eI <j<‘>, (j<i>);’:2> € T'M x Re™!

where T M is the unit tangent bundle of M. Each mapping F € I acts naturally
on the space J9I". We denote this action simply by

F:Ja — Jr, [v] — [Fervyl.

/

Let J9AC C J9T" be the compact subset of ¢-jets that are represented by germs of
admissible curves. Lemma 3.2 tells that F"*(J?7AC) C J9AC for n > ng.

For a CYcurve v : I — M defined on an interval I, its ¢-jet extension is the
mapping J?9v : I — J9T" that carries a parameter ¢ € I to the jet in J9T, () that is
represented by the germ of v at . Recall that the critical set C(F) for any mapping
F in U consists of finitely many C™ tcurves. Let C(F) C J"7?I" be the union of
the images of their (r — 2)-jet extensions:

C(F)={I""~I) |v:I— M is a C""'curve contained in C(F).}
Lemma 8.1. If a mapping F € U satisfies
(85) F'(J72AC)NC(F) =0 for somen > 1,
then F satisfies the no flat contact condition.

Proof. For each point in C(F), we can find a small C"'coordinate neighborhood
(U,¢ : U — R?) such that 9(C(F) N U) is an interval in the z-axis R x {0} and
that it holds either

(a) Dv¥(8¢(2)) contains the z-axis R x {0} for every z € U, or

(b) D¥(8°%(z)) contains the y-axis {0} x R for every z € U.
Since the critical set C(F') is compact, we can cover it by finitely many coordinate
neighborhood with these properties. So, for the purpose of proving the lemma, it
is enough to show the following claim for each coordinate neighborhood (U, ) as
above: For a constant C' > 0 and ng > 0, it holds

mg ({t € [0,a] | F*(y(t)) € U and d(F™(~v(t)),C(F)) < €}) < C - €"/"? max{a,1}

for any a > 0, v € AC(a), n > ng, € > 0. If the condition (a) above holds, this
claim is clear because the images of the admissible curves in it under 3 are curves
whose slope is uniformly bounded away from 0. Thus it remains to check the claim
above in the case where the condition (b) holds. To this end, it is enough to show
the following:
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Claim 8.2. If a C" Y function ¢ on a compact interval I C R satisfies,
max max {|d%/dx¥(x)| ; 1 <g<r—-1} <K and
Te
min max {|d%p/dz?(z)|; 1 <g<r—-2}>p
xel
for some positive constants K and p, then we have

mg{z € R||p@)| < e} <Clr,p, K, 1) -/ for any e > 0,

where C(r,p, K, 1) is a constant that depends only on r, p. K and the length of 1.
We show this claim by using the following lemmal[4, Lemma 5.3].

Lemma 8.3. If a Cfunction h on an interval J satisfies |d%h/dx?(x)| > p > 0 for
allz € J. Then mp({z € J| |h(z)| < e}) < 29+ (£/p)9 for any € > 0.

Proof of claim 8.2. Let X C I be the set of points z € I such that |¢(x)] < p/2.
For each point z € X, there is an integer 1 < m <r—2 such that {d™/dz™(x)| > p
and hence that {d™¢/dx™| > p/2 on the interval J(z) := (x —p/(2K),x +p/(2K)).
We can take points x, € X, i = 1,2,...,4qg, so that the intervals J(x;) cover the
subset X and that the intersection multiplicity is 2, so ig < (2mg(I)/(p/K)) + 1.
Applying lemma 8.3 to each interval J(xz;), we can see that mgp{z € R | [¢(x)] < €}
is bounded by io - 2771 (e/(p/ 2))1/ (r=2) provided e < p. This implies claim 8.2. [

We finished the proof of lemma 8.1. O

8.2. Lattices in the jet space. In this subsection, we consider lattices in the
space of admissible jets J7~24C and formulate a sufficient condition for the no
flat contact condition by using them. Henceforth, we fix integers 2 < v < r < s
satisfying the condition (2). Note that the condition (2) can be written in the form

(r—2) (rlr23> <(r—v—2) <r3w>

2v

Thus we can and do cover the interval [A,/2,2A,] by finitely many intervals I(£) =
(A7 (), AT(£)), 1 < £ < lp, such that A™(£) > X\, /4 and that

For n > 1and 1 < ¢ <4y, let Q(n, ) be the set of jets j in J*72.AC that satisfy
(Q1) the point j( is contained in the lattice L(exp(=AT(£)(r — 2)n)),

(Q2) the angle /(3™ e*(j()) is a multiple of exp(—AT(£)(r — 3)n), and

(Q3) j'9 is a multiple of exp((—At(£)(r —3) + A\~ ()(g—1))n) for 2 < g <r —2.

We have
r—3
(86) #Q(n, l) < Cyexp ((r - 2) ((7 —DAT() — ! 5 /\_(€)> n) .
For integers n > 1, 1 < £ < £y, amapping F € U and o = 0,1, we define V,(n, ¢; F)
as the set of jets j in J772.4C that satisfy
exp(A" (O — 0) < [D.F" ()| < exp(* (4)n + o).

Then, from the choice of the numbers A*(£), the subsets Vo(n, £; F) for 1 < £ < £
cover J" 72 AC provided that n is larger than some constant Cy.
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Lemma 8.4. There is a constant By > 1 such that, for any jet j in Vo(n, 4, F)
with n > By and 1 < { < {y, there exists ¢ jet 1 € Q(n, £) N Vi(n, &, F) such that

(87) dy(F™(3), F* (1)) < Byexp(—=AT(£)(r — 3)n).

Proof. Let us take a jet j € Vy(n, ¢; F') arbitrarily. Let w be the point in the lattice
L(exp(=AT(€)(r — 2)n)) that is closest to j©. As jV belongs to S*(j(), the
minimum angle between j!) and the vectors in S*(w) is bounded by Cy- d(3, w).
Hence we can choose a jet i € Q(n, {) such that

(11) i® = w and hence d(j'®,i(?) < exp(—At(£)(r — 2)n),

(12) Z£(GW,iV) < exp(—AT()(r — 3)n) + Cyexp(—AT(€)(r — 2)n) and

(13) i@ — i < exp((-AT()(r —3) + A" (£)(g—1))n) for 2< g <7 — 2.

For 0 < m < n, we put z(m) = F"(3)© = F™(GO), w(m) = F™{1)© = Fm(i)
and

d(r m(.>(0) Fm(i)(0)> = d(z(m), w(m)), if ¢ = 0
A= § AFPGI FG) ) < ADETGO) DI, =
]Fm() Fm() ] if2<g<r—2.

In order to prove the inequality (87), it is enough to show
A? < Cyexp(=AT(0)(r — 3)n) for0<qg<r—2.
First we prove
(88) A% < 2| DFTy |- AS < Cyexp(—A*(0)(r — 3)n)
for 1 <m<n. Asje Vo(n,t; F), we have

Cg ) D*Fn(j(l))
D,Fr—m(DF™(3M)) - D.Fk(j1)
< CyexpAH(On — Ag(n —m +k))

(89) [|DFIM < Cy - DF™H(DF*GW)) <

for 0 < k <m < n. So the second inequality in (88) follows from the condition (I1).
We prove the first inequality in (88) by induction on 1 < m < n. Using the simple
estimate

He xp (m)( w(m)) — DF 1) (exp (m 1)( w(m — 1)) H<C (A0 )2

repeatedly, we can get the following inequality for A% = || expz—(m) (w(m))|I:
m—1
(90) A, < [|[DF7IAG + Cy Z IDFSTIARD? for 0 <m <.

Note that we have, from (5),
(1) IDF G IDEL )|l < CoDF™ 5" Y (DF** (e¥(20))) - DuF"(e"(20))

(k+1)
D.F™(e"(20))
< CoB FDF (e (z0)))

< Col[DF |

for 0 < k <m — 1. Consider an integer 0 < mo < n and suppose that (88) holds
for 0 < m < mg. Then, using them and the estimates (89) and (91) in (90), we can



PARTIALLY HYPERBOLIC ENDOMORPHISMS 63

obtain
mo—1
k—1 k
AL, SIDEZSIAY +Cq > IDER - 21 DFS g 1AT - A7
k=0

< HDF;(LS)]]Ag (1+Cy-n-exp(—=At()(r —3)n)).

This implies the first inequality in (88) for m = my, provided that n is larger than
some constant Cy. Thus we can obtain (88) for 1 < m < n by induction.
Next we estimate Al for 0 < m < n. We have

A}, < Z(DFJ, (<1>) DF, (i)

m

+ Z L(DFESHDFE G (M), DER A (DEERL GW))
k=0

where we omit the operations of parallel translation. (Recall the remark given in
the proof of lemma 5.1.) For 0 < k < n, we have DFf;(O)(i(])) € S*(w(k)) and
d(z(k),w(k)) = AY < Cyexp(—=AT(€)(r — 3)n). Hence the parallel translation of
DFw(O)(l(])) to z(k) does not belong to the central cone S¢(z(k)) provided that n
is larger than some constant C,. Using (3), we can obtain

m—k k m—k—1 k+1
L(DFTHDFE ) ((0), DA (DFE G GO))

‘D*Fm k— I(DFk+l(J(1)))‘
g D, Fm—k-1 (DF"'H (j(])))

< Cyexp(—Ag(m — k — 1)AY < Cyexp(—=Ag(m —k — 1) = AT(£)(r — 3)n).
Likewise we can obtain Z(DFf (] (1)),DFZ',"(LO>(1(1 )) < Cyexp(—Agm)A}. There-
fore, by condition (I2), we conclude

<A

A(DFo(DFy0) (), Doy (DF ) (i)

m—1
AL, < Cgexp(—Agm)Af+ > Caexp(—Ag(m —k — 1) — AT ()(r — 3)n)
k=0
< Cyexp(—AT(O)(r — 3)n).
Finally, we estimate A% for 2 < g < r. From the formula (9), we can see

) no < [DEOETGO)|

+Cy Y Al
m — m—1 —1 m—1-
= DD 0Sitq

Consider this inequality (92) for m = n and estimate the right hand side by using
(92) recurrently as long as there exist terms A2 with ¢ > 1 or m > 0 on the right
hand side. Then we see that A¢ is bounded by

D F" ()] g
q
[DF(F(5)M)] g4
+Cq Z Z H H D*F(FJ()U)EAU
l<d<q O=ng<ng, 1< b=d ny<j<ngpi1—1

g <ngp1=n+l

q * I iy (1)
[D*F(FG)D)] 4
T D 2. 11 e 20
d=0,1 m=ng<ngr1 < - {=d ny<j<ngi1—1 D*F(FJ(J)( ))
0<m<n e Sng<ngpi=n-+l
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Hence we obtain

exp(f)\ n-+cy) exp(—Agn + ¢g)

q q q d
An - D, Fn( (1))q—1 AO +an Z D*Fn(j(l))d—l A0
1<d<gqg
+Cy Y (n—m)exp(=Ag(n —m) +¢g)(A), +A)
0<m<n
0 1 xp(—(d — d
<Cgogi3)<(n(A + AL +Ogl;< exp(—(d — 1)A7(£)n)A§,
<d<q

where the second inequality follows from the fact that the jet j belongs to Vo(n, ¢; F).
Using the estimates on AY and Al above and the condition (I3) in this inequality,
we can conclude

Al < Cyexp(=AT()(r —3)n) for2<qg<r-2.

We have proved the inequality (87). The jet 1 belongs to Vi(n, £; F) because

D, F™(e"(i® — .
log 5 e () 0 g Z (A%, + AL) < Conexp(—AH(0)(r —3)n) < 1,
m=0
provided that n is larger than some constant Cl,. O

For integers n > 1, 1 < ¢ < fy and a jet j € Q(n,¥£), let Sa(n, ¢, j) be the set of
mappings F' € U such that j € Vi(n,¢; F) and that

d;(F™(j),C(F)) < 2Byexp(—AT(O)n(r — 3)).
Then the last lemma implies

Corollary 8.5. If there exists n > By such that F ¢ Sy(n,¢,j) for all 1 < € < {y
and j € Q(n,?), then F satisfies the no flat contact condition.

In the remaining part of this section, we shall estimate the measure of the subsets
Sa(n, £,]) for j € Q(n, £) by using lemma 3.18.

8.3. Perturbations. In this subsection, we introduce some families of mappings
and give a few estimates on the variation of the images of jets under the iterates
of mappings in the families. In the argument below, we fix 1 < ¢ < {3 and put
Op = exp(—AT(O)n/v) for n > 1.

For 1 < g <r -2, we take and fix a C"*°function 7, : R? — R such that

‘, z9/ql, for (z,y) € B(0,1/10);
Va(@y) = {o, for (z,y) ¢ B(0,1).
For each point ( € M, we consider an isometric embedding
e fw e R | w| <1} —T
that carries the origin to ¢ and the z-axis R x {0} to E*(().
Recall that we took the subset U of mappings as a neighborhood of a C"mapping

Fy in subsection 3.2. For positive integers n, 1 < g <r —2 and a point ¢ in M, we
define the C* mapping ¥gn,c : M — R? by

{ qlip ' (2)/0n) - €(F3(C)) if d(2,€) < On;
05

”L)
qn.c(z) = otherwise,
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where €°(+) is either of the two unit tangent vectors in the central subspace E¢(-).
Note that, for any mapping F € U, the parallel translation of the vector e®(Fy(z))
to F(z) is contained in 8°(F(2)) from the choice of ¢ in subsection 3.2.

For a positive integer n, a mapping F € U and a point ¢ in M, we define

r—2
(93) Fi(2) = F(2)+ Y totgne(z): M =T
g=v+1
wheret = (t,.1,%,12, -+ ,t,_2) is the parameter that ranges over R = [—1,1]" 727",
This is the family of mappings that we are going to consider. Obviously we have
(94) doa(Fy, F) < Cgdy7 14 and | OcFellos < Cgo579

for 0 < ¢ <randtc R. Especially, Fy(M) C M if n is sufficiently large.
We consider a jet j € Q(n, £)NVi(n, £; F) and give some estimates on the variation
of the image F{*(j). We begin with the estimate on the position F*(j)(©).

Lemma 8.6. We have, for 0 <m <n andt € R,
d(E (1), F™ () < C DS 167, < Co07"
and
|06 FT ()| < Cyl[ DE |18, < Cybsy ™
provided that n is larger than some constant C.

Proof. The following argument is a modification of that in the proof of lemma 8.4.
We denote z(m) = F™({§®), w(m) = F*(?) and A,, = d(z(m),w(m)) for
0 <m <n, so Ay = 0. Using the simple estimate

(zxpz—(}m (wim)) — (DF)Z(m,l)((zxpz—(}n_n(w(m - 1)))H < Cy(65 4+ (Ap-1)?)

repeatedly, we can obtain

m—1

(95) A < 3 IDF™ 1) ey |- Col85 + (Ar)?)
k=0

for 0 < m < n. Consider an integer 0 < mg < n and a positive number K > 0 and
suppose that we have

(96) Ay <K|(DF™) 0l - 07,
for 0 < m < mg. Note that we have, for 0 < k <m <n,
D, Fm (J(1)>

HDFTIL*A‘*] H S C

e < Cy||DFZyy || exp(— Agh)

and also HDFf(m]] < Co|[DFf{y)ll < Cyd,”. Thus, using (96) together with these
estimates and (91) in the right hand side of (95) for m = mg, we see

m—1
Amy < Col (DF™) )| - 65, - (Z (exp(—Agh) + K252”)> :
k=0
This gives (96) for m = myg, provided K and n are larger than some constant Cj.
Thus we can obtain the first claim of the lemma by induction on m.
Put A, = 9 F{( j(())) for 0 < m < n. Using the simple inequality

HA/ - (DF>Z(TTL*1)A;TL71“ < Cg((sfb + AvnleArlm—l ]])

m
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repeatedly, we can obtain

A, < Z IDE 1) syl - Cy (07 + Arl| AL
k=0

From this and the estimates on A,, we proved above, we can obtain the second
claim of the lemma by induction on m, in a similar manner as above. O

Next we give the estimates on 0y F7*(j)(4) for 1 < ¢ < r —2. We denote by Op the
differentiation by the parameter ¢,. For integers p and ¢ satisfying v+1 <p <r—2
and 1 < ¢ <r —2, and for a jet i € J”72AC and t € R, we define

sin(Z(e“(Fy(2)), (i) - |8 (D Fe)icor (1D, - i)
D, Fy(iD)e

B, t) = +
where (DFy), : @9T. M — Tp(,)M is the ¢g-th differential of Fy at z and the sign
on the right hand side will be chosen appropriately in the argument below. Then
(97) 1859 (1,1)] < Cy0571.

Lemma 8.7. There exists a positive constant Cy such that, if n > Cy, it holds

m—1 m—k—1 k-+1

i D* F (FE G5 k 1
) (Fm(J)(q)) £ ﬁ(q)(F (), t)| < Cy05~ q+
e kZ:OD*Ft R EET ()W)

foranyr+1<g<r—-2,v+1<p<r—2,teRand0<m<n.

Proof. Let v+1<p<r—2 For 0<¢g<7r—2and0<m<n, weput

Hathm(j>(0)]]7 ifq=0;
AW = Lo (LFEPGD, vg)). ifq=1;
(‘)p(th(j)(‘I)% ifg>2

where vg is some fixed vector. For Ag,l)., it holds

AL D*F (R (5)M)
" DLER(FMTHGW)

AL 3§”<th—1(j>.,t)] < C,AY <y

where the second inequality follows from lemma 8.6. From this inequality and the
estimate (97) for ¢ = 1, we can see

m—k( pk(3)(1)
1) ‘D F (Ft (-]) )‘ a(1) ks s—v $5—U
Sl kZO b FE R m) (O 0+ 67) <Gy

for 0 < m < n. Recall the formula (9) and the remark after it. By differentiating
the both sides of the formula (9) with F replaced by Fy and using (94), we can get

(98)

D*F (mel(j)( ) .
AW~ S AL B G), ) < G 1 Gy Y AT
DL (F™ T (G)D)a P Py

m 1
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for 2< ¢ <r—2and 0 <m <n. This and (97) imply

D*mek Fk : (1)
m ‘<O Z ‘ 7tn—k( Z(-J)] ) ()g q+ Z A(d)
D F"F(FF(§)M)a 0<d<q

0<d<q 0<k<m

<Cg< 9+ max max Ak )

Aﬁﬁ{ | <Cgozgfor2<g<vand0<m<n
by induction on ¢, using lemma 8.6 and the estimate on \Aﬁ,i)] above. Using the
inequality (98) repeatedly, we can see that the left hand side of the inequality in
the lemma is bounded by

Hence, we can show the estimate

Z ]D Fm k Fk( )(1))‘ 5sfq+] n Z A(d)
D F’rn k Fk( )( ))(I n k-1
0<d<gq

Hence, by induction on v+1 < g < r—2, we obtain the inequality in the lemma. [

Note that, for any ' € U, the level curves of the function det ' : z — det DF,
are regular in the neighborhood B(C(F'), pg) of the critical set C(F), from the choice
of the constant p, in subsection 3.2. For a point w € B(C(F), p,), we denote by
c(w; F) the (r — 2)-jet at w that is given by the level curve passing through w.

Suppose that a jet j € J"2AC satisfies, for all t € R,

(V1) d(F1(5), ) < 8,/10,

(V2) d(Fy )((’)7C(Ft)) > 36,,, and

(V3) d(F (), C(R)) < b

Then, from the condition (V3), we can define the mapping ¥ : R — R"7¥~2 by
r—2

B(t) — (Ft"(j)(q) - C(Ftn(j)(O);Ft>((I)> |
q=v+

e
n
provided that n is so large that d,, < py. The following is the goal of this subsection.

Lemma 8.8. If the conditions (V1),(V2) and (V3) hold for allt € R, the mapping
V is a diffeomorphism and |det DW(t)| is bounded from below by a constant C Y
provided that n is larger than some constant Cy.

Proof. From the condition (V1) and the definition of the family Fy, we have
S(Q)(F7L71(') t) =0 for ¢ > p, and

3(‘1 (FP15),t)| > Cy 15579 for g = p,

in addition to (97). We show

n— D*FTL k 1(Fk+l(j)(]))
(99) s Wi 1 BE(FEG) 1) < Cooy ™.
D N STt o

Suppose that ﬁz(oq) (FF@§).t) # 0 for some integer 0 < k < m — 2. Then we have
d(FEG) @, ¢) < 6, and

(Fk“( ). C(F)
S AEFTTHWLFUQ) + d(F(Q), FP D) + d(F ()Y, C(F)) < Ty
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from (V1) and (V3). So we have

x m—k—1 k+17:\(1
U ”ﬁ,&q)(Ff(jxw
Do ()@

D*F(FFG)M)| < C,é, from (4). Hence

< Cybi T exp(—Ag(m — k — 1) + 2¢,).

— i

This implies (99).
The jet c(w; Fy) for w € B( (F),6,) does not depend on the parameter t € R
because B((,8,) N B(C(F),d,) = @ from (V1) and (V2). So we have

19 (c(F G F) )| < Cyll0p(FE (D) < Cooy forv+1<pg<r—2
from lemma 8.6. From (99) and lemma 8.7, it follows

0y (F7'()@ — c(FP ()5 F)@) — 80 (1 (3), 0)] < G+,

Denote by D¥(t),, the (¢,p)-entree of the representation matrix of DU (t) with
respect to the standard basis of R"™27%. Then, from the estimates above, we have
|\D¥(t)gp| < Cyb, if ¢>p,
|DE¥(t)gp] < Cy if ¢ <p, and
| DU (t)g.p] > C'g_l if ¢ =p.
Now we can conclude the lemma by an elementary argument. [
8.4. Resolution of the flat contacts. In this subsection, we prove theorem 3.21.
Until the last part of the proof, we fix 1 < £ < £y and put d, = exp{=AT({)n/v)
for n > 1 as in the last subsection. Let n be a large integer, ¢ a point in the lattice
L(6,,/20) and j a jet in Q(n, £). We denote, by Yy(n, ¢, j,¢) (resp. Y1(n,4,j,()), the
set of mappings F € C"(M, M) that satisty
(100) Frl(5)©@ e B(¢,6,/20)  (resp. F* (1)@ € B(¢,80/5)).
Below we estimate
M (251 (S2(n, £.3) N Yo(n, £.3.¢)) N D’ (d)) for G € C"(M,T) and d > 0,

where ®¢ and D" (d) are those defined by (1) and (20) respectively.

Take a mapping F in Sa(n, £,j) NYy(n, £, j, ¢) arbitrarily and consider the family
F; defined by (93) in the last subsection. Note that the jet j belongs to Vi(n, £; F)
from the definition of Ss(n, £,j). We check that the conditions (V1), (V2) and (V3)
hold for t € R provided that n is larger than some constant Cy. Since F' belongs
to Sa(n, £,j), there exists a point wy € C(F) such that
(101) dy(F™(§), c(wg: F)) < 2B,8 37,

Especially we have d(F™(3)(,wp) < p, and Z(F™(§)™M, e(wo; F)™M) < py, provided
that n is larger than some constant Cy. It follows from the condition (C5) in the
choice of the constant pg in subsection 3.2 that

(102) d(F" (5O, C(F)) > py.
Using (100), we can see
d(¢,C(F)) > d(F"1(§) O, C(F) — d(F" ()@, ¢) > pg — 2B,60 " > 44,

provided that n is larger than some constant Cy,. This implies that the critical set
C(F) does not depend on t € R. Hence (V1), (V2) and (V3) follow from (100),
(101), (102) and lemma 8.6, provided that n is larger than some constant C.
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Let U : R — R"7¥72 be the mapping that we defined in the last subsection.
Note that the conclusion of lemma 8.8 holds for this ¥. Suppose that Fy belongs
to Sz(n,£,j) NYo(n,£,],¢) for a parameter s € R. Then, by definition, there exists
a point wy; € C(F) such that dj(F7'(j), clw; Fs)) < 2Bgexp(—At(f)n(r — 3)).
Since ¢(+; Fy) = ¢(- Fs) : B(C(F),py) — J"72I is a C'mapping whose first-order
differentials are bounded by some constant Cy, it follows

dy(F7(3), e(FP3O: L)) < dy(F(3), e(wss i) + dy(e(ws; F), e(F(5); Fe))
< (14 Cy)ds(F2(), c(wr; Fy)) < Cy6ur =),

Hence the image ¥(s) is contained in

r—2
H |:—Og6::(7"—3)_(8—q)7Cg&Z(T—S)—(S—q)} c RT¥—2
qg=v+1

We arrive at the estimate
r—2
mg -2 {t € R| Fy € So(n, £,j) NYo(n, £,§,O)} < Cp [ oxtr=-0-a),
q=v+1
which holds uniformly for F' € Sa(n,£,j) NYs(n,£,j, (), provided that n is larger
than some constant C,.
Now we apply lemma 3.18. Fix a small number 0 < T < 1 such that

Z tqVq,n.c

g=v+1

maXx

e <r- max |[Uglles - T < ps(d)
ql<

v<q<r—2

where ps(d) is that in lemma 3.16. Note that we can take T independent of n.
Put X = Sa(n, £, j)NYa(n, ¢, j,¢) and T; = T in lemma 3.18. Then the assumption
(21) holds from the choice of T, and the subset Y in the statement of lemma 3.18
is contained in Y1(n,¢,j, () from the condition (V1) which we have proved above.
Therefore we can obtain, as the conclusion,

MS((I)E] (82(71‘7£7j> N YO(”#&L C)) N Dr(d)»

r—2
: <o, [ syt
M (@' (Y1(n, £.3,0))) ’ L1

g=vt1

provided that n is larger than some constant Cy. The the subsets Yo(n, £, j, ) for
¢ € L(6,,/20) cover C™(M, M) while the intersection multiplicity of the subsets
Yi(n, 4,3, ¢) for ¢ € L(6,,/20) is bounded by some absclute constant. Hence we can
conclude that the measure M, (P! (Sa2(n, £,j)) N D"(d)) is bounded by

r—2
CgT77'+V+2 H (ﬁ;(rf?)) —(s—q)
g=v-+1

= O, T exp ((r ) ((r —3)+ W) A+(e)n> .

The subset Sy is contained in the closed subset

Zy

NU U Smed

n>By £=1;ieQ(n,f)
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from corollary 8.5. Hence the measure My (®5'(S5) N D7 (d)) is bounded by

£o
T2 3" Q. £) - exp ((r v (( 34 22—“> v(@n)
=1

for sufficiently large n. From the estimate (86) on the cardinality of Q(n, £) and the
condition in the choice of A*(£), this converges to 0 exponentially fast as n — oo.
Thus we conclude M (®5'(S2) N D7(d)) = M(®5'(S5) ND7(d)) = 0. As d is an
arbitrary positive number, M 5(1)51(82)) = ( or & is shy with respect to M.

Suppose that r > 19. Then the inequality (2) holds for s = r + 3 and v = 3 and
50 My43(@5'(S5)) = 0 for any G € C"(M,T). This implies that ¢/ \ S} is dense.
Therefore Sy is contained in the closed nowhere dense subset S).

APPENDIX A. PROOF OF COROLLARY 2.3
To see that corollary 2.3 follows from theorem 2.2, it is enough to show

Lemma A.1. If X is a Borel subset in C"(M,T?) that is shy with respect to any
measure in QF for some s > r, then the subset

Y = {F(Z‘t) € CT(‘N[ X [717 1}14:*]‘) ‘ m]R""({t € [7151}14: ‘ F(*t) € X}) > 0}*

is shy with respect to any Borel finite measure on C"(M x [—1,1]F R?) that is
quasi-invariant along C*(M x [1,1]% R?).

Proof. Take a mapping G € C™(M x [~1,1]%,T) and put Go(z) = G(z,0). We
define the mapping

P(f,t) :== G(-,t) — Go(-) + f(-, ) : OT(M x [-1,1]F,R?) x [-1,1]F — C"(M,R?),
so that ®g, o P(f,t) = G(-,t) + f(-,t). Let N be a Borel finite measure on
C™(M x [~1,1]%,R?) that is quasi-invariant along C*(A x [~1,1]%,R2). Then the
measure (N X mgx|_1,1+) © P71 on C"(M,R?) belongs to Qf and so we have
(N x mpw)((@g, © P)71(X)) = 0 from the assumption. This and Fubini theorem
imply M o q);;l(Y) = 0 and hence the claim of the lemma. 0

APPENDIX B. PROOF OF LEMMA 3.16

We use the definitions and results in the book[18] by Skorohod. We consider
the functions enm(z,y) = exp (2my/~1(nz + my)) for n,m € Z, as a complete
orthonormal basis of the space L?(T,m). Let A : L*(T,m) — L*(T,m) be the
operator defined by

A Z AnmCnm — Z (nQ + m2 + 1)71/2anmenm-
(n,m)ez? (n,m)ez?

Let A be the Gaussian measure|[18, §5 ] on L?(T, m) whose characteristic function
is O(¢)) = exp(—(1/2)(A%* 3¢, 1) 12). Then N is supported on the Sobolev space
We=3 .= A 3(L*(T,m)). We can see, from [18, §16 theorem 2], that A is quasi-
invariant along Ws=(3/2) 5 C*~1(T,R) and it holds
dNoTt) ]2 )
dN L2

() = exp ((A—S«w., AT e - (1/2) || Ay

< exp([6lwe - [@llws)
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for ¢ € W* and N-a.e. o € W93,

We show that the measure A is actually supported on C*~3(T,R). We follow
the argument in the proof of the fact that the measure corresponding to Brownian
motion is supported on the space of continuous paths[10]. Let ©=3) be one of the
(s — 3)-th partial differentials of p. Denoting the expectation with respect to the
measure N by E(-), we have

E(o® () — ¢ 9 w) ) < const - d(w, 2)°°

because the distribution of ¢*=3)(2) — ©(¢=3)(w) is a Gaussian distribution with
average 0 and variance bounded by

. . ) . . . 2
Z (min{?, (n? 4+ m? +1)Y2d(z,w)}(n® +m? + 1)—3/4> < const. - d(z, w).
(n,m)cz?

By Borel-Cantelli lemma, there is a constant ig > 0 for M-almost every ¢ such that

99(5—3) (2=ip, 271q) — (’O(s—ii)(z—ip/’ 2-ig)| < 9—i/3

for i > ip and p,q,p’, ¢ € Z such that [p—p'| < 1and |¢—¢'| < 1. This implies that
©t*=3) is continuous for A-almost every ¢ and hence N is supported on C*~3(T, R).

As C*3(T,R?) is naturally identified with C*~3(T,R) x C*~*(T,R), we regard
the product N x A as a measure on C*~3(T,R?). Put M, = (N x N)or~! where
71 C*3(T,R?) — C*3(M,R?) is the mapping that corresponds to the restriction
to M. Then M, satisfies the conditions in the lemma.
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