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1 Introduction

We consider the Cauchy problem for the semilinear heat equation of the form

wy = Au+|uftu in R"x (0,7), (1.1
u(xz,0) = wup(x) in R" 1)

with a subcritical nonlinearity, i.e.,

l<p<(n+2)/(n=2) for n>3 or (1.2)
l<p<oco for n<2. e

We are interested in a blow up rate estimate of the form
[u(); L*(R™)|| < C(T = 1)~ VY (1.3)

for a blowup solution u(t) = u(-,t) of (1.1) (with a blowup time 7') where C'is a some
positive constant independent of time ¢. Here we denote by || f; X || the norm of f in
a Banach space X. Our goal is to prove (1.3) for all subcritical power p satisfying
(1.2) without assuming nonnegativity for initial data ug. We should note that the
right hand side of (1.3) is constant multiple a spatially homogeous solution for (1.1).
So the power appeared in (1.3) cannot be improved. The estimate (1.3) is crucial
in studying the asymptotic behavior of blow up solution whose analysis has been
started by Y. Giga and R. V. Kohn [8]. In [9] Y. Giga and R. V. Kohn established
(1.3) for more restricted range of p : 1 < p < (3n 4+ 8)/(3n — 4) or for nonnegative
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initial data (so that the solution is positive everywhere) with subcritical p. It had
been a long open problem whether or not (1.3) holds all subcritical p. Our result
solves this important open problem. The range of p is expected not to be improved
since for p = (n 4 2)/(n — 2) the estimate (1.3) does not hold when n = 3,4,5,6 as
announced in [3]. We refer Remark 2.2 for a list of related results.

Let us briefly sketch the idea of the proof. As in [9] we convert our problem to
a uniform bound for a global-in-time solution w of the rescaled equation

y-Vv

w, — Aw + 7V + Bw — |wP " w = 0, f=—-

¥

with

w(y,s) = (T — )P Vula +yvVT —t,1),

where a € R" is a center of the rescaling. A key step is to establish an integral
estimate
«s+1

sup / |lw(7); LPH(BR)]](”H)"(IT < Cys, for sy > 50 = —logT (1.4)

s>s1 4 s
with C,, independent of a for ¢ > 2. In [9] the case ¢ = 2 with the ball By
replaced by R™ has been proved. This estimate with ¢ = 2 already yields (1.3) for
p < (3n+8)/(3n—4) as in [9]. To show this integral estimate we adjust the idea of P.
Quittner [18] who obtained a uniform bound for global solution of u; = Au+ [u]i”flu
in a bounded domain with zero Dirichlet data for all subcritical p without assuming
positivity of solutions. However, it is nontrivial to localize his argument to drive
the above integral estimate. For this purpose we introduce two kinds of localized

weighted energies of the form

1 r v ( 1 ’

Bluls) = 5 [ (VG0 + (35 = [VePullody - — [l pay,
Q,Rn p+1-Rn
1 f 1 )

< T, 5 _ 2 v 2 12 d _ 21,, |p+1 d

Elulie) = 5 [ POVl + ety - —= [ oy

with p(y) = exp(—|y|?/4) ,where ¢ = ¢(y) is a cutoff function of a ball. (Here and

hereafter we suppress the s-dependence of w in integrands. For example,

|ttty = [ (el ot oy,

If ¢ = 1, these energies agree with global energy E[w] in [9]. The key observation

is to derive upper and lower bounds for &, i.e.

—Cy < Ew] <y s> s¢ independent of a.
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For the global energy E[w](s) we know
0 < Efw](s) < E[w](so)

since Efw](s) is monotone decreasing as a function of s. Unfortunately, such a
monotonicity property is not expected for localized energies. We need a more so-
phisticated argument.

An upper bound for &, is obtained by bounds for

s+1 dE «s+1
sup/ (—“p) ds and sup/ Eds,
828045 d5 + 5250 J s

where ay = max{a,0}. A lower bound for &, is obtained by an integral identity
of E, involving d/ds [, |¢w|*pds and an upper bound for (d€,/ds); if one no-
tices that w is a global solution. Note that the same argument with ¢ = 1 yields
Elw] > 0.

Applying bounds for £, we prove (1.4) by a bootstrap argument similar to that
of P. Quittner [18]. We assume (1.4) with a fixed ¢ > 2 and prove (1.4) for a big-
ger g denoted § = §(p,¢) by shrinking R. In [18] such a localization of shrinking
R is unnecessary since the problem is global. Fortunately, we are able to prove
§—q > 1/(p+1) so the estimate (1.4) is obtained for every ¢ in a finitely many
steps by starting with ¢ = 2 (obtained in [9]). We explicitly calculate § to get the
estimate ¢§ — ¢ > 1/(p + 1) which was implicit in [18]. We present the detail of this
bootstrap argument as well as calculation of exponents for the reader’s convenience.

Once we get (1.4) for all ¢ > 2 we obtain an upper bound for w which yields
(1.3). Here is the only place that the subcriticality of p is invoked. From our proof
it turns out that the constant C' in (1.3) can be taken so that it depends only on
n, p and a bound for T%®=||ug; L>°(R™)|| (Theorem 2.1). This estimate improves
the uniform bound in [17], where p < (3n 4 8)/(3n — 4) is assumed and C' in (1.3)
depends only on bounds for 7" and C%-norm of uq (other than p and n). Such a type
of uniform bounds is crucial to obtain a uniform O. D. E. behavior of solutions [17].
From our estimates their result [17] can be extended for all subcritical p.

Our results extend to the Dirichlet problem on a convex domain. We shall dis-
cuss this topic in detail in a forthcoming paper.

Blowup rate estimates are important to study refined behavior of a blowup solu-
tion ([8] [9] [10] [14] [17] [20] [21]...). We do not exhaust all related references here.

The reader is referred to a review paper [11] and papers cited there.
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2 Main Theorem

We say that a function v : R" x [0,7) — R is a solution of (1.1) if u solves (1.1)
and satisfies
u, uy, Vuand VZu  are bounded and continuous
on R® x [0, 7] for every 7 < T.
If u(t) satisfies that
|u(t); L(R")|| = sup |u(z,t)] > 00 as t—>T1T < oo (2.2)
zcR™

for some T > 0, the time 7 is called the blowup time of u. Such a solution u is called

a blowup solution of (1.1) with the blowup time 7". Our main result is :

Theorem 2.1. Assume that either p > 1 forn <2 or1 <p < (n+2)/(n—2) for
n > 3. Let u be a blowup solution of (1.1) with a blowup time T'. Then there erists a
constant C depending only on n,p and a bound for TV P~V ||ug; L>(R")|| such that
u satisfies (1.8) for allt € (0,T), i.c.

|u(t): L®(R™)|| < C(T — t)~ Y1),

Remark 2.1. To prove this theorem we may assume that 7' =1 by rescaling u, z,¢

as

z(a,t) = Tl/(p_l)u(\/ilr7 Tt).

Indeed, z solves (1.1) with initial data
20 = ]’l/(17*1),u,0(\/f,l,>j
and the blowup time of z equals 1. The estimate (1.3) for z is
I2(s); LR < C(1 = 5)"/®

with C' depending only on n,p and a bound for ||z9; L (R")||. The estimate (1.3)

for u easily follows from this estimate with the same constant C.
Remark 2.2. We list known results of blowup rate estimate.

1. General exponent (i.e. p > 1) for Dirichlet problem in a bounded, convex
domain with zero boundary data. In [4] it was proved that (1.3) holds when
Aug + |up|" tup > 0 so that uy > 0. The dependence of C' with respect to wu

and T is not explicit.



2. Subcritical exponent (ie. 1 <p < (n+2)/(n—2)).

(a) In [9] it was shown that (1.3) holds when 1 < p < (3n 4+ 8)/(3n —4) or
ug > 0.

(b) Dirichlet problem in a domain Q@ with uniformly C*®-smooth OS2 with

zero boundary data. In [5] it was shown that (1.3) holds when 1 < p <
14+2/(n+1) and ug > 0.

(c) Neumann problem in a bounded domain with zero Neumann data. In [13]

it was shown that (1.3) holds when 1 < p < 1+ 2/n and uy > 0.
In all above results the dependence of C' with respect to T" and wug is implicit.

3. Crtical exponent (i.e. p=(n+2)/(n—2)). In [3] it was formally shown that
there exists a sign-changing blowup solution such that
lim (T — )" YE D u(t); L=(R™)|| = oc. (2.3)
t—=T
4. Supercrtical exponent (i.e. p > (n+ 2)/(n —2)). In [12] it was shown that

there exists a blowup solution satisfying (2.3) when n > 11 and p > (n —

2vn—1)/(n—4 —-2v/n—1).

5. Universal bound, i.e. (1.3) for t > 7 > 0 with C' depending only on 7 and
independent of the wnitial data. (The type of estimate is expected only for
positive solutions. So we assume that u is a positive solution in the following

(a)-(c).)

(a) In [6] it was shown that a universal bound exists when 1 < p < (n +
1)/(n — 1) for the Dirichlet problem in a bounded domain © with zero
boundary data.

(b) In [19] it was shown that a universal bound exists when 1 < p < (n +
2)/(n —2) and n < 3 for the Dirichlet problem in a bounded domain {2
with zero boundary data.

(¢) In [16] it was shown that a universal bound exists when 1 < p < n/(n—2)
and n > 3 with initial data wy which is radially symmetric and nonin-

creasing as a function of r = |z|.



Remark 2.3. The assumption (2.1) is actually unnecessary because of the regu-
larizing effect (cf. §3.3). Indeed, if uy € L>°(R"), then (2.1) is fulfilled with [0, 7]
replaced by [d,7] for each 6 > 0 and 7 < 7. We apply Theorem 2.1 in [4,7) and

letting & — 0 yields our desired estimate since
[u(0): L= (R")|| < 2[Ju(0): L= (R")|
for small 6 > 0 (Lemma 3.1).

Our main result removes the extra restrictions for subcritical exponent p and
positivity of initial data in the results obtained in [9]. The result of [3] suggests
that our restriction p < (n+ 2)/(n — 2) is optimal although the Dirichlet problem
is studied in [3].

3 Preliminary

In this section we give conventions of notations and recall several estimates obtained
in [9]. In this paper we always assume that p > 1, but we do not assume that p is
subcritical in this section.

3.1 Rescaling variables

To study u near the blowup time 7" at a point ¢« € R™, as in [8] we introduce the

rescaled function

w(y, s) = (T — t)Pu(a 4+ yvT — t,t) (3.1)

with .
s=—log(T —t), 3=—.
o= —logT—0). f=—g
If u solves (1.1), then w® solves
we — Aw’ + (AR SV Buw® — |[w*Prw* =0 in R" x (89,00), (3.2)

where

sp=—logT.

By Remark 2.1 to prove Theorem 2.1 we may assume T" = 1 so here and hereafter we

assume so = 0. We shall write a solution of (3.2) by w instead of w,. The rescaled



function w?(y, s) clearly exists for all s > 0, and it inherits bounds from those of .

In fact, (2.1) says that w = w, satisfies the property:

w, w,, Vw and V2w  are bounded and continuous (3.3
on R* x [0,5] forall S < . 3-3)

We rewrite the equation (3.2) in a divergence form:
pws — V- (pVw) + Bpw — plw|P lw =0 in R" x (0,00), (3.4)

where p = p(y) is a weight function:

N yl?
p(y) = exp ( 7 )

3.2 Global energy

We shall study a global solution w of (3.4) in R™ x (0, 20) which satisfies (3.3). We

do not require that w is related to u and a. We recall the energy of w of the form

1 f 1
Elw](s) = ;/ (|Vw|? + 3|lw|?) pdy — ) |w

= R" [) R~

|p+1

pdy.

In this paper we call this functional the global energy to distinguish from other local-
ized energies which will be defined later. This global energy satisfies the following

two estimates which were obtained in [9].

Proposition 3.1. Let w be a global solution of (3.4) satisfying (3.3). Then E[w](s)

18 a nonnegative, monotone decreasing in s. In particular
0 < E[w](s) < E[w](0). (3.5)
Proposition 3.2. Let w be a solution of (3.4) satisfying (3.3). Then w satisfies
[ s @ < Bluo) (3.6)

Moreover, there exists a positive constant I depending only n, p and a bound for

E[w](0) such that

||w: Li(ﬁR")]]z < K? (3.7)
and
s+1
/ ||w: Li‘"l (R”)]]2(p+1)d.s <K for all s> 0. (3.8)
Here L’;(R") denotes a weighted LP space:
2R = {ue LLR™)| [ |aPpde < o},
. R'IL
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3.3 Regularizing effect

It is well known that the solution of (1.1) is smooth for ¢t > 0 even if initial data
is merely bounded, since the equation is parabolic. We here present a quantified

version of this regularizing property.

Lemma 3.1. For uy € L™(R") there exists a unique solution u € C(R" x [0,T}])
satisfying (1.1) in R™ x (0,Ty) for Ty = 1/2P||ugl|PSt such that

lu(®)lle < 2ljuolloe  for t€[0,T),

where ||f|ls = ||f; L=(R")||. Moreover, there exists ¢cg = co(n) and ¢; = c1(n,p)

such that

t2Va(t)llo < colluollc
tIVu(t)]|o < c1llteo]|s Jor all t € (0,Tp].

Sketch of the proof. The results are essentially well known, e.g. [7]. The local

solution is odtained by a well known successive apporoximation
¢
WUt = ey, +/ 98y 0)p 1y B g7, uD) = ey (5> 1),
0

where e!® denotes the solution operator of the heat equation. The estimate of

derivatives is obtained by estimating the integral equation

¢
u = ePuy -}—/ e(t"s)A|u]p_1udT.
0

For example, since || Ve upl|oo < cht~ 12|/~ for ¢ > 0 with ¢ depending only on

n, we have

FRVu(t)| < chlluollo +2¢5t sup [[Ju(t)P u(t)]lo

t€[0,75]
< 3eglluo)| -0

4 Uniform bound

In this section we give a local uniform bound for a global solution of (3.4) with (3.3)
admitting our key integral estimate. Let By be an open ball of radius R centered

at the origin in R™.



Theorem 4.1. Assume that 1 <p forn <2 orl <p<(n+2)/(n—2) forn > 3.
Let w be a global solution of (3.4) satisfying (3.3) with the initial data wy. Then for
R > 0 there exists a positive constant Cg depending only on n,p, R and a bound for

||wo|se such that
lw(y,s); L(Bg)|| < Cr for s>0. (4.1)

Proof of Theorem 2.1 admatting Theorem 4.1. By Remark 2.2 we may assume
that T'=1. By (4.1) we have

|w(0,5)| < C for s>0

with C independent of a € R"™ where w® is defined by (3.1). Here C' depends only

on n,p and a bound for ||ug||w since |[ug||e = |||l We thus obtain
lu(a, t)] < C(1 - H)~Ve= e (0,1)

for all « € R™. This yiclds the blowup rate estimate (1.3). O

To prove (4.1) in Theorem 4.1 we admit the following key integal estimate whose
proof is postponed in Sections 5 and 6. Let BC™(R"™) denote the space of all C™
functions on R™ such that all derivatives up to m-th order belong to BC'(R"). Here,

BC(R™) denotes the space of bounded continuous functions in R".

Lemma 4.1. (Key integral estimate) Let w be a global solution of (3.4) satisfying
(8.3) with initial data wy. For all ¢ > 2 and R > 0 there exists a positive constant
Cy depending only p, ¢, R, n and a bound for E[w](0) and for ||we: BC*(R™)]|| such
that

w541
A s " s 1 (B 00945 < (42)

Here we note that for the proof of Theorem 4.1 we require subcriticality of p
while we do not require the subcriticality of p for the proof of Lemma 4.1. The way
to derive uniform bound from integal estimate is essentially known by [9]. They use
an interpolation theorem due to T. Cazenave and P. -L. Lions [2] and an interior
reqularity theorem for a linear parabolic equation [15], a covenient from for our
purpose is stated in [9]. However, their integral bound is weaker than ours, so they

are forced to impose a stronger restriction on the exponent p to derive a uniform

9



bound. Actually, their integral bound corresponds to the case ¢ = 2 in Lemma
4.1. For completness we recall the interpolation theorem and the interior regularity

theorem.

Lemma 4.2. (Interpolation theorem) Assume that v € L*((0,0c); LP(Bg)), v; €
L7((0,00); L*(Bg)) for some 1 < a,3,7,6 < oo. Then

v € C([0,00); L*(Bg))
Jor all X < Xg = (a+ )38/ (v 3 + ab) with v =~/(v—1), and satisfies

sup [|v(t); LY (Bg)|| < C'/ (lles L7 (Br)||* + lJves L*(Br)|)7) dr
0

>0

for A < Xy. The positive constant C' depends only on «, 3,v,0,n and R.
Lemma 4.3. (Interior regularity) Suppose that v(z.t) solves
vy — V- (AVv)+ B-Vo+gv=0 (4.3)
in a cylinder Qr = Bg x (0,00) C R" x R under the following assumptions:
1. An n x n martriz A(z,t) satisfies
polél* < Alx, )€€ < po €1
for all £ € R™ and some positive constant jg.
2. An n-vector B(x,t) satisfies
|B(x,t)] < 1y in Qg
for some positive constant jiy.

3. A coefficient g(a,t) € LP((to.to +1); L*(Bg)) with 1/3+n/20 < 1 and o > 1

satisfies

to-+1 ‘
/ llg: L*(Bg)||Pdt < pa

to

for some positive constant py = pa(to).

10



If
to+1
| el < g

to
for some positive constant i3 = pi3(ty), then there exists a positive constant C de-
pending only on pu; (0 < j <3), a, 3, n, 1 € (0,1) and R such that

o] <C on Byg x (to + 7}2,t0 + 1) .

Remark 4.1. If v is a solution of (4.3) in Bg x (0,00) and the constants jia(ty)

and ps(ty) are uniformly bounded in ty > 0, then Lemma 4.3 implies
lv| <C on Byp x (1]2,00>
with C independent of to > 0.

Proof of Theorem 4.1 admaitting Lemma 4.1. By the regularizing effect Lemma
3.1 we observe that
lw(s)|leo < 2||wollec  for s €[0,51], 51 = —log(l —Tp) and

|Vw(s)||s < csljwolle  and V2w ()]0 < c3]|woloo (4.4)
for s € [s9,51], s2 = s1/2.

with c3 depending only on n, p, s;. In particular w(s;) € BC?*(R™). From (3.6)
and (4.2) it follows that

s+1
MJQWWWW%WWWWWﬁ@MWWSQ+WﬂM (4.5)

$>383

for all ¢ > 2 and R > 0 with Cy depending only on n, p, ¢, R and a bound for
E[w](sz) and for ||w(sy); BC?(R™)||. Since E[w](sy) < E[w](0) by Proposition 3.1
and since ||w(sz); BC*(R™)|| is bounded by (4.4), we conclude that the right hand
side of (4.3) is dominated by a constant Cy depending only on n, p, ¢, R and a

bound for E[w](0) and for ||wyl|~. If we set

L (p+ g +2 p-1
Alg) =0T - .
1(g) P I Py

then Lemma 4.1 implies that

sup ||w; LM Bg)|| < €, forall A< A(g) andall ¢>2

533

with some positive constant C; depending only on p, ¢, n, R and a bound for

Efw](0) and for C7/. We take ¢ large so that n/2A;(¢q) < 1. This is always possible

11



since 1 < p < (n+2)/(n —2). We fix such ¢ and apply Lemma 4.2 (and Remark

4.1) with g = |w|P™t. We thus conclude that
lw(y,s)| < Cyr for (y,s) € Byr X (® + s9,0¢) (4.6)

with some constant C g depending only on p, n, R, n and a bound for E[w](0) and

for ||wol|o- We now take 5 small so that n? + s < s1, and by (4.5) we observe that
|w(s)|leo < 2||wo|oes s < s1. (4.7)

Since s; depends only on a bounded for ||wp||«, # can be taken independent of R.
Since R can be taken arbitrary, the estimates (4.6) and (4.7) yield (4.1) with C
depending only on n, p, R and a bound for Efw](0) and for ||wp||e. Since E[w](0)
is bounded by a constant depending only on a bounded for ||wpl||~, we obtain (4.1)

the desired dependance of C in (4.1).0

5 Local energies

Let w be a solution of (3.4) with (3.3). Hereafter we should suppress the word

‘global’. Let ¢ be a bounded C? function on R”. Then ¢w satisfies

plbw)y — V- (pV (Yw)) + V - (pwV ) + pVio - Vw + Bvpwp — |lw|P twp = 0.
in R" x (0,00)(5.1)

We introduce two types of local energies.

17, , o :
Eylw] = 3 /R‘ (|V () |? + (892 — |V |?)|w]?) pdy
1 , .
—m CPlwlP* pdy, (5.2)
JRn
1 f . 1 '
Slul = 3 [ GOS0l +sluPipdy - — [ Pl (53

In particular, if ¢ = 1 on R", then the both of local energies equal the global energy

Efw]. The aim of this section is to show a lower and an upper bound for £yfw].

5.1 Integral identities

In this section we prepare two integral identities involving local energies. These

identities will lead us to estimates of a local energy &,.

12



Proposition 5.1. Let w be a solution of (3.4) with (3.3). Assume that v € BC'(R™)N
C?%(R"). Then Eyw] satisfies

/ V2wwpdy + (p + 1)Ey[w](s)

5 wlpdy (54

, —1 [
= — / 29wV - Vwpdy + ! / (| Vw|? + 3
for all s > 0. In particular, if v» =1 in R", then

p—1
2

/ wwspdy + (p+ 1) E[w](s) = / (|Vw]? + 8lw|?) pdy (5.5)
n R»

for all s > 0.

Proof. Multiplying (3.4) by ¢?w and integrating on R"™, we obtain

/ Yrww,pdy — / SPwV - (pVw)dy
JR» JR"

e

+/ &ﬂﬁ%@+/ VPlw pdy =
. n JR”
We integrate the second term by parts to get

- / V2wV - (pVuw)dy = / V(¢*w) - Vwpdy

= / 2@‘)10\7'@‘)-Vu;/)d1/+/ V2V w|pdy

R

By the definition of y[w] we observe that

1 ,
/ 1/{)2]'(1)]p+1pdy = (p + 1)51’/)[21)] — % 1/52(k|vwl2 + 3|21)|2)/)dy.
n J R

Combining the above three identities, we have (5.4). The identity (5.5) is nothing

but (5.4) when ¢ = 1.0

Proposition 5.2. Let w be a solution of (3.4) with (3.3). Assume that v € BC'(R")N
C*(R™). Then Eylw] satisfies

1d [ p—=1 1 5
5qs . [vw|?pdy = —2E,[w] + P '/Rn Y wlPpdy  for all s >0. (5.6)

13



Proof. By (5.1) we have

1d
3 i [vwpdy = / vw(yw)spdy
At R"l n

= / vwV - (pV(Yw dy—/ YLwV - (pwV)dy

— / vwpVuw - Vipdy — /

We integrate the first and the second terms of the rightest hand side by parts. Then

U w|2pdy+/ V2 lw|PH pdy.

we get
/ YwV - (pV (Yw))dy = — / |V (vw)|*pdy,
and

—/ aﬁ:urV-(pwVaﬁ:)dyz/ LDwVw-Vyﬁpdy—i—/ lwV |2 pdy.
R~ n n

since the weight function p is rapidly decreasing in y. By the definition of Ey[w] we

have

/ (|V(w)]? 4+ (3¢* — [V ) |w]?) pdy = 2E[w] + —— V2 wlPt pdy.
JRn p+1 Jan

Combining these identities, we easily get (5.6).0

5.2 Upper bound for local energy

We shall prove an upper bound for the local energy &,. For the global energy
such a bound is clear since Efw](s) is nonincreasing in s (Proposition 3.1). Such a
monotonicity property is not expected for £, for general ¢’. Instead, we estimate
dEy[w]/ds from above by L?(0, 0c) function plus a constant and control ‘]:H Eylwldr
uniformly in s > 0. Fortunately, this is enough to obtain an upper bound for
Eplw](s). We first control I/][/T;z—ll()rl‘n. (The definition of this weighted Sobolev

norm is found in the proof of the next proposition.)

Proposition 5.3. Let w be a solution of (3.4) with (3.3). Then there exists a

positive constant Ky depending only on p, n and a bound for E[w](0) such that
|w(s); W, PHRM|P < Ky (1 + |Jws(s) L2(R" M) forall s> 0. (5.7)
Proof. We set
() WE2RM2 = o (s): LR + B ¥ (s); LR

14



By (5.5) we observe that
2 ) .
[l (s): W, A(R™)|* < p—l(([)+ D E[w](s) + [lw(s)ws(s): L(R™)]))-
Since Efw](s) < E[w](0) by (3.5) and ||w(s); L2(R" |> < K by (3.7), we apply
Schwarz’s inequality and obtain (5.7) with K} = gmax{2(p 4+ 1) E[w](0), 2K/2}.0
Proposition 5.4. (Quasi-monotonicity of &) Let w be a solution of (3.4) with
(3.3). For ¢ € BCYR™) N C*R") there exists a positive constant Ly depending

only on p, n, ||V¢||« and a bound for E[w](0) such that Ey[w] satisfies

1
;—ow[w]( s) < Ly(1 4 ||ws(s L2 (R™)||) forall s> 0. (5.8)
s

Proof.  Multiplying (3.4) by ¢rw, and integrating in R"”, we get

/ 2w, |2 pdy _/ VP,V - (pVw)dy

+/ 2ww,pdy —/ U lwlP hww, pdy = 0.
R» n

Integrating the second term by parts. we have

- / V1w,V - (pVw)dy = V(v ws) - (Vw)pdy

n

n

/ VA (Vw - Vw, + Bww,)pdy — / U2
= —/ V2 ws|?pdy — 2/ Yws Vi - Vwpdy.

We differentiate £y[w] with respect to s and use this identity to get

d RN : ,
%Ew[w] = / y‘;2(\7w-\7ws+/3wws)/)dy—/ |w]P~ twwy i pdy

:?\5\

VAV w - Vwgpdy + 2 / Lw Vo - Vwpdy.
JR»

We thus obtain

“hww,pdy

= —/ V2w, ? pdy — 2/ Yw Vi - Vwpdy.

We now apply Cauchy’s inequality in estimating the last term and obtain

{ 1 [
d(—5¢[z1)] < —/ V2w, pdy + = / U w, |* pdy +2/ |V | Vw?pdy
A !9 n kel n

< 2/ IV 2| Vw|?pdy.
The estimate (5.8) follows from (5.7) by setting L; = 2K, ||V¢[]2,.0
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Proposition 5.5. Let w be a solution of (3.4) with (3.3). For v € BC(R") N
C?(R") there erists a positive constant Ky depending only on n, p, |||~ and a

bound for E[w](0) such that
ws+1
/ Eplw](T)dr < Ky forall s>0 (5.9)

Proof. For s > 0 we integrate Eylw] on [s,s + 1], and use (3.3), Schwarz’

inequality and (3.8) to get

s+1 1 s+1
/ Eylwldr = 5/ / V|V |® + Blw|?) pdydr

1 41 g
e / / @’}2]’w]p+1/)dydT
P 8 . 7

ME e o
< (|Vw|* + 8|lw|?) pdydr
2 8 R~
s+1 1
= M? /S (E[w](s) + P ||w: Lz"'l (R”)”P“H) dr
1 +s-+1 ] ] 1/2
< M (E[w](()) + ) (/s ||w; Lﬁ“(R”)]]z(”H)dr) )

< M (E[w](()) + \/K) ,

p+1
where MZ = ||¢||%,. Setting

Ky = MZ(E[w](0) + VK /(p+ 1)),

we now obtain (5.9).0

Lemma 5.1. Assume that f € C*(0,00) N C[0,00), m € L}, (0,00) and m > 0.
Let F and I be

ws+1
F= sup/ f(r)dr < oo,

s>0 '

s+1
I= sup/ m(r)dr < occ.

s>0

If f'(s) <m(s) for all s >0, then

fls) < F+1 forall s>1,
fls) < I+ f(0) for all s €[0,1).
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Proof. Let s > 1. By the mean value theorem there exists ¢, € (s — 1, s) such

that , |
f) = [ sy

Since tg € (s — 1,5), the assumption of f" and m implies

f(s)— f(ty) = /to fim)dr < /to m(7)dr < /3_1 m(r)dr < I.
Then we obtain
o) S f+1< [ 1< F 4
Js—1

for s > 1. The remaining inequality easily follows from

f(s)— f(0) < /S m(7)dr,

J0

so that proof is now complete.O
Combining (5.8) and (3.6), we now apply Lemma 5.1 with (5.9) to get an upper

bound for Eyfw].
Theorem 5.1. Let w be a solution of (3.4) with (3.3). For ¢ € BCY(R")NC*R")

Eplw](s) < max{ Ky, Ey[w](0)} + Li(1 + K) forall s> 0. (5.10)

Remark 5.1. The quantity Ey[w](0) = Ey[wy) is estimated as

1
Eplwe] < ME | Elw
Eylwe] < 0 ( [wo] + p+1

< ME(Efwe] + Cy]|wol[ZH),

nwo;Lg“(R”)l]P“)

where C'y =1/(p + 1) [z pdy. Thus
Eplw](s) < By for s>0

with E; depending only on n, p, My, |[|[V¢|w, and a bound for Efwg] and for

[wolfoc-

17



5.3 Lower bound for local energy

In this section we prove a lower bound for the local energy £4[w]. The identity (5.6)
implies that Ey cannot be very negative but we have to prove a lower bound for &,
not E,. We first compare )y, and £y. Then using a quasi monotone property of &,
in s (Proposition 5.4), we get a lower bound for &,.
Proposition 5.6. Let w be a solution of (3.4) with (3.3). For ¢ € BC*(R™) with
supp v C Bpg there cxists a positive constant Jy depending only on n, p, M; (j =
0,1,2) and a bound for E[w](0) such that
1d [
2ds Jg

Here My = ||U)|co, My = ||V¥]|w and My = ||AY|| -

-1 7
[ Ppdy > —2Ey — Ji + ﬁ 1 / E lw P pdy. (5.11)

Proof. We shall estimate the difference |Ey — &;|. We integrate the first term

of Ey by parts to get
Ey—-& = / Yw (Vi - V) pdy.
We integrate the right side by parts again:
/ Yvw(Vi-Vu)pdy = — / wV - (VwpV)dy
= - / |w|?| V) pdy — / vw (Vi - Vw)pdy
JRr J R

s | - . |
- / O|w A pdy + / z;’;]'lu]zi - Vpdy.
JRn JRrn 2
Therefore, we are able to get

; 1
/ Yw(Vy - Vw)pdy = —5/ |w|?|Vy | pdy

[ , 1 [ ,
-5 / Vw2 Ay pdy + 1 / lwly - Vibpdy.
By this identity and (3.7) we obtain
Lf 2 1 s |2
Eo—g <2 [ty Yooty + L [ wullaviedy <

where

Ji = K2MyM, R + K2MyMs,.

This inequality together with (5.6) yields (5.11). O
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Lemma 5.2. Assume that h € L*(0,00) is nonnegative. Let L and C' be positive

constants and p > 1. There exists a positive constant M depending on p, C, L and

m = ‘]'OOO hdr such that for any g € C*(0,00) N C[0, o0)
g>-M on [0, 00)
provided that g satisfies
(1) ¢<L+h on (0,00)
and
(2) f'>2—g+CfF  on (0,00)
for some nonnegative f € C1(0,00) N C[0, ).

Proof. For z > 0, let F' be the solution of

F' = z+4cF?
F(0) = 0

< dr
T, .= .
o Ztcr?

g>-M

Then F blows up at the time

We shall show that

for M = 2+ T,L+m. If not, there exists a point ¢y € (0,00) such that g(¢y)
By (1) we see that

glt+ty) < -M+Lt+m=—z
for t € [0,7,]. By (2) we observe that

{ > z4cft on [ty ty+T,]
f(te) > 0

We compare F(t +tp) by f and conclude that

However, this yields a contradiction since F' blows up at 7,.0

< —M.

We apply Lemma 5.2 with g(s) = Ey[w](s) and f(s) = [g. ¥?|w(y, s)|2p(y)dy.

By (5.8) with (3.6) and (5.11) we obtain a lower bound for &,.

Theorem 5.2. Let w be a solution of (3.4) with (3.3). For ¢ € BCYR")NC?*(R")

there exists a positive constant Ly depending only on n, p, M;(j = 0,1,2) and a

bound for E[w](0) such that
Eylwl(s) > =Ly forall s>0.

19
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6 Integral estimate
In this section we shall prove Lemma 4.1 using Theorem 5.1 and Theorem 5.2. For
R > 0 we shall fix ¢ so that it satisfies

PRI 1 on B
A E TR0 el <1 and oy ={5 0 P

Lemma 6.1. Let w be a solution of (3.4) with (3.3). Then
]]uz;LﬁH(BR)]]pH < Lg(1 + ||ws I’Vpl’z(ng)]lz) forall s>0 (6.1)
with Ly = (p+ 1) max{1/2, Ly }.

Proof. The estimate (6.1) follows from the lower bound of local energy &, [w]

and properties of the cutoff function . Indeed,
prl

2 R»
< Ly(1+ |Jw; W2 (Beg)||?).0

[ws L5 (Bp) | (IVwl? + Blw*)p?pdy — (p + 1)E,[w]

By Lemma 6.1 we observe that to prove Lemma 4.1 it is sufficient to prove an

integral estimate for local WH2-mnorm of w described below.

Lemma 6.2. Let w be a solution of (5.4) with (3.3). Then for each q¢ > 2 there

exists a positive constant C, depending only on p, q, R, n and a bound for E[w](0)
and for ||we; BC*(R")|| such that

s+1
(By) / |w: W) (Bg)||*%dr < Cq  for all s> 0. (6.2)

In this section we prove (6.2) using a bootstrap argument. First, we have to
show the first step ¢ = 2 of the bootstrap argument. Fortunately, by [9] this step

can be easily proved.

Proposition 6.1. Let w be a solution of (8.4) with (3.3). Then there exists a

positive constant K3 depending only on n, p and a bound for E[w](0) such that

541
/ ||w: W)*(Bg)||*dr < Ky Jor all s> 0.
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Proof.  We square both sides of (5.7), integrate on [s, s 4+ 1] and use (3.6) to get
541 s+1
/ ||w: W'pl’z(BR)HddT < / K2 (1 4 ||ws; Lz(R")H)sz
< 2K%(1 + E[w](0)) =: K.

The proof is now complete.O

We introduce several constants A, Aq, #,py, ¢ and « satisfying

Mle) = max{) 2q(p? E(Il);l{)qp_%—?l}(;:"l})(gq_—l)—1)} (63)
Ae (M), M(9) (6.4)
0 = (p+1)(A=2)/(p—1)A (6.5)
o= (p+1)/p (6.6)
g < ¢ < q+2/(p+1) (6.7)
a = 2/(1-6)§ (6.8)

We show relations of these constants to prove (B,) for all ¢ > 2 by using the

bootstrap argument. We also need to recall \y(¢) =p+1—(p—1)/(g+1).
Proposition 6.2. For ¢ > 2 we have
2 2 2
< — <
p+1 6+(1—-0)q¢q 1-4

Here o is the conjugate exponent of o, i.e. 1/a+1/a/ = 1.

Proof. The proof is just an algebra but we present it for completeness and

convenience. Frist we show Ay(q) < Ai(g). Since p > 1 we observe that

(P+Dg+2 _ 29+2

Ailg) = > =2
19 g+1 q+1
So, we may assume that A(q) = 2{(p + 1)g — 2}(p + 1)(q¢ — 1)/I(q) when we set
Hg) =2q(p* = 1) +{(p+1 q—i—‘)} (29 — p—1). We claim that /(g) > 0 since p > 1
and ¢ > 2. Indeed,
) = 2q(" = 1) +{(p+ g +2}2¢—p—1)

= p+D{p+q-3)g+¢ —2}+4¢>0.
Thus A1(q) — A2(¢) equals

(P+Dg+2 Ap+De+2}p+De—-1) _oflp+Dg+2}p—1)°
¢+1 1(q) (g+1i(q)
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which is evidently positive.
Next we show ¢ € (0,1). It is clear # > 0 because p > 1 and A > 2. Since p > 1

and A < M(g)=p+1—-(p—1)/(¢+1) we get

(p+1)(A=2)
(P —1)A
2p+1-2X)

T - T

1-6 = 1-—

We next show that

Do

2 2q

I IS ir (=0 “1-¢

By 8 > 0 we easily get

2q 2q 2
b+ (1—fg (-0 1-6
By the relation of A, p and ¢ we observe that
29 (1+ 2 ) _ M =Ap+De=2Hp+ (g —1)
04 (1—06)q p+1 e+ DA=2)+2¢(p+1-N}p+1)
> 0

so that ¢ +2/(p+1) < 2¢/{6 + (1 — 8)q}.
We finally show 1 < 6¢a’ < 2q. By the definition of « we see that
204
o) = ———.
=10y
Since ¢+2/(p+1) < 2/(1-0) so that § < 2/(1—80), the quantity f¢a’ is well-defined as
a positive number. Since § € (0,1) and 2 < ¢ < § < q+2/(p+1) < 2¢/{6+(1—0)q}

we observe that

205 —{2—(1—=6)3} = (1+6)j—2 >0,
2¢{2 — (1 = 0)q} — 20¢ = 2[2g — {6 + (1 — O)¢}q] > 0.

so that 1 < #ga’ < 2gq.

The proof is now complete.O

Our next goal is to prove (6.2) for all ¢ > 2. We adjust a bootstrap argument
which is used in [18] to prove a priori bound for a global solution u of (1.1) in a
bounded domain with zero Dirichlet condition. We recall a well-known LP — L4

estimate for the heat equation.
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Lemma 6.3. (L? — L7 estimate for heat equation) Let v(z,t) be a solution of

vy = Av+f in Q2 x(0,s),
v(x,0) = wvolx) € L®(Q) m Q,
v(x,t) = 0 on 09 x (0,s),

where 0 is a bounded domain in R™. Assume that v, Av, and f € LP((0,s); L))

for some 1 < p, ¢ < oc. Then
s i/p
(/ (leels): LAQIP + || Av(s): LI(S) ”)ds)
Jo

‘S, 1/P
< c((/ (Hf;Lq(Q)Ilpds> e C2@ >n)

with a positive constant C' depending only on p, q, n and the domain ).

For the proof see e.g.[1].

We next observe that @w solves

(pw)s — Alpw) = f  with
f=-2Vp -Vw—wAp — gy -Vw — Fpw + @|wP tw
We apply Lemma 6.3 with 2 = Byg and obtain Lemma 6.4.

Lemma 6.4. Let w be a solution of (3.4) with (3.3). Assume that ¢ > 2. 8, ¢ and
« are assumed to satisfy the relation (6.5), (6.7) and (6.8). If (B,) holds then there

exists a positwe constant Jo depending only on n, p, q, q, R, A[l, My and a bound
for E[w](0) and for ||wy; C*(Bag)|| and for Cy such that

s+1 s+1
/ lows(7); L2 (B )P dr < Jy (1 +/ lolw]P~taw; Lﬁl(BQR)Heqa,dT>
(6.9)
for all s > 0 provided that X € (Ay(q), M (q)).
Proof. We apply Lemma 6.3 to get

s+1 s+1
/ [| (pw)s; LY (Bog)||P®dr < C (/ I|f; LE (Bar)||P% d7 + ||wo; C?(Bag)||?% )
(6.10)
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with a positive constant ' depending only on p, ¢, n, ¢ and R. We shall estimate
the term involving f.

lrd
{

We apply Holder’s inequality and (3.7) to get

: 2, . - 22/ (p* 1)
foagip@al < ([ joloa) ([ 1865 )
'BZR 'BZR

< KMo,

where 0 = (147‘")"”2/(”2_1). Similarly we get

1

p—1
IV - Vw; LP (Bog)|| < oM||Vw; L2(Bag)].

1(2/2) y - Vw; L (Byg)|| < oR||Vw; L2(Bag)]).

IN

Ko,

| Bow; LE (Bag)||

Since 6Ga’ < 2q by Proposition 6.2, we apply Hélder’s inequality with (B,) to get

s+1 y . s+1 9(}a'/2q
/ Ve - Vs Ly (an)nga dr < (Uﬂ’fl)eqa (/ RCE Li(Bzﬁ)qudT>
< (oM CyP)Pe,

s+l ., 4 _,
/ H%y - Vw; L7 (B?R)nga dr < (UBC'ql/zq)@qa )
s il

Combining these estimates, we see that

ws+1 ~
( | Hf;Lz%anﬂqadT)

[/ s+1 ‘ .
< o (K.Mg + —\1 + C'ql/zq(ﬂ/ll + ]-?)) + (/ ool [P aw; L2 (BQR)]]er‘dT>
pP— ‘ s »

1/6Ga

1/

Thus by (6.10), the proof of (6.9) is now complete.O

We next apply an upper bound for £, to control erl,2 (Bg)-norm by ||pwepws; L; (Bagr)||-

Proposition 6.3. Let w be a solution of (3.4) with (3.3). There exists a positive
constant Js depending only on n, p. R, My, My and a bound for E[w](0) such that

llw(s); WT;’Q(BR)Hz < J5(1 + || (pwows)(s); L;(BzR)H) forall s>0. (6.11)

Proof.  We use the local energy identity (5.4) :
p=1 [ 2. A2 ‘
5 (Vw4 8|w|”) pdy =

.

Prwwspdy+(p+1)E [w]+ / 20wV p-Vwpdy.

n R
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The last term equals 2(E, — &,) as observed in the proof of Proposition 5.6, which
claimes that
]Ecp - 8€0| < i

We use an upper bound for the local energy &, (Theorem 5.1 and Remark 5.1) to

get
‘ 2 : .
||w: W2 (Bg)|)? < pj(||9;’z,u<,9ws; L) (Bag)|| + (p + 1) By 4 2.J1).

We set J3 =2/(p — 1) max{1, (p + 1)Ey + 2.J;} and obtain (6.11).0
To proceed our bootstrap argument we observe that if (B,) is fulfilled for a fixed
q > 2, then by Leemma 6.1 (A,) holds. This (A,) with (3.6) implies

lw; Ly (Br)|| < Cy (6.12)
for all A € (A2(¢), A1(q)) by the interpolation Lemma 4.2.

Lemma 6.5. Let w be a solution of (3.4) with (3.3). Assume that ¢ > 2. If (B,)
holds unth Bg replaced by Bag, then there exists a positive constant Jy depending
only on n, p, q, ¢, R, My, My and a bound for E[w](0), ||wo||~ and for Cy such
that

/

‘S+1 _ .3+1 y 1/0(
[ hwswrmarpr < (v ([ s wma o) )
(6.13)

for all s > 0. Here §, G and « are assumed to satisfying (6.5), (6.7) and (6.8).

Proof.  We estimate (6.11) by using Holder’s inequality twice with (6.12) since
g€ (0,1)

o WABR)E < 0+ ows LB llews: 1 (Bl
< It Collgws: L (Ban) | wss Ly Bam)| '),

where X' is the conjugate exponent of A. We set J; = Jymax{1,C}} to get
s+1
1,2 2§
/ |w: W, *(Br)||*dr
8

14 _ s+1 . ~ 4 -
< 5(2,]4)‘1 (1 +/ H:,:u,'S;Lﬁl(Bw)Hequ;ws;Lz(Bw)]](l 9)q<1'r> .
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We shall apply Holder’s inequality to the second term of the rightest side. By

definition of o we see that (1 — #)ga = 2. So by (3.6) we observe that
s+1 ‘ N ‘ i
/ [ows: L2 (Bag)||*||ows; L2(Bag) | dr
s+1 . /o s+1 )
: (/ [EEAE] dT) (/ lows: Li(Bw)H“”qadT)

4 541 » 1/e
< @) ([ lews @)

1/«

We use (6.9) and (6.1) to obtain

s+1 i s+1 . 1/a
/ ||w; {’1"',)1’2('BR)]]2da < Js (1 + (/ ||w: W'pl’2(B4R)H29q°‘ p/(p+1) (ZT> >

with X
Js = 5(2,14)5(1 + E[w](0)Y* Jy(1 4+ L/ PV,

Thus we obtain (6.13).0

Proof of Lemma 6.2. We show that (6.2):
s+1
(By) / |w; W) 2(Bg)||*%dr < Cyrp forall ¢>2 R>0.

By Proposition 6.1 we see that (By) holds. Assume that (B,) holds for a fixed ¢ > 2
and for R > 0. Then (6.13) holds for all § € (¢,¢+2/(p+1)). Since § and X satisty
(6.7) and (6.4), we observe that

2000/
_6q<1p<2 .
p+1

(6.14)
We now apply Holder’s inequality to obtain

s+1 »s+1
/ ]]w;[@”:’z(BR)HQ‘idT < Jy (1 + (/ ]]’w;1/1/7;’2(1343)]]2da)1/2qa/>

< J5(1+ CYR

since (6.14) holds. Thus (Bj) holds for all § € (¢,¢+2/(p+ 1)) and all R.

Let ¢ be ¢ > 2. Let Ry be a positive constant. We start (By) with R = 4™ R,
and m = [(¢y —2)/{1/(p +1)}] + 1, where [ - ] denotes the integer part. Since (B,)
with R = Ry implies (Bg) with § = ¢ +1/(p + 1) and R = Ry/4, repeating this
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argument m times to get (Bg) with R = R;. So that (B,) holds for all ¢ > 2 and
R>0.0
Proof of Lemma 4.1. Since (B,) holds for all ¢ > 2, Lemma 6.1 implies (A,;).O

Let us summarize the way of the proof in a figure.
When ¢ = 2, (B,) holds.
If (By) holds for a given ¢ > 2, then the way to prove (By) is as follows.

Scp Z _L2
(Bg) > (A,) for a smaller ball

gcp S _El

LP — L7 estimate Interpolation

(Bg) with a smaller ball (g<qg<qg+2/(p+ 1))
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