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The horospherical geometry of surfaces
in Hyperbolic 4-space

S. Izumiya ¥ D. Peifand M.C. Romero-Fuster *

Abstract

We study some geometrical properties associated to the contacts of
surfaces with hyperhorospheres in H}(—1). We introduce the concepts
of osculating hyperhorospheres, horobinormals, horoasymptotic directions
and horospherical points and provide conditions ensuring their existence.
We show that totally semiumbilical surfaces have orthogonal horoasymp-
totic directions.

1 Introduction

A hypersurface given by the intersection of the hyperbolic n-space H(—1) with
a spacelike, timelike or lightlike hyperplane of ]R?Jrl is respectively called hy-
persphere, equidistant hyperplane or hyperhorosphere. The last ones have the
curious property of inheriting a euclidean geometry as submanifolds of the hy-
perbolic space. A great deal of the properties of submanifolds of euclidean
spaces can be studied at the light of their contacts with invariant subsets, such
as hyperplanes or hyperspheres, of the ambient space (see for instance, [7], [§]
or [9]). In a similar way, given any submanifold M C H}(—1), the study of
its contacts with hyperhorospheres leads to certain properties that give rise to
the horospherical geometry of M. An introduction to this for hypersurfaces in
H7(—1) has been given in [3]. On the other hand, the geometry associated to
the contacts of surfaces with lightlike hyperplanes in IR} has been described
in [4] through the analysis of the singularities of the lightcone height functions
family H : M x S2 — RR. These are tightly related to those of the lightcone
Gauss map. The contacts that concern us here, namely, those of a surface
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M = g(U) c Hi(-1) with hyperhorospheres can be similarly described by
means of the lightcone height functions family H : M x S_?; — IR. This set-
ting allows us to see that M may have at some points a stronger contact with
certain hyperhorospheres, that we call osculating hyperhorospheres. They play
an equivalent role to that of osculating hyperplanes of surfaces immersed in eu-
clidean 4-space introduced in [7]. We notice that there is an essential difference:
whereas in the euclidean case the maximum number of osculating hyperplanes
at a point of a generic surface is 2, we show in our case that there may be up to
four osculating hyperhorospheres at each point of a generic surface immersed in
H%(—1) (Proposition 4.4). We define the horospherical points as those at which
some osculating hyperhorosphere has a contact of corank 2 with the surface.
They are the analogous of the inflection points in the euclidean case. We show
in Proposition 4.6 that the curvature ellipse at these points is degenerate (i. e.,
they are semiumbilic, see [5]). We characterize them as critical points of certain
direction fields on M that we introduce and call horoasymptotic here. We obtain
some conditions guaranteeing the global existence of such fields on the surface
(Theorem 5.2) and from these that of horospherical points (Corollary 5.3). This
leads us to put forward the following horospherical version of Caratheodory’s
conjecture:

Any 2-sphere immersed as an everywhere horohyperbolic surface in hyperbolic
4-space has at least 2 horospherical points.

Finally, we show that, provided the horoasymptotic fields are globally defined
on M, total semiumbilicity implies orthogonality of their integral lines (theorem
5.4).

2 Basic concepts and notations

We consider the (n + 1)-dimensional Minkowski space (IR™,(,}), with the
pseudo scalar product given by ((£1,Z2, ., Lnt1)s (Y1, Y2, oy Ynt1)) = —Z1Y1 +
Toy2 + ... + Tnit1Ynt1. We shall denote this space by JR?H.

We say that a vector x = (21,...,Tnt1) € ]R?H\{O} is spacelike, timelike
or lightlike provided (x,x) > 0, = 0 or < 0 respectively. The norm or length of
a vector x € IR? is defined by [|x|| = (|(x,x)|)%.

Given a vector v € B?H and a real number ¢, we define the hyperplane with
pseudonormal v as

HP(v,c) = {x ¢ R7™|(x,v) =¢c}.

This hyperplane is said to be spacelike, timelike or lightlike according to v is
timelike, spacelike or lightlike.
We define the Hyperbolic n-space by

Hﬁ(—l) = {X € JR?+1|<X’X> =—lz1 2 1}



The hypersurfaces of H?(—1) determined by intersecting it with a space-
like, a timelike or a lightlike hyperplane are respectively called hyperspheres,
equidistant hyperplanes and hyperhorospheres.

We also consider the set

LC, = {x € RT™|(x —a,x —a) = 0}
known as the n-dimensional lightcone with verter a € IR} . The subset,
S5t Na) = {x = (x1,%2, ..., Tnt1)|(x —a,x —a) = 0,21 = a1 + 1}

is the lightcone (n — 1)-sphere centered at a = (a1, a2,...,an+1). It shall be
denoted as S:"_—l when centered at the origin.

Suppose that M is a surface immersed in JR{"H. We say that M is a spacelike
surface if the tangent plane Ty M is spacelike (i.e., consists of spacelike vectors)
and thus a euclidean plane (T%M, {(,}) for every point x € M. In this case, the
normal space NxyM is a Lorentz (n — 1)-space ((NxM, {,}).

3 Second fundamental form and curvature el-
lipses

Given a smooth oriented surface M immersed in IR}, we denote by X(M) and
N (M) the space of the smooth vector fields tangent to M and the space of the
smooth vector fields normal to M, respectively. Consider the second fundamen-
tal map,

a: X(M) x X(M) - N(M), a(X,Y) = VgV — VyxY,

where V denotes the pseudoriemannian connection of R} and X and Y are
local extensions to IR} of tangent vector fields X and Y on M. This map is
well defined, symmetric and bilinear. Given any normal field v € N(M)\{0},
we have for each x € M a function

H, : TxuM x T4M — R, H,(v,w) = (a(v,w),v(x)).

which is also symmetric and bilinear. The second fundamental form of M at x
is the associated quadratic form,

II, : M — R, IL() = H,v,v).

Suppose that M is locally defined at x by g : IR2 — IR} such that ¢(0,0) = x
and choose local isothermic coordinates {z,y} on M and a pseudo-orthonormal
frame, {e1,e2,€e3,e4,e5} in a neighbourhood of x = ¢(0,0) € M, such that
{e1,e2,€e3} is a normal frame and {e4,e5} a tangent frame, with (e1,e;) = —1



and {e;,e;) = 1,4 =2,...,5. Then the matrix of the bilinear form H,, is given
by

= 5

Cq

where if ds? = F(dz? + dy?) is the first fundamental form, we have

1,0% 1 &% 1 0%
a; = E<@(O,O),el> , bl = E<axay(0,0),€l> , C; = E<a—y2(0,0),€z>,
fori=1,2,3.

Given x € M, consider the linear map induced by the second fundamental
form on M, Ax : NxyM — Q2 where Q? is the space of quadratic forms in two
variables. That is, Ax(v) = I1,,Vv € NxM.

In the same coordinates as above, we have that if v = v1e1 4+ vees + vaes,
then

Ax(v) - % (vl <d29(0, 0)7 €1> + v <d29(0, 0)7 62> +v3 <d29(0, 0)7 €3>)

and thus the matrix of Ay is

ap b1 o
as by c
a3 by c3

We say that a point x € M into the type M;, i = 3,2, 1,0 provided rankA, =
i. It was shown in ([8], Propositions 2 and 3) that for generic surfaces in euclidean
5-space the Mgs-points fill an open and dense submanifold, whereas the M,
points form closed regular curves and the M; and M, points can be avoided.
We remark that the arguments there used can be easily adapted to the case
that concerns us here, so that we can conclude that the same assertions hold
for generic spacelike surfaces immersed in 5-dimensional Minkowski space.

Given x € M, consider the unit circle in T, M parametrized by the angle
6 € [0,2x]. Denote by 79 the spacelike curve obtained by intersecting M with
the timelike hyperplane defined by the direct sum of the normal subspace N, M
and the straight line in the tangent direction represented by 6. The curvature
vector 1(6) of v in x lies in the timelike hyperplane N, M. Varying 6 from 0 to
27, the vector n(#) describes an ellipse in Ny M, called the curvature ellipse of
M at x. This ellipse is the image of the affine map (see [5] for the case n = 3,
the case n > 4 is a straightforward generalization)

n:8' C TyM — N M



given by

3
0»—>n(9):Z[c050 sin@].[i? ﬁ’}[g?ﬁg]e“

i=1
that is,
1(0) = Hyx + Bx cos 20 + Cx sin 20,
with
1 1<
Hy = §(a1 +eci)er — 5 ;(ai +¢)- e

3
1 1
By = 5(611 —caer — 5 > (ai—ci) e,

=2
3
Cx = blel - Zbl - €.
=2

Lemma 3.1 Given a spacelike surface M C IR, the subspace KerA, deter-
mined by the kernel of Ax in NxyM is pseudo-orthogonal to the vectors By and
Cx that define the curvature ellipse.

Proof: Suppose that x € M;,¢ < 3, for otherwise KerAx = {0} and the result is
trivial. Given v = vie;+vses+vses € KerAy, we have that ayvy +asve +agvs =
biv1 + bove + bgvg = c1v1 + covo + cgvg = 0. Then 2<V, Bx> = —’Ul(a1 — Cl) —
valags — ¢2) —wvs(as — c3) = 0 and (v,Cx) = —v1b1 — vaby — vgbs =0 O

The curvature ellipse at x is contained in the Lorentz 3-space NxyM and it
may be degenerate (a segment or even a point) at certain points of x € M that
are called semiumbilics. A semiumbilic point x is said to be spacelike, timelike or
lightlike provided the curvature segment defines respectively a spacelike, timelike
or lightlike direction in Ny M. The points at which the curvature ellipse becomes
a point are degenerate semiumbilics known as umbilics. It is a straightforward
exercise to verify that any semiumbilic point is of type M;, i < 3. We notice that
although M7 points are either semiumbilic or umbilic, not every point of type Mo
needs to be a semiumbilic. Moreover, it was shown in [10] that the semiumbilics
of generically immersed surfaces in euclidean 5-space are isolated points (lying
on curves of Mo~ points) and it is not difficult to see that similar arguments apply
to the case of surfaces generically immersed in Minkowski 5-space. A surface
all whose points are semiumbilic is said to be totally semiumbilical. Some of
the properties of totally semiumbilical surfaces in R}+* were studied in [5]. In
particular, for surfaces contained in hyperbolic 4-space we have,



Proposition 3.2 (/5]) Given a surface M C H%{(—1), the curvature ellipse
of M at a point x € M is contained in an affine plane of Ny M parallel to
T H4 (—1) N N M.

We shall see as a consequence of this, in the next section, that the generic
behaviour of semiumbilic points of surfaces contained in H%(—1) differs from
the case of surfaces in IRS.

The shape operator associated to a normal field v is defined as
S,:TM —TM, S,(X)=—(Vgp)T,

where 7 is a local extension to IR} of the normal vector field v at x and ()T means
the tangent component. This operator is bilinear, self-adjoint and satisfies the
following equation: (S,(X),Y) = H,(X,Y),VX,Y € X(M). So, we have that
II:/(X) = <SV(X)7 X>

We can find for each x € M, an orthonormal basis of Tx M consisting of
eigenvectors of 5, for which the restriction of the second fundamental form
to the unitary vectors, II,|g1, takes its maximal and minimal values. The
corresponding eigenvalues k1, ko are the v-principal curvatures, respectively. A
point x is said to be v-umbilic if both v-principal curvatures coincide at x. Let
U, be the set of y-umbilics in M. For any x € M\l4,, there are two v-principal
directions defined by the eigenvectors of S),, these fields of directions are smooth
and integrable, then they define two families of orthogonal curves, its integrals,
which are called the v-principal lines of curvature. The two orthogonal foliations
with the v-umbilics as its singularities form the v-principal configuration of
M. We say that the surface M is v-umbilical if each point of M is v-umbilic.
Some umbilicity properties of surfaces immersed in Minkowski spaces have been
studied in [5]. It was there proved (Proposition 5.1) that a point x of a surface
M C IR} is v-umbilic for some normal field v if and only if v(x) is pseudo-
orthogonal to the vectors By and Cyx that define the curvature ellipse at x.
In particular, in the case of a surface M C H$(—1) we have that in virtue of
Proposition 3.2 as follows:

If p(x) = x is the position (normal) field on M, then each point of M is
p-umbilical.

Moreover,

Proposition 3.3 (/5]) A surface M C H(—1) is totally semiumbilical if and
only if M is umbilical with respect to some lightlike normal field.

We also have

Corollary 3.4 (/5]) A surface M C HY(—1) lies in a hyperhorosphere if and
only if it is umbilical with respect to some lightlike normal field v with constant
zero curvature.



4  Contacts with lightlike hyperplanes and hy-
perhorospheres

Given submanifolds M and N of R"*1, locally defined by M = g(IR™) and
N = f71(0), where g : R™ — IR™! is an embedding, and f : R™*! — IRY is
a submersion, we can “measure their contact at a common point p € M N N
by analyzing the singularities of the composed map fog: R™ — IR? (”contact
map”). In fact, we say that two submanifolds M and N of a manifold Z have the
same contact at a point p as two submanifolds M’ and N’ of a manifold Z’ at a
point p’ if and only if there is a diffeomorphism germ ¢ : (Z,p) — (7', p’) taking
M to M’ and N to N'. In this case we write, K(M,N) = K(M',N'). JA.
Montaldi proved [9] that this holds if and only if their respective contact map-
germs are K-equivalent, where we say that two map-germs f; : (R™,z;) —
(IRP,y;), i = 1,2 are contact-equivalent or K-equivalent (denoted K(f1) =
K(f2)) if there is a diffeomorphism-germ (contact-equivalence), H : (IR™ x
R?, (z1,y1)) — (IR™ x IRP, (x2,y2)) of the form H(z,t) = (h(z),0(z,t)), such
that H(z,y1) = (h(x),y2) and H(z, fi(z)) = (h{z), f2(h(x))). We refer to [2]
or [6] for the definition and details on K-equivalence.

Therefore, to study the contact of a spacelike surface locally given as M =
g(IR?) C IRS with a hyperplane H(v,x) = H(v,(x,Vv)) at a point x = g(u) €
M N H, the map f has to be chosen in such a way that H(v,x) = f~1(0), that
is,

flz1, ey x5) = =21 -1+ oo + T5 - U5 — (X, V),
where v = (vy, ..., v5) is a pseudonormal vector to H(v,x).

And hence, to analyze all the possible contacts of the submanifold M =
g(IR?) with the lightlike hyperplanes of IR®, we must describe the singularities
of the lightcone height functions family

H : R*xS8 — R
(u,Vv) — < g(u),v>

We shall denote by hy the function obtained when fixing the parameter v.
Clearly, u is a singular point of hy if and only if v € Nx(,)M.

Suppose now that M lies in H%(—1). Given v € S’i‘_ and x € M, let us
denote by (v, x) the hyperhorosphere determined on H3(—1) by the lightlike
hyperplane with pseudo-normal v passing trough the point x = g(u), H(v,x).
We have that Q(v,x) is tangent to M at x if and only if « is a singular point
of hy. Furthermore,



Lemma 4.1 Given a surface M = g(IR*) C H}(—1) and x € M, the contact
map-germs of the pairs (M, Q(v,x)) and (M, H(v,x)) at x coincide.

Proof: We have that H(v,x) = h&lx)
by A (P) = (v,p) — (v,x). So, if we represent by i : H{(—1) — IR} the
canonical inclusion, we have that the contact map for H(v,x) and M is given
by h(v,x)oiog. On the other hand, if we denote h(y, x) = h(v x) |Hi(_1)’ we have
that ﬁ(‘,{x)(O) = H(v,x)NH{(-1) = Q(v, x), and hence h(y x) o g is the contact
map for M and Q(v,x). But, clearly, bty x) 09 = hvx0iog. O

(0), where Ay 5 : IR} — IR is given

Given a singular point v of the function Ay, if the hessian matrix Hessh. (u)
defines a degenerate quadratic form we say that v is a horobinormal direction
for M at x = g(u). In this case we have that Q(v,x) has higher order contact
with M at x and we call it osculating hyperhorosphere. A normal field v defined
on some open subset V of M and such that v(x) is a horobinormal direction at
x,Vx € V is called a horobinormal field on V.

Given x € M, consider the linear map Ay : NxyM — Q2% and denote by
C the cone of degenerate quadratic forms in Q2. We observe that v € Ny M
determines a horobinormal if and only if v € A 1(C) N LCx.

A particular feature of the spacelike surfaces contained in hyperbolic 4-space
is the following.

Lemma 4.2 The points of type Mo of a surface M C Hjlr(—l) are all semium-
bilic.

Proof: Take a point x € M of type My and suppose that M is locally
defined at x by an embedding g : IR* — H%(—1), such that x = g(0,0). Then
the height function hx{u) = {(g(u),x) — (g(0,0),x) = {g(u),x) + 1 describes the
contact of M at x with the hyperplane Hx pseudo-orthogonal to the vector x.
Observe that if we take g in the Monge form g(u) = (u, g1{u), g2(u), gs(u)), it is
not difficult to verify that the hessian matrix of hx at (0,0) coincides with that
of Ax(x). If we assume now that x is not semiumbilic, it follows from Lemma
3.1 together with Proposition 3.2 that Ker Ay is spanned by the position vector
x and hence Hesshx(0,0) is the null matrix. This means that (0,0) is a non
stable singularity of hy, which implies that the extension of this function to
H%(—1) also has a non stable singularity at x € H}(—1). But it can be seen
that the contacts of H i(—l) with all its tangent hyperplanes are non degenerate
in the sense that they have the minimal possible order, or in other words, they
lead to a stable height function. So we arrive to a contradiction. O

This leads to the following result concerning the distribution of semiumbilic
points over surfaces generically immersed in H i(—l), which supposes an inter-
esting difference with respect to the generic behaviour of surfaces immersed in
Minkowski 5-space.



Proposition 4.3 Given a surface M generically immersed in Hi(—1), the
points of type M3 fill an open and dense submanifold and the semiumbilic points
are all of type Ms and define a closed curves embedded in M. Umbilic points
do not appear on these surfaces.

Proof: Let A(x) = detAx. It is clear that A~1(0) = M — Ms. Since A is
a continuous function on M, we have that Mz must be an open region in M.
The condition that x € My implies by Lemma 4.2 that x is semiumbilic. But
this is equivalent to requiring that the normal vectors By and Cx be linearly
dependent. Since by Proposition 3.2 we know that Byx,Cx € TxH{(—1), it
follows that the position vector x must be pseudo-orthogonal to both By and
Cx. We can give M by a local embedding g : IR? — H%(—1) C IR} in the Monge
form at x and take a pseudo-orthonormal frame {ej,eq,e3,eq4,e5} for M in a
neighbourhood of the point x in such a way that e; is the position vectorfield,
ez and e3 are normal vectorfields and ey, es generate the tangent planes. In

these coordinates, we can write By = —%(ag — o) €9 — %((13 — ¢3) - ez and
Cyx = —bg - eg — by - es. Then the linearly dependence of these two vectors is

given by the requirement
az —Cy Az —¢C3
b b

which defines a 1-codimensional algebraic variety of the jet space J2(IR?, IR®).
It follows now from the Thom Transversality Theorem ([2]) that the 2-jet ex-
tension, j%g : IR? — J?(IR?, IR®), meets this submanifold transversally and
therefore, the considered points determine an algebraic subset of codimension 1
in M.

On the other hand, the condition that x € M; U My is equivalent to asking
that rank A, < 1. This means that the vector Hy must also be parallel to both
By and Cx. This provides at least three independent quadratic equations in
J%(IR?, IR®) and by using again Thom Transversality Theorem we can conclude
that, for a generic g, j2¢ does not meet the corresponding algebraic variety, and
thus M{ U Mg = 0.

So A~1(0) = M, is completely made of semiumbilic points. We see now that
they form embedded curves. In fact, let

g : R0 — IR}
(’LL,U) — (u,v,gl(u,v),gg(u,v),gg(u,v))

be the local representation of M in the Monge form at x € Ms. In these co-
ordinates A(X) = Jlwu2uv93vv — Jluv92uud3vy — Jluud2vv93uv T Jlvvd2uug3uv +
G1uv Jouu fauuw — frovfouv fauu- It follows from this expression that, under appro-
priate transversality conditions on the 3-jet of g, the set A = 0 represents a
curve possibly with isolated singular points determined by the vanishing of the
derivatives of the function A. We observe that the pseudo-orthogonality prop-
erty of the frame {e1, 2, €3, e4,e5} is irrelevant for our study. For a change of



basis in N, M preserves the relative position of Im(Ay) with the cone C in Q?,
and thus the sets M3 and Ms. So we can take {e1, e2, e3} such that e; generates
Ker(Ax).

If p € My, we have three possibilities:

i) Im{Ax) N C is a couple of lines,

ii) Im(Ax) N C is a line, and

iit) Im(Ax) N C is just the origin.

In case i) we can choose {ez,e3} as the two (degenerate) directions lying in
A~YC) C N,M. Furthermore, we can also make a change of coordinates in
the source, such that the two degenerate directions correspond to the quadratic
forms u? and v? in C. Thus g can be locally written as

glu,v) = (u,v, u? + Ri(u,v), v? 4+ Ro(u,v), Rg(u,v)),

where R; ¢ m3, i.e., all the derivatives of the R; vanish up to order 3,7 = 1, 2, 3.

In case ii) Im(Ax) is tangent to C and we take es as the generator of
A7 (Im(Ax) N C). With additional change of coordinates in the source, g
can be written as

g(u,v) = (u,v, w2 —v? 4+ Ry (u,v),uv + Ra(u,v), Rs(u,v)),

Finally, in case iii), all the quadratic forms Ax(v are hyperbolic, and g can be
written as

g(u’ ’U) - (u,v,u2 + Rl(u’ ’U),U’U + RQ(U’ ’U),Rg(u,’l))),

In each of the above cases it is a simple (but tedious) calculation to verify that
under generic conditions on the 3-jet of g at (0, 0), the derivatives of the function
A do not vanish at x and thus it is a regular point of A=1(0). O

We analyse next the possibilities that we may have for the sets A 1(C)NLCx
at different points x € M;,i=3,2,1,0:

a) If x € Ms, then A7!(C) is a nondegenerate cone. The intersection
AZYC) N LCx depends on the relative position of both cones and may thus
consist in either four, three, two, one or no lines in NyM. We remark that it is
also possible that both cones A, 1(C) and LCx coincide, but this is a extremely
degenerate phenomena that can be generically avoided, so we shall not consider

it here.

b) If x € Ma, as we have seen before, the plane I'm Ay intersects the cone
C in either i) two lines, ii) one line or iii) just the origin. In this case A!(C)
is respectively made of i) two planes with the common line KerAy, ii) a plane
containing the line KerAy, or iii) just the line KerAy. Again, the intersection
A HC) N LCx depends on the relative position of both subsets and will thus
consist in at most four lines in Ny M.

10



¢) When x € M1, ImA is a line that may either lie on C or intersect it just
at the origin. Correspondingly, A, 1(C) is the whole normal space N, M, or a
plane. Tt follows that AZ!(C) N LCx may consist of the whole LCy in the first
case, or at most two lines in the second.

d) Finally, in case x € My, A7Y(C) is the whole normal space and A7 (C)N
LCyx = LCx.

Therefore, by taking into account that generic surfaces in H(—1) are ex-
clusively made of points of types M3 and semiumbilics (Mz), we can state the
following

Proposition 4.4 The number of osculating hyperhorospheres at any point of a
surface M generically immersed in Hjlr(—l) is at most four.

We say that a point x € M of type M3 or My is horoelliptic provided the
subsets A '(C) and LCy intersect only at the origin. On the other hand, it
is said to be horohyperbolic or horoparabolic according to they have transversal
or nontransversal intersections off the origin. It is not difficult to verify that,
generically, horoelliptic and horohyperbolic points determine open submanifolds
of M separated by horoparabolic curves. For the particular case of a non semi-
umbilic Ms-point x we observe that z is necessarily horohyperbolic, having four
horobinormals in case b,i), horoparabolic with two horobinormals in case b,ii)
and horoelliptic with no horobinormals in case b,iii). On the other hand, if
z € Ms is semiumbilic then both cases, b,i) and b,ii) may correspond to ei-
ther horohyperbolic, horoparabolic or horoelliptic points. Here we observe that
horohyperbolic points may have either four or two horobinormal directions, due
to the fact that the line KerA, does not need to lie inside the lightcone. Taking
into account these considerations, we can conclude

Proposition 4.5 If M C H_‘f_(—l) is exclusively made of horohyperbolic points
then it has either four or two globally defined horobinormal fields.

It can be shown that, as a consequence of the methods developed by Mon-
taldi ([9]) and analogously to what happens in the case of surfaces generically
immersed in Euclidean space, the rank of Hesshy(u), for any horobinormal v
at most points x € M is 1. The points at which this rank is 0 are those at
which the surface is better approached by the same hyperhorosphere in all the
tangent directions. These can be seen as the analogous, in horospherical geom-
etry terms, of the inflection points of surfaces in FEuclidean 4-space studied in
[1] and shall be called horospherical points.

Proposition 4.6 The horospherical points of a surface M immersed in Hi(—l)
are either of semiumbilic or umbilic type. Moreover, every point of type My or
My is a horospherical point.
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Proof: Suppose that M is given in the Monge form at a horospherical point
x = ¢(0,0) and take a pseudo-orthonormal frame {eq, e2,e3,€4,€e5} in a neigh-
bourhood of x such that {e4,es} is a tangent frame and {ei, e2,e3} is a nor-
mal frame in this neighbourhood with {ej,e;) = —1, as above. Then, for
any normal vector v € NyM, we can write v = vie; + vses + vzes. We
observe that in this situation the matrices Ax(v) and Hessh(0,0) coincide.
Now, under the assumption that x is horospherical, we can choose a horobi-
normal vector v. € NyM N S%(x), such that all the entries of the matrix
Hesshy(0,0) vanish, which implies that II, also vanishes at x. So we have
that —via1 + veas + vzaz = —viby + vobg + v3bs = —wicr + vaco + vacg = 0,
where the a;,b;,¢;,7 = 1,2,3 are as in the previous section. But this means
that the vectors Bx and Cy, that determine the curvature ellipse at x are both
pseudo-orthogonal to the lightlike direction v. On the other hand, it follows
from proposition 3.2 that they are also pseudo-orthogonal to the timelike nor-
mal direction, x, to H}(—1) at x. Therefore rank(Bx, Cx) < 1, which implies
that the curvature ellipse is degenerated at x, which shows the first assertion.
As for the second, we observe that provided x € M7, we know from Lemma 3.1
that the plane KerAy is pseudo-orthogonal to the direction determined by the
(linearly dependent} vectors By and Cx. But Proposition 3.2 implies that this
direction is contained in the plane TxH%(—1). Therefore we get that KerAx
must contain the line (x) and thus cut the lightcone at x. This determines
two horobinormals for which the Hessian of the corresponding lightcone height
function has rank 1, and hence x is a horospherical point. In case x € My we
have that all the horobinormals give rise to lightcone height functions whose
Hessian has rank 1 at x and the result also follows. O

In particular, we remark that the surfaces contained in a hyperhorosphere of
H%(—1) are a special case of totally semiumbilical surface as can be concluded
from Proposition 3.4 and Corollary 3.5.

5 Horoasymptotic directions

Given a surface M immersed in H}(—1), if v € S (x) is a horobinormal of M at
x = X(u) we have that u is a degenerate singularity for the height function h..
Here, we consider a local parametrization X : U — H%(—1) of M at x. There-
fore KerHess(hy){u) # {0}. The non zero directions lying in KerHess(hv)(u)
are called horoasymptotic directions at x. We observe that these are the tangent
directions at x along which the higher order contact of M and the hyperhoro-
sphere Q(v,x) occurs. Clearly, any horobinormal field determines a (tangent)
horoasymptotic field on the region of M over which it is defined. It follows from
the definition of both, horoasymptotic directions and horospherical points, that
the last are the critical points of the horoasymptotic fields. We investigate next
the possibilities of having some globally defined horoasymptotic field on M.
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Lemma 5.1 i) Two horobinormals by and bs at a point x € M of type Ms
cannot share horoasymptotic directions.

1) Provided x € M is of type M;,i < 3, two horobinormals, b1 and ba, share
a horoasymptotic direction if and only if they belong to some linear subspace
contained in Ag(C).

Proof: i) Suppose that 6 is a common asymptotic direction for by and bs at
x. In such case we can choose coordinates on M at x in such a way that

Hess(hn, )(x) = { v 8} and  Hess(hp,)(x) = { e 8}

But then the normal direction b = Asby — A1bs has vanishing Hessian matrix
at x , which means that x is a horospherical point. By Proposition 4.3 this
implies that x is a semiumbilic point and these are of type M;,i < 3 we have
arrived to a contradiction.

ii) A similar argument to the used in i) tells us that any common horoasymp-
totic direction for by and bs at x lies in the kernel of any linear combination of
them. Therefore by and bs define a plane made of degenerate directions of N, M
in the sense that all of them are mapped by Ay into the cone C. Conversely,
take any b ¢ A 1(C) that does not belong to KerAy (if all the degenerate di-
rections lie in Ker Ay we have that all of them share all the tangent directions in
T M as horoasymptotic directions and the result is trivially true). Then given
any other b’ lying in the same subspace than b in A71(C), we can always write
b’ = Ab + A2b”, for some b” € KerA, and real numbers \;,7 = 1, 2. It is not
difficult to see that then b and b’ share horoasymptotic directions. O

Theorem 5.2 i) A generic surface M C H(—1) all whose points are horohy-
perbolic has either two or four globally defined horoasymptotic fields that may
eventually coincide pairwise over a closed subset of semiumbilic points.

1) If M is totally semiumbilical with isolated horospherical points and such
that all its points are horohyperbolic, then M has either one or two horoasymp-
totic fields globally defined that may eventually coincide over some closed subset.

Proof: i) In this case the horohyperbolicity ensures the existence of either two
or four globally defined horobinormal fields which cannot be coincident at any
point, for in this case it would be horoparabolic. Then Lemma 5.1 a) guarantees
the existence of either two or four horoasymptotic fields respectively over the
open submanifold M3. Part ii) of Lemma 5.1 tells us that the horoasymptotic
directions coincide by pairs over the semiumbilic points. ii) In this case the

horohyperbolicity condition ensures the existence of either two or four horobi-
normals at each point. Due to the absence of horoparabolic points, we can
assert that these determine globally defined horobinormal fields on M, which in
turn determine either one or two horoasymptotic fields. Again, we have that the

13



horobinormal pairs may be coincident at points for which the image of Ay is tan-
gent to the cone C' and this determines that the two horoasymptotic directions
will also be coincident at such points. O

Corollary 5.3 A generic surface in Hj‘r(—l) exclusively made of horohyperbolic
points which is compact without boundary and has nonvanishing Euler number
has horospherical points.

Proof: This follows immediately by applying the Poincaré-Bendixon index for-
mula to any of the horoasymptotic direction fields guaranteed by part i) of
Proposition 5.2. O

We observe that the same assertion is valid for surfaces satisfying either of
the conditions ii} or iii) in Proposition 5.2.

It is worth to recall at this point the Carathéodory’s conjecture. This asserts
that a 2-sphere immersed in IR® has at least two umbilic points. We observe
that the inverse of stereographic projection takes umbilics of surfaces in 3-space
to inflection points of their images in the S considered as surfaces in euclidean
4-space. This naturally leads to the following generalized Carathéodory’s con-
jecture: 2-spheres convexly embedded in IR* have at least two inflection points,
where we observe that the convexity property is equivalent to the global exis-
tence of asymptotic directions (see [1] for a proof in the case of generic surfaces
in euclidean 4-space). Now, by considering the analogy of this situation with
the case treated here, we establish the following

Conjecture: A 2-sphere immersed as an everywhere horohyperbolic surface
in hyperbolic 4-space has at least two horospherical points.

We finally find a necessary condition for the semiumbilicity of a spacelike
surface in terms of the horoasymptotic directions.

Theorem 5.4 Suppose that M is a surface in H i(—l) with two globally defined
horoasymptotic fields and isolated horospherical points. If M is totally semium-
bilical then the horoasymptotic directions are mutually orthogonal everywhere
except at the horospherical points.

Proof: First of all we observe that M is totally semiumbilical if and only there
exist two normal fields vy, 19, locally defined and linearly independent at every
non umbilical point of M, such that M is v;-umbilical ([5], Theorem 5.6). On
the other hand, we have that M admits two linearly independent normal fields
locally defined for each x € M for which M is umbilical if and only if M admits
a unique principal configuration. In fact, given x € M, consider isothermal
coordinates {u,v} in a neighbourhood Uy of x and suppose that v! and 1?2
are normal fields defined on Uy such that M is v7-umbilical. Without loss of
generality we can take v as the position vectorfield on M and 12 as a vectorfield
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v tangent to H}(—1). We can take now another normal field £ such that {p, &, v}
defines a pseudo-orthonormal frame for the normal bundle NUx. Then given
any normal field 1, we can write 1 = k1p + ko2& + ksv, for appropriate smooth
functions k1, ko, k3 : U — IR. The coefficients of the second fundamental form
in the direction of # are given by

€n = %2752(, kip+ ko + kov)y = kie,+ kaee + ksey,

fo = (& kpt kel tkav) = kifotkafe +kafy,
2

g = (GX kp+hkef+thsv) = kigp+kage + ksgy.

And the equation of the curvature lines in this coordinates becomes (see [5],
[11])

h(fedu® + (ge — eg)dudv — fedv?) 4 k1 (foadu® + (g1 — eyn)dudv — fLidv?) +
ko (fyzdu2 + (g2 — ey2)dudv — fyzdv2) =0.

Since M is p- and v-umbilical, we have that e,(x) = g,(x), f,(x) = 0 and
e, (x) = gu(x), fu(x) =0, for all x € M and thus f,du’+(g,—e,)dudv— f,dv* =
0 and f,du® + (g, — e,)dudv — f,dv? = 0 Therefore, the principal configuration

associated to 7 is given by h( fedu® + (ge — eg)dudv — fgdv2) = 0. So both fields

1 and € have the same principal configurations.

Conversely, given M C Hjlr(—l), we know that it is p-umbilical, where p
is the position field. Take x € M and let 77 and 72 be normal fields on a
neighbourhood U of x in M, lying in TxH7(—1) (i.e., pseudo-orthogonal to p)
that are linearly independent on U,. Their respective principal configurations
are given by the equations f,,du? + (g, — ey, )dudv — f,,dv? = 0, for i = 1,2.
Since M admits a unique principal configuration, we must have that f,, = Afy,
and gp, — ey, = )\(g,72 — en2), for some function A on Ux. Taking o =n; — Anpe
we have that f; = f, — Afn, =0 and gs — €5 = gy, — gy — Mgy, — €4,) = 0.
Therefore M is p-umbilical. We observe that 7 and p are linearly independent
on Uy, for they are pseudo-orthogonal.

Finally, suppose that 8; and 8, are the two distinct horoasymptotic fields
globally defined on M and let b;,4 = 1,2 be the corresponding horobinormal
fields, which must be distinct too. By taking appropriate coordinates on M we
can see that the direction 6, is a principal direction for the shape operator Sp,
and that its corresponding principal curvature vanishes everywhere. Since M
has a unique principal configuration, we have that the principal configurations
of by and by coincide and thus €, (resp. ;) must be the principal direction of
b1 (resp. bs2) corresponding to the nonvanishing principal curvature. But this
means that 61 and 0, must be everywhere orthogonal, except at the critical
points of the principal configurations. O

Remark: In the case of a surface M immersed in Euclidean 4-space, we have
that the above is also a sufficient condition for total semiumbilicity ([12]). This
is due to the fact that it can be shown that if b;,7 = 1,2 are the horobinormal
fields on M and k;,1 = 1, 2 are the corresponding non vanishing curvatures, then
the normal field v = kob; — k109 is umbilical over M, and in this case this is a
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sufficient condition for semiumbilicity of M. In the horospherical case, we need
to require the existence of some umbilical field over M that is everywhere tangent

to H%(—1),

and to be able to ensure this we should have that v = kob1 — k1bs is

not a multiple of the position vectorfield p over M. It is not clear at all that this
needs to be true on any surface having everywhere orthogonal horoasymptotic
fields. In any case we can assert that under the orthogonality assumption on
the horoasymptotic fields M is totally semiumbilical provided the normal field
v = kob1 — k1bo is not a multiple of p.
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