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Characterization of Hermitian symmetric spaces
by fundamental forms

Jun-Muk Hwang and Keizo Yamaguchi

1 Introduction

In [I.1] and [L2], Landsberg proved the following

Theorem A (Landsberg) Let H be an irreducible compact Hermitian symmelric space of
rank 2, different from the hyperquadric Q, C P,1. Let H C Py be a minimal non-degenerate
equivariant embedding, equivalently, an embedding of H in Py defined by the complete linear
system associated to the ample generator of Pic(H) =2 Z. Let M C Py be a (not necessarily
closed) complex sub-manifold with dim(M) = dim(H) and © € M be a point in a neighborhood
of which all the integer-valued differential invariants of M remain constant. If the second fun-
damental form of M at x is isomorphic to the second fundamental form of H at a point, then
M is projective-linearly equivalent to an open subset of H.

For the reducible case, he proved ([L1, Theorem 1])

Theorem B (Landsberg) Let M C Py be a complex sub-manifold and x € M be a point
i a neighborhood of which all the integer-valued differentiol invariants of M remain constant. If
the second fundamental form of M at x is isomorphic to the second fundamental form of a Segre
variety P, X Pu, CPoyc1ymes1)—1, with ny,ny > 2, then M is projective-linearly equivalent to
an open subset of the Segre variety.

We refer the readers to [GH| and [L1] for historical back-ground on problems of this kind and
the relation of such questions with other problems in projective algebraic geometry.

Our main result is a generalization of Theorem A to higher-order embeddings and to Hermi-
tian symmetric spaces of higher rank. Precisely, we are going to prove

Theorem 1 Let H be a compact Hermitian symmetric space which contains neither P,,,n > 1
nor Qu,n > 2 as an irreducible factor. Let H C Py be a non-degenerate equivariant embedding,
or equivalently, the embedding by a complete linear system on H. Let M C Py be a (not
necessarily closed) complex sub-manifold with dim(M) = dim(H) and x € M be a point in a
neighborhood of which all the integer-valued differential invariants of M remain constant. If the
fundamental forms of M at x are isomorphic to the fundamental forms of H at a point, then M
18 projective-linearly equivalent to an open subset of H.

Note that for the minimal embedding of a Hermitian symmetric space of rank 2, the second
osculating space spans the whole Py, so the higher fundamental forms are identically zero. Thus
Theorem A is a special case of Theorem 1.

It is well-known that the cquivariant embeddings of Q,, C Py, n > 2 and P,,,n > 1 cannot
be characterized by their fundamental forms. For example, for the standard embedding of Q,,
in P,,.; and the second Veronese embedding of P,,, one has to consider the cubic invariants in
addition to the fundamental forms ([JM], [L1, Theorem 4]). However, even when H contains P,
or Q, as an irreducible factor, there are cases where our method can be applied. As an example,
we will prove the following generalization of Theorem B:



Theorem 2 Let M C Py be a complex sub-manifold and x € M be a point in a neighborhood
of which all the integer-valued differential invariants of M remain constant. If the fundamental
forms of M at x is isomorphic to those of a Segre variety Py, x -+ x P, C Py, N =T[1",(n; +
1) —1,n; > 2, then M is projective-linearly equivalent to an open subset of the Segre variety.

For the proof of Theorem 1 and Theorem 2, we use the theory of lincar differential equations
modelled on Hermitian symmetric spaces due to Y. Se-ashi [S]. This theory reduces the problem
to the vanishing of certain Spencer cohomology groups by a reduction theory of principal bundles.
In this sense, the proof is fundamentally different from [L1] and [1.2], which depend on certain
moving frame computation. Of course, onc may say that the moving frame method and the
reduction theory of principal bundles are just two different formulations of the same procedure.
However, we believe that the more conceptual view-point of [S] is essential in the treatment of
the higher rank and the higher order cases, because a simple-minded moving frame computation
would get complicated heavily. We hope that presenting such a geometric application would
make the deep work [S] more widely appreciated. See [SYY] for another application.

In Section 2. we will define the fundamental forms in the setting of [S]. In Section 3, an
invariant-theoretic result concerning the fundamental forms of the Hermitian symmetric space
is proved, which makes it possible to apply the result of [S] in our problem. This reduces the
problem to a calculation of Lie algebra cohomology. The computation of cohomology group will
be done using Kostant’s harmonic theory in Section 4. This computation had already appeared
in [SYY] in the irreducible case.

2 Fundamental forms as a system of linear differential
equations

We start with recalling some definitions from [S] (see also [SYY]). Let M be a connected complex
manifold. We denote by T and T* the (holomorphic) tangent and the cotangent bundle of M
respectively. For a line bundle £ on M, we denote by J?(F) the bundle of p-jets of E. Its fiber
at a point r € M is

JU(E) = 04(E)/ (Ou(E) @ m2').

€T

We identify J°(E) = E. For cach pair of non-negative integers p > ¢, we have a natural projection
70 JP(E) — JUE). For a section s of E, denote its p-jet at = by j7(s) € JI(E). We have a
natural exact sequence of vector bundles

0 — SymPT* (M) ® E —s JP(E) 25 7 H(E) — 0.

At cach z € M, we have the induced exact sequence of vector spaces of the fibers at x

0 SymPT* @ E, — JP(E) 25 JrY(E) — 0.

A sub-bundle R of JP(E) is called a system of linear differential equations of order p
on E. A section s of E over an open subset U C M satisfying j2(s) € R, for each x € U is called
a solution of R over U. For each non-negative integer r < p, the subspace ¢/.(R) C Sym’T}
corresponding to 72(R,) N (Sym" T} ® E,) under an identification £, = C is called the r-th



symbol of R at z. It is independent of the choice of the identification E, = C. The direct sum
o.(R) = BY_yol(R) is called the symbol of IR at 2. The system R C JP(FE) is said to be of
finite type if 02(R) = 0 for general © € X. R is said to be integrable if for each n € R,, there
exists a solution s over a neighborhood of 2 for which j2(s) = n. Such a solution is uniquely
determined by 7 when R is of finite type.

Let R (resp. R') be a system of order p on a line bundle £ (resp. E’) on a complex
manifold M (resp. M'). We say that the symbol of R at 2 € M is isomorphic to the symbol
of R at y € M' if there exists a linear isomorphism 6 : T, — T, such that the induced linear
isomorphism 6" : Sym"T; — Sym"7Ty sends o7(R) to oy (R') for each 0 < r < p. We say
that R is locally equivalent to R’ if there exists an open subset U C M (resp. U’ C M')
and a linc bundle isomorphism ¢ : E|y — E'|p such that the induced bundle isomorphism
JP(¢) 2 J(E) |y — JP(E) | maps Ry onto I¥[y.

Many interesting examples of integrable systems of linear differential equations of finite order
arises from the projective differential geometry (e.g. [W]). In modern terms, it can be presented
as follows. Let M C Py be a non-degenerate complex sub-manifold. Let E be the line bundle
on M defined by the restriction of the hyperplane line bundle of Py and ¥ be the (N + 1)-
dimensional space of sections of E coming from the scections of the hyperplane line bundle. Let
p > 0 be a positive integer such that an clement of ¥ having a zero of order > p at a point of M
is identically zero. Define R, C JE(E) by

Ry = {jts)]s € T},
Then over a Zariski-open subset M? of M,

R:= U R,

reMe

defines a sub-bundle of JP(E)|y., called the hyperplane system on M. By the construction,
R is of finite type and integrable. In fact,

m(Re) = {73(s)|s € X}

Proposition 1 Let M and M’ be two non-degenerate sub-manifolds of Py. Let R (resp.
R') be the hyperplane systern on M (resp. M'). Assume that R and R' are of the same order.
Then R and R are locally equivalent if and only if there exists a projective linear transformation
sending an open subset of M onto an open subset of M'.

Proof. The “if” part is trivial. Let us prove the ‘only if” part. Let F (resp. E') be the
restriction of the hyperplane line bundle on M (resp. M’). Let ¥ (resp. ') be the sections of
E (resp. E') coming from the global sections of the hyperplane line bundle on Py. If R and R’
are locally equivalent, there exists an open subset U C M (resp. U’ C M') and an isomorphism
of line bundles ¢ : E|y — E'|p» mapping R|y onto 1?'|;7. The solutions of R|y are sent to the
solutions of R'|yr. By the assumption that R and R arc of finite type, every local solution of
R (resp. 1Y) belongs to ¥ (resp. £'). Thus ¢ induces a lincar isomorphism from 3 to ¥ which
gives a projective linear transformation of Py sending U to U'. O

For « € M?, the symbol ¢/ (R) C Sym"T? is called the r-th fundamental form of M at x
and is denoted by FJ(M). We decree F (M) = 0 for r > p. For two sub-manifolds M, M’ C Py,



we say that the fundamental forms of M at x € M are isomorphic to the fundamental forms of
M" at y € M', if there exists a lincar isomorphism 0 : T,, — T}, such that the induced lincar map
0" - Sym"T; — Sym"T* sends F] (M) to Fy(M') for each r > 0.

Remark Usually, the 7-th fundamental form of M at x is defined as a lincar map Sym’ 7T, —
NI where N7 is the 7-th normal space at x (c.g. [GH]). Our FJ (M) C Sym"T; is the image of
the dual of this lincar map.

3 Fundamental forms of Hermitian symmetric spaces

We start with a few definitions regarding representations of abelian Lie algebras on graded vector
spaces.
Let W = @f_, W, be a finite-dimensional graded vector space with dim Wy = 1. For cach
integer k, define
gl(W), = {X e gl(W) | X(W,) C Wy, forall r}.

Let V' be a finite dimensional vector space and p: V' — gl(1¥) be a representation of the abelian
Lic algebra V' such that p(V) C gl(W)_,. Setting p_; = p(V), define inductively for cach & > 0,

P = {X € gl(V[Y)k ‘ [Pfle} C Pk:71}~

Then the graded Lie subalgebra p = @7 | px of gl(W) is called the prolongation of p. For
each non-negative integer r. define a homomorphism y* : W, — Sym"V* @ W, by

Xi"(/LU)(Xl, - 7Xr) = /l‘(X'l) .. 'M(Xr)(w)

for w e Wy and Xy,..., X, € V. The right hand side is symmetric in Xy,..., X, because p is a
representation of the abelian Lie algebra V. After fixing an identification Wy = C, we denote by
XP W — @F_, Sym"V* the graded vector space homomorphism obtained as the sum of @7_, x*.
The homomorphism x# is called the symbol map of the representation p: Vo— gl(W) ;. The
following proposition is obvious.

Proposition 2 For X € V, let 1(X) : Sym®*V* — Sym*V* denote the inner multiplication
by X. Then the image of x* is invariant under o(X) for any X € V and

(X)) o x(w) = x"(u(X) - w)
for every X € V and w e W.

Now let 1 =1 +1y+1; be a semi-simple graded Lic algebra. Let L be a connected Lic group
with Lic algebra 1 and L' be a connected subgroup of L with Lic algebra 1’ = 1y + 1;. Then the
homogencous space L/L' is a compact Hermitian symmetric space. Conversely, for any compact
Hermitian symimetric space, let 1 be the Lie algebra of global holomorphic vector fields and 1’ be
the subalgebra consisting of vector fields vanishing at a base point. Then there exists a grading
1=1,+1y+1 such that I' = 1, & 1;.

Given a non-degencrate equivariant embedding of the Hermitian symmetric space L/L" C P.S*
for a finite-dimensional vector space S, we get a faithful irreducible representation p:1— gl(.5)

such that
So = {5 € Slp(l 1)(s) = 0}

4



is 1-dimensional. Define for » > 0,
Srar = p(L)(Sy).
There exists p > 0 such that S, Z0 forr=0,1,...,p— 1 and S, = 0 for > p. Moreover

i

P
S=@Ss,.

r=0

Set V' :=14 and let v : V" — glI(S) be the representation obtained by restricting p : 1 — gl(S)
tol 4. Then vV — gl(S) | with respect to the grading S = @F_ S,.

We recall the following result on the prolongation of v.

Proposition 3 ([S,Proposition 4.4.1], or [SYY, (2.5)] for the irreducible case) Regard
1 as a subalgebra of gl(S) by the given faithful irreducible representation p: 1 — gl(S). Let z be
the centralizer of 1 in gl(S). For the representation v : V :=1_1 — gl(S)_1, the prolongation is
p1 =V (ie. pis injective), po =g+ 2z, p1 =1y and py = 0 for k > 2. In particular, p is a
reductive graded Lie algebra whose semi-simple part is the graded semi-simple Lie algebra 1.

The following result on the symbol map of v is contained in [S]. Note that 1| is naturally
identified with the tangent space of the Hermitian symmetric space L/L" at the base point.

Proposition 4 Let V =1 andv : V — gl(S)_| be the representation obtained by restricting
p: 1 — gl(S) with respect to the grading S = @V_y S,. Then x* : @'_, S, — BV_, Sym"V* is
injective and the image x7(S,) C Sym"V* coincides with the r-th fundamental form I (L/L') C
Sym"(1_)* of L/L' C PS*.

Proof. The injectivity of x% is [S, Proposition 4.3.1]. That the image x?(S,) € Sym"V*
coincides with the r-th fundamental form is [S, Proposition 2.4.1.]. O

Now we regard S = @F_ S, as a graded vector subspace of @Y_, Sym”V* by the injection
x”. By Proposition 2, the action of V' on S by v coincide with the restriction of the inner
multiplication. The following invariant-theoretic result implies the ‘rigidity’ of the fundamental
forms of Hermitian symmetric spaces.

Proposition 5 Regard S = @®F_, S, as a graded subspace of DY_, Sym"V* as explained above.
Let P = @Y _ P, be a graded subspace of @F_, Sym"V* which has the same discrete invariants
as S under the action of GL(V'). Then P is in the GL(V')-orbit of S . In other words, there exist
finitely many GL(V)-invariant Zi-valued functions on the Grassmannian Gr(dim S, @I_, Sym”"V*)
of (dim S)-dimensional subspaces in @' _, Sym"V*, such that if all these functions have the samne

values on P and S, then P is in the orbit of S under the GL(V)-action on the Grassmannian.

Proof. By Proposition 2, S is invariant under «(X) for all X € V. Since dim (X )P and
dim(P N +(X)P) must be equal to the corresponding dimensions for S, we conclude that P
is also invariant under +(X). Moreover the action of ((X) and «(Y) on I’ commute for any
X,Y € V. Thus we have a representation p: V' — gl(P’)_;. The dimension of the prolongation
of ;1 and the dimension of the prolongation of v : V' — gl(S) are equal by the assumption
on P. So arc the dimensions of their radicals. This implics, by Proposition 3, the prolongation
p=p_1+potpi+:--of pis reductive and isomorphic to 1+ (1y+2z)+1;. By the same reasoning,
the action of the prolongation p on P is isomorphic to the irreducible representation of 1 on S.
In particular, g : V- — gl(P?)_; is isomorphic to v : V' — gI(S)_; under a linear automorphism of



V and a graded vector space isomorphism P 2 S. Consider x* : P — @F_, Sym"V*. The image
X*“(P) C @®F_Sym"V* is completely determined by the structure of P as a V-module. Thus
dim x#(P) = dim x”(S) and x*(P) is in the GL(V)-orbit of x”(S). But by our definition of S
as the subspace of @F_, Sym"V*, x”(S) = S. Since dim x*(?) N P is an integer-valued invariant
of P, we conclude I’ = x#(P°) is in the GL(V)-orbit of x(S) = 5. O

4 Vanishing of Spencer cohomology

Let 1 =1, 415+ 1, be a graded semi-simple Lic algebra associated to a Hermitian symmetric
space as explained in Scction 3. We recall the description of the gradation of 1in terms of the
root system. Let h C 1y be a Cartan subalgebra of 1. Then there exists a unique element 2 € h,
called the characteristic element, with the property that

L={Xel|[ZX]=iX)}

for each i = —1,0,1. Choose a simple root system A = {¢y,..., o} such that «;(Z) > 0 for

all i = 1,...,£. Then Z determines a partition ®* = &J U ®] of the set of positive roots by
O ={ac ®a(Z) =k} for k = 0,1, such that

1, = @ g-a

ae¢f
b = ho P (808 )
acdd
I = @ s
acd
where g, is the root space. Define
A =Ha,. .., = {aeAla(Z) =1}
Recall -
<By>= 0
(7: ﬂ,*)
for 8,v € h*. Let A, ..., A be the fundamental weights and hy,,, . . ., ha, be the co-roots, namely,

O(ha,) = <B,c;> forall 3 €h”

<)\7j,()éj>: Oij: |
By a direct computation, we have
= Zle ;. Then Z = Zle a;iha, .

Let W be the Weyl group of the root system . For an clement o € W, put @, = o(—d7)N
®". Define

Lemma 1 Suppose \;, +---+ A

T

W = {oeW|d, C O}
w1 = {oe W’ t(P,) =1}

where £(®,) is the number of roots in @,. For o; € A, let o, € W be the corresponding reflection.



Lemma 2 W°(1) = {o, |« € Ay} = {03, ..., 04, }.

Proof. The inclusion {c;,,...,0; } € W°(1) is immediate. By [Hu, 10.3 Lemma A, clements

of WU(1) are simple reflections. If o; € WP(1), then ®,, = {0;} and ®, C ®{. Thus o; € A,. O

For a finite-dimensional I-module I' for which the weights of Z are integers, let I', be the
subspace of I' consisting of eigenvectors of Z with eigenvalue p € Z. Set CP4:= A9(l_)*® ',
and define 0 : C?! — CP~ 12 by

0c(Xo, X1) = Xo - ¢(X1) — Xy - ¢(Xo)
force CP' = (141)*®, 1 and 9: CP™Y — CP! by
de(X)=X-¢
for v € I',. For each integer p, the p-th Spencer cohomology group associated to I' is defined
» (Kerd : CPL — CP712)
(Img : Crtt0 — Ol -

They give the decomposition of the Lie algebra cohomology group

HP'(1.,,T) =

H'(1,,T) =@,H"'(1.,,T)

which is just the Z-eigenspace decomposition.

Given a faithful irreducible l-module S with dim Sy = 1, g C gl(S) be the prolongation of
1 j-action on S as defined in the last section. Let gt C gI(S) be the orthogonal complement
with respect to the Killing form on gl(S). Then gt is an l-module where the weights of Z arce
integers. So HP(1_ 1, gt) makes sense.

Let R be a system of lincar differential equations of order p on a complex manifold M. Given
a graded subspace S = @Y, S; C Sym*V for a vector space V, dim V' = dim M, we say that the
symbol o, (R) is isomorphic to S if there exists a linear isomorphism ¢ : T — V" such that the
induced graded linear isomorphism Sym*7T* — Sym*V sends o,(R) onto S.

We will reduce the proof of Theorem 1 and Theorem 2 to the vanishing of certain Spencer
cohomology groups by using the following result of Y. Sc-ashi. Theorem 3 appeared as Theorem
5.1.2, Theorem 5.2.2 and Theorem 5.3.1 in [S]. We recommend [SYY, 2.4] for an over-view of its
proof, where it appeared as ‘Theorem A’

Theorem 3 (Se-ashi) Let H C Py be an equivariantly embedded Hermitian symmetric
space and F'= @"_, F" be the fundamental forms at a point of H. Assume that H>' (11, gt) =0
for all p > 1. Suppose a system R on a line bundle E of a compler manifold M has its symbol
at each point v € M isomorphic to F'. Then IR 1s locally equivalent to the hyperplane system on
H C Py.

For the computation of the Spencer cohomology we will use Kostant’s result. The following
is a translation of [Ko, Theorem 35.14] into our situation (c¢f. [SYY,2.5 Theorem B]). See also
[Y.5.1] for a stream-lined review of Kostant theory. Note that I, = (1_;)* by the Killing form.



Theorem 4 (Kostant) Let I' be an irreducible 1-module and ~ be its lowest weight. Then
we have an ly-module decomposition

H1.,. )= { #H>

TeW (1)
where HE is the irreducible ly-module with the lowest weight & = a(~) + « for the simple root
« satisfying o = o
This has the following conscquence for the Spencer cohomology groups.

Proposition 6 Let 77 € h be the characteristic elernent of the graded Lie algebra 1. Let T' be
an irreducible 1-module such that the weights of Z on U are integers. Let v be the lowest weight
of I'. Then HP'(1.4,T) #£ 0 only if p — 1 = 05, (7)(Z) for some iy.

Proof. H?'(1_1,T) is the cigenspace of Z with cigenvalue p. By Theorem 4, it is non-zero if
there exists o; € WY(1) such that

P =&.(2) = o()(Z) + il Z).

Thus the result follows from W(1) = {oy,,...,0;,} by Lemma 2 and o;, (Z) =1. O
The following is an honest generalization of [SYY, Theorem 2.

Proposition 7 Let Let 1 =11 + 1y +1, be the graded semi-simple Lie algebra associated to a
Hermitian symmetric space which contains neither a projective space nor a hyperquadric as an
wrreducible factor. Then for any irreducible 1-module T,

HP(1.,T) =0 for all p > 1.

Proof.

o,(MNZ) = (7= <705, > 0, )(Z)
= Y(Z)— <7, a4, >.

By Lemma 1,

on(N(Z) = (i, —1) <y.05,>+ ) ai <y, >.
i
Since v is the lowest weight, we have <7, ;> < 0Ofori=1,...,¢ and <7, ;> < 0 for some j.

Since a; is an entry of the inverse matrix of the Cartan matrix, a; > 0. In particular, if a;, > 1,
then o;, (v)(Z) < 0 for every . The only cases when a;, < 1 are the following (e.g. [Hu, 13.2

/

Table 1]).

° a; = Hil when o, is the root ay of Ay, £ > 1.

e a; = 1 when ay is the root ag of As.

e a; = 1 when ay is the root a of By, £ > 2.



e a; = 1 when ay is the root ap of Dy, £ > 4.
In these cases, the corresponding irreducible factor of the Hermitian symmetric space is a pro-
jective space or a hyperquadric. O

Proof of Theorem 1. Applying Proposition 7 to cach irreducible factor of gt, we sce that
HPY(1_;,gt) = 0 for all p > 1. By Proposition 5, the fundamental forms of M at cach point of

a ncighborhood of z are isomorphic to the fundamental forms of H at a point. Thus Theorem 1
follows from Theorem 3 and Proposition 1. O

To prove Theorem 2, let us study the corresponding I-modules. Let 1 =sl,, (1 & ---®sl, 1

with n; > 2 foralli=1,..., . Let us denote the simple roots of sl,, ) by {a, ..., a’ } using
the standard enumeration of snnpl(‘ roots of the simple Lic algebra of type A. For th(‘ Hermitian
symmetric space P, x -+ x P, the corresponding gradation of 1 has
o 1 2 m
A] 7{(117(117' (]/l .

The fundamental weights of 1 are denoted by

Let U7 = C™*! be the basic representation space of sl 1 corresponding to the fundamental
weight A, Let S = (UN)*®---® (U™)* be the basic representation space of 1. Using gl((U*)*) =
C - 1d + s1{((U")*) and sl((U’ )x) >~ sl(U7), we have the l-module decomposition

gl(s) = (C-ld+slU)@---asl(U™) +g"

where gt is a sum of tensor products of the form sl({U") ® -+ @ sl(U%) for some k > 2. By
Proposition 1, Proposition 5 and Theorem 3, the proof of Theorem 2 is reduced to the following.

Proposition 8 In the above notation, H»'(1_1,g*) =0 for all p > 1.

Proof. Let «v be the lowest weight of sl{U)®---®@sl(U%), k > 2. By Proposition 6, it suffices
to show, for (‘d(h £=1,...,m,
WZ)— <v,0f > < 1.

Since the adjoint representation sl(U/7) has highest weight \] + )\'}j,,j;

k .
== Z()\l + Anﬁ)
j=1 /
T 7 L3
When M =307, af (y , Lemma 1 says
m 1
_ i
755,
G=1 i1
N N o ny j o 1 s haon
Using (c.g. from [Hu, 13.2 Table 1]) af = — and @, = s We have

+a‘7 = —k

‘M=r

J:l



while _ _
— <y, b > =<\ + A9 oY > = 1 when £ =4, and
i -

— <y, b > =0when £ # iy, ... i
Thus v(Z)— <v,af > < —1. O
Remark When n; = 1 and 2 < ns, ..., n,, the adjoint representation sI(U") has highest
weight 201 = al. Thus g* has an irreducible factor with lowest weight

v= 20 = AT - A2

ne

Then the same calculation as in the proof of Proposition 8 shows

v(Z) = —2a] —aj — a, = =2

— <v,01>= 2,
Thus H”(Ll./gL) # 0. It is not known whether Py x P, x --- P, with 2 < ny,...n,, is

determined by its fundamental forms. For m = 2, this was conjectured to be true in [LL1, Section

6.
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