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STRONGLY SUPERCOMMUTING SELF-ADJOINT
OPERATORS

Tadahiro Miyao

We introduce the notion of strong supercommutativity of self-adjoint operators on a
Zy-graded Hilbert space and give some basic properties. We clarify that strong super-
commutativity is a unification of strong commutativity and strong anticommutativity.
We also establish the theory of super quantization. Applications to supersymmetric
quantum field theory and a fermion-boson interaction system are discussed.

1 Introduction

The notion of strong commutativity of self-adjoint operators is well-known in functional
analysis. Theory of strongly anticommuting self-adjoint operators was established by
Vasilescu [12] and some progress have been done by some authors [1, 2, 3, 4, 5, 9, 11].
(The authors of [9, 12] call the notion of strong anticommutativity simply anticommu-
tativity, but to be definite, we call it strong anticommutativity. The same applies to
commutativity of self-adjoint operators.)

The aim of this paper is to construct a theory which is able to deal with strong
commutativity and strong anticommutativity simultaneously, and to give some appli-
cations of this theory. In costructing our theory, we will introduce the notion of strong
supercommutativity which plays important roles in this paper. Roughly speaking, strong
supercommutativity is a generalization of strong commutativity and strong anticommu-
tativity of self-adjoint operators in a Zs-graded Hilbert space. By introducing this notion,
we will see that strong supercommutativity unifies strong commutativity and strong an-
ticommutativity. Since the theory of superalgebra can be interpreted as a unification
of commutativity and anticommutativity, our theory can be regarded as the operator
version theory of the superalgebra.



In quantum physics, bosons and fermions are fundamental objects. Bosons (resp.
fermions) are deeply connected with commutativity (resp. anticommutativity). On the
other hand, supersymmetric quantum physics is a theory which impartially deal with
bosons and fermions. Therefore we can regard the supersymmetric quantum theory as
the theory which unifies commutativity and anticommutativity. By this reason, we can
expect that our theory is fitted for supersymmetric quantum theory. Indeed we will see
this as an application of the theory of strong supercommutativity in Section 5. We note
that in [3, 5] an application of the theory of strongly anticommuting self-adjoint operators
is given.

The present paper is organized as follows. In Section 2 we will review some basic
properties of the superalgebra and strong (anti)commuting self-adjoint operators. In
Section 3 we introduce the notion of strong supercommutativity of self-adjoint operators
in Zs-graded Hilbert space and prove some fundamental facts with respect to strongly
supercommuting self-adjoint operators. Section 4 is concerned with the theory of super
quantization which is associated with supersymmetric quantum mechanics. In Section 5
we will give some applications of our theory to quantum physics.

2 Preliminaries

2.1 Zj-graded structure

Let Zs be the residue class ring mod 2, with the elements 0 and 1. When applied to
elements of Z, the symbol “4” always denotes addition modulo 2.

If V is a vector space over C then a Zo-grading of V is a decomposition of V into
an direct sum V5 @ Vi where V5 and Vi are subspaces of V. A vector space equipped
with a Zg-grading is said to be a Zy-graded vector space. The elements of V5 U V3 are
said to be homogeneous. The elements of V5 are called even, those of Vi are odd. The
zero element 0 of V is the unique element of V5 N Vi and so is both odd and even. If
v € Vg (a € {0,1}), then we can define a function p : VU V; — {0,1} by

pv) ==«

and we say that the value p(v) is the parity of v. Throughout this paper, for any Zs-
graded vector space or any structure with an underlying Zs-graded vector space (such as
the Zg-graded algebra to be defined in this subsection) we denote the parity of homoe-
neous element v by p(v).

Let A be an algebra over C. We say that the algebra A is Zs-graded if the underlying
vector space of A is Zy-graded, that is, there is a direct sum decomposition Ag & A7 as
a vector space, and furtheremore, for «, 3 in Zy we have

Andp C Aasg.

It is common for Zs-graded algebras to be called superalgebras.



A Lie superalgebra is a superalgebra A whose multiplication, which we denote “.7,
satifies the following relations for arbitary homogeneous elements a, b, c in A:

a-b= _(_1)p(a)ﬂ(b)b.a,
a-(b-c)=(a-b) c+ (_1)p(a)p(b)b. (a-c).

If A= Ay ® Az is an associative superalgebra, then introducing a new multiplication
[, ]s on A by the formula

la, b]g := ab — (_1)P(a)p(b)ba

for homogeneous elements a, b in A, we can easily check that the superalgebra A equipped
with this multiplication is Lie superalgebra and denote this Lie superalgebra by Agye.
The operation [, -|g is said to be supercommautator.

Suppose that H is a Hilbert space. If H is a direct sum of Hg and Hy (i.e., H =
Hs & Hi), where Hg and Hy are closed subspaces of H, then H is said to be Zy-graded
Hilbert space. 1t is clear that Zy-graded Hilbert space is a Zg-graded vector space. Let Py
and Pj be orthogonal projections onto Hy and Hi, respectively. We define an operator
T on 'H by

T = P@ — Pj.

It is not difficult to see that 7 is self-adjoint and unitary. We refer to the operator 7 as
the grading operator for H.
Let B(H) be the set of all bounded operators on H. If B € B(H) satisfies

B = 7B,
then B is said to be even operator, on the other hand, if B satisfies
B = —7Br,

then B is said to be odd operator. 1t is easy to see that B € B(H) is even and odd if and
only if B = 0. A linear operator on H is said to be homogeneous, if it is even or odd.
For a homogeneous operator B in B(H), we define

] 0 if Biseven
PB) "{ 1 if Bis odd

and say that the value p(B) is the parity of B.

Proposition 2.1 Suppose that B € B(H). Then B can be uniquely written as the sum
of even operator By and odd oprator By:

B =B+ Bjy.



Proof. The even part By (resp. odd part Bj) is given by
By = PyBP; + PiBP; (resp. By = PyBP; + P;BP;).

To check the uniqueness is easy. O
For each « in Z,, we define

B(H)o := {B € B(H) | B is homogeneous with p(B) = «}.

Then it follows from Proposition 2.1 that B(H) = B(H)s ® B(H)1. Hence B(H) is a
Zs-graded associative algebra. We denote B(H)sp;e the Lie superalgebra B('H) equipped
with the supercommutator [, -]s. We note that for each A, B in B(H),

[A, Bls = [Aq, Bol + [Aq, Bi] + [A1, Bo] + {41, B},

where Ap (resp. Bp) is the even part of A (resp. B), Aj (resp. Bi) is the odd part of
A (resp. B) and [a, b] := ab — ba (commutator) and {a, b} := ab + ba (anticommutator).

Next we extend the notion of the parity to unbounded operators in H. For this
purpose, we define

L(H) = {B : linear operator on H s.t. P,dom(B) C dom(B) for each a € Zs},

where we denote by dom(B) the domain of B. Note that for each B in £{H), dom(B) =
dom(B). If B € L(H) satisfies
B =7Br,

then B is said to be even. On the other hand, if
B = —7Br,

then B is said to be odd. The notions of homogeneous element and parity are defined
by the same way in the case of bounded operators. For simplicity, we say that B is
homogeneous (or even, odd) without mentioning B € L(H).

It is well known that every linear operator on H is represented as a 2 x 2 matrix with
entries being linear operator. For example, we have

(I O [0 0 (I 0
Po(o ())’ 1‘(0 IT)’T‘<0 —11)’

where I, (o € Zy) is the identity operator on H,. We can easily see that an even (resp.
odd) operator is represented as a diagonal (resp. off-diagonal) matrix.
For an element B in £(D), we introduce

By == PyBF; 4+ PiBP;, dom(Bj) = dom(B),
B1 := P3yBP; + P1BP;, dom(Bi) = dom(B).



Then it is clear that By (resp. Bji) is even (resp. odd) and
B = B@ + BT-

We say that By (resp. Bj) is even (resp. odd) part of B. Note that if B is self-adjoint,
then By and Bj are also self-adjoint. Since we have defined the notions of even part and
odd part for any element in £(D), we can extend the supercommutator [-, -]s to each pair
of elements in £(D).

Let M(R) be the set of all complex valued Borel measurable functions on R. If
f € M(R) satisfies

fl—z) = f(z)
for all z € R, then f is said to be even. If f satisfies
f(=z) = = f(z)

for all z € R, then f is said to be odd. We can also define the notions of homogenous
element and parity of Borel measurable functions by the same way in the case of linear
operators.

Proposition 2.2 Suppose that A is a homogeneous self-adjoint operator on H and f is
a homogeneous element in M(R). Then f(A) 4s also homogeneous with

P(F(A)) = o(f)p(A).
Here f(A) is given by the operational calculus.
Proof. Since 7 is unitary and self-adjoint, we have
THA)T = f(rAr) = f((-1)/"M A) = (=1)7 DD f(4)

by the operational calculus. O
Suppose that J is a subset of R. If

J=-J
J is said to be even, where —J := {—X | A € J}. On the other hand, if
Jn{(=J)=10,

then .J is said to be odd. The notions of homogeneous element and parity are clear.
Let B! is the Borel field of R. Following proposition is useful:

Proposition 2.3 Suppose that f € M(R) s real valued and homogeneous and that J
is in B. If J is homogeneous, then f~1(J) is homogeneous with

p(F7HD) = p(Hp(J).

In particular, if p(f) = 1, then —f Y(J) = f~Y(=J) for each J in B'. Moreover, if
p(f) =0, then for each J in B, we have p(f~1(J)) = 0.



Proof. Suppose that p(f) = 0. Then for each J in B!,
—fYJ) = {-AeR|fN) e}
= {AeR|f(-N)eJ}
= {AeR|f(N) e J}
FHD.

Thus p(f~1(J)) = 0. Next suppose that p(f) = 1. Then by the similar argument in the
above, we have

Hence we have
FHI O (=HID) = I N (=),
From this, we can conclude that p(f~1(J)) = p(J). O
Finally, we give a simple proposition:

Proposition 2.4 Suppose that A is an odd self-adjoint operator. Then we have

plo(A)) =0,
where a(A) denote the spectrum of A.
Proof. 0(A) =o0(1Ar) =0(-A)= —0(A). D

2.2 Strong commutativity and strong anticommutativity

For the reader’s convenience, we present the definitions of the strong commutativity and
strong anticommutativity, and give some basic properties of these objects. More details
on these objects can be found, e.g., in [9, 10, 11, 12].

Definition 2.5 Suppose that A and B are self-adjoint operators on a Hilbert space.
(i) A and B are said to be strongly commute if their spectral measure commute.

(ii) A and B are said to be strongly anticommute if e A C Ae™!*Z for all t € R.

The following proposition for strongly commuting self-adjoint operators is well-known:

Proposition 2.6 Let A and B be self-adjoint operators on a Hilbert space. Then the
following three statements are equivalent:

(i) A and B strongly commute.

(ii) For each A, p € C\R, Ry\(A)R,(B) = R,(B)RA(A), where R,(T) = (T —v)~! for
a self-adjoint operator T'.

(iii) For all s,t € R, elt4elsB = elsBeit4,

We can also charactrize strong commutativity as follows:



Proposition 2.7 Let A and B be self-adjoint operators on a Hilbert space. Then the
following three statements are equivalent:

(i) A and B strongly commute.
(ii) e4B C Bel' for allt € R.
(i) For each z € C\R, R,(A)B C BR,(A).
Proposition 2.8 Let A and B be self-adjoint operators on a Hilbert space. Then the

following three statements are equivalent:

(i) A and B strongly anticommute.
(ii) Ra(A)B C BRyx(—A) whenever X is a non-real scalar.
(iii) e'tesB = costBe*4 tisintBe 4 for all s,t € R.

3 Strongly Supercommuting Self-adjoint Operators

Throughout the remainder of this paper, we assume that H = Hy ® H7 is a Zy-graded
Hilbert space and 7 is the grading operator for H. Given a self-adjoint operator S on
a Hilbert space, we denote its spectral measure by Eg(J) for arbitary J in B!. We
introduce a notion of strongly supercommutativity of self-adjoint operators. For this
purpose, we give a simple lemma;

Lemma 3.1 Let A be a homogencous self-adjoint operator on H. For each J in B!, we

define E}(J) and E;(J) by

B () = 5{Fal) + Ea(~0)}, Bi(J) = 3{Ba()) — Ba(-)}.

Then we have

(i) E%(J) is self-adjoint operators and E4(J) = EL () + EZ(J),
(i) p(EL()) =0 and p(E () = p(A),
(iii) Ef(=J)=EL(J) and Ey(=J) = —E (J).

Therefore, if A is an even operator, then FEa(J)g = Ea(J) and Ea(J); = 0. On the
other hand, if A is an odd operator, we have E4(J)s = Ef(J) and Ea(J)1 = E4(J).

Proof. (i) and (iii) are clear. For each J € B!, we denote the characteristic function of .J
by xs. Let x} and X7 be the even part and odd part of x s, that is, X§ = %{X‘] +x_s}-
Then we can easily check that

E7(A) = x5 (4), Ej(A) = x7(A).
By this and Proposition 2.2, we can conclude (ii) and (iii). O

With the help of the above lemma, we can now introduce the following notion.



Definition 3.2 Suppose that A and B are homogeneous self-adjoint operators on H.
We say that A and B are strongly supercommuting, when

[Ea(J1)as EB(J2)gls =0 (o, B € Zy)

for each J; and Jy in B!, where [-, -]s is the supercommutator introduced in the preceeding
section.

Remark 3.3 By the above definition, we have
[Ea(J1), Ep(J2)]s =0

for each J; and J; in B!, Therefore, if p(A) = 0 or p(B) = 0, then strong supercommutiv-
ity is equivalent to strong commutativity. Thus the notion of strong supercommutativity
can be regarded as a generalization of that of strong commutativity. We will see that
strong supercommutativity is also regarded as a generalization of strong anticomutativity.

Lemma 3.4 Suppose that T is a self-adjoint operator and J € B! is homogeneous with
p(J) =0. Then we have
Er(J)=0.

Proof. Easy. O

Proposition 3.5 Suppose that A and B are homogeneous self-adjoint operators on H.
Suppose that f, g € M(R) are bounded. If A and B are strongly supercommuting, then

[7(A), 9(B)]s = 0.

Proof. Note first that it is sufficient to show the assertion when f and g are homogeneous
and real valued.
Suppose that » € M(R) is real valued. Foreachn € Nand k=1,---,2"n, let
k-1 k
Lo = [—‘2—71—7 27), Fy = [n, 00).
Then we define

k1
on {Xh”l(ln,k) - Xh*l(fln,k)} + n{Xh—l(Fn) - Xh—l(-Fn)}-

[3v]

k=

[S

It is easy to see that hp(A) — A(A) (n — o0). Let T be an arbitary homogeneous self-
adjoint operator. If p(h) = 0, then by Proposition 2.3, p(h~ (£, 1)) = p(h (£ F,)) =
for each n and k. Thus by the above lemma, we have

hn(T) - Z%
{

{ B I k)) = B (0 (1))}

+

3

2n
By (™} () = Bf (b7 (=F)) |



and p(h,(T)) = 0 for each n in N.
If p(h) = 1, then by Proposition 2.3, we have h™1(—1I,) = —h (I, x). Thus we

have
2™n

k=1_ ., S
B (T) = Z o 2B (h (I g)) + nEp (b (F))
k=1
and p(h, (1)) = p(T). Combing these fact, we can conclude that p(h, (T)) = p(T)p(h) =
p(h(T)) for each n in N. Therefor if A and B are strongly supercommuting, and f, g
are homogeneous real valued measurable function, it follows from the definition of strong
supercommutativity that

[Fn(A), gn(B)ls =0

for each » in N. By limiting argument, we have the desired result. O

Proposition 3.6 Suppose that A and B are homogeneous self-adjoint operators on H.
Suppose that f and g are elements in M (R) such that f is bounded and g ¢s homogeneous.
If A and B are strongly supercommuting and Eg({\ € R| |g(A)| = oo}) = 0, then we
have f(A)dom(g(B)) C dom(g(B)) and

[£(A), 9(B)ls = 0
on dom(g(B)).

Proof. Note first that by assumption Ep({A € R| [g(A)| = oo}) =0, g(B) is closed. For
each a > 0, let

Ja = X{reR| {g(\)[<a} " 9-
Then it is clear that
w(B)= [ gdEs)
l9i<a

is bounded and p(g.(B)) = p(g)p(B) for each a > 0. Thus by Proposition 3.5, we get
[£(A),9a(B)]s =0 (1)
for all @ > 0. For each v in dom(g(B)) and a > 0, we define a vector

Yo = Ep({lg] < a})¥ = Ep({lg] < a})o9),

where {|g| < a} := {A € R| |g(A)| < a}. Since p(Es({|g] < a})) = 0 and therefore
Er({lg] < a})(= x{1g/<a}(B)) commutes with f(A) by Proposotion 3.5, we have

f(A)ga(B)Y = f(A)g(B)a, 9a(B)f(A) = g(B)f(A)¢a.

Combing this with (1), we obtain

F(A)g(BYga = (~1)?TAED o(B) (A,



Since f(A)g(B)ya — f(A)g(B)y and f(A), — f(A)¥ (a — o0), it follows from the
closedness of g(B) that f(A)y € dom{g{B)) and

[f(A),9(B)ls¥=0. O

Proposition 3.7 Suppose that A and B are homogeneous self-adjoint operators on H.
Suppose that f and g are homogeneous elements in M(R). If A and B are strongly
supercommuting and Ea({} € R| |f(A)] = 0}) = 0 and Eg({) € R] |g(\})] = 0}) =0,
then we have dom( f(A)g(B))Ndom( f(A))Ndom(g(B)) = dom{g(B) f(A))Ndom(f(A))N
dom(g(B)) and

[f(A), g(B)]s =0
on dom( f(A)g(B)) Ndom(f(A)) Ndom(g(B)).

Proof. For each a > 0, let
fa = Xgaer| jf0)I<a) + [

Then we have p(f,(A)) = p(f)p(A) for each a > 0.
Let

V = dom(f(A)g(B)) N dom(f(A)) N dom(g(B)).
Then, by Proposition 3.6, we get

[fa(A), g(B)]sé =0

for each ¢ in V. Using the same argument as in the proof of Proposition 3.6, we obtain
[f(A)v g(B)]Sd)a - 07

where ¢, = Ea({|f| < a})¢. Since f(A)g(B)¢a = Ea({lf| < a})f(A)g(B)¢ —
f(zcéll)g(B)qS and f(A)p, — f(A)p (a — o0), we can conclude that f(A)¢ € dom(g(B))
an

[f(A), 9(B)]s¢ = 0.

Hence we have V C dom(g(B)f(A))Ndom(f(A))Ndom(g(B)). By exchanging the role of
A and B in the above argument, we have V = dom(g(B) f(A))Ndom(f(A))Ndom(g(B)).
a

Theorem 3.8 Suppose that A and B are homogeneous self-adjoint operators on H. The
following conditions are equivalent to each other:

(i) A and B strongly supercommute.
(ii) [e'*4,e*B)g = 0 for cach s,t in R.
(ili) [R.(A), Rw(B)]s =0 for each z,w in C\R.



Proof. (i) = (ii) : This is a direct consequence of Proposition 3.5.
(ii)=>(iii): For each z € C such that Imz < 0 and an arbitary self-adjoint operator T,
it is well-known that

R(T) = —i/ e*Te™97dg
0
in operator norm. Hence if p(T') = 1, we have
R, (T = —i/ e "% cos sTds, R,(T)1 = / e %% sin sTds. (2)
0 0

On the other hand, if p(T") = 0, then R,(T)5 = R.(T), R.(T)1 = 0. Using these facts,
we can prove (iii}. A similar argument is hold for the case Imz > 0.
(iii)=(i): For an arbitary self-adjoint operator T, let

Fr(a,b) = 5[Br((a,) + Br((a, b))}

Then it is well-known that

1 b
F =s-lim — iel1) — Ra—ie .
r(a,b) = s lim 5 / [RasielT) — Raie(T)]dA

On the other hand, we can easily check that
€

s-lim

im o {Ra+ie(T) — Ra—ie(T)} = Er({a}).

Hence we have

b
Br((a, 1)) =i {5 [ 1RuicT) = Bacsd DA = S RopicD) — Racsd D]} (3)

By this and (iii), we can conclude that
[E£4((a, b)), EB((c, d))]s = 0

for each a < b, ¢ < d. Hence (i) follows from the limiting argument. O

Remark 3.9 If p(A) = p(B) = 1, then (ii) can be rewritten as
4B = costB e*A fisintB e %4,

From Proposition 2.8, it follows that A and B are strong anticommuting in this case. Thus
the strongly supercommutativity is a generalization of the strong anticommutativity.
Combining this with Remark 3.3, the notion of strong supercommutativity is a unification
of the strong commutativity and strong anticommutativity.



Theorem 3.10 Suppose that A and B are homogeneous self-adjoint operators on H.
The following conditions are equivalent:

(i) A and B are strongly supercommauting.

(ii) [e'*4, Bls = 0 on dom(B) for all s in R.
(ili) [R.(A), Bls =0 on dom(B) for all z in C\R.
(iv) [Ea(J), Bls =0 on dom(B) for all J in B

Remark 3.11 If the roles of A and B are exchanged in the above statement, the asser-
tion is still hold.

Proof. (i)=(ii): This is a direct consequence of Proposition 3.6.
(ii)=>(iii): By using (2) we have (iii).
(iii)=(i): By (iii), we have

R.(A)1B c (=1)Pr(BIBR_(A);, R,(A)sB C BR,(A)s.
Thus we can conlude that
Ry((=1)7“?PBIB)R, (A)1 = R.(A)1Ruw(B), Ru(B)R.(A)y = R.(A)gRu(B)

for each w € C\R. This implies (i} by Theorem 3.8.
(iii)=(iv): From (3), it follows that

[E4((a,b)), Bls = 0 on dom(B)

for @ < b. This result can be extended to each J in B!

(iv)=(iii): If p(A) = 0 or p(B) = 0, it is easy to show (iii) by (iv). Thus we discuss
the case p(A) =1 and p(B) = 1. Then (iv) implies E4(J)B = BEa(—J). For each ¢
and ¢ in dom(B), we have

(R.(A)B¢, )
_ /R(g — ) d(EA(N) Bé, )

_ /R(z — )N d(Ea(=N)4, BY)
(R.(—A)¢, By).

I

Hence we obtain
R.(A)B C BR,(—A).

Similarly we have
R, (-A)B C BR.(A).

Using these facts we can conclude

R,(A)sB C BR,(A)s, R.(A)iBC —BR,(A);.



Proposition 3.12 Suppose that A and B are homogeneous self-adjoint operators on 'H.
If A and B are strongly supercommauting, then we have

(i) dom(AB)Ndom(A)N dom(B) = dom(BA) N dom(A)Ndom(B) and
[A,Bl]s =0
on dom(AB) N dom(A) N dom(B);

(i) The operator A+ B is essentially self-adjoint. In particular, if p(A) = p(B) = 1,
then A+ B is self-adjoint.

Proof. (i) This follows from Proposition 3.7.
(i) See [12] Theorem 2.1. O

Proposition 3.13 Suppose that A and B are homogeneous, self-adjoint and bounded
operators on H. Then A and B are strongly supercommauting if and only if

[4, Bls =0. (4)
Proof. If A and B strongly supercommute, then from Proposition 3.12, it follows that
[A, B]s = 0.
Conversely, if (4) is hold, then we can easily check that
¢4, eitP]g = 0

for all s, in R. Hence, by Theorem 3.8, A and B strongly supercommute. O

For a self-adjoint operator S on ‘H, we denote by

S =Us|S|
the polar decomposition of S with Ug a partial isometry. If S is homogeneous, we have
p(Us) = p(S5). (5)

Indeed, it is well-known that
US = ES((O7 OO)) - ES((_OO7 0)) - 2E§((07 OO))

Thus we can conclude (5) by Lemma 3.1.

Proposition 3.14 Suppose that A and B are homogeneous self-adjoint operators on H.
If A and B are strongly supercommuting, then the following (i)-(v) hold:

(i) [Us,Als =0 on dom(A) and [Ua, Bls = 0 on dom(B).

(ii) [Ua,Upls =0.
(iti) [Usg,|A| =0 on dom(A) and [Ua, |B|] =0 on dom(B).
(iv) |A| and |B| strongly commute.

(v) A and |B| strongly commaute, and B and |A| strongly commute.

Proof. These assertions follow from a simple application of Proposition 3.7. O



4 Theory of Super Quantization

4.1 Quantization

For each n in N, suppose that

n
N
Zg I:ZQ X "‘XZ2
and that ®"H is the n-fold tensor product Hilbert space of H. For arbitary A =
(A, -+, An) € ZF, we introduce a closed subspace of ®@™H by
HA) :==Hx, ® - -® Ha,,
where we identify Hg and Hi with Hg @ {0} and {0} & Hy, respectively. For each « in
Zz, let
n
;,a = {)‘: ()‘17"'7)‘71) EZEL ‘ Z)\J =& }
j=1

It is easily verified that Zj = Z) ; UZY 5, Z ;N Z7 ; = 0. Hence, introducing

@"H)a:= @ H,

Aezg
the Hilbert space ®*H have the following Zs-grading structure:
Q@"H = (®"H); ® (" H)1.
7

It is not difficult to show that the operator '™ := ®"r(=7® --®7) is the grading
operator for " H.
Let D be a dense subspace of ‘H. For convenience, we introduce

L(D) :={A€ L(H) | AD C D, A*D C D}.

Note that each element in £(D) is closable.
Suppose that A is in £(D). If A is homogeneous, we define a linear operator Al
on ®™H by

n

A M g o N e A .l
~
7 th
for 1 < j < n. For a non-homogeneous element A in £(D), we can also define the

operator A"7! as follows. Let Ay and Aj are even and odd part of A, respectively. We
introduce a subspace of ®*H by

j th

y =N =N ~
DI (A) = H - - - @HE dom(A) §HS - - - &H



(where the symbol ® means algebraic tensor product) and denote by K%;j I'the restriction
of A%";ﬂ + A[in;j] to DI™I(A). Tt is clear that K,[:;j] is closable. Thus we can define the

operator A7) by the closure of KKL;j], that is,
Alma) . KZL;J]~
Lemma 4.1 Suppose that A is in L(D).

(i) If A is homogeneous, then A™I] is also homogeneous with p(A"9]) = p(A).
(ii) If A is self-adjoint, then A"I) is self-adjoint.
(iii) If A is non-negative, then AJ! is non-negative.

(iv) If A is homogeneous and self-adjoint, then {A["U]}?:l is a family of strongly su-
percommuting self-adjoint operators on @™H.

Proof. (i)

r g™ — B g oA grAr@T®---® 1
(=1)P(A) Almid],

Thus we can conclude that p( A7) = p( A).
(ii),(iii) When A is homogeneous, the assertions are easily verified. Hence we only

discuss the case when A is non-homogeneous. For each j = 1, .-, n, we define
Hio= @ HON, "= D HO.
XEZg, Ty Mi=0 NEZR, TIT) di=1

Then it is clear that ®"H = H, 5 ® H, 1.
For each B in £(D), we define a linear operator on ®"*H by

n

() ._ 75 5
Bj =/ - I® B QIR . - -®1
7 th

Then it is easy to check that BJ(.") is reduced by H; .. We denote the reduced part of
B§n) to Hj o by BJ(TL)
Relative to the direct sum decomposition ®"H = H, 5 ® H; 1, we can show that
n;j| (n) j(n)
Al = A3 6 AL ©
where A = 7A7. Since A is self-adjoint (resp. non-negative), Ag%) and Ag.ni) are self-
adjoint (resp. non-negative). Hence by (6), A" is self-adjoint (resp. non-negative).



(iv) Suppose that A is homogeneous. Then for each ¢ € R, we have

A I eI @cstARI @@ [ +irfW @ . @ " gsintAR] ® - ® 1.
j th j th

Therefore we obtain ] -
: nig 3 n
[eISA ’eltA ]S =0

for all s, € R. By Theorem 3.8, we have desired result. O

Lemma 4.2 Suppose that A and B are in L(D). Then we have

A, Bl = 64(|A, Bls)™ (7)

~n ) . 0 s .
on ®@ D. Especially, for an odd self-adjoint operator C = ( s 0 ) in L(D), we have
{olndl onikl} — 96, (8*S @ §5* )l (8)

Proof. We can easily show (7) when A and B are homogeneous. Since we have
id) — Alnidl [n:5]
A[nﬂ—A(—)J+AiJ

on ®"D, we can conclude (7) for arbitary A and B in £(D).
Next we will show (8). For a linear operator T' on a Hilbert space, we set

C(T) =Ny dom(T™).

It is well-known that if T' is self-adjoint, then C>(1") is a core of T
Let D = C*°(S*S) ® C>(8S8*). Then by (7), (8) is satisfied on ®"D. On the other
hand, "D is a core of (§*S @ 55*)I"7]. Hence we obtain (8). O

For each element A4 in £({D), the linear operator

(i AT [&" dom(A)

j=1
is closable. We denote its closure by Al™.

Proposition 4.3 Suppose that A € L(D) is homogeneous and self-adjoint. Then Al
is also homogeneous and self-adjoint with p(A") = p(A). Especially, if A is odd, then

n

Alnl — ZA[H;J']_

J=1



Proof. 1t is easy to check that
) AlIp() — (—1)e(4) gln],

Hence p(A™) = p(A). Self-adjointness of A follows from Proposition 3.12 (ii). O

Proposition 4.4 Suppose that A € L(D) is non-homogeneous. Then we have
(i) If A is self-adjoint and Ay or Ay is bounded, then Al is self-adjoint;

(ii) If A is non-negative, then A" is non-negative.

Proof. These are direct consequences of Lemma 4.1. O

Proposition 4.5 Suppose that A, B € L(D) are homogeneous and self-adjoint. If A
and B strongly supercommute, then A™ and B" strongly supercommute for each n € N.

Proof. First we will show the assertion when p(A4) = 0 or p(B) = 0. Suppose that
p(A) = 0. Then it is clear that

for each ¢t € R. From Theorem 3.10 it follows that
¢4, Bl = 0
on dom(B) for all ¢ in R. Thus we can easily see that

[eicAi"I B[n]]s _ [eitA["]7 B[n]] —~0

?

on dom(B[™). From Theorem 3.10 it follows that A" and B strongly supercommute.
Next we discuss the case p(A) = p(B) = 1. Since A and B strongly anticommute,
A= B are self-adjoint by Proposition 3.12. Hence (A & B)[" are self-adjoint. Let

MM = " (dom(A) N dom(B)).

Then by Proposition 4.3, (A + B)I"l is essentially self-adjoint on M™. On the other
hand, since
(A+ B)M = A7 4 B

on M, Al £ BI? are essentially self-adjoint on MS? ). Hence using [9] Theorem 4.3,
we can conclude that A and B™ strongly anticommute. O



The full Fock space F(H) over H is defined by
F(H) = &;20(8™H),

where ®"H := C. The full Fock space F(H) has the following natural Z,-grading struc-
ture:

F(H) =F(H)o © F(H)1,
where F(H)o 1= 652.4(®"H) 4 for o in Zsg. 1t is easily verified that the grading operator
T for F(H) is given by I' := @2, I'(™,

Definition 4.6 Let A be in £L(D). A quantization of A is the operator dT'(A) on F(H)
defined by

dr(A) == 02 ,AM,
where A% := 0.

Proposition 4.7 Suppose that A and B are elements in L(D).

(i) dI'(A) 4s a closed operator.

(ii) If A is homogeneous, then dT'(A) is also homogeneous with p(dl'(A)) = p(A).

(iii) Suppose that A is self-adjoint. If A is homogeneous, then dI'(A) is self-adjoint.
If A is non-homogenous and either even part Ay or odd part Ay is bounded, then
dI'(A4) 4s self-adjoint.

(iv) If A is non-negative, then dI'(A) is non-negative.

(v) If A and B are homogeneous and self-adjoint, then dT'(A) and dI'(B) strongly

supercommaudte if and only if A and B strongly super-commute.
[dT'(A), dT'(B)]s = dI'({4, B]s) on Fun(D).
0 S*

For an arbitary odd self-adjoint operator A = ( S 0

) in L(D), we have
dI'(A)? = dI'(S*S @ SS*).

Proof. These are direct consequences of Lemma 4.2 and Propositions 4.4, 4.5. O

4.2 Construction of the supersymmetrizer
4.2.1 The sign polynomial

Let S,, be the group of permutations of a set of cardinality n. We define the action of S,
on Zy by

U()\) = ()\U(l), s -,)\a(n))
for each A = (A1,---,\y) € Z3 and 0 € S,,. Clearly the mapping o(-) : Z§ — Z7 is
bijective and for each o,y € S,

o(v(A) = o(hay, s Amy)
Aoy 5 Aytany))
= (yo)(A). (9)



For each A = (A1, -+, M) € ZF (n > 2), we introduce a polynomial Ay, which we
call the sign polynomial, defined by

A)\(Xl, trty Xn) e Hi<j[X7; -Jr (——1))\1’)‘ij].

(Throughout the rest of this paper, for notational convenience, we identify (—1)% (a =
0,1) with (—1)®.) For each polynomial f(X1,--, X,,) of order n, the action of S,, to f
is defined by

(@) (X1, Xn) = f(Xo-11), s Xo1(n))s (0 € Sn).
Then we have
o(vf) = (vo)f (10)
for any o and v in Sy, Indeed,
(GvMNXy, -, Xn) = (vHXo101), - Xom1()

= f(Xoriy-109), 1 Xomr (=1 ()
= ((vo))( X1, -, Xp).

Proposition 4.8 For each o in S,, and A in ZY%, we have
oAx = sgn{o; N)Agny,

where
i< demPei
sgn(o; A) 1= (—1) <@>5() )

Proof. For each ¢ in S,,, we have
(0AN(X1, -+, X)) = i [ Xm0y + (—1)MM X1 ). (11)
On the right hand side of (11), we rewrite as

>¥ Xo-1gy+ (1) M X, o1y if o7 1(E) <o)
(=1 X o o=1(0) o1(3)
Xoa @t (=DM KXoy { (12 [X o gy + (=15 X pmr ] i 0 1(3) > 07 1(j)
Then
RHSof (1) = (m i< 1()(_l)xixj)nd_l(i)@_l(j)[Xg_lm+(_1)AiAijl(j)]
o 1(@)>e—1(5

= sgn(o; N Ay (X1, -+, Xn).

Therefore we have desired result. O



Definition 4.9 For each ¢ in S, and X in Z%, the value sgn(o; A) described in the above
proposition is said to be the sign of o relative to X. (If n = 1, then we put sgn(o; A) = 1.)

Remark 4.10 Suppose that o is an element in S,,.

) equals to sgn(c) the ordinary sign of o.
)=

Proposition 4.11 Suppose that 0,7 € S,, and A € Z.

1,---,1) ez?, sgn(o; A
(i) For A= (0,---,0) € Z7, sgn(o; A
(1) sgn(o7;A) =sgn(o; A)sgn(r; a(A)).
(ii) sgn(o;A) =sgn(o— L 0(N)).
(iii) sgn(o;o 1(A)) =sgn(c1;N).

Proof. (i) By (9),(10) and Proposition 4.8 we have

sgn(oT; A)Aeny = (07)Ax
= 7(0Az) (by (10))
= sgn(o; A (TAg)) {by Proposition 4.8 and (9))

= sgn(o; A)sgn(r; (M) Aryny-

Hence we have desired result. (ii) and (iii) follow from (i). O

4.2.2 The permutaion operator

For each o € S;, and A = (Ay,---, Ay) € Z%, we define the linear operator U, (a(A), A)
from H(A) to H{c(N\)) by

Ur(oN), M@} ® - @ d0) 1= 6,70 ® - 6,77,

where we take ¢5 ceHy, (U= -,n). This operator can be extended to the unitary
operator from H( ) to 'H(a( ) We denote it by the same symbol U, (o(A), A).

Lemma 4.12 For each 0,7 € S,, and A € Z}, we have

(1) Us (O—(A)a )‘)* = Uz ()‘70()‘) )
(i) Ure((ro)(A), A) = Us((a)(A), T(A))Ur (7(A), A).

Proof. Easy. O
Next we extend U, (a()), A) to the linear operator U, (o(\), A) on ®"H by

{UU(O'()\),)\) on H(X\)

Us(a (M), A) = 0 on HA): = @xunH(X)



Now we can define the permutation operator U, on ®™H by
Uy i= > Us(a(N), N)
Xezp

for o in S,,.

Proposition 4.13 For each 0,7 € S,,, we have

(i) U, is a unitary operator on ®"H;
(i) UsUy =Uzo;
(ili) U,—1 = UZ.

Proof. These follow from Lemma 4.12. O

4.2.3 The super-symmetrizer

Relative to the decomposition ®"H = @rczp H(A), we define the linear operator Sgn(o)
by

Sen(o) := @ sgn(a; A) I

Aezp

for any o in Sy, where I, is the identity on H(A). We refer to Sgn(o) as the sign operator
relative to o.

Lemma 4.14 For each o and 7 in S,,, we have

Sen(m)U, = U;Sgn(o7)Sgn(o).

Proof.
Sen(r)Us = > Sen(r)Us(o(A); A)
AEZy
= Y sen(r;o(N)Uy (0(A); A)
AEZs
= Z sgn(oT; A)sgn(o; MU, (a(A); A)  (by Proposition 4.11 (i))
AEZs

= UsSgn(o7)Sgn(s). O

Definition 4.15 For each n > 1, the linear operator

1
W= Y —UsSgn(o)

oES,

is said to be the supersymmetrizer on ®™H.



Proposition 4.16 Suppose that o in S,,.

(i) W, is an orthogonal projection operator on ®™H.
(i) W,U, = W, Sgn(o).
(iii) U, W, = Sgn(oc 1 )W,.

Proof. (i) On the one hand, we have

W*

On the other hand,

w2 =

I

1

1 "
] Z Sgn(a)U;

€S,
1
— Z Segn(o)U, -1 (by Proposition 4.13)
7!
agES,
1 —
p] Z U,-18gn(c™1) (by Lemma 4.14)
o€ES,,
Wh.

(%) 2 Z UsSgn(o)U-Sgn(r)

o, 7TES,

1 2
(;) > U,U,Sgn(ro)Sgn(r)?>  (by Lemma 4.14)

G

W,

o, TES,

2
) 3" U.Sen(ro) (by Proposition 4.13 (ii))

o, 7TES,

Thus W, is an orthogonal projection.

(ii)

WrUs

1
~ Z U,Sgn(r)U,

TES,

- Y U,U,Sgn(o7)Sgn(o) (by Lemma, 4.14)

1
n:
TES,,

1
(E 3 U,,TSgn(aT)) Sgn(c)  (by Proposition 4.13 (ii))

" TES,

W,Sgn(o).

(iii) This follows from (ii). O



4.3 Super Quantization
4.3.1 The super-symmetric Fock space

Definition 4.17 For each n > 1, we call the closed subspace of ®"H defined by
QLH = W, (®"H)

the n-fold super-symmetric tensor product.

The closed subspace of F(H) defined by
Fss(H) = @50 ®% H
is said to be the super-symmetric Fock space.
For a subspace D of H, we denote by Fg sn(D) the subspace of Fs(H) defined by
Fs,in(D) = &, Wn(8"D),

where 6320:0 means algebraic infinite direct sum. If D is dense in H, then Fe sn(D) is
also dense in F(H).
Note that Fs(H) has the following Zs-grading structure:

FSS(H) = FSS(H)G @ fss(H)i,
where
fsS(H)a = @ff:OWn((@n’H)a, (a S Zg)

The grading operator I for F(H) is reduced by Fy(H). Indeed, it is not difficult to check
that the grading operator I'™ for ®H commutes with W,,. Hence, T(™ is reduced by
W, (®"H) and the operator T = @5 ,I'(") is reduced by Fy(H). From this fact, it
follows that the grading operator for Fs(H) is the reduced part of I' to Fe(H). We
denote it by Igs.

Proposition 4.18 Suppose that {e2}2°  is a complete orthonormal system (CONS) of
He (=0,1). Then

n! n 0 1 I
&= { e Wa ()" @0 (6" R e ® @6 )
1 Tip

P
an+q:n7
=1
i1<'--<ip, j1<...<jq}

k
—_—

is a CONS of ®H, where we use the following notation: (e2)* == el @ ---®e’. Thus
{Qn} U (U &,) is a CONS of Fss(H).



Proof. It is not hard to see that &, is an orthonormal sysem. Hence we only show the
completness of &,.

Suppose that ¥ € £(&,)" N W, (®"H), where £(£,) is a subspace of ®"H generated
by &,. Then we have

0= <\I/,Wn((e?1)m®...®(eg )"P®ejl-1 ®...®e§q)>.

tp

for each p,ge N, ny,---,np € Nand iy <--- <ip, j1 <--- < jq. Therefore

for each k; e Nand o € Zy (4 =1, -+, n). Since {er®- - ®@epm |kieN, oy =0,1, i =
1,---,n} is a CONS of ®"™H, we can conclude that ¥ = 0. Therefore &, is complete. O

Proposition 4.19 Suppose that T' is in L(D).

(i) T™ is reduced by QLH for n > 2.
(ii) dI(T) is reduced by Feos(H).

To prove this proposition, we need following lemma.

Lemma 4.20 For each A = (A1, -+, \,) € ZF, let
A= L A F L Ay, o, An).
Then we have
sgn(o; (V);)(—1)Z+<i ™ = sgn(o; N)(=1)%s<s Ao (12)
for each o in S,,.

Proof. Note first that by a similar argument as in the proof of Proposition 4.8, we can
show

X > Ae@wtl i<y Ao
sgn(o; A) = (=1} «@<e o (8)>e(s) sgn(o; (A);). (13)

By (13), we have

TiciNTE > Ae@TL i< Acts)
sgn(o; ()\)j)(_l)zi<]‘>‘i:(——1) = @ <) (52G) sgn(o; A).  (14)

On the other hand, we have

ShE D de = Dut YN

i<j i>7 i<j i<j
a(d)<o(s) e~ (@) >a—1(j)



E i + Ai +
i<y
o ~L(@)>o1 ()

>

i<j
o~y <ol ()

ST
i<j

e~ (@) <=1 (j)

= >
a(i)<o(j)

i<
Hence

X o(i)<a(g) Mot 7(i)>0() Avw

RHS of (14) =

) 1

(-
(—1)% i =0 sgn(o; ).

Thus we have desired result. O

Proof of Proposition 4.19. (i) Since

Ai

2

i<j

@) > o 1(y)

sgn(o; A)

on & dom(T") and &"dom(T) is a core of T™ it is suffices to show the assertion when
T is homogeneous. Suppose that T is homogeneous If p(T) = 0, then it is clear that

T is reduced by ®%H. Thus we will show the assertion when p(T)

Let f ¢ dom(T) x Mi=0,1, i=1,---,n). Then we have
(T™w, )( Nee® fon)
Z Z ____Sgn o- )\ )Eé<]- Xo(z)f:a()l) ® ®Tf 0(7)
j=10€S,
where A = (Ay,---, A,) € Z%. Hence, using the above lemma we have
(W T™) () ® i)
- 1
ZZ l N (DF el @ @ T ® -
j=1a€Sn, n
— Z _1_ gn(o- )\)( )Ei<]’ Ao (i) f;‘(al()l) ® - ®Tf d(:)
j=1ocS, n!
= (TMW) (@ ).
That is

1.

® fg a-n(/n) ,

C® fga(n)

.® fda(n)



on ®"dom(T"). Since ®"dom(T) is a core of T, we can conlude that
w, T c T,

(ii) follows from (i). O

Definition 4.21 Let 1" be in £(D). We denote the reduced part of dI'(T") to Fs(H) by
dlss(T"). The operator dI's;(T) is called the super quantization of T.

Theorem 4.22 Let A and B be elements in L(D).

(i) dI'ss(A) 4s a closed operator.
(i) If A is homogeneous, then dUs(A) is also homogeneous with p(dlss(A)) = p(A).

(i) Suppose that A is self-adjoint. If A is homogeneous, then dly(A) is self-adjoint.
If A is non-homogenous and either even part Ay or odd part Ay is bounded, then
dTss(A) is self-adjoint.

(iv) If A s non-negative, then dUg(A) 4s non-negative.

(v) If A and B are homogeneous and self-adjoint, then dl'ss(A) and dl'ss(B) strongly
supercommute if and only if A and B strongly supercommute.

(vi) [dI's(A),dTls(B)]s = dlss([4, Bls) on Fus,6n(D).
0 S

(vii) For an arbitary odd self-adjoint operator A = ( S 0

) in L(D), we have
dl'(A)? = dl'e(S*S @ SS*).
Proof. These are simple applications of Propositions 4.7 and 4.19. O

4.3.2 Identification with the boson-fermion Fock space

Let X be a Hilbert space. The boson Fock space Fy,(X') and the fermion Fock space
Fi(X) over X are respectively defined by

Fo(X) =D 1 Sn(®"X), Fi(X) = Dl g An(®@"X),

where we denote by Sy, (resp.4,,) the symmetrizer (resp. the anti-symmetrizer) on ®"X.
For a subspace V of X, we define

Foin(V) =By oSn(&"V), Fran(V) =8, oAn(®"V).

If V is dense, then Fu 5,(V) is also dense in Fx (V) (# =b,{).
Let Q, :=19000® --- € Fp(X) be the boson Fock vacuum in Fy(X). For each
f € &, there exists a unique densely defined closed linear operator ay(f) on F,(X), called



a boson annihilation operator (its adjoint ay(f)* is called a boson creation operator), such
that (i) for all f € X, ap(f)Qr =0, (ii) forallneN, f; € X, j=1,---,n,

aw(NSalf1 @8 fu) = <= S F S a(i® @ - fu),
j=1

where fj indicates the omission of f;. (iii) Fy an(H) is a core of ay(f). We have for all
f] EX) j:17"'7n7

an(f1)* - an(fn) b = VRIS, (f1® - ® f).

The set {an(f) | f € X'} satisfies the canonical communtation relations (CCR)

[an(F), an(9)*] = (£, 9), [an(f), an(g)] =0, [an(f)*, an(g)"] =0

for all f,g € X on Fy gn(X).

Boson Fock space objects have counter parts in the fermion Fock spcace. The fermion
Fock vacuum Q¢ in F;(X') is defined by ¢ := 10090®- - - € F;(X). Foreach g € X, there
exists a unique bounded linear operator a:(g) on F;(X), called a fermion annihilation
operator on F(X) (as(g)* is called a fermion creation operator), such that (i) for all
geX, a;(9) =0, (ii) forallneN, g, € X, j=1,---,n,

(17" Hg, 9)xAn 1(01® - ® G ® - D gp).
1

ai(9)An(91® - - gn) =

n

-

J

We haveforall g; € X, =1,---,m,

ag(g1)* -+~ as(gn)* R = VnlAn (g1 ® - - ® ga).
The set {as(g) | g € X'} satisfies the canonical anti-communtation relations (CAR)
{as(£),as(9)"} = (£, 9), {ae(f) ac(g)} =0, {ae(f)*, ae(9)"} =0
for all f,g € X.
Definition 4.23 The boson-fermion Fock space Fp-¢(X1, Xo) associated with the pair
(X1, Ay) is defined by
Fo-t (X1, X)) 1= Fp(X1) ® Fi(Xa).
The linear operator V from Fy(H) to Fu-¢(Hp, H1) defined by
V(Wn((eZ)"1 ® @ )red ®--® e}q))

! 0 \n 0 \n 1 1
= gttty (€)™ @@ (€,)"7) @ Ag (e, ® - @€ )



can be extended to the unitary operator,where n = Zle n; + q. We denote it by the
same symbol V. Relative to this identification, we have following identifications:
RLH = ®pig=n[Sp(®Hp) ® Aq(®TH7)],
Fss,ﬁn(Dﬁ & Di) == Fb,ﬁn(D())@)ff,ﬁn(DiL
where Dy ® D1 is a subspace of H. The Zj-grading structure of Fg(H) induces the
following Zo-grading of Fi-¢(Hg, H1):
fSS(H)G - ]:b(HG) ® [@SLO:O A2n(®2nHi)]a
Fs(H)1 = Fo(H1)® [ @O0 Asni1(®7T1H)].

Suppose that T is a closed operator densely defined on X. Let

n

(n) . 0
M . ;h@ RI® Th®1® ®I.
- Py

Putting 7°) = 0, one can define a closed operator
di(T) :== @22, T

on the full Fock space F(X). (Though, in Section 4.1, we have used the symbol dI'(-)
which is defferent from the one that we have just introduced, there will be no confusions.)
It is easy to see that dI'(T') is reduced by Fu(X) (# =b,f). We denote the reduced part
of dI'(T") to Fu(X) by dU'»(T'). We put

N# = dF#(I),

called the number operator on Fu(X).
Note that the grading operator I'ss can be identified with (—1)/®Me:

o = (—1)L®N:,
For each f = fg & fi € H, we introduce an operator
as(f) := an(fo) ® I + 1 ® ae(f1)
acting in Fe-¢(Hg, H1).
Proposition 4.24 Let f, g be in H.

(i) If f is a homogeous element in 'H, then a¥ (f) is also homogeneous with p(af (f)) =
p(f)-



(i) The set {as(f) | f € H} satisfies canonical super-commutation relations (CSR)
las(f), as(9)"]s = (£, 9)n, las(f) as(g)ls =0, [as(f)", as(g)"]s =0

on Fu fin(Ho)®Ft in(H1)-
(iii) For a subspace ¥V of H, we have

Wn(®nV) — *C{a's(fl)* © 'as(fn)*Qb & Qf I f17 T '7f’ﬂ S V}a
fss,ﬁn(v) - E{as(fl)*"'a's(fn)*Qb@Qf’Qb@Qf | fl?'“a.fnev7n€N}'

Proof. This is an easy exercise. 0

Proposition 4.25 Suppose that A ® B is an even operator in L(D). Then relative to
the identification Fss(H) = Fp(Hp) ® Fe(H1), we have

dl'ss(A® B) = dT'p(A) ® I + [ ® dT¢(B).

Proof. Note first that from the construction of dUss(A® B) it follows that dT'ss(A® B) is
essentially self-adjoint on Fs fin(dom(A) ® dom(B))(= Fp, ain(dom(A))BF; g (dom(B))).
On the other hand, let

T(A, B) := [dI',(A) ® T+ I ® dT't(B)],

then T(A, B) is essentially self-adjoint on 75, gn(dom(A))&F; gn(dom(B)).
It is not hard to check that

dles(A® B) = T(4, B)

on Fes in(dom(A) ® dom(B)) = Fp sin(dom(A))&F; an(dom(B)). Hence we have the
desired result. O
By direct calculation, we can show the following two propositions:

Proposition 4.26 Suppose that A is an element in L(D) and that {e,}2; = {€ ®©
0, 0 el} is a CONS of H such that {2} | C D, is a CONS of Hy (o =0,1). Then
for each W in Fy 5, (D)(= Fb,ﬁn(D@)(@}"ﬁﬁn(Di)), we have

ATas(A)T = > ag(en) as(A*e,) V.

n==1

Proposition 4.27 Suppose that A is an element in L(D). Then for each f in D, we
have

[dlss(A), as(f)*]s = as(Af)",
[a(f), dTss(A)]s = as(A* f)

on Fes in(D).



5 Applications

5.1 Supersymmetric quantum field theory

In {3, 5], A.Arai developed a mathematical theory about the supersymmetric quantum
field theory. Here we will review this theory from a new point of view.

Suppose that S is a densely defined closed linear operator from Hg to Hi. Then we
can define a closed linear operator on Fi(H) by

(3 9))

Note that if we put D = dom(S) ®dom(S5*), then by Proposition 4.26 we have a following
representation of dg on Fes in(D)(= Fb fin(dom(S))® ¢ ain(dom(H;)))

dg = Z ab(S*ei) ® af(e,il)*,

n=1

where {el}%° | C dom(S*) is a CONS of Hj.
Using the consequences of the preceeding section, we have the following proposition:

Proposition 5.1 Let dg be as above. Then we have following:
(i) ds is an odd operator on Fss(H).
(i) d4=0, (d%)?=0.
Next we define a Dirac type operator on Fg(H) by
Qs =ds +dg
with dom(Qg) = dom(ds) N dom(d%).

Theorem 5.2 Suppose that S, T are densely defined closed linear operator from Hg to
H1 such that dom(S) N dom(T") ® dom(S*) N dom(T*) is dense in H. Then we have

following:

(i) Qs=dlg (( g, 'S(’) )) . Thus Qg is self-adjoint.

)

dsds +dids = Q%
dl(S*S @ SS*)
[dL(S*S) ® I+ 1 ® dT'(SS*)] .

oo

(i) df = dls ((
(iii)



(iv) Qs and Qr strongly anticommaute if and only if two self-adjoint operators < g, 6(; )

0o 7 .
and T o strongly anticommute.

Proof. (i) First we prove that Qs is symmetric and closed. To show that Qg is symmetric
is very easy. So we only show the closedness of Qg. Let {¥,,}2° ; be a converging sequence
in dom(Qyg) such that ¥,, — ¥ € F(H)(n — o) and {Qs¥,,}° , is a Caucy sequence.
Then since

1Qs(¥n = ¥m)[1? = |lds(Un — Won)|I” + |d5 (¥ — ¥rn)|f?,
we have
1Qs(¥n — )|l 2 lds(Wn — )|, [|d5(¥r — ¥

Thus {ds¥,}22, is a Caucy sequence. By closedness of dg, we can conclude that ¥ €
dom(ds) and limy, e ds¥y, = ds¥. Similarly we have ¥ € dom(d%) and lim,,_,oc d5¥,, =
ds¥. Hence we have ¥ € dom(Qg) and lim,,—,oc Q@s¥,, = Qs¥, which mean closedness
of Qs.

It is not hard to show that

QS - dFss(LS)

on Fes fin{dom(S) @ dom(S*)), where L4 := ( 21 /(1) ) for each densely defined closed

linear operator A from Hy to ‘Hi. Since Fg fn(dom(S) & dom(S*)) is a core of dl'g(Ls)
and Qs is closed, we have Qg D dI's(Lg). By self-adjointness of dl'ss{Ls), we have the

desired result.
o S*
5 ::drss<(0 0 )>

(ii) Let
Then using the same argument in the proof of (i), we have
dFSS(Ls) = dg + dg.
Combining this with (i), we have ds = d¥.
(iii), (iv) These are simple applications of Theorem 4.22. O

5.2 A boson-fermion interaction model

Let wy, (resp. wi) be a self-adjoint operator on Hy (resp. Hi) and f; (resp. g;) (j =
1,---,m) be vectors in Hg (resp. Hi). We will discuss the following boson-fermion
interaction Harmiltonian:

H:=dly(we) ® T + T @ dle(we) + o Y _{an(f;)* ® aclgs) + an(f;) ® ar(g;)*,
j=1



where o in R. To do this, we introduce a linear operator A defined by

A= Ag+ A1,

0o s*
AGZWb@(Uf, A1-<S 0 >7

where S = 2?21 af;®g; (e €R)and f©gis a linear operator defined by (f © g)¢ 1=
{g,¥)f. Then A is a self-adjoint operator with even (resp. odd) part A (resp. Az).
From Propositions 4.25 and 4.26, it follows that

H = dl(A)
on Fus an{dom(A)). Hence by Theorem 4.22, we have a following proposition:
Proposition 5.3 Let A be as above. Then we have

(i) H is essentially self-adjoint on Fss an(dom(A)). Especially, H = dT'(A).;
(ii) If A has an eigenvalue u(A) with eigenvector ¥, then u(A) is also eigenvalue of H
with eigenvector 0 Y DOD - - - € Fis(H);
(iii) If A >0, then Q, ® Q; is a ground state of H.
Example: The Wigner-Weisskopf model

Let Hg = L?(R%), Hy = C and w : R? — [0, 00) be Borel measurable such that 0 <
w(k) < oo for almost everywhere k € R? with respect to the d-dimensional Lebesgue
measure and & be the multiplication operator by the function w, acting in L?(R?). Then
the Wigner-Weisskopf Hamiltonian Hww is defined by

Hww =dlp (@)@ 1 + I ® poc* e+ a(ab()\) ®c* + ap(\)' ® c),

where c is the fermion annihilation operator on F¢(C) = C2. We will discuss some

fundamental properties of this model here. More details on this model, see [6].
Let A be defined by

A= A5 @ Ag,

@D po, Az :za(

Ag 0 /\®1>7

1A 0

where ug, o € R is a constant and A € L?(R?). To describe spectral properties of A, we
introduce a function

D(z) i= —z + po + a2/ —wdk

re 2 — w(k)
defined for all z € C such that |A(k)|?/|z — w(k)| is Lebesgue integrable on R?. In

particular, D(z) is defined in the cut plane C\|u, o0) (i := ess. inf, gs w(k)) and analytic
there. It is easy to see that D(z) is monotone decreasing in z < p. Hence the limit

d, = lim D(z)
zTp

exsits, being allowed to be —oo.



Lemma 5.4 Assume that w is continuous on R?* and w(k) — o0 as |k| — oo. Then we

have

)

(ii)

Let d, > 0. Then
o(A) = [, o0);
Let d,.< 0. Then
o(A) = {zo} U [p, o0),

where xq s a simple eigenvalue of A.

Proof. See [6]. O

Proposition 5.5 Assume that w is continuous on R% and w(k) — oo as |k| — oo.
Then we have

(i)
(i)
(i)

Hww is essentially self-adjoint on Fy gn(dom(w))®C? and Hww = dlss(A);
Let d, > 0. Then Hww is non-negative with ground state S, ® Q;

Let d, < 0. Ifzo 2 0, then Hww s non-negative with ground state Qy, ® Q.

Moreover xg is eigenvalue of Hww with eigenvector 0 ® ¢o ®0d -+ € Fs(H),
where ¢g 18 the eigenvector with respect to xg.
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