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NEW SPECIAL CURVES AND DEVELOPABLE SURFACES

Shyuichi Izumiya and Nobuko Takeuchi

We define new special curves in Euclidean 3-space which we call slant helices and
conical geodesic curves. Those notions are generalizations of the notion of cylin-
drical helices. One of the results in this paper gives a classification of special de-
velopable surfaces under the condition OF tﬁe existence of such a special curve as
a geodesic. As a result, we consider geometric invariants of space curves. By using
these invariants, we can estimate the order of contact with those special curves
for general space curves. All arguments in this paper are elementary and classi-
cal.%{owever, there have been no papers which have investigated slant helices and
conical geodesic curves so far as we know.

Mathematics Subject classification(2000): 53A05, 53A25, 58C27
Key Words and Phrases: Helix, Darboux vector, developable surfaces, singularities

1 INTRODUCTION

In [3] we have studied singularities of the rectifying developable (surface) of a
space curve. The rectifying developable is defined to be the envelope of the family
of rectifying planes along the curve. We have also studied the Darboux developable
of a space curve whose singularities are given by the locus of the end points of
modified Darboux vectors of the curve 3, 5, 6].

In this paper we define the notion of slant helices and conical geodesic curves
which are generalizations of the notion of helices (cf., §2). We introduce the notion
of the tangential Darbouxr developable of a space curve which is defined by the
Darboux developable of the tangent indicatrix of the space curve (cf., §3). We
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study singularities of the tangential Darboux developable of a space curve as an
application of the classification theorem of developable surfaces in [6]. We find a
geometric invariant of a space curve which is deeply related to the singularities of
the tangential Darboux developable of the original curve.

In §2 we describe basic notions and properties of space curves. We review the clas-
sification of singularities of the rectifying developable and the Darboux developable
of a space curve in §3. In §4 we study slant helices and conical geodesic curves as
curves on developable surfaces. We can construct several examples of slant helices.
However, we need a large part of pages for drawing those pictures, so we give only
one example in §5.

This is one of the papers of the authors joint project entitled “Geometry of ruled
surfaces and line congruence”.

All manifolds and maps considered here are of class C° unless otherwise stated.

2 BASIC NOTIONS AND PROPERTIES

We now review some basic concepts on classical differential geometry of space curves
in Euclidean space. For any two vectors © = (z1,22,23) and y = (y1,¥2,¥3), We
denote x - y as the standard inner product. Let v : I — R3 be a curve with
¥(t) # 0, where (¢t} = dvy/di(t). We also denote the norm of & by |x|. The
arc-length parameter s of a curve -« is determined such that ||v/(s)|| = 1, where
~'(s) = dy/ds(s). Let us denote t(s) = +'(s) and we call £(s) a unit tangent vector
of v at s. We define the curvature of vy by x(s) = /|7 (s)||- If £(s) # 0, then the
unit principal normal vector n(s) of the curve v at s is given by v/ (s) = r{s)n(s).
The unit vector b(s) = t(s) x n(s) is called the unit binormal vector of v at s.
'Then we have the Frenet-Serret formulae:

t'(s) = k(s)n(s)
n'(s) = —k(s)t(s) + 7(s)b(s)
b(s) = —7(s)n(s),

where 7(s) is the torsion of the curve v at s. For any unit speed curve y : I — R3,
we define a vector field D(s) = (7/k)(s)t(s) + b(s) along ~ under the condition
that x(s) # 0 and we call it the modified Darbouz vector field of v. We also denote
the unit Darboux vector field by D(s) = (1/v/72 + £2)(s)(7(s)t(s) + k(s)b(s)) (cf.,
[8], Section 5.2).

A curve v : I — R® with x(s) # 0 is called a cylindrical heliz if the tangent lines
of v make a constant angle with a fixed direction. It has been known that the curve
~(s) is a cylindrical helix if and only if (7/x)(s) = constant. If both of x(s) # 0 and
7(s) are constant, it is, of course, a cylindrical helix. We call such a curve a circulor
heliz. We now define new special curves as follows: A curve v with s(s) # 0 is
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called a slant heliz if the principal normal lines of v make a constant angle with a.
fixed direction. We remark that the principal normal lines of a cylindrical helix is
perpendicular to a fixed direction, so that a cylindrical helix is a slant helix. We
also call a curve v with x(s) # 0 a conical geodesic curve if (7/k)’(s) is a constant
function.

We have the following characterization of slant helices.

Proposition 2.1 Let «v be a unit speed space curve with x(s) # 0. Then ~ is a
slant heliz if and only if

2

o(s) = <(/§+ET)3/2 (%)) (s)

18 a constant function.

Proof. We can show that - is a slant helix if and only if the spherical image of
the principal normal n : I — 52 is a part of a circle in S2. By a straightforward
calculation, the geodesic curvature of m in S? is given by o (s). Therefore, the image
of n is a part of a circle in $? if and only if o(s) is a constant function. O

If o(s) = 0, then we have (7/k)(s) = 0. It follows that = is a cylindrical helix. We
have already studied geometric properties of cylindrical helices in [3, 5], so that
we are interested in the case when (7/k)'(s) # 0. We now consider the meaning
of the above invariants (7/k)(s) and o(s) for a general curve. Let ~, : [; — R?
(¢ = 1,2) be regular curves. We say that v, (so) and v,(to) have at least (k+ 1)-
point contact if ’ygp)(so) = '7ép) (to) for 0 < p < k. We also say that 7,(sg) and
7o(to) have (k 4 1)-point contact if they have at least (k + 1)-point contact and

’Y§k+1)(30) # 'ngﬂ)(to)'

Proposition 2.2 For a regular curvey : I — R® with x(s¢) # 0 and (17/k)’ (s¢) #
0, we have the following assertions:

(1) There exists an open interval so € J C I and a unique conical geodesic curve
0 : J — R3 such that 8(so) = v(s0), the curvature of 6(s) is x(s), the torsion of
0 at s is 7(s0) and y(so),8(s0) have at least 5-point contact.

(2) There exists an open interval so € J C I and a unique slant heliz § : J — R3
such that 8(so) = (so), the curvature of 8(s) is k(s), the torsion of § at sq is
7(s0) and y(s0),d(s0) have at least 5-point contact.

Proof. (1) We denote that (7/k(so) = b and (7/k)'(s0) = c¢. We consider the
natural equation:

{55(3) = &(s)
15(s) = k(s)(cs+a),
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where a = b — ¢sy under the initial conditions 6 (sq) = ¥® (sy). The solution
curve & : J — R3 satisfies the required conditions.

(2) We denote that o(sg) = d. We also consider the natural equation:
15 (5) = A(s)

() ) = dnals) (H (%)2@))3/2,

under the initial conditions 8P (sg) = ) (s¢). The solution curve & : J — R3
satisfies the required conditions. ]

I

We call the conical geodesic curve (respectively, the slant helix) given in Proposition
2.2 the osculating conical geodesic curve (respectively, the osculating slant heliz) of

~y at Sp.

3 DEVELOPABLE SURFACES ASSOCIATED TO A SPACE CURVE

In this section we consider three developable surfaces associated to a space curve.
Developable surfaces are ruled surfaces. A ruled surface in R® is (locally) the map
Fiy5 + I x R — R? defined by Fiy 5 (t,u) = ¥(t) + ué(t), where v : I — R3,
6 : I — R3\ {0} are smooth mappings and I is an open interval or a unit circle S*.
We call v the base curve and 8 the director curve. The straight lines u — ~(t)+ud(t)
are called rulings.

Let v be a unit speed space curve with £(s) # 0. A ruled surface F 5 (s, u) =

~(s) +u1~)(s) is called the rectifying developable of . We also define a ruled surface
Fp,1y(s,u) = b(s)+ut(s) which is called the Darbouz developable of ~. We consider
the Darboux developable of the unit tangent vector n(s) of « which is given by
Fipny(s,u) = D(s) +un(s). We call it the tangential Darbouz developable of .
First, we consider the rectifying developable of a unit speed space curve v(s) with
k(s) # 0. We can calculate that INJI(S) = (1/K) (s)t(s), so that (s, uo) is a singular
point of F_ 5, if and only if (t/K) (s0) # 0 and ug = —1/((7/x)'(s0)).

In [3] we have studied singularities of the rectifying developable of v and given
a local classification. However, we have not be able to interpret the geometric
meaning of singular points of rectifying developable. Here, we can say that the
singular point of the rectifying developable of v corresponds to the point so that
~ and the osculating conical geodesic curve at sg have at least 6-point contact.
Moreover, we have the following proposition:

Proposition 3.1 For a unit speed curve v : I — R? with x(s) # 0, the following
are equivalent.
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(1) The rectifying developable F(7 By I xR — R? of v is a conical surface.

(2) v is a conical geodesic curve.

Proof. The singular locus of F| 5, is given by o(s) =~(s)—(1/(r/x)')(s)D(s). By
the Frenet-Serret formulae, we have o' (s) = (7/k)"(s)((r/x)")~2(s)D(s). There-
fore, o’(s) = 0 if and only if (r/k)"(s) = 0. We can easily show that F_ 5, is a

conical surface if and only if o(s) = 0. This completes the proof.

Secondly, a classification of singularities of the Darboux developable of a space
curve is given as follows:

Theorem 3.2 [3, 6, 7] Let v : I — R3 be a unit speed curve with x(s) # 0. Then
we have the following:

(1) The Darbouz developable of vy is locally diffeomorphic to the cuspidal edge C xR
at Fiy,e)(s0,u0) if and only if 7(so) # 0, (7/x)'(s0) # 0 and ug = (7/K)(s0), where
CxR= {(Z‘l,xg) [ 1‘12 = 1’23 } x R.

(2) The Darboux developable of -y is locally diffeomorphic to the swallowtail SW
ot Fp,1)(s0,u0) if and only if 7(so) # 0, (7/k) (s0) = 0, (7/K)"(s0) # 0, and up =
(1/K)(s0), where SW = {(z1,x2,2z3) | 71 = 3ut + v?v, 23 = 4u® + 2uv, 23 = v }.
(3) The Darbouz developable of v is locally diffeomorphic to the cuspidal crosscap
CCR at Fp,4)(s0,uo0) if and only if uo = 7(so) = 0, (7/K)'(s0) # 0, where CCR =
{(z1,29,13) | 21 = u®, 22 = w303, 23 = % }.

o

|
I
)

{;g!
it

cuspidal edge swallowtail cuspidal crosscap
Fig.1

As a corollary of Theorem 3.2, we have the following local classification theorem
of the tangential Darboux developable of a generic space curve.

Theorem 3.3 Let~y:1 — R® be a unit speed curve with k(s) # 0. Then we have
the following:

(1) The tangential Darbour developable of ~y is locally diffeomorphic to a cuspi-
daledge C x R at F(p (50, u0) if and only if ug = o(so) # 0, 0'(s0) # 0.
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(2) The tangential Darbouz developable of v s locally diffeomorphic to a swallowtail
SW at Fip (0, u0) if and only if ug = o(s0) # 0, 0’(s0) = 0, 0" (s0) # 0.
(3) The tangential Darbouz developable of ~y is locally diffeomorphic to a cuspidal-
cross cap CCR at Fip ,y(s0,u0) if and only if ug = o(so) = 0, o’(s0) # 0.

Proof. We respectively denote K (s) and T'(s) as the curvature and the torsion of
the space curve £(s). By a straightforward computation, we have

2

K = Ve, 160 = (55 (2) ) ©

T2 + k% \ g

It follows that o(s) = (T/K)(s).

Applying the result in Theorem 3.2 to the space curve t(s), we complete the proof.
O

We can also interpret that the swallowtail point of the tangential Darboux devel-
opable corresponds to the point sy that v and the osculating slant helix at sy have
6-point contact. We also have the following proposition:

Proposition 3.4 For a unit speed curve v : I — R? with k(s) # 0, the following
are equivalent.

(1) The tangential Darbous developable Fip ,y : I x R — R® of 7y is a conical
surface.

(2) «v is a slant heliz.

Proof. The singular locus of the tangential Darboux developable Fip ,y(s,u) is
given by o(s) = D(s) + o(s)n(s). Therefore, F(p (s, u) is a conical surface if
and only if ¢/(s) = 0. By the Frenet-Serret formulae, we can show that D'(s) =
—o(s)n’(s). Hence, o/(s) = 0 if and only if 0’(s) = 0. By Lemma 2.1, the assertion
holds. O

4  CURVES ON DEVELOPABLE SURFACES

In this section we study slant helices and conical geodesic curves from the view
point of the theory of curves on developable surfaces. In the previous sections, we
have remarked that the rectifying developable of a cylindrical helix is a cylindrical
surface. It has been classically known that ~ is a geodesic of the rectifying devel-
opable of vy itself (cf.,[2]). The following proposition shows that the converse is also
true.
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Proposition 4.1 Let S be a ruled surface and v(s) a regular curve on S with
non-vanishing curvature. Then the following conditions are equivalent :

(1) S is the rectifying developable of ~(s).

(2) v(s) is a geodesic of S which is transversal to rulings and S is a developable
surface.

Proof. Suppose that S is a developable surface. Then the tangent plane of S at
p € S is constant along the ruling through p. Let «(s) be a geodesic of S which is
transversal to rulings, then the principal normal of ¥(s) at p = y(so) is parallel to
the normal of S at p. This means that the rectifying plane of v(s} at p = ~y(so)
is the tangent plane of S at p. Since the tangent plane at p is constant along the
ruling through p, S is an envelope of the family of rectifying planes of y(s). This
completes the proof. ]

We have the following classification of special developable surfaces under the con-
dition that the existence of a slant helix as a geodesic on the surface.

Theorem 4.2 Let S be a developable surface and v(s) a reqular curve on S with
non-vanishing curvature. Suppose that ~y(s) is a slant heliz of S and a geodesic
which s transversal to rulings. Then

(1} S is a part of a cylindrical surface if 7y is a cylindrical heliz.

(2) S is a part of a circular cone if v is not a cylindrical heliz and (7/x)"(s) = 0.
(3) S is a part of the tangent developable of a cylindrical heliz if v is not a cylindrical
heliz and (7/k)"(s) # 0.

Proof. Since ~ is a geodesic of S, S is the rectifying developable of ¥ by Proposition
4.1. Here, (s) is a slant helix, then

o)~ (i (2) )

is equal to a constant number ¢. By the proof of Proposition 3.5, we have D/(s) =
—o(s)n'(s) = —cn/(s), where D(s) is the unit Darboux vector and n(s) the unit
principal normal vector of «y(s). By definition, there exists a constant vector a such
that n'(s) - @ = 0. It follows from the relation D'(s) = —cn/(s) that the Darboux
vector also makes a constant angle with a fixed direction given by a.

If ¢ = 0, then (7/k)'(s) = 0. In this case, ¥(s) is a cylindrical helix. It also follows
that D/(s) = 0. This means that the Darboux vector D(s) has a constant direction.
Since the direction of rulings for the rectifying developable of «y(s) is given by the
direction of the Darboux vector D(s), S is a part of a cylindrical surface. This
completes the assertion (1).

On the other hand, if v(s) is not a cylindrical helix, then ¢ # 0. By Proposition
3.2, S is a part of a conical surface if (v/k)”(s) = 0. The direction of rulings of §
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is given by the Darboux vector D(s) which makes a constant angle with a fixed
direction. This means that the above conical surface is a circular conic.

For the proof of the assertion (3), we consider the locus of the singular points of
the rectifying developable of +, which is given by

1 -
o(s)="(s) WD(S),

where D(s) is the modified Darboux vector of 4(s). We can calculate that

/ (7/K)"(s)
T = s D O
then o(s) is a regular space curve. It also follows from the previous arguments
that the Darboux vector of ~(s) makes a constant angle with a fixed direction.
Here, the Darboux vector gives the direction of rulings of S. Since o(s) is the locus
of singular points of the rectifying developable of -+, S can be consider a part of
the tangent developable of o(s). This means that the tangent direction of o(s) is
parallel to the direction of the Darboux vector of v(s}. Hence, o (s) is a cylindrical
helix. This completes the proof. ]

The following proposition also holds as a corollary of Propositions 3.2 and 4.1.

Proposition 4.3 Let S be a developable surface and v(s) is a geodesic on S with
non-vanishing curvature which is transversal to rulings. Then S is a part of a
conical surface if and only if v(s) is a conical geodesic curve.

5 HKEXAMPLES

In this section we give an example of slant helices and draw their pictures by
using Mathematica. We can construct many examples of slant helices because the
evolute of a cylindrical helix is a slant helix. The following example is, however, the
example of a slant helix which is different from examples by such a construction.

Example 5.1 We consider a space curve defined by

+(0) = (_ a? — b2 <coS((a +b)6) N cos((a — b)0)> ’

2a (a +0)? (a—b)?
(a? — b?) [sin((a + b)8) sin((a — b)8) (a2 — b?)
T 9g < (a +b)? + (@ —b)? ) y— b cos(b0)> .

We can calculate the curvature and the torsion as follows:

k(6) = Va2 —b2cos(bf), 7(8) = a? — b?sin(bb).
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Therefore, we have

<£(0)>/ - cos;(bbe) 70, and (%w))” - 5823%9)— 70

Therefore «y(8) is a slant helix and it is not a cylindircal helix. By Theorem 4.2, it is a
geodesic of the tangent developable of a cylindrical helix. In fact, the corresponding
tangent developable is the rectifying developable of v(6) by Proposition 4.1. We
now draw the picture of v(8) (a = 2,b = 1) in Fig.2a. We also draw the rectifying
developable of v(8) in Fig.2b.

Fig.2a

By general theory of developable surface, a developable surface is the tangent de-
velopable of the singular locus. We can also draw the singular locus of the rectifying
developable of () in Fig.3a. Finally we draw both of v(#) and the singular locus
of its rectifying developable in Fig.3b.

0402

Fig.3a Fig.3b
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Since we can easily construct a conical surface from a sheet of paper, we can draw
conical geodesic curves. If we draw a line on the sheet of paper, the corresponding
curve on the conical surface is a conical geodesic curve.
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