Berg's Effect

Yoshikazu Giga and Piotr Rybka

Series #553. July 2002



#531
#532
#533

4534

#538
#539
#540
#541

HOKKAIDO UNIVERSITY
PREPRINT SERIES IN MATHEMATICS
T. Izawa and T. Suwa, Muitiplicity of funciions on singular varieiies, 21 pages. 2001.

T. Nakazi and T. Yamamoto, Two dimensional commutative Banach algebras and von Neumann inequal-
ity, 18 pages. 2001.

Y. Giga, N. Ishimura and Y. Kohsaka, Spiral solutions for a weakly anisotropic curvature flow equation,
16 pages. 2001.

Y. Giga and P. Rybka, Quasi-static evolution of 3-D crystals grown from supersaturated vapor, 16 pages.
2001.

Y. Tonegawa, Remarks on convergence of the Allen-Cahn equation, 18 pages. 2001.
T. Suwa, Characteristic classes of singular varieties, 26 pages. 2001.

J. Escher, Y. Giga and K. Ito, On a limiting motion and self-intersections for the intermediate surface

diffusion flow, 20 pages. 2001.

Y.-H. R. Tsai, Y. Giga and S. Osher, A level set approach for computing discontinuous solutions of a
class of Hamilton-Jacobi equations, 30 pages. 2001.

A. Yamagami, On Gouvéa’s conjecture in the unobstructed case, 19 pages. 2001.
A. Inoue, What does the partial autocorreiation function look like for large lags, 27 pages. 2001.

T. Nakazi and T. Yamamoto, Norm of a linear combination of two operators of a Hilbert space, 16 pages.
2001.

Y. Giga, On the two-dimensional nonstationary vorticity equations, 12 pages. 2001.
M. Jinzenji, Gauss-Manin system and the virtual structure constants, 25 pages. 2001.
H. Ishii and T.Mikami, Motion of a graph by R-curvature, 28 pages. 2001.

M. Jinzenji and T. Sasaki, ' = 4.supersymmetric Yang-Mills theory on orbifold-T%#/Z,: higher rank
case, 17 pages. 2001.

T. Nakazi, The Nevanlinna counting functions for Rudin’s orthogonal functions, 7 pages. 2001.
K. Sugano, On H-separable extensions of QF-3 rings, Tpages. 2001.

A. Arai, Non-relativistic limit of a Dirac-Maxwell operator in relativistic quantum electrodynamics,
27pages. 2001.

0. Sawada, On time-local solvability of the Navier-Stokes equations in Besov spaces, 30 pages. 2001.

C. M. Elliott, Y. Giga, and S. Goto, Dynamic boundary conditions for Hamilton-Jacobi equations, 27
pages. 2001.

Y. Nakano, Minimizing coherent risk measures of shortfall in discrete-time models with cone constraints,
22 pages. 2002.

K. tachizawa, A generalization of the Lieb-Thirring inequalities in low dimensions, 13 pages. 2002.
T. Nakazi, Absolute values and real parts for functions in the Smirnov class, 8 pages. 2002.

T. Nakazi and T. Watanabe, Properties of a Rubin’s orthogonal function which is a linear combination
of two inner functions, 9 pages. 2002.

T. Ohtsuka, A level set method for spiral crystal growth, 24 pages. 2002.

M.-H. Giga and Y. Giga, Minimal vertical singular diffusion preventing overturning for the Burgers
equation, 18 pages. 2002.



Berg’s Effect

Yoshikazu Giga
Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan

and
Piotr Rybka
Institute of Applied Mathematics and Mechanics, Warsaw University
ul. Banacha 2, 07-097 Warsaw, Poland

June 14, 2002

Abstract. A Neumann problem for the Laplace equation is considered outside a three
dimensional straight cylinder. The value of a solution ¢ at space infinity is prescribed. The
Neumann data do/0n (n is the outer normal of the cylinder) is assumed to be independent
of the spatial variables on the top and the bottom and also on the lateral part of the
boundary of the cylinder. The behavior of the value of ¢ on the boundary is studied. In
particular, it is shown that ¢ is an increasing function of the distance from the center of
the top (respectively, the bottom) if do/On > 0 on the lateral part and do/Jdn is the same
constant on the top and (respectively, the bottom). An analogous statement is shown for
o on the lateral part.

In the theory of crystal growth o is interpreted as a supersaturation and cylinder is
a crystal. The value do/0n is the growth speed. The main contribution of this paper is
considered as the first rigorous proof of Berg’s effect when the crystal shape is a cylinder.

1. Introduction and presentation of the problem

In the theory of crystal growth the behavior of the supersaturation (which we will denote
by o) on the crystal surface plays an important role in determining the shape of a growing
crystals. It has been observed that in certain experimental setting the supersaturation
exhibits a kind of regular behavior, known as Berg’s effect, [B]. A simple way of explaining
this phenomenon follows. Let us suppose that we consider an evolving crystal of the shape
of a straight cylinder. Its facets (i.e. the top, the bottom and the lateral surface) move
with velocity which is constant on each facet. The signs of these constants are chosen so
that the crystal is growing. Then the supersaturation on the top (respectively, the bottom)
facet is an increasing function of the distance from the center of the top (respectively, the
bottom). An analogous statement is valid for the lateral part of the boundary of the
evolving crystal.

Our goal is to present a rigorous proof for this phenomenon. We do this in section 3. As
we shall explain, our proof is independent of the evolution law. Strictly speaking, at a fixed
instance of time evolution, the supersaturation ¢ is a solution to the Neumann problem
in the complement of the cylinder with a prescribed value at the space infinity. We study
the behavior of ¢ when the boundary data are piecewise constant. The Neumann data are
considered as the growth velocity of the facets. In our proof we are forced to assume that
the supersaturation is symmetric with respect to the symmetry plane perpendicular to the
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rotation axis of the cylinder. We find this restriction peculiar. Without this assumption our
proof breaks down, but we do not know if this is a genuine effect or a technical deficiency.

Until now, the only known rigorous justification of Berg’s effect have been obtained
for evolving crystal whose evolution laws permitted explicit solutions, for example when
the crystal shape is a regular polygon so that supersaturation is given by hypergeometric
functions (see [Se]). However, here is a weaker version saying that the supersaturation at
center of a facet is the smallest and that its value at the edge of the facet is the largest.
This version is well-known in the physics literature (see e.g. [Ne, §3 eq.(6)]).

We mention that the Berg’s effect plays a key role in explaining the morphological
instability in the theory of crystal growth (e.g. [YK]).

We now present the mathematical background of our problem. Namely, we consider
the following evolution law for a crystal €2(¢) and the supersaturation o with a specific
value at infinity,

Ao =0 inIR*\ Q(¢), | l|im o(x) =0, (1.1)
Oo

- V' on 0Q(t), (1.2)
—o=—ydivE — BV on 0Q(t), (1.3)

where n is the outer unit normal to (¢). In our notation V' is the normal velocity of the
surface in the direction of n; ¢ is a Cahn-Hoffman vector, > 0 is the kinetic coefficient
and v > 0 is a constant. The theoretical background necessary to derive the above system
is provided by Seeger, see [Se]. A more detailed explanation is provided in [GR]. Before
proceeding let us comment on the Cahn-Hoffman vector £. For smooth surfaces S and a
smooth energy density function 7 : IR* — IR, which is 1-homogeneous, we have

£(z) = Vyo(n()),

which i1s a well-defined quantity. However, for energy density functions ~y which are only
Lipschitz continuous and surfaces S with corners, some care is necessary while defining £,
(see [GPR] and [GR] for related studies). Nonetheless, we always assume that g is convex
so that the equation (1.3) is at least degenerate parabolic for the evolution of 9§(¢).

For a convex function 7 its subdifferential 0vg is a well-defined nonempty convex set.
We require that

¢(x) € Dyo(n(e)).

It seems that there is a lot of freedom to choose £. However, one can see in related works,
[GG], [GGK], it is expected that the value div £ is unique and V in (1.3) is constant on
each facet, provided that o is nearly constant. In this situation §(¢) stays as a cylinder,
le.

Q(t) ={(z1,29,23) € R? : af + 2k < R*(t), |vs| < L(t)}, (1.4)

if 2(0) is a cylinder and ¢ is small. If o is very large at the edge of the facet compared with
the value at the center, then one may expect that V' is no longer constant on facets and
the crystal ceases to be a cylinder. We shall discuss this point in a forthcoming paper.
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A cylindrical shape is important in studying the ice crystal growth (see, e.g. [YSF]).
It is also considered as a simplification of a hexagonal prism. This sort of assumptions is
usually made by physicists in order to facilitate their calculations, see e.g. [Ne, §3].

Here we do not pay any particular attention to the specific form of the law (1.3),
ie. we just assume v, § > 0. We only consider (¢) being a cylinder of the form (1.4).
Nonetheless we need to assume that o(¢) is well-defined for each ¢+ > 0 as a solution to
(1.1-2) (1.3 is dropped) for V being constant on each S;, ¢ = L, T, B, i.e.

Vl0s, = Vi = const.

Here,

St ={(x1,22,23) € Qt) : 2] + 2} = R* (1)},
St ={(x1,29,23) € Qt): a3 =L(t)}, Sp={(x1,29,23) € Qt) : x5 = —L(t)}.

The facets Sp, Sp and S are called respectively: the top, the bottom and the lateral
part. In this paper we do not study the existence results. However, sometimes existence
theorems for (1.1)—(1.3) are available, e.g. for v = 1, 8 > 0, and (1.3) replaced by its
average, 1.e.

—/ odS=T;—-p3;V;|S;|, 1=T,B,L,
55
see [GR]. We expect that this solution is actually a solution of (1.1)—(1.3) at least for a
short time if the size of crystal is small for some nonsmooth choice of v5. We shall discuss
this point in our forthcoming paper. We note that for vy which is not C'' the meaning of
(1.3) is not at all clear, see [GG], [GGK].

In our present analysis the law (1.3) shall play no role. We fix ¢ and study the
Neumann problem (1.1)-(1.2) in the set IR* \ Q(¢) (which we sometimes denote by Q°,
especially in Section 3). Our goal is to prove do/Jr > 0 on the top St if Vi = Vi and
Vi, > 0 and 0o /0x3 > 0 on S N {xz > 0} if Vo = Vi > 0. The main idea is to apply the
maximum principle for do /0r and 0o /Jxs. For example 0o /Jxs is harmonic in ¢ and it
is zero on {x3 = 0}. To carry out this idea we invoke the condition Vpr = Vg, so that we
control the behavior of Vo at space infinity. Also we use continuity of Vo near the edge
of the cylinder. This regularity is established by adjusting the result of Grisvard [Gvl,
2] and estimating difference quotients of o. The regularity is discussed in Section 2. The
main results (Berg’s effect) as well as its proof based on the regularity is given in Section
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2. Auxiliary regularity results

We want to establish higher regularity up to the boundary of solutions to

Au=g inR*\Q
(2.1)

g—z:() on 0f)°

where ¢ is smooth, v is the outer normal to IR® \ ©, i.e. inner normal to Q. The set Q was
defined previously in (1.4) with ¢ dependence dropped.

The higher regularity up to the boundary is in fact true away from edges of 2. Thus
multiplication of (2.1) by a suitable test function leads us to a problem

Au=¢g inD
(2.2)

g—z:() on 0D

where D is a bounded axisymmetric domain and its rough shape is (B(0, Royt )\ B(0, Rip)) X
[—A, A]\Q. We assume that 0 < Ry, < R < Royt, i.e. D does not contain the axis of
revolution {r = 0}, moreover A > 0 is large, i.e A > L. A part of the boundary of D,
namely 0D \ 012 is assumed to be smooth and the function ¢ in (2.1) is suitably redefined.

Due to the assumed axial symmetry of D and g we may reduce the number of variables

to two, i.e. r = y/a? 4 23 and x3. We shall define the reduced sets in the following way,

QZ{(T,J}g)ERZ: ($1,$2,$3)Eﬂandr: x%—|—g€}7

~

D = {(r,z3) € IR? : (v1,29,23) € D and r = :1;% —|—:ch}7

(see fig. 1 for the picture of D and Q) The above choice of D and especially the right
angles at the corners will help performing the analysis of difference quotients below.

D>
0>

Fig. 1. The reduced domains.

Lemma 1. Let us suppose that D is as above. We assume that g € C§°(D) and g is axially
symmetric Le. g(z1,22,23) = g(+/2? + 22, 23) and u is a unique variational solution to

(2.2), i.e. w € HY(D), and u(xy,x2,23) = u(/2? + 23, 23). Then

0 ou 1.p
—u, — P for all
axsu, 6TEW or all p <6



i.e. they are continuous.

Proof. The first step in our analysis is writing (2.2) in the cylindrical coordinates (r, x3),
thus reducing the dimension of the problem to two:

1 _ : -
Upp + P Ur + Upges =9 1D D

(2.3)

g—z:() on D.

This is permitted due to the assumed symmetry of g. A weak form of (2.3) which takes
into account that w,(0,x3) =0 is

1 .
/ (=VauVap + —u,p — gp)drdes =0 for all ¢ € H'(D), (2.4)
b r

where V, denotes the gradient in two variables (r, x3).
Before we recall the summation by parts formula we make some additional remarks.

We define an auxiliary family of sets @y, h € IR, by

[R,R+ W] x [-L,L] h>0

Qn =
[R_|h|7R]X[_L7L] h<07

see fig. 2 below).
g

X
3 Q Ih|
)
%) 7N
N
7N r

A
Ih|

) Fig. 2. Sets Q).
Since g € C§°(D) we extend g to DUQ_g/3 by zero. We assume in the formula below

that w € HH"S(Q) for some s > 0 and w is defined on D U Q_r/2- We set Alw(z) =
w, when e, = (1,0). We recall

/DwA_hv dz = /Dw(x)”(“' - hi}z —vl@) g,

Q

:/D%dwr_/ﬁ_m %w(:z;+her)v(:1;)drd:1:3 (2.5)

1
= —/ Ahw(x)v(x)drdxg + e/ —w(x + e, h)v(x)degdr
D Qn h
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where € = —1 or € = +1 depending upon the sign of h, i.e. € = —signh. Before we make
an application of (2.5) to (2.4) we assume that the test function appearing in (2.4) belongs
not only to H!(D) but also to

H'**(D)n{p e H'(D): ¢ s, =0},

for some s > % We will extend the elements of the above space by 0 to DU Q_Rry2- Of
course such a v will not be in H! due to a possible jump at 8D N 0Q_pg/y. That is why
we say that the domain D U (Q_Rr/2 has a cut. We extend also the weak solution to the

cut domain. But first we establish that u(r, 23) solving (2.4) is in H'**(D). We note that
% is a bounded function in a neighborhood of the point p = (R, L), say in a ball B(p,d).
Moreover, u, € L?(B(p,§)) as well as %ur € L%(B(p,$§)). Thus by [Gv2, Corollary 2.4.4]

it follows that u € Hl"'"s(f)), 5 < % because u is a weak solution to a Neumann problem
1
Ah =g+ s

where the RHS is in L?(B(p,d)). The exponent s is related to the measure w = 37/2 of
the angle at the corner of D, namely s < 7 /w, (see [Gv2, §2.3]).

Now, let us set uy = u [[roc)x[-1,1]- We extend wu; in HY([R,0) x [-L,L] in a
standard way to a function E(uy) in H'*(Q_g/y U[R,00) x [=L, L]). Finally, we set

u(x), if €D
E(ui)(z), if 2 € Q_gys.

Of course there is no ground to claim that @ € H*! (15 UQ_gr/2). Now, we are ready to
apply (2.5) to (2.4). It is apparent from (2.5) that we have to use an extention of u to @y,
if h < 0. We will use @ for this purpose. In the foregoing calculations v is a test function
from the function space which we have described above. We insert ¢ = A~"v into (2.4)
and we apply (2.5) to the result

0= / — VA" Vov + < Vau(x + her)Vav(x)+
D h Qn

1
—I—/ —urA_hv+/ Ahgv—i/ g(x + hey)v(x)
D D h Qn
=L+ 1+ 13+ 14+ Is. (2.6)

Since suppg N D = () we immediately see that I5 vanishes for sufficiently small |h|. We
notice that for h < 0, v |g,= 0, then I, = 0 for all A < 0 which are sufficiently small. For
this reason we shall restrict our attention only to h < 0. To stress this we shall write

Ay



when h is allowed only to be negative.

We add f[) A" yv to both sides of (2.6). We note that

/VU-VUJ—I—/ vew =: (v,w)
D D

is the inner product in H! (B) Thus (2.6) yields

<U,A’iu>:/—uA v—l—/Ahgv

It is quite obvious that the RHS converges, as h — 0, to

0" u

Thus we conclude that A"« has a weak limit in H', which is the one-sided derivative 5

In particular,

a_
ar
Since we do not allow kA > 0, we are not able at this stage to conclude that % € H! (B)

At this point, we refer to the general structure of the solutions to

Ay =FinD

e HY(D).

% —0on dD.

We wish to recall two facts:

(i) if F € L?, then ¢ € Hl"'"s(f)), for any s < 2/3, because the inner angle of D at
the corner is 37” This is the conclusion of [Gv2, Corollary 2.4.4]

(ii) if F € LP, where p > 2, then

77Z) = ¢0 + Z Si7
el
where g € Wf’p is the regular part of the solution and S;’s are singular (ie. S; €
HY(D)\ W2?(D), see [Gvl, Lemma 4.4.3.5]), I is the set of corners of dD (see [Gv1,
Theorem 4.4.4.13]). In our case above we have ¢» = u, F' = %ur + ¢ and ug is the regular

part of u. By (i) u, € HS(D), for any s < 2/3. It follows from the embedding theorem (see
[Gv2, Theorem 1.2.10 and Theorem 1.2.14]) that u, € LP for any p < 6 i.e. ug € W22, for
p < 6.

We showed that

0~ u

or

= 5o + - Z S; € H(

el
This means that %—;Si € H' and due to the structure of S; explained above this implies
that S; =0, ¢ € I. It follows that u € Wz’p(f)), p < 6 and Vu € % for some a > 0.

Let us finally note that u € WZ’p(B) implies that u(r(z1,7q),x3) is also in W2?(D).
This finishes the proof of Lemma 1. O



3. Berg’s Effect
Once we establish higher regularity of our solutions (i.e. o € W2P(IR*\ Q)), p < 6, we

are in a position to show the so-called Berg’s effect which is Wéi)lc—known in the physics
community (see [B], [Se]) but lacked rigorous proof in a general setting, see however [Ne,
§3 eq. (6)] for related results.

It states that the supersaturation attains its minimum in an interior point on a facet
and i1t monotonically increases towards corners. Surprisingly we can show this only under

our symmetry assumptions. The proof breaks down without them.

Theorem (Berg’s effect) Suppose that o is a unique solution to
Aoc=0 inQ° o(o0)=0>

92 =V; onS;, 1=L,T,B,

where 0 = o(r,x3), o(r,—x3) = o(r,xs), n is the outer normal to Q and V;, i = L,T,B
are constants, moreover Vo = Vp.

(a) If Vi > 0, thenaa—;>0forx3>0andaa—;<0forx3<OOnSL.
(b) If Vi, > 0, then 92 > 0 on Sp U Sp.

Remarks.
(1) A similar statement holds if we reverse the inequality signs.
(2) Once we established regularity of Vo, it is continuous up to the boundary of Q°.

The proof of this theorem requires establishing behavior of Vo at infinity.

Lemma 2. Let us suppose that o is regular at infinity (see [F, Chapter 2, §H]) and
o= U(rvx?))v 0'(7“, —1}3) = 0'(7“,1‘3)7 then

Vo =0(p™t) when p? = r* + 23 — oo.

Proof. Due to our assumptions o is regular at oo meaning that the Kelvin transform of

o (see [F, Chapter 2, §H]), which is defined by

sy — Lo Y
oW =1 ye

is smooth at y = 0 (see [F, Theorem 2.69]). Moreover, by (see [F, Theorem 2.69])
o(z) — o> =0(p7h).

However, to make our notation simpler, we will assume ¢ = 0. It is also well-known that
the radial derivative

0 0 x x
— 0= ——¢€, €,= ——=—
Jp de, © Y



goes to zero when p — oo, namely a%a = O(p~?), see [F,Theorem 2.73].
We note that the symmetry relation for o imply the following relations for &

~(_y170 5) = &(ylvovo)
(0 Ya, ) = &(07y270)
(0 0 ys) &(anays)-
It follows that
V,5(0,0,0) =0

and Vyo(y) — 0 or y — 0. We calculate V& in terms of o

N Yy Yy 2 do vy 1 Yy
Vyoly) =— o — —  — + —=Vo(—
W) = ) T E R T T e e
we conclude that
V.o =0(p™). O

Remark. The symmetry of ¢ implying V,6(0) = 0 was crucial for concluding |V 0| — 0,
when p — co. It is not clear what happens if the symmetry does not hold.

Proof of Theorem 1. Let us introduce three cut-off functions n; € C§°(IR?), 1 > n; > 0,
i € I. We require that ny /<y =0 = 77L|{l,§+,,2>p2} for some ¢ > 0 and sufficiently large
p, and np, restricted to the set {r € [R — e, R +¢]} N {|e3] < £} is 1. We need that

( ) = 0 if:z;3§00rr2+:1;§2p2
AT )= if 3 € [L—¢,L+c]landr <f

finally np(r,x3) = nr(r,—x3). We also define

f_L(rv 1’3)

fT(Tal’?,) = —nresy, f_B(Tal'?,) = —NBZ3.

—np(r,z3)Rlnr

Obviously fi € C* and if v is the inner normal to 2, then

aﬁ_ 1 onbS;,
oy 10 onS; jAi

Subsequently, we define

u=oc— Y Vif.

i€{L,B,T}

We can now see that u satisfies the assumptions of Lemma 1. Thus u € Wz’p(f)), p < 6,
this implies that u € WZ’p(Q ), p < 6 as well as Vu € C%* up to the boundary.

loc
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(a) Let set w = 88—12, then w € C°(Q°) due to the symmetry of o

0o

by assumption w > 0 on St and w < 0 on Sp. We claim w(R, x3) > 0 for all x5 > 0 (resp.
w(R,x3) < 0 for x3 < 0). Let us suppose otherwise, then due to continuity of w

in w(R,()=w(R 0.
min w(R, () = w(lR, z) <

Since w(R,0) =0, w(R,L) > 0 we conclude that zg € (0, L). Let us denote by Q¢ the set
{pe Q°:dist(p,((STUSE)NSL)U{(x1,22,23) € Q°: 21 = 25 = 0}) > €},
thus by standard regularity theory we conclude that
o € C™(Qf) and w € C=(QF).

At this point we recall that due to Lemma 1 w is in fact a harmonic function continuous
up to the boundary of €2¢. Thus, if we set

Ty = [(9B(0, p) U 892) 0 {irg > 0}]U [{5 = 0} N B(0,p) 1 0]
for some large p, then we see

inf w = minw = min{min w, min , min w}.
B(0,p)n02eN{x3>0} Tp 09¢ 0B(0,p) {v3=0}

But w(r(xy,22),0) = 0, and we showed the Vo — 0 as p — oc.
We conclude that for sufficiently large p

inf w = min w.
B(0,p)NQen{zxs >0} oQen{zs>0}

We may pass to the limit with p — oo, then with € — 0,

inf  w= min w=w(R,z)
Qcﬂ{x3>0} anm{l’3>0}

Now, Hopt’s maximum principle (see e.g. [PW, Chapter 2, §3, Theorem 7]) implies that

but due to boundary condition on o, g—‘; = const. we have =0 on Sy, thus we have

o
o ] Ordxg
reached a contradiction and our claim follows.
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(b) We set w = g—‘;, we recall that for axis symmetric o the Laplace equation for o takes

the form o2 o2 5
o 1
il - : 0O°
Oor? 7t 5.2 a + r 67“ =0 H ’

hence after differentiation of this equation with respect to r, we see that g—‘;

L ST
62w+a2 r2w+rar_

and the symmetry implies w(0,23) = 0. We claim that w > 0 on St U Sp. Otherwise

there would exist a point (rg, L) such that

L)< 0 and L) <0,
w(rg, L) an pé%nR)w(p )

By maximum principle (see e.g. [PW, Chapter 2, §3, Theorem 6]) we have

mf w= min w <0
QenB(0,p) aNezUaB(0,p)

with the same definition of ¢

€

mfw=minw <0
Q¢ o0e

€

after passing to the limit with e — 0. We obtain

infw = minw
Qe o0e

since w |g, > 0, the minimum of w is attained on St U Sp at (pg, L).
By Hopt’s maximum principle, (see [PW, Chapter 2, §3, Theorem 7)),

()> jz —__E%g
8uu}__ 8x3
but
ow 0%c

= — const. =0

%  OwsOr  Or

which yields a contradiction and our claim follows. Our theorem is proven.

as before. Due to Lemma 2, w — 0 as p — 0o, then we see

O
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