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ABSTRACT. We give an estimate for the moments of the negative eigenvalues of elliptic
operators on R™ in low dimensions. The estimate is a generalization of the Lieb-Thirring
inequalities in one or two dimensions. We use the p-transform decomposition of Frazier

and Jawerth.
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1 Introduction
For a real-valued measurable function V on R™ we set
Vi(z) = max(V(z),0) and V_(z)=max(-V(z),0).

The Lieb-Thirring inequalities state
(1) ST < cn,,/ VY g
1

for suitable v > 0, where A\; < Ay < --- are the negative eigenvalues of the Schrodinger
operator —~A +V on L2(R™). The inequality (1) holds if and only if

1
725 for n=1,
v>0 for n=2,
v>0 for n>3.



The case v > 1/2,n = 1,7 > 0,n > 2 was proved by Lieb and Thirring([§]).
They applied the inequality (1) to the problem of the stability of matter. The case
v = 1/2,n = 1 was proved by Weidl([18]). The case v = 0,n > 3 was established by
Cwikel([1}), Lieb(]7]) and Rozenbljum([12],{13]). Some generalizations and variations of
the Lieb-Thirring inequalities are known([2],{6],[9],{14],[15]). In particular Egorov and
Kondrat’ev([2]) studied the estimate for Lo+ V where Lg is an elliptic operator of order
2m.

In the present paper we give a generalization of a result by Egorov and Kondrat’ev’s
for certain degenerate elliptic partial differential operator in low dimension, for which
the rate of degeneracy is regulated by the weight w € Ay. A generalization of the
higer dimensional cases is given in [17]. In the proof of our main theorem we use the
-transform of Frazier-Jawerth(([3]).

First we recall the definition of A,-weights. By a cube in R™ we mean a cube which
sides are parallel to coordinate axes. A locally integrable and nonnegative function w

on R"™ is an A,-weight for some p € (1, 00) if there exists a positive constant C such

that
ﬁ/Qw(x) dz (ﬁ/@w(x)_l/(pul)dx)pﬁl <C

for all cubes Q C R™.
We say that w is an Aj-weight if there exists a positive constant C such that

1
@/Qw(y) dy < Cw(x) a.ex € Q

for all cubes Q C R™. We write A, for the class of Ap-weights. It turns out that
Ay C Ay forp> 1.

Next we consider an elliptic partial differential operator of order 2m. For m € N
and f € CP(R™) let

Lof() = Y (~1)"D° (aap(x)D’f(z)),

la]=]8]=m

where

olel

= gpmngg o7 @ (enan) € (NUHO,

DQ

aap € Higo(R™), and  aap = @

In the above definition the space H" (R™) denotes the set of all f € L2 (R") such that

loc
Def ¢ L2 (R™) for all || < m.

loc



Let

a9)= [ Y eas@D? 1) D)
K al=lpl=m
for f,g € C§°(R™) and || - || be the norm of L?(R").
For v € Z and k € Z™ the cube Q defined by
Q={(z1,...,zn) : ki <z; < k;+1,i=1,... ,n}

is called a dyadic cube in R™. Let Q be the set of all dyadic cubes in R™. For any Q € Q
there exists a unique @’ € Q such that Q@ C Q" and the side-length of Q' is double of
that of (). We call )’ the parent of Q.

We have the following theorem.

Theorem 1.1. Let n < 2m,q > n/(2m),v> 0 and ¢+ v > 1. We assume that there

exists a w € Ay such that

2) (Lo, £) 2 [ wie) 3 1D%7(@) P de

™
lo|=m

for all f € C§°(R™) and

(3) / wd:c§22m/wda:
! Q

for all Q € Q and its parent Q'.
For a u € Agyy we suppose that

1/q
(4) |Q#m/n+1 < c1/ wdz </ udx)
Q Q@

for all cubes Q@ C R™, where ¢y is a positive constant not depending on Q. For a real
valued function V on R™ we assume that Vi € L (R") and

(5) / VIt dz < oo,
Let H be the completion of C§°(R™) with respect to the norm

= tals.0)+ | VilrPds+ 117

Then we have the following.
(i) There ezists a unique self-adjoint operator L in L*(R™) with domain D C H such

that

(Lf.g) = a(f.9) + / Vigda

n

3



forall f €D and g € H.
(11) The negative spectrum of L is discrete.

(111) There exists a positive constant ¢ such that

(6) Z A7 < C/R" VIt dz,

where {\;} is the set of all negative eigenvalues of L counting multiplicity and ¢ does

not depend on V.

The inequality (6) is a generalization of the Lieb-Thirring inequality for the case
v>1/2,n=1and v > 0,n = 2. Our result does not include the case v = 1/2,n = 1.
The case w = 1 and u(z) = |z — 20|*™¥~" is proved by Egorov and Kondrat’ev([2]). In
[9] Netrusov and Weidl proved (6) for w = u = 1, = n/(2m) < 1,y = 1~ n/(2m).
Our result does not include their result.

We remark that the condition (4) is trivial by Holder’s inequality when g = n/(2m)
and u = w™ (™), We also remark that for a fixed n the condition (3) is satisfied for
sufficiently large m because w satisfies the doubling condition, that is, (iv) of Proposi-

tion 2.1.

2 Preliminaries

First we recall some properties of A,-weights which will be used in the following sections.

Let M be the Hardy-Littlewood maximal operator, that is,

where the supremum is taken over all cubes ) which contain x.
Proposition 2.1.

(i) Let 1 < p < oo and w be a non-negative locally integrable function on R™. Then
M is bounded on LP(w) if and only if w € Ap.

(i) Let 1 <p < oo andw € Ay. Then there exists a q € (1,p) such that w € A,.

(iii) Let 0 <1 <1 and f be a locally integrable function on R™ such that M(f)(z) <
oo a.e.. Then (M(f))" € A;.

(w) Let 1 <p < oo and w € A,. Then there exists a positive constant ¢ such that

/ wd:cgc/wdx
2Q Q

for all cubes @@ € R™, where 2Q) denotes the double of ().



The proofs of these facts are in [4, Chapter IV] or [16, Chapter V]. Property (iv) is
called the doubling property of A,-weights.
Let ¢ be a function which satisfies the following conditions.

(A1) € S(RM).
(A2) supp@ C {€ € R : L < J¢| < 2}
(A3) [p(©)] = > 0if 2 < J¢| < 3.

(A4) > " |p(27€)[* =1 for all € £ 0.

veZ
For a dyadic cube @ such that

Q:{(Il,...,mn) : ki§2”xi<ki+l, i:1,...,n}.
for v € Z and k € Z"™, we set

polr) = 2"2p(2Vz — k).

3 Proof of Theorem 1.1

By (ii) of Proposition 2.1 there exists a constant s such that 1 < s < ¢ + v and
U € Agyqy)/s- It turns out that V. € L (R"™)(c.f. 17, Section 3]).

Let v(z) = (M(V®)(z))"/*. We may assume that v(z) > 0 for all z € R™. By the
properties of the maximal operator we have V_(z) < v(z) a.e.. By (i) of Proposition 2.1

we get,

/ v T dr = MV aN/sy dr < ¢ / VI dr < co.
n R'n.

n

Furthermore v is an Aj-weight by (iii) of Proposition 2.1.

We have the following lemmas.

Lemma 3.1. There ezxists a positive constant o such that

a Y QMM (f, ¢0)] |Q|/wdrc</ S DS b wdz

QEQ la)=m
for all f € CP(R™).

Lemma 3.2. There exist positive constants 8 and 3’ such that

! ’ v ax QUI i vaxr
73 el [ vdes [ v <8 3 val iy [ v

QeQ Qe
for all f € CP(R™).



The proof of Lemma 3.1 is in {17, Proposition 2.2 and Lemma 3.2]. Lemma 3.2 is
proved in [3].

Now we set
I={QeQ: B/Qv(x) dz > a[Q[_2m/”/Qw(I) dz},

where o and 3 are constants in Lemmas 3.1 and 3.2. We remark that 7 is not empty.

In fact, if 7 is empty, then we have

ﬁ/Qv(w) dz < a;Qr?m/"/Qw(x) dz

for all Q € Q. Let (Jp € Q and Qg C (J1 C @2 C --- be the infinite sequence of dyadic
cubes such that ;41 is the parent of @; for all i = 1,2,.... By (3) we have

Qiga| 27 /Q (@) ds < Qi / w(z) d

i

for all 7. Hence we have
[3/ v(z)dr < a|Q0}_2m/n/ w(z) dz
- Qz 0
for all 4. This is a contradiction because

lim v(z)dr = /nv(x) dzr = oo

e

by the doubling property of v (c.f.[16, p.39 or p.222]). Therefore 7 is not empty.
Let Q € 7 and Q' be the parent of (). Then we have

a\Q/’—2m/n /Qlw(x) dr < 05|Q|_2m/n/

w(z) de < ﬁ/ v(z)de < G | v(z)dz.
Q Q Q

Hence we have ' € Z. This fact means that Z is an infinite set.

Lemma 3.3. There exists a ¢ > 0 such that

1 Y
Z <—/ vd:v) gc/ Iy dz
2 \1al Jq .

The proof of this lemma will be given later.
For f € C3°(R™) we have

[ievear< [igtvas<p 3 1, so@r?,—j?—l/@vdx,

Qe



where we used Lemma 3.2. The last quantity is bounded by

2_1‘ vaxr
831 p0)l? |@| vdz+ 83" 1(f,00) [Q|/ d

QeT Q&L
< 8K S |(f 90l +a 31 va)FIQI Qm/"]Q,/wdx
Q€T Q€T
< cK|f|3 + D% Y w e
: /R ra%:m

where

K = max — /wa
Qez [Q]

and we used Lemma 3.1. We remark that K is finite by Lemma 3.3.
By the condition (2) we have

™ L UPvede< [ ifiods < cRUFIB+ (Lor. ).
Hence we have
a(f, f) +/RnV|f[2da: > —cK||f]||2
for all f € C(R™). Thercfore
b(f,g) =alf g)+ /an‘g‘da;

is a lower semi-bounded quadratic form on H.

By the assumption of the coefficients of Ly and V4 € L2 (R") we can show that
b(f, 9) is a closed form on H(c.f. [17]). Since b(f, g) is a closed and lower semi-bounded
quadratic form on H, there exists a unique self-adjoint operator L in L?(R"™) with

domain D C H such that
(Lf,9) = a(f, 9) + /R Vfgds

for all f € D and g € H([10, Theorem VIII.15]).

We set
A= inf  (Lf, f)
feD|fll=1
and
Ak = sup inf (Lf, f)
D =1,
m""’d)’“a‘z(qug)ffoj”fl -1

for k > 2.

For each fixed k € N either:



(i) there are k eigenvalues counting multiplicity below the infimum of the essential

spectrum of L, and Ag is the kth eigenvalue of L;

or

(if) Ag is the infumum of the essential spectrum of L and Ay, = g1 = Apyo2 = - - - and

there are at most k — 1 eigenvalues counting multiplicity below A.

The proof of this fact is in [11, Theorem XIII.1].

We have the following lemma.

Lemma 3.4. Let A >0 and

Ta={QeT: a|Q|*1*2m/n/ wdz — ﬁ]Q|1/ vdz < —A}.
@ Q

Then Ly is a finite set.

Proof. Let ) € T4. Then we have

Agﬂ vdx.

@l Jg

By Lemma 3.3 we conclude that 74 is a finite set. O

Let {4132 be the non-decreasing rearrangement of

{a!Q!lQm/n/dex—ﬁ‘Q|l/de:C} .
QeT

Then
p1 S g < e
and
i =0
by Lemma 3.4.
When

e = alQ 0 [ s - 0101 [ vas,
Q Q

we define 1, = ¢q.



By (7) and the density argument we have / If|2vdz < oo for all f € D and the

R
inequalities in Lemmas 3.1 and 3.2 holds for f € D. Hence we have

(Lf, f) = alf, f) + /R VIfPde

o r)2 2
> [ S 0 pwdo— [ Vs as

laj=m

> /R n Emimﬂ? wds - /R fPods
>3 ool {aig) 2mint | was—pia” /Q vda}

for all f € D. Therefore we have

Ak 2 inf — (Lf, f)
feD |l fll=t1,
(fib:i)=0,4=1,... k—1

oo
> inf s 2,
> ko APy
(fips)=0=1,... k—1J=1

o0
>pe o sup IR > o,
S S
(f,’l/)z'):oﬂ:l)__,’kﬁl
where we used the fact ux < 0 and Zj I(f, ?ﬁj)lQ < C”fHQ

Since klim i = 0, the negative spectrum of L is discrete. Furthermore we have
—00

Do " <ed |l
k=1

kA <0
.
— -1 dr — —-1-2m/n d >
cé(mczr v i@ [ e
< cz (ﬁ[Q]_l/ vdx)v < c/ v Ty dr < c/ VI de,
Q n n

QeT

where we used Lemma 3.3. This ends the proof of Theorem 1.1.

Proof of Lemma 3.3
For € 7 we have

a|Q[2m/"/Qw(x) dm<[3/@v(z) dz

1/(g+7) (g+v—1)/(g+7)
<pg (/ vdt 7y, d:c) {/ y~ Va1 d:c} )
Q Q



Since u € Agy, means

L[ e {ﬁ [ ity dx}““ <.
Q Q

the last term is bounded by

1/(a+) ~1/(g+7)
(8) c </ v‘””uda:) Q] (/ udw)
Q Q
1/(g+7) v/{ala+7)}—1/q
“(fprres) ([ )
Q Q
1/(g+7)
<c (/ vty das) Q| </
Q Q

where we used (4). Therefore we have

/9
O<c§/vq+7uda¢ </udm> .
Q@ Q

By this inequality we conclude that if @Q; D Qg D --- are cubes in Z, then this

sequence must have a minimal element with respect to the inclusion relation. Let M

dz

I

dz

e

v/{q(g+)}
) @it [ wa,
Q

be the set of all such minimal cubes in 7.

Lemma 3.5. Let Q € Q and Q1,Q2,...,Qan be the half-size dyadic sub-cubes of Q.

Then we have

Proof. We have

271
1 / _ 1

— [ vdx =277 vdz.
@l Jo 2101 Jo.

If 0 < v < 1, then we can get (9) easily. If v > 1, then (9) is a consequence of the

convexity of the function y = 27,z > 0. O

Let NV be the set of all @ € Q such that Q ¢ 7 and its parent Q' € Z\ M. Then

using Lemma 3.5 repeatedly we have

> (arfyre)

QeT
1 T . 1 T .
< Z <_/de> 22—knrn1n{l,7} + Z <~—|/Ud1> Z2~knm1n{1,7}
QeM @l Jq k=0 QEN @l Jo k=1
o) o (o)
<c — vdr | +c¢ *w/v :r) .
Gem 1Ql Jo Sav \@l g

10



Let @ € Z. Then by (4) and (8) we get

1 v v/(g+7) =v/(g+7)
(—/ vdx) <c (/ Uq+7ud:c> (/ ud.r)
Q1 Jo ) 0
v/(a+7) gv/(g+7)
<c (/ vty da:) <|Q|‘2m/"“1/ wdm)
Q Q
v/(g+7) av/(g+7)
<c </ vty dx> <|Q|"1/ vdz) .
Q Q

Therefore we have
1 Y
(— / vdx) Sc/ vIt 7y dz.
|Q| Jo Q

Similarly we have this inequality for @ € A because the parent Q' of @) belongs to Z

and the inequality
|Q;2m/"—1/ wdz < c’|Q]"1/ vdz
Q Q

holds by the doubling property of v.

Therefore we conclude

L v ! 'U+ 'U+
Z(‘Q’/Q da:) ch/Q Q7udx+cZ/Q Ty dx

QEeT QeM QeN
< c/ vy de

where we used the fact that the cubes in MUN are mutually disjoint. Hence Lemma 3.3

is proved.
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