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Abstract

In this paper, we discuss some applications of Givental’s differential equations to enumer-
ative problems on rational curves in projective hypersurfaces. Using this method, we prove
some of the conjectures on the structure constants of quantum cohomology of projective hy-
persurfaces, proposed in our previous article. Moreover, we clarify the correspondence between
the virtual structure constants and Givental’s differential equations when the projective hyper-
surface is Calabi-Yau or general type.

1 Introduction

The main ingredient of this paper is the well-known ordinary differential equation:

((az)N—1 —k-e® (kOp +k—1) (kO + Kk —2)--- (kO + 1))w(x) =0, (1.1)
with arbitrary N and k. First, we derive the solutions of {1.1) that can be expressed as asymptotic
expansion around z = —oo. To this aim, it is convenient to introduce the following rational function
in z:

R . 1
Mk (z) = (Tz')lN 1+ =2) [[a+=27". (1.2)
) =1 J =1 J
J j
Then we introduce the generating function of ¢51V’k(z):
oo kd d
(kd)! k 1.
¢N’k($7z) ::Zexp(dw)(d!)z\] (1+;Z)H(1+;Z) N' (13)
d=0 7=1 7=1
Next, we introduce the power series in exp(z),
wiH(z) := (8.) ™ (2, 2)|z=0. (1.4)
If we multiply ¢™¥(z,z) by exp(zz),
@N’k(x, z) = exp(zz)qﬁN’k(z, z), (1.5)



ONk(z, 2) satisfies,

((a,)N—l —kee® (kO +k—1)(kOy + k—2) -+ (kOs + 1)) Nk (g, 2) = 2V exp(zz). (1.6)
Thus, we obtain the following N — 1 solution of (1.1):

ujv,k(w) = %(8z)](@va(m,z))|z:0’ (.7 20,1,,N—2) (17)
When N — k > 2, these solutions are the generating functions of a certain type of two-point
correlation functions of topological sigma model on M¥ : the degree k hypersurface in PVN~!. In
(4], Bertram and Kley showed that all the rational correlation functions (inserted operators are
restricted to Kahler sub-ring) are reconstructed from these solutions in the N —k > 2 case. Up
to now, we also know how to modify uj-v’k(a:) to construct the corresponding generating function
when N —k = 1.

In this paper, we take a different path to reconstruct small quantum cohomology rings (Kahler
sub-rings) from (1.1). Our idea is very simple. We just look at the differential equation instead of
looking at the solution. We will first show that the Gauss-Manin system associated with the quan-
tum Kéhler sub-ring of M§, have the same informations as the ones of (1.1) if N —k > 2. Precisely
speaking, if we assume the topological selection rule, we can determine all the structure constants
of the quantum Kahler sub-ring of M¥ from (1.1) via the Gauss-Manin system. Conversely, we can
derive (1.1) by usual reduction of the Gauss-Manin system associated with the quantum Kahler
sub-ring [6]. We can extend our discussion to the N — k < 0 case. In this case, direct relation
between (1.1) and the Gauss-Manin system associated with quantum Kahler sub-ring of M is lost.
But we can still construct a kind of Gauss-Manin system which is directly connected to (1.1). In the
N = k case, this Gauss-Manin system is nothing but the B-model used in the mirror computation.

On the other hand, we conjectured the recursive formulas that evaluate the structure constants
of the quantum Kihler sub-ring of M% in terms of the ones of M}, when N —k > 2[5], [11]. These
recursive formula is strong enough to determine all the structure constants of M¥ in this region.
Then we find that the above reconstruction process via the Gauss-Manin system is useful enough to
give a proof of the recursive formulas. The proof of them is one of the main results of this paper. In
[5] and [9], we also conjectured that the virtual structure constants, that are obtained from iterated
use of these recursive formulas into the N — k < 0 region, can be regarded as analogue of the
B-model in the mirror computation. We then comnstructed the generalized mirror transformation,
that evaluate the structure constants of the quantum Kahler sub-ring of M% (N —k < 0) from
the virtual structure constants, up to some lower degrees of rational curves [9], [8].

Another result of this paper is the assertion that the virtual structure constants are nothing but
the structure constants of the Gauss-Manin system associated with (1.1). Thus, we find a stronger
evidence of the existence of the analogue of the mirror theorem for the general type projective
hypersurface.

This paper is organized as follows. In Section 2, we first introduce our notation for the quantum
Kahler sub-ring of projective hypersurfaces. Next, we overview the conjectures proposed in our
previous article, some of which are proved in this paper. In Section 3, we first introduce the Gauss-
Manin system associated with the quantum Kahler sub-ring of M% (N — &k > 2) and explain how
all the structure constants of the quantum Kahler sub-ring are reconstructed from the Gauss-Manin
system and (1.1). Next, we prove the recursive formulas for the structure constants of the quantum
Kihler sub-ring of M% (N —k > 2), introduced in the previous section. Lastly, we extend our
discussion in the (N —k > 2) case to the cases N —k =1, N —k =0 and N — k < 0 and show
that the virtual structure constants introduced in Section 2 is nothing but the structure constants
of the Gauss-Manin system associated with (1.1).



2 Quantum Kahler Sub-ring of Projective Hypersurfaces

2.1 Notation

In this section, we introduce the quantum Kahler sub-ring of the quantum cohomology ring of a
degree k hypersurface in PV~!. Let M % be a hypersurface of degree k in PY~!. We denote by
QH} (M%) the sub-ting of the quantum cohomology ring QH *(ME) generated by O, induced from
the Kahler form e (or, equivalently the intersection H N MY between a hyperplane class H of PN—1
and MF). Additive basis of QH}(M}) is given by O; (j = 0,1,---, N — 2), which is induced
from e/ € H»J(M¥). The multiplication rule of QH *(ME) is determined by the Gromov-Witten
invariant of genus 0 <oneN—2—mOem—l—(k—N)d>d7M]l:r and it is given as follows:

1
AL - E(OeoeN—2-moem—1—(k—N)d>d,
0.-1 = 0O,
O -On-2-m = Ouneiom + E Lﬁ’k’dqdoezv—1—m+(k—1v)d,
d=1
g = exp(t), (2.8)

where the subscript d counts the degree of the rational curves measured by e. Therefore, g = exp(t)
is the degree counting parameter.

Definition 1 We call LY54 the structure constant of weighted degree d.

Since M ]’i, is a complex (N — 2) dimensional manifold, we see that a structure constant LY-5? is
non-zero only if the following condition is satisfied:
1<N-2-m<N-21<m-1+(N—-k)d<N -2,
< max.{0,2 — (N —k)d} <m <min{N -3,N —-1— (N — k)d}. (2.9)

We can rewrite (2.9) into the form:

(N-k>2) = 0<m<(N-1)—-(N-k)d
(N-k=1d=1) = 1<m<N-3
(N—k=1,d>2) = 0<m<N-1-(N-k)d
(N-k<0) = 24(k—N)d<m<N-3. (2.10)
From (2.10), we easily see that the number of the non-zero structure constants LN:*4 is finite
except for the case of N = k. Moreover, if N > 2k, the non-zero structure constants come only
from the d = 1 part and the non-vanishing LY:*! is determined by k and independent of N. The

N > 2k region is studied by Beauville [2], and his result plays the role of an initial condition of our
discussion later. Explicitly, they are given by the formula :

k—1

k-1
3Lk = k [ (w + (k - 5), (2.11)
j=1

n=0

and the other L%’ all vanishes. In the N = k case, the multiplication rule of QH(Mf) is given
as follows:

Oe -1 = 087
Oc - Opzem = (1+ Y ¢°LEF)Opiom (m=2,3,--+,k—3),
d=1
0. -0p-s = Opea. (2.12)



Hence it is useful to introduce the generating function of the structure constants of the Calabi-Yau
hypersurface MF:

LEk(e —1+ZL""‘1“ (m=2,---,k—3). (2.13)

2.2 Overview of the Results for Fano and Calabi-Yau Hypersurfaces and
Introduction of the Virtual Structure Constants

Let us summarize the conjectures proposed in [5], [11], some of which will be proved in this paper.
In [5], we conjectured that the structure constants L)% of QH}(ME) for (N —k > 2) can be

obtained by applying the recursive formulas which describe LY%¢ in terms of LZ,H’k’d’ (d' <d),
with the initial conditions of LY¥ given by (2.11) and LJ¥¢ =0 (d > 2) in the N > 2k region.
Let us introduce the construction of the recursive formulas given in [11]. First, we introduce the
polynomial Polyy in z,y, 21, 29, -+, 24-1 defined by the formula:

POlyd(l',val’ZQa"',Zd—l)

1 dty / dtg_q <(d )z + 7y '
- — —_ ... + ———t + _—t +
(27‘(\/ —-1)d—1 ‘/;'1 3} Ca_1 ta—1 H E d— Z

j=1 z—]+1
d—1 . R
(d=j)z + Jy J (d—J)=z + Jy
zi( +§ t +1_§j+1;tz)/( +§ d—t +,§,+1—t - %)

d—1
d / / ( 1 ’U.]‘ )
By ———ayr duy -+ dug_- (u; + 2z ————
(27‘( ’—__1)11—1 D, 1 Das d—-1 ]1;1 (2Uj — iy — uj—H) ( J ]uj — Z]')

B (27r\/f—1)d‘1 -/D s /Dd_l dua— dﬁ ((2uj g (f]zjﬂ)(uj - z,-))’ (2.14)

where we denote x (resp. y ) by ug (resp. ug) in the last two lines. In (2.14), the path D; goes

d'l 1 d'z
1

; . . . . d;
around both poles u; = y—'i;—u—‘*—l, u; = z;. Next, let us consider the monomial z%o z; bz

(2320 di; = d—1), that appear in Poly,, associated with the following ordered partition of a positive
integer d [3]:

0=t <1 <ig <+ <11 <1y =d. (2.15)
Then we prepare some elements in (a free Abelian group) 7!, which are determined for each mono-
mial z%o z:il"l .- zzi:‘ ydi | as follows:
a = (I-dil-d,---,1-4d),

(
g = (021—112-—2, i — 1+ 1),

v = (00 (N —k)yia(N — k), -+, ua (N — k),
= (1,0,0,0,---,0),

(1,1,0,0,---,0),

(1,1,1,0 -+, 0),

€1

€2
€3

€ = (1 1,1,1,--+,1). (2.16)

27

Now we define § = (8;,---,8;) € Z' by the formula:

-1
5—a+ﬁ+’y+z i~ De; +dj €. (2.17)
j=1



With these set-up, we state the following theorem:

Theorem 1 The recursive formulas are given as follows:

LYA4 = §(Polya), (2.13)
where ¢ 1s a Q-linear map from the Q-vector space of the homogeneous polynomaials of degree d — 1
in T,Y,21, " ,24-1 to the Q-vector space of the weighted homogeneous polynomials of degree d in

L%‘H’k*d’. And it 1s defined on the basis by:

Blatoytezin . 00 II.Lﬁﬁg“k‘J‘” . (2.19)

The proof will be given in the next section.

The structure constant L¥:¥:¢ for a Calabi-Yau hypersurface does not obey the recursive formulas
2.18). Instead, we introduce here the virtual structure constants L% as follows.
m

Definition 2 Let f;ﬁ’k’d be the rational number obtained by applying the recursion formulas (2.18)
for arbitrary N and k with the initial condition LY*1 (N > 2k) and LY54 =0 (d > 2, N > 2k).

Remark 1 In the N — k > 2 region, LN:*d = LN:kd

Remark 2 iﬁ’k’d is non-zero if 0 < m < N —1— (N — k)d, and we have infinite number of
LNkd>s phen N — k < 0.

Definition 3 We call ﬁff*k*d the virtual structure constant of weighted degree d.

We define the generating function of the virtual structure constants of the Calabi-Yau hypersurface

M ,f as follows:

(n:Eank—n. (2.20)

In [5], we observed that LE*(e*) gives us the information of the B-model of the mirror manifold of
M ,f In this paper, we prove the theorem:

Theorem 2

ek s o (kd)
Lo*(em) = wpt(z) =) iy

L@
Pk oy _ wit(@), - SN (B! g,
Ly (e*) = O:(z + wg’k(x) ( dz::l ; — i(kt — m)) )/(; (dh)¥ )>7

where wf’k(z) is the function introduced in (1.4).

Of course, we can extend the theorem (2.21) to the general LY*(e?) if we compare the LE¥(e®)
with the B-model three point functions in [7]. In particular, this theorem asserts that we can obtain
the mirror map ¢ = ¢(z) used in the mirror computation without assuming the mirror conjecture.

z - , = LEE
Hz) == +/ de'(E¥*(e®)y - 1) =z + Z L dr. (2.22)

—c0 =1



With the above theorem, we can construct the mirror transformation that transforms the virtual
structure constants of the Calabi-Yau hypersurface into the real ones as follows:

k,
LhK(et) = Zm . (m=2,---,k—3) (2.23)

After some combinatorial computation, we can rewrite (2.23) into the following form:

kad ZResz._o ~m=1 exp( dz

Lk k,]

(LRkd=m _ [REdmmy (2.24)

In [9], we argued that this formula must have deep connection with toric compactification of the
moduli space of rational curves in PY~!. With this idea, we speculated that we can generalize
the formula (2.24) to the N — k < 0 case. In [9] and [8], we gave some numerical evidence of this
generalization up to some lower degree of rational curves.

3 Gauss-Manin System

Let us first introduce the Gauss-Manin system associated with the quantum Kahler sub-ring of

1\4}%1

Definition 4 We call the following rank 1 ODE for vector valued function ¥, (t), (m =0,1,---, N~
2):

OnN—2-m(t) = Pn_1-m(t)+ Zexp(dt) LR N (v —pya(?),
d=1
OrYN—o(t) = ZGXP(dt) LR (vekyalt)s (3.25)
d=1

the Gauss-Manin system associated with the quantum Kéhler sub-ring of ME,.

This definition can be applied to any M¥,.

3.1 Fano case (N -k > 2)
In this case, we already have the celebrated theorem of Givental [6]:

Theorem 3 (Givental)
IfN —k>2, (3.25) can be reduced to the rank N — 1 ODE for v(t):

((a»N-l ket (kO k= 1) (KO, +2) - (kD + 1)) bo(t) = 0. (3.26)

Conversely, we can determine all the structure constants of the quantum Kahler sub-ring explicitly
using (3.25) and (3.26) as the starting point.

Corollary 1 The structure constants LY5? are fully reconstructed from (3.26). In particular, we
have,
k-1

Eig’k’lw I:I (Juw + (k (3.27)

n=0



proof)
Using some algebra, we can represent ¥ n_1_,(t) in terms of 1y(t) as the form:

o0 N—-1—-m—(N—k)d
bn-tom(t) = @)V M o(t) = Y jexpldt) Y (@)Y TN (1),
d=1 7=0

(3.28)
when 1 < m < N —1. Moreover, we can obtain the ODE for () by introducing ¥ _1(#) formally,
which satisfies

Opn—a(t) = ¥n_1( +ZGXP LN’k’d YN—1—(N—k)d(t)- (3.29)
=1

If we represent ¥ _1(t) as the form of (3.28), the ODE is just given by the equation:
Pn_1(t) =0. (3.30)

Substitution of (3.28) into (3.25) leads us to the recursive formula for 'yN ikad

3

N,k,d N,k,d N,k,d N,k,f . Nk,
Yoo = Tmito = LEt = Y LM s (3.31)
f+g=d
Nkd _Nkd Nk,d Nk, f._ Nk,
Ymis = Amitig = d-vmiio = Y Lt (3.32)
ftg=d

Here, we introduce the generating function,

N-1—(N-k)d

Nk,d j
Y R S Y) (3.33)
=0

Then, the recursive formulas (3.31) and (3.32) are reduced to one recursive formula for ANk (1),

N,
T4 (w) = (14 dw)ypfif(w) + Lpbd = Y LR Iyofe o w). (3.34)
f+g=d

Multiplying (3.34) by (1 4+ dw)™ makes the recursive formula more tractable.

(1+dw) ™y A () = (L4 dw) ™ iy (w) = (1+dw)™ LE* A= 3 (1hdw)™ LRIy Es o (w).

e (3.35)
3.35
We can easily solve (3.35) inductively. The answer is given by the formula:
) =
d N—1-(N—k)d ja

NEICEED SRINES SRS 91 98 | (N0 SR I

=1 (dy,-,d1)EOPy fi=m je=m j1=mi=1 n=1
(3.36)

where we forma.lly identify ]0 with m and denote by OP; the set of the ordered partitions of d;
{(dy,da,---,di)| dj > 1, Z 1 d;j = d}. At this point, we look back at Theorem 3. It merely says
that

7év’k‘l(w) = H (k + jw),

o w) = 0, (

.

> 2). (3.37)



Hence we obtain from (3.36),

k-1 k—1
SLER (1t w)m =k ]k +jw),
m=0 j=1
and,
N—1—(N—k)d
> LM+ dw) =
m=0
d N-1-(N-k)d s Jj2
PIEEED VD S zn(u S
=2 (d1,++,d1)EOPy =0 j2=0 j1=0i=1
Substitution of ZEI into w leads us to the formulas:
k-1 -
N-1-(N—k)d
Z LN,k,dzm —
m=0
d N—-1—(N-k)d Jjs  Jo
ST SR SRS 95 90 1 ((LR¥) o281
=2 (d1,+,d;)EOP;, 71=0 72=0j;=0i=1 i

)ji—ji—-l B ARN:H

B N=R dn) '

]:—ji—1

(3.38)

(3.39)

(3.40)

N ,k,d;

FHN=R (I

It is obvious that we can completely determine all the LY-*®’s by induction of d, because the r.h.s.

includes only the LN*4"s with ' < d. Q.E.D.
Example
]\475 model

The corresponding Gauss-Manin system is given by,

aﬂ/’O(t) ( )

Orp1(t) = alt) +a- e -ho(t),
Opa(t) = ta(t) +b-et -yt
Orpa(t) = walt)+c-et ot
Orpa(t) = os(t) +b-e -y
aﬂl’%(t) (

Pi(t

?

where we used a trivial equality LN#*d = LY5@

equation for ¥p(t) and obtain,

((at)ﬁ — et ((2a 4 2b + ¢)(8:)* + (4a + 4b + 2¢)(8:)® + (6a + 3b + ¢)(8,)*

= a-et-¢4t+d-62t-¢2(t)+

(3.42)

I~ (N—kyd—m We reduce (3.42) into an ordinary

+ (4a +5)(3) + a)

+e2t((12 + b2 + 2ab + 2ac ~ 2d — g)(at)2 + {32t(2a2 + 2% + 4ab + 4ac — 4d — 29)(0%)

+¢%(a® 4 2ab + 4ac — 4d) + €3(2ad — a’c — f)> Po(t) =

(3.43)

dn))'

(3.41)



Then Theorem 1 asserts that the equation (3.43) equals the equation:

((@)6 — ¢! - (3125(0:)* + 6250(8; )% + 4375(0;)* + 1250(9;) + 120)) Wo(t) = 0. (3.44)

By comparing (3.43) with (3.44), we obtain,

a =120, b= 770, c = 1345, d = 211200, g = 692500, f = 31320000, (3.45)

which agree with our previous results in [10].
This corollary enables us to prove Theorem 1. As the first step, we prove the following theorem:

Theorem 4 Let ¢ be the recursive formula in (2.18) considered as o homomorphism from the
polynomial ring of LY %4 to the one of LN +tH54. Then we have,

d-1
Nk d . N41.k,d

ool 1w = (T +50) ) -o7+44() (3.46)

j=1
proof) From now on, we use another notation 0 = ¢ < ¢; <19 < -+ < iy < ¢; = d of ordered
partition. Correspondsnce to the previous notation (dy,---,d;) € OP;y is gi\;en by d; = i; — ;1.
We denote by f(l1 o ’;i T 1)(20, y) the coefficient polynomial of ziil zi" -++z;'7" in the generating

polynomial Polys. Using (2.14), it is explicitly given as follows:
d—1— -1 di,,
diy diyrediy_, L . . God=1=57"0
f(,1 io, ,iz—iz—1)(z’y) = Z ad.'ld.'z“'d-',_lj(ll — 10,750 —21_1)56 Y m=1

=0

d
(27{' vV ) / “ ~/de -t H 2Um —Um-1— um+l

—

-1

n=1 u
= —L—\/l dui / duil Hf(i._i. 1)(ui. 1,U,,'.) X
(271'\/'—1)l—1 D;, ! D"z_1 - i=1 7T J_ !
-1 1 -
< [[ — : — — [ Giva =) (3.47)
=1 (G = -0)uiy ~ (15 = G-y — (G — 35)ug_,) ~uy” 5=t
where we have introduced the following polynomial:
yi1- e+ (d— )y
Za = H(—'—d—‘—) = fa)(z,y)- (3.48)
=1
The path D; in the second line of (3.47) goes around u; = Ej_—l;—uﬁl,uj- =0ifj€ i1, -, u-1}

and u; = H-Ll%_ﬂ—'t—l- otherwise. The last equality in (3.47) is obtained from integrating out the
variable u; (7 € {1,2,---,d —1}\ {71, -+, 51-1})-

With this definition, we can write down the form of the recursive formula as follows,
d d_l_}:ln:;1 dim

=1 0=i0<~--<iz=d(d.‘1,--~,d,‘l_1) 7=0

N+11k11h_1h 1
L . 3.49
x H P L b (N (3.49)



On the other hand, we can rewrite 'yév’k’d(w) using the notation 0 = iy < --- < 1; = d into,

N—-1—(N=k}d

d
YETSIED VI SRS oI ) | ((RIT =

=1 O=ip< - <iy=d 1= J1-1=0 J1=0n=1
(3.50)
Substituting (3.49) into (3.50), we obtain,
N.,k,d
(v (w ))
d N-1-(N-k)d j2
l 1
> (-1 Z > )IEED REDY
=1 =1 0=ip< - <iy=d =0 Ji—1=0  51=0

. . Ip—1
! in—in_1 in=in1—1=3 "7 din
( d_ in_'l)w)]n_]n—-l E E E E X

n=1 l,=1 in_1=ig<"'<iln =in (din,“',d,-n ) cn=0
n 1 In—1
- . NALEE =i
XQdpnoodin  cn (37 =205 "5 00, = i1—1) H L a1 _ . (3.51)
B4 M1 P —-cn—zn_l—zmn=1 d,-g‘n +zgn_1(N—k+l)
In the above formula, we can see appearance of iterated ordered partition:
0=ig =iy <i} <-+-<i] =i3 =ig <+ <1ij, =ipg <+ < iy =14, =d. (3.52)

Then we pick up the terms whose iterated ordered partition is equal to the ordered partition
0 =1 <11 <+ <ty =d. The result is conveniently written in terms of ordered partition
0 =hg < h1 <---< hy =1, and the statement of the theorem is reduced to the following equality:

i N-1—(N—k)d j,
E (——1)3—1 } : E : E : § : E : H( (14 (d—in,_w )]n—]n—l %
g=1 O=ho<-<hg,=1 7s=0 7s—1=0 J1=0 (diy .dyy_,) n=1
(i, S
hj
thn Tty —1- ZJ =hp_1 'j
x > Gdi, yyodig_on (a4l = Thaiise s Thy T Tha—1) X

c,=0
hn
e
a=hn_1+1 J"—C"_lh"—l_zj=hn_1+1dii+z“‘1(N—k+1)

d—1 N—(N—k+1)d 5
. — . o — N,kjtn—tin_
B (H(l +Jw)) ' ((_1)l Y > Z H 1+ (d —in_1)w)”™ J"_1L1n+(N—k+11)in_1)'

J=1 51=0 J1—1=0 j1=0n=1
(3.53)

Next, we carefully look at the summand in the 1. h. s. of (3.53) coming from the ordered partition
O=ho<h < - <h,=1

(_1).9—1 Z Z Z

(di17"'vd"l—1)7 (d‘hj =0) c1=0 ca=0
N-1-(N-k)d j, J2
H p i, g en (a1l = Tha ity thy — bRy —1) X ) d o)
= Js=0 Js—1 71=0
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(R e § B | )

a—1
~Cn— - di;+ia—1(N—k+1
n=1 am ot T T g By e (N kD)

(3.54)

Changing j, into j;, = j, —cp —ip,_, + Z 1 di;, we can separate (3.54) into a bulk part:

m=ing=1=300, d he THha_y 1= E_hs—l i
e SN

(dilv"'ydil_1)1 (d'.hj =0) c1=0 ¢, =0

N—(N—k+1)d j,

8
H Gdiy, _prdig, _scn (thnst1 — hao1s® s bhy — lho—1) X § : E E
n=1

Js=0 Js—1=0 J1=0
8 . . h hn
) Jn—jn—i1ten—cn_1tin,_ —in _,~Y .P7t d; NA1,k,iq —iq_
H((1+(d—zhn_1)w) " ) R H L'Jrz’j:a—l; Jlr (N—k+1) }’
_\e i (N—
n=1 a=h,_1+1 In j=1 "% 1
(3.55)
and boundary parts:
. . h . .
s—1 zhl_lho_l_ j;hodij ths Tih,_y —-1= Z_h,_l iy
S SR >
m=1 (dil ’”"d"l—l)’ (d'-hj :0) c1= cs =0
s Cm+1_cm+ihm_ihm_1—2?:h ) di;
H adihn_1+1"'dihn—1cﬂ (Zhn—1+1 T lhp_15" s th, — Zhn—l) E
n=1 =1
. . . h
N-1—(N-k)d—c,—in,_, m+EJ:1d Jmtatemya—Cmy2atin, o —ih, ,—:;::H di;
. . . h
Js=—"Cs— m+E -1 d ]m+2:_Cm+2_lhm+1+lm+2j:1+1 dij
jm+2+cm+2_cm+1+ihm+1 Thy — 5 '"h': di; Gt
jm=0 —1=0 ]m 2=0 ]1=0
m 8
<H(1 +(d - ihn_l)w)]n_]n—l) (L (d =ty )w)Imt27Im < H (1+(d— ihn_l)w)]n_]n—1>
n=1 n=m+3
id . : hno1
. Cp—Cpno1ttp__ . —in__ ., — o d;. N+1,kig—iq
H((1+(d—lhn_1)w) t o e R H L +E:a_1; i (N—k+1)
i;tia— -
h
h m+41
((1+(d_z‘h e B )
s =l —Y 21 d; jHia—1(N—k+1
a:hm+1 J i EJ i )
S . . Y
. Cn—Cpn_1Fin, | —th, ,— S d;. NA1,kyig—iq_
1 e el | e
—lm-—z di;+ia1(N~k+1)
n=m+2 a=h,_1+1

(3.56)
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To derive (3.56), we further replace j., (n > m) by jn = j;, + I and omit the dashes in j,, 7, in
the final form. Since we can easily see that the identity:

i1—io—1  it—i-1—l ! d—1
Z Z acl(il_io)...acl(il—il_l)H((1+(d—ij_1)w)cj—cj—1+1j—1—lj—2> - H(1+jw),
c1=0 c;=0 j=1 j=1

(3.57)
holds true, the bulk part coming from the ordered partition h; =7 (5 = 1,2,---,1 — 1) is nothing
but the r.h.s. of (3.53). Therefore, what remains to show is cancellation of the remaining terms.
At this stage, we add some comments on boundary parts. Looking at the first boundary part
in (3.56) which corresponds to the operation to remove m (m = 1,2,-.-,s — 1) from the set
{1,2,---,s — 1}, we can further pick up the second boundary part which corresponds to remove
nin=m+1,m+2,---,s—1) from {m+1,m+2,---,s — 1}. Explicitly, the first boundary part
separated from the second boundary parts is given by the formula:

Ry ~ihg—1— Z: =hg di; the th, g —1- Z—hs 1 di;
(_1>s—1 Z Z Z

(dil""7dil—1)’ (dihj :()) c1=0 ¢y =0

. . hom
c —-c z —1 - d;.
m41 = CmFth,y, “lh, E jmhp_q Hi

s
H adihn_1+1"‘dihn_1 Cn (Zhn—1+l —lh, 19" "5 th, — Zhn—l) Z

ln=1
N—(N—k+1)d j,_s

> > Z(H —ihn_l)w)j""j"‘1>-( ﬁ (1+(d—ihn)w)1n—jn—1>

Jjs—1=0 Js—2=0 71=0 n=m+1

. . B )
1+ ) )Cn—'Cn—1+lhn__1—lhn_2—2j=h:—2 d'j LN+17kqla"la 1
ko —Z di;+ia—1(N—k+1)

n=1 a=hp_1+1
. . h m+1
. —lmtemypr—cmting, —th,, —Zr_n di; N1,k ig—iq
(1+ (d — in,, )w) e L || (AR ai
b1 Jm—Im J_ di; +ia—1(N—k+1)
a=hm
g
. tn—Cn—1tth, | ~th, o Z h d;; N+1,k,ia—ig—1
H ((1+(d—lhn_1)w) 17 H Ljn_z =30, dijians (N=k+1)
n=m+2 a=h,_1+1

(3.58)

Continuing the same operation, we can observe that the summand of (3.54) produce (5 1) t-th
boundary parts and that they have the same structure of summation on j/s as the bulk part
coming from the ordered partition:

Ozhpo<hp1<hpz<"'<hps—c:l
(0=po<pr1 < +<psg=35, 1<t <s—1). (3.59)

We then separate the set {1,2,--+,s — 1} into disjoint union of two sets associated with (3.59).
{1,215 = 1} = {propns - Pootca} [[{rasras -k,
(r1<ry <-- <1y (3.60)
With these set-up, we can write down the ¢-th boundary part as the generalization of (3.58),
h1Ttho 1= Z —ho 4 i"’_i"s—l_l_Z:;h -
> SRR >

(diysoodiy ), (dihj =0) cy=0 cs=0
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8

IT diy, yodiyyon(Thnoa bl = Uhai™ "5 Tk = Thy 1)

n=1
. . Ay . . hyp
c —c T —1 ——Z_ 1 d; . c —c i -1 —E t d; .
ri+1 T Cry Ty Tth g imhp, 1 Y re1 T Cre Ty, Tlh, imhp g B
I, =1 I,=1

N—(N~k4+1)d  jo_;

> IR (H - ihpn_l)w)""“""-‘) . (ﬁ(l +(d— ihrn)w)_lrn)

Js—t=0 Jo—t—1=0 71=0 n=1

h

= Com—Cme1 i - _Shmer g
H H ((1+(d—ihm_1)w)m 2 A

n=1m=p,_.1+1
b
NS
g1 T2 T by Tem (N R

(3.61)
Now, what we have to show is that the bulk part coming from the ordered partition 0 = hg <

hi < -+- < hy_1 < hy = | cancels with the boundary parts coming from the ordered partition

0= 9 < q1 < e < g1 < Gt = l7 ({h()a hl) T hs-—la hs} - {qO? qi,°"5 411, qt}) Before genera‘l
discussion on cancellation of these terms, we carry out computations for some lower !’s as warming-
up’s.

0 =19 < 71 = d sector:

In this case, there are no boundary contributions and the bulk part is given by,

—1 N=1—(N=k)d—c;

Z Z Gey (d)(l + dw)j‘f'clL;V-{—l,k,d

c1=0 Jj=—c1
d—1 N—=(N—k+1)d d—1 N—(N—k+1)d

=> Z ey (d)(1 + dw)y*o LYV =T (1 4 jw) - YD (14 dw)LFHH
c1=0 J= 1=1 3=0

(3.62)
where we used (3.57) and the fact that L;-V+l’k’d =0unless0 < j < N—(N+1-k)d.

0 =ip < i1 < 19 = d sector:
In this sector, the summand coming from 0 = hg < by = 1 < hy = 2 is separated into one bulk
contribution and one boundary contribution corresponding to 0 = hg < hy = 2:

N—(N-k+1)d ja

d—1
. i . N4,k N+1,k,d~i
- H(l + jw) - E , E (L4 dw) (1 +(d —in)w )2 JILJ TNk i Lt (N Dkt )i
j=1 ]220 ]120

i1 —1d—iy—1 N=(N—k+1)d ea—eitiy _
-3 N Yoo tdw)t Y e (in)ac(d — i) (14 (d —in)w) TR T 4 dw)® x
61=0 C’_):O j1= 11:1
N+1,k,z N+1,k,d—iy
*xL; L T (N ks (3.63)

On the other hand, we have to prove that the second summand of the r.h.s of (3.63) cancels with
the summand (3.54) coming from 0 = hy < hy = 2,

N—d(N—k+1) d—1 d—1—di
c N+4+1,k,2 N+1,k,d—i1
) Z > (14 dw) ag, ¢ (i,d — 0)(1 + dw) Ly L S (V= k1)

71=0 c1=0

13



(3.64)

where
d—1—d;,
Z ag; ;(i1,d — iy )iyt 174
=0
.t du ‘ 1 ‘ fao(z,uiy) - fa—in(wiy, v)
2my/—1 D(0,autd=iy)zy “ (s, — 11y+(j—n)x) “?:1—1
- f(diif,d—il)(zv y)- (3.65)

Since —ly + ¢ —¢1 + %1 > 0 in (3.63), the assertion of the theorem in this sector reduces to the
following polynomial identity in this sector:

Fan (e, u) fra—iy (v, y)

d;
udi—1 ldeg() 20, u=@inztins = fiil gy (2, 9); (3.66)
fi (@) fa—ip)(uy) . . . .
where E ldeg(uw)>0 means the operation of picking up monomials, whose degree in
u is non-negative, from f(il)(x’ulfi"l__lil)(u’y). Now, we prove the above equality. Using the residue
NCE

integral in u-plane, we have,

f(il)(x7u)f(d—i1)(u>y)l _ 1 du fan (@, 0) fa—in(v,9) 1 i(g)n
21 deg(u)>0 I/ —1 D.(0) pdin—1 v i<ty
1 (2, ~in)l, 1
- du e vy) 1 (3.67)
27(\/—1 D,(0,u) v v—U
Therefore, we can rewrite the l. h. s. of (3.66) as follows:
Jan (@, ) fa—i(u, y) o
wdin =1 ‘deg(u)ZO, uz(i——'l%z—ﬂ-li
_ (_1__>/ du 1 Fany (2, u) fra—iy) (u,y)
21y/=1" Jp, (0, W=indetiuny  (y — (j;il_ziitil_y) w1 ‘
(3.68)
But the last line is nothing but the definition of f(dl."lld_il)(z, ).
0 =1ip <11 <19 <13 =d sector:
In this case, we have four choices of partitions:
O0=hg<1l=h1 <2=hy<h3=3,
O=ho<hi=1<hy =3,
0=h0<h1=2<h2:3,
0=hog < hy =3 (369)

The summand in (3.54) coming from the ordered partition 0 = hg < 1=h1 <2=hy < hg =3 is
decomposed as follows:

N—(N—k+1)d js5 j2

_1:[(1 tiw)- Y, Y Y (4 dw) (14 (d—a)w)2 (1 4 (d - dg)w) T x

J3=0 72=0 j1=0
o [Nk N+Lkjia—is  p N+1k,d—iz
n Jotin (N—k+1) " ja+ia(N—k+1)
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1 —1ip—i;—1id3—in—1
+ Z Z Z ac, (11)ac, (12 — 11)ac, (d — ig) X
c1=0 c2=0 c3=0
ca—cyi+iy N—(N—k+1)d j3
Z Z E(l + dw)j1+61(1 + (d _ il)w)—l1+62—61+i1 %
=1 J3=0 51=0

_ Ja—J1tez—catiz—iy N+1,k711 N+1,kip—1y N+1,k,d—ig
X(1+(d ZZ) ) L LJ1—11+11(N k+1)L]3—11+22(N k+1)

i1—1 d2—i1—1ig—ia—1
+Z Z Z aC1 31 a62(2_ 1)&03(d—i2)X
c1=0 co2=0 c3=0
eg—cotiz—iy N—(N—k+1)d j,
x Yy Yo Y (w14 (d -y w)r et
=1 J2=0 J1=0

. Io+ca—ca-ria—it N+1k11 N4 1,kjig—is 5 N+1,kd—is
X(1+(d —i2)w)” L; L i (N L S tia(N—k+1)

iy —1 ig—iy —1 ig—ig—1
+ Z 2 Z acl(il)ac2(i2 —il)ac3(d—i2) X
(:120 6220 03:0
co—cy+i1 ca—cotio—iy N—(N—k+1)d _ _
> X Y (L dwyte (L (d -y w) et
=1 lo=1 71=0
: —Is+ +ig— N+1 k,iy y N+1,k,i2—2 N+1,k,d—3
X(1 4 (d — dg)w) et e Va1t in(v—k41). (3:70)
Note that the first summand, the second and the third ones, and the last one correspond to the bulk
part, the first boundary parts, and the second boundary part respectively. Next, we decompose the
summand coming from 0 = hg < hy =1 < hy =3,

i9—13—1171—1i13—11~1—do
- Z E Qe, (il)ad202(i2 — i], d— 22) X
da=1 ¢1=0 co=0
No(N—k+1)d j,
x Y D dwp e (d - iup et
72=0 Jj1=0
XLN+1,k,i1LN+1,k,i2-—i1 N+1,k,d—1q
J Jati(N—k4+1) " jo—dotiz(N—k+1)

ipg—11—1i1—1i3—11—1—d2
oY Y an(i)ene(is —i,d—iz) x
do=1 c¢1=0 co=0
cQ~c1+11N (N—k+1)d
x 3 Y () (4 (A iw)ThEeET
=1 J1=0

><LN+1 kyiz p N+1k iz —ia NA41,k,d—is
j1—li+i1 (N—k+1) ]1—11—d2+12(N k+1)

(3.71)
and the one from 0 = hg < h; =2 < hy = 3,

ig—1 ip—1—d; iz—i2—1

a Z Z Z ad101(ilai2_il)ac2(d—i2) X

di=1 ¢1=0 c2=0

—(N-k+1)d j»
X Z Z (1+dw Jl+01(1 +(d—i2)w )12 Jitea—ecitiz—dr o
J2=0 71=0
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LN+1 ki1 p N+ ksiz—is N+1,k,d—iz
Ji—di+in (N—k+1) " ja—di4i2( N~k+1)

19—1 190—~1—d; 13—ip—1

- E E E Qe (11,02 — 11)ac,(d — ig) X
d1—1 C1—0 82—0
cz—c1+ip—dy N—(N—k+1)d

x Z Z (1+dw)j1+c1(1+(d_i2)w)—l1+02—61+i2—d1 %
Ii=1 71=0
N+l,k,11 N41,kio—11 N+1,k,d—iy
L LJ1 —di+3 (N— k+1)L11 di—li+i2(N—k+1)" (372)

The summand coming from 0 = hg < hz = 3 is given by,

N—d(N—k+1) d—1 d—1—-d; d—1—d;—dy .
Z Z Z Z Adydge, (21,72 —21,d —42)(1 + dw)hﬂlLﬁH’k’” X
71=0 di=1 dp=1 c1=0
Lj\lrt;1i2221(11\71 k+1)Lj\1,+}11k [fiarlz(N k+1)° (3'73)
With these results, we can easily see that the second (resp. third) summand in (3.70) cancels with
the first summand in (3.72) (resp. (3.71)) due to the identity proved in the [ = 2 case. Therefore,
the new identity we have to prove comes from the cancellation of the fourth summand in (3.70) ,
the second summand in (3.71) and in (3.72), and (3.73). This can be translated into the polynomial
equality:
11—1i9—21—1i3—ix—1
Z Z Z acl Zl (J,c2 2— 1)&03(d—i2) X
c1=0 c2=0 c3=0
ca—ci1+1iy ca—cot+ia—iy

> D (L4 dw) (14 (d—in)w)ThFeEmat i (1 4 (d — ip)w) TresTeateTh

=1 =1
ip—21—1121—123—2;—1—do co—c1411
Z Z Z acl(il)a’dzcz(i? _ilvd_iQ) Z (1 +dw)61(1+(d_i1)w)_ll+62_61+il
do=0 ¢1=0 co=0 =1
i2—1 i1 —1=~d1 ig—in~1 co—citia—dy
Y Y Y i ian(d—i) Y (Lt dw) (Lt (d—igyw) teetasd
di=0 c¢1=0 co=0 =1

d—1 d-1—-dy d—1—-dy—d2

+ Z Z Z Adydqe, (il,ig — il,d - 22)(1 + dw)cl =0. (374)

We can rewrite the above condition in a more compact form,

(f(i1)(‘7:7 u)fgz_il,d_i2)(u7 ) f(ﬁ,iz—il)(‘t’ ) fla—iz) (v, )

um—1 ldEg(u)ZO pr—1 )deg(u)ZO
f(il)($7u)f(iz—h)(uvv)f(d—ig)(vay) ) ) _ )
— - eglu) 20, deglv)~ u:' Y —t1)T v= 1)y —io)z
- um—lyn-1 ldeg(2)>0, deg(»)20 ) |~ ix t(d—in)s o Galyt(dmia)
= floria—in,d—iz)(T,¥)- (3.75)

On the other hand, the definition of f(’"il’:b_ihd_u)(m, y) tells us,

f(7?17i2—i1,d—-i2)(za y) =

9 d- (12 —1y) - {dudv)
(277\/?) / . / L (i — i1 — (i —11)z)((d — 41)v — (d — i2)u — (32 — 41)y) %
S0 (@ ) fay—in) (4 0) fa—in (v, ).

umln]

(3.76)
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Hence what remains to show in the [ = 3 case is the following equality:

(f(il)(:z, W) i dmin) () f iamin(@0) fla—iny (v, y)

1 deg(u)>0 T e laeg(v)>0

) (B u) fia—in) (4, 0) fa—in) (v, )

o ) ldeg(u)>0, deg(v)ZO) |,_i =i | ()ut(imiz)e

d- (i2 —11) - (dudv)
27r\/_ / / (tou — 11v — (32 —11)2)((d — 11 )v — (d — i2)u — (32 — 11)y) %

f 1 ((I) u)f i2—1 (u ’l))f 12 (U )
(i) <um )1 o (d=i)\"» Y (3.77)

First, we consider the following part:

/ / Fn) (2,0) Fig—in) (4, 0) fa—in) (v, y)| y
277\/_ um—1lyn—1 deg(u)<~1,deg(v)<~1

d- (12—21) (dudv)
iy —ivo— (2 —i)a)((d— in)v — (d—i2)u— (12 — i1)y)

But we can easily see with some computation,

(3.78)

d-dy - (dudv)
2“\/— / / ((i2)u — iyv = (ia — 11)2)((d — ir)v — (d — i2)u — (12 — i1)y)
G
27T\/—_ p, uF ((i2)u — (12 —i1)z)!  (y — 2yFld=n)z)
=0, (3.79)

where k,I > 1. The last equality follows from the fact that D, goes around all the poles of the
integrand. Hence we have

/ /‘ ) (@, 4) fig—in) (4> v) fa—in) (v ’y)| y
277-\/__ um—1lyn—1 deg(u)<—1,deg(v)<—1
(12 — ’Ll) (dudv)

“Ga)u =10 = (2 —00)2)(d— in)o — (d— 2)u — (12 — i1)y)
= 0. (3.80)
Using (3.80), we can rewrite the r.h.s. of (3.77) as follows,

d-(iz —11) - (dudv)
. (t2u — 110 — (12 — 11)z)((d — i1)v — (d — t2)u — (42 — 41)y)
f(ll)(z u)f(lz 11)(u v)f(d—-zz)( )

ym—1lyn—1

X

d- (22 —7,1) (dudv) <
27r\/_— / / (tgu — i1v — (ia — 11)z)((d — i1)v — (d — d2)u — (32 — i1)y)
f(,l)(:L' u)f(w z1)(u v)f(d zg)(v y)

ym—lyn—1

d-(ia —11) - (dudv)
igu - ilv - (ig - 11)1)((d - il)v - (d - ig)u — (22 - ’Ll)y)
(f(n)(x u)f(lz n)(u v} f(a-ia)(v:y )| )
ym—1lyn—1 deg(u)<—1, g(v)<-1
d-(ip —i1) - (dudv)
27r\/_ / / (izu — 110 — (12 — i2)2)((d — i1)v — (d — ig)u — (iz — i1)y) |

X
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5 (f(il)(wau)f(ig—il)(uaU)f(d—ig)(vay)l )
e e deg(u)>0
d-(ia —t1) - (dudv)
(teu — t1v — (19 — 31)2)((d = 11)v — (d — i2)u — (32 — 11)y)
(f(n)(z u)f(zz “)(u v)f(d—m)( ) )I )
deg(v)>0

ym—lyn—1

X

d- (2 —11) - (dudv) y
27r\/__ / / (1ou — t1v — (12 —1)2)((d = 11)v — (d —i2)u — (32 — 11)y)

f(z )(z u)f(z i (u ’U)f d—1 (U y)
( : ;ml)lvn O eg(1)20, deg(u)20 )- (3.81)

At this stage, we look at the first integral of the last line of (3.81). Due to the condition deg(u) > 0,

u variable has only one pole at v = z—ll't(—zj———'—lﬁ And if we integrate out the u variable first, the
integral turns into,

f(ll,w 11)(m v)f(d 12)( 73/)
277\/__)/ — 12y+(d w)r)( pn—1 )

This is nothing but the second term in the Lh.s. of (3.77). Using the same operation, we can show
that the second and the third integrals in the last line of (3.81) equal the first and the third terms
in the Lh.s. of (3.77). Thus, the proof of [ = 3 case is completed.

With these preparation, we turn into the general proof of the theorem. In this case, we have to
consider the integral,

(3.82)

iy
f(h —t0, i i — 1)( )

-1
1
/ Hf(’J—’J 1) u’: l’u’J)H di; —1) X
271'\/ l 1 /‘l 1(

J=1 U,
-2
duij

: : — : : (ii41—13;). (3.8
jl;[l (1 = t5-1)us; — (35 — -y, — (G — 45)us;_,) ]1;11 1) (388)

X

For convenience of space, we introduce the definition:

Definition 5 Let o (z,y) (7 = 1,2,---,1) be a homogeneous polynomial in x and y. We define
two types of l-product, which are both non-commutative and non-associative as follows,

(al Ofp0---0 al)(uloaulz) =

I -1
Zl - ZO / / (H ) 1 ) %
Uy Uy
l 1 =137 H di;, —1
(27— Dy, Dy \jZ1 j=1 uij’
_ -2
du,—.
H " . ! H ]+1 — Z (384)
ion (G = djmn)usy = (65 = G-0)uig g — (441 = 45)ui; )

Jj=1
(o *ag % -+ -k ap)(uy, ug, ) 1=

I -1 1
(]:[1 ]( i1 zJ d- 1)‘deg(u;1)20, e, deg(ui,_, )20, u‘_jz(,i o)ui, Fip—ij)ui,
J:

7=1 u (iy—10)

(3.85)

In the same way as the [ = 3 cases, we can show the following two lemmas.
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Lemma 1

1 -1
(31 —40) 1
U,‘-__ s Ui eg(u eg(u; - X
(2 /_l 1/ ‘/‘” 1(_lzl j—1 :) ” d,j—lld g(uiy )<—1,-deg(u,_, )< 1)

J=1 ulj
-1 dus -2
X ; - . <l +1 — Z =0. 3.86
]I_I_l (G = g1 )ugy — (15 — dj=1)uig = (g — 85)w; ) ]IZII ’ 1550
. 1 .
pT‘OOf) By expanding (it —tj—D)ui; = (G~ - )wi; —Gi41—4)ui;_;) mto

. —1
1 (1 B ( j Z] 1)u1]+1 + (Z]+1 )ul] 1)
(1j+1 — 1j—1)uy (1541 — 1j—1)ui;

B 1 _ i((ij —hi Ui (G — 1)U )"

(g — gmug, (141 — 15-1)uy

(3.87)

we can reduce the integral in the Lh.s. of (3.86) to (infinite) linear combination of the integral:

!
1 /‘ / :
du;, -~ dui,_, | (ui)™5, (3.88)
(27’1’\/-—1)1_1 C’,'1 ! Cil—l ! ]I:IO ’

where the path C;; goes around u;; = 0. But we can easily see m;,,m;, > 0 and Z;:o m;; < =1,

due to the condition deg(u;,) < —1,---,deg(u;,_,) < —1. Therefore, Ej_:ll m;, < —l. It follows
that there exists j € {1,2,---,1 — 1} such that deg(u;;) is less than —1. Hence the integral (3.88)
vanishes and the lemma is proved. Q.E.D.

Lemma 2
Oq 0---00
-1
:z(—l)l_l_s E (o1 %+ kap, ) o(0op 1% - %0p,) 00 (Qh,_ 41 % *ap,).
a=1 O0=ho<---<h,=!

(3.89)

proof) We denote by A;(F) the operation picking up the monomials with deg(u;;) > 0 from
F = Hi':l ajlui,_y,uy;) H;;ll 7$—_T Using Lemma 1 and the inclusion-exclusion principle, we

i

obtain,

(g 00 ar)(uiy, usy)

I -1
i — 1 1
“ e L, (et ) >

-1 V=1 3=1 Ui.
-1 dus. -2
X . : H (241 —15)
]'_1 ((Z]+1 - 7/] l)ulj - (Z. - ZJ l)ulj 1 ( ]+1 ul]-{-l j=1
i — lo f / ( -1
Uiz A)(F)) X
27‘(\/ l 1 D” N 1753
-1 du;. -2
i1 (G = 4wy = (55 = g-n)u; 1y = (1541 = 15)ui ) ,-=1
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:3=1(_1)81<h1<z<h <i- L 27:\1/:101 1/ /‘l 1( =14 )(F )) X

=l du; _
> H ijr1—ij).  (3.90)

(41 = dj—1)ui; — (5 = fj-1)us;_y — (Fip1 — 35)ui;,)

=1

Integrating out Wi, ’s in the last line of (3.90) leads us to the assertion of the lemma. Q.E.D.

At this stage, we look back at the computation for the I < 3 cases and the structure of the
boundary parts given in (3.61). Then we can see that the bulk part (3.55) coming from the ordered
partition 0 = hg < h1 < hg < -+- < hy—1 < hy; = [l cancels with boundary parts obtained from the
ordered partition 0 = go < q1 < g2 <--- < g1 < g =1, ({ho,hs, -+, hs} C{q0, a1, @}) if
the following equality holds true.

Proposition 1

I
s—1 'hk i’ 'hk -t . )
Z(_l) Z (H f (Phg_y+1= %y 1lhk_ihk—1)(uzhk—1’u”‘k) X

s=1 O=ho<-<h,=l
5 s—1 1 )I - -
=i (i, ylins 71 ) deg(uiy, )20, deg(ui,, )20, deg(us,, )20, u;hj:w
=0. (3.91)

proof ) For the proof of the assertion of the proposition, it is sufficient to show the following relation,

Q1 0---00Q;

i
:Z(—l)s Z (@10---0ap,)*(Ap410--0ap,)* -+ *(ap,_,+10 - 0ap,)
=2 0=ho< <hy=I

(3.92)

We have to notice here that we can represent o ¢ --- 0 o7 in terms *-product by using iteratively
(3.92) only, or by iterative use of (3.89). Therefore, to show the equivalence between (3.92) and
(3.89), it is enough for us to prove that both *-product representations of oy o+ - - 0 @ obtained from
(3.92) and (3.89) coincide for all {. Since the *product o; * - - - * o has different meaning for each
I, we have to take care of the way of insertion of parenthesis ( ) into g * --- * ;. For example,
we have to distinguish ((a1 * a9) * a3) * a4 from (o * a2 * @3) * 4. Using this fact, we give here
some symbolic discussion. First, we denote by @; the set of all the non-trivial ways of inserting
parentheses into oy * -+ - x a;. Next, for 7; € Q;, we use the notation m;(eq * - - - * o;) for the result
of insertion of parentheses. For example,

ma(on *ag x g * ay) = (a1 * ag) * (as * a4) (3.93)

We also denote by |m;| the number of parentheses inserted by ;.
With these preparation, we can easily obtain from (3.92) the formula:

&y 000 = Z (—1)(l—|"’|)7r1(a1 k ek C!l), (394)
mEQ:

by induction of {. Therefore, what remains to show is that we can derive the formula (3.94) only by
using (3.89). We show this by induction of [. In the [ = 2 case, (3.89) reduces to o) 0 ay = aj * as,
and (3.94) trivially holds. Then we assume that (3.94) holds for [ = 1,2,---,m — 1 cases. By the
assumption of induction, it is clear that all the mpn(@1 * -+ - * @m) (7m € Qm) appear in the process

20



of rewriting oy o --- o a, using (3.89). Therefore, we only have to show that the coefficient of
Tm(Qy * - -+ @) becomnes (—1)(m_|”m|) after adding up all the contributions.
Now, we fix one np, (o) * - - - * o, ). By assumption, the terms coming from one term in (3.89):

(—1)1_1_3((11 ek )0 (ap 41k k0, )0 -0 (Qp,_ 41 % - *ap,), (3.95)

are all different from each other, and we first determine the term (3.95) that produces 7, (o * -« *
am). Here, we have to notice that the terms coming from (3.95) have no insertion of parentheses
inside (@p,_ 41 %+ *ap, ). With this observation, we remove the parentheses in mm (@ * -+« % o)
if they have other parentheses inside them. We denote by #m(ay * -+ * o) the resulting term.
Fm(a1 * - -+ * amy) has the following structure:

Tm(Q1 %ok Q) = Qq % ook Qg % (g1 ko R Q) % Q1 %o % gy * (Ot K v ok Q) e

ook, k(O 1k kO, ) ROy, 41 Kk Oy (3.96)

We determine here the terms (3.95) that produce (3.96). Since we cannot admit the part (o, *
-+ % 0y, +5) 10 (3.95) that do not appear in (3.96), the allowed terms are

Q1 00, O (k41 % " *Qj ) OQj 4100k, O(Qpyq1 *---*j,) 0"

00k, O(Qp, 41 % %@ )0, 4100 Qp. (3.97)

and the terms obtained from changing o(a, 4+1*- - -*a; , )o in (3.97) into o, +10- - -oa;, 0. Here, we
omit the sign of (3.97) for brevity. If we change all the o(ag, 1% - -*a;, )o’s into ooy, 410---0a;, 0s,
we obtain aj o---0q;. Therefore, total number of the terms (3.95) that produce 7, (@1 *- - % ap,) s
on—1 = 2/"=|_1. With some computation, we can see that the sign of (3.96) , coming from the term
obtained from changing & of the o(ay, 41 %+ %@, )o’s into ooy, 41 0---0a;j o’s, equals (—1)™ 1k
And the number of such terms are given by (;:) Therefore, the coeflicient of (% -+ % @)
turns out to be,

n—1

> (3)c0m o = (Cm a7 - ()7 = () = D (s

h=0

In the case of (g * -« - % @4y ), the situation is almost the same. The only difference is that the
number of added parentheses increases by |7y, | — |#m|. Therefore, by assumption of induction, the
coefficient of 7, () % -+ - % o) equals (—1)(m=1FmD) . (_1)=(mml=lFm]) = (_1)(m=lmm]) Thuys, (3.94)
is derived for | = m, and the proof of Proposition 1 is completed. Q.E.D.

And the proof of the Theorem 4 is completed. Q.E.D.

Proof of Theorem 1 )
From the statement of Theorem 4, we obtain the formulas in the case of (k +2 < N < 2k):

k-1
0 (w) = 26" w) =k Tk +5w),
3=1
d—1 Ckd
w04 w) = (JT + 5w NG w) =0, (d22). (3.99)
7=1

But from the proof of the Corollary 1, we can determine LY%? only using (3.99). Therefore, we
can conclude that the recursive formulas in Theorem 1 compute LY%4 correctly. Q.E.D.
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32 N-k=1case
In this case, we had better introduce ¢4(t),

Dalt) 1= exp(k! - exp(t)) - balt), (a =01+, N —2), (3.100)
instead of 1,(t) in (3.25) because of the following Theorem of Givental [6].

Theorem 5 (Givental)
If N —k =1, tpg(t) satisfy the rank N —1 ODE:

((at)N—l — kel (kO +k—1)--- (kO +2)- (kO + 1))w(t) = 0. (3.101)
This theorem is equivalent to LEFLE! = fA+LEL _ gt [h+Lkd — FEHLEA (7> 9) (5],

3.3 Calabi-Yau case (N — k = 0)

Then we turn into the case of Calabi-Yau hypersurface. To clarify the meaning of the virtual
structure constants introduced in [5}, we had better introduce the B-model deformation parameter
z instead of ¢ and consider the following Gauss-Manin system.

Outp-i(2) = Lty () - dola),

Oxn(z) = Lty () - Pasa(z), (n=0,---.k—3)

Bathr—a(z) = L§* (™) - dhr—1(2). (3.102)
We can derive the following equality from the above equations:

7 1 1 1 1 -
¢k—1(1) = .ig’k(ez)(az(i’;’k(er) o 6x(E:f2(er)ar(E:’_kl(er)azw—l(m))) o )) (3103)

(3.103) motivates us to state the following theorem.

Theorem 6
1 1 1 1
= az — ...az — al, — wlx e
Lg’k(ef)( (Lf’k(ez) (szg(ez) (L:fl(ez) ( ))) ))
= ((az)k-1 —k-e® - (kO +k—1)---(kdp +2) - (kOr + 1)) w(z) (3.104)

proof) We only have to apply formally the discussion of N — k& > 2 case to the N —k = 0 case with
the Gauss-Manin system (3.102). Q.E.D.

Since iﬁ’k(ez) = ff;’_kl_n(e’”), we have,
Corollary 2
5 T B T ~ i1 N
ub¥(z) = Lg’k(e’)/ dmlLf’k(e“)/ szL;""(e“)---/ da; LE* (e%5). (3.105)
Remark 3 Representation of the Picard-Fuchs differential equation given in (8.104) can also be

seen in [1]. We think that our approach via Gauss-Manin system is a kind of reduction of the
method used in [1] | restricted to the Kahler deformation.
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(3.105) enables us to write out L5*(e%) explicitly in terms of the solution of the Picards-Fuchs
differentail equation used in the Mirror computation in [7], [13]. For example, we have:

Lpt(e”) = wg(z), (3.106)
k,k

L) = oo 25y (3.107)
0
kk E.k k& kkooy o Kk .k

1
2((wg*(2))2 + BowiF(2)wg ¥ (z) — wi (2)0,we* (z))

These results agree with the computation in [7], and they give us the proof of Theorem 2.

3.4 Extension to the General Type Hypersurfaces (N — k < 0)
If N -k <0, We consider the rank ¥ —~ 1 ODE:

((ax)N—l — ke (kOp +k—1)---(kOy +2) - (kO + 1))w(x)

T 1 N-—-1
(1—]{3-6 -(k@z—i—k—1)---(k6,+2)-(k61+1)@N—_1 al. 'LU(.T)
=0. (3.109)
Here, we propose the B-model Gauss-Manin system associated to (3.109):
Oetha(z) = bat1(z) + Y exp(dz) - LYEL - Darryk-nya(2), (3.110)
d=1

where o runs through Z. LY:*¢ is the virtual structure constant introduced in [9]. LY*¢ is non-

zero if 0 < n < N —14(k—N)d and if d > 1. All the non-vanishing LY *%s are evaluated via the
recursive formulas proposed in [11]. Therefore, we have infinite number of non-vanishing virtual
structure constants in this case. Straightforward application of the discussion of N —k > 2 case to
this case leads us to the following theorem:

Theorem 7 We can reconstruct the ODE (3.109) from (3.110). Conversely, we can determine
LYEd by (3.109).

Now, we explain the reconstruction process of (3.109) from (3.110). First we introduce the algebra
of differential operator J;.

1 1

r" 7R — 3 Uz = 17
0 3 "o 3]
0:6"" = &7%(8: + J), I S (3.111)
0y (az +J)
Using (3.111), we can obtain the following formula:
1 -1
L k.e®. 1) (kBy +2) - (kO +1)
(1 k-e®-(kOy+k—1)---(k0z +2) - (kO + )(az)N—l)
oo kd—1 d-1 1
— dz
= m= 7=0
Looking back at (3.110), we can easily see,
Yi(e) = (8 N Hnoa(e), (52N -1). (3.113)
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Then using the algebras in (3.111) and (3.110), we can inductively construct the pseudo-differential
operator Fj(e®,0;) when j >0,

(0:)N MY i(z) = Fy(e®, 02 )pn-1(a). (3.114)
Then we consider the limit Foo(e”,0;) := lim;_,o0 Fj(€®,0;). Now, our assertion is the following
statement:
1 N-1 1 N-1
—_— (O, =(1-k-e- (kO +k—1)--- (kO +2) - (kO; + 1) —-+—)(0, , (3.11
or equivalently,
) kd—1 d—1 1
Fo(e®,0;) =1 dz kO, S 3.116
(6 ) +;6 mI:IO( +m) = (81‘ +])N ( )

Conversely, we can determine E,Ij *:d assuming the above equation. This process corresponds to the
B-model computation in the N = k case, and combining it with generalized mirror transformation,
we can construct “mirror computation” to the general type hypersurface M% (N < k).
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