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Abstract. Gonda and Gomi (T.Gonda, H.Gomi, Ann. Glaciology, 6 (1985), 222

224) have grown large clongated ice crystals from supersaturated vapor. Theoret-
ically this problem may be recast in a framework similar to that used by Seeger
(A.Sceger, Philos. Mag., ser. 7, 44, no 348, (1953) 1-13) for studics of planar crys-
tals. The resulting set of equations is of Stefan type. We also include the Gibbs-
Thomson relation on the crystal surface. In order to make this system tractable
mathematically we assume that the Wulff crystal is a fixed cylinder. Subsequently
we study a weak form of our system. We show local in time existence of solutions
assuming that the initial shape is an arbitrary cylinder. We comment on properties

of weak solutions.

1 Introduction

The goal of the present paper is to pursue a mathematical study of crystals grown
from a dilute solution or from supersaturated vapor. These problems are not new,
but it does not mean they have been fully solved. Among the numerous theorctical
and experimental studies we mention just a few. Gonda and Gomi [GG] investigated
samples of long solid prisms of ice crystal formed in the atmosphere and found
mostly in Antarctica. In their laboratory they have grown specimens of elongated
prisms of ice crystals. They studied morphological stability of the growth. A typical

manifestation of an instability is an inclusion of an air bubble in the crystal. Their



work motivates us to consider evolution of ice crystals which are deformed Wulff
shapes.

The necessary theoretical background is provided by Seeger, see [Se]. He has
studied the growth of planar crystals, i.c. polygons grown in dilute solution. That is
he assumed the process was so slow that this justifies the quasi-steady approximation
of the diffusion equation. In other words the concentration (or supersaturation) o
satisfics the equation

Ao =10 (1.1a)

outside a crystal Q. It is also physically rcasonable to assume that the domain is
unbounded, i.e (1.1a) holds in IR* \ 2. Moreover, we may also assume that o has a
specific value at infinity, i.c.

lim o(r) = o*. (1.1b)

] —o00
The velocity of the growing crystal is determined by the normal derivative of o

at the surface,
do
—_— = ‘/ (12)
on
where n is the outer normal.
The value of o at the surface is coupled to the surface velocity and its curvature

through the Gibbs-Thomson relation
—o = —div £ — 3V, (1.3)

where 3 is the kinetic coefficient and € is a Cahn-Hoffman vector. A relation of this

sort is quite natural, see Gurtin [G, Chapter 8.

The equation (1.2) represents mass conservation of the crystal surface and it is
often called the Stefan condition. In [KIO] T. Kuroda, T. Irisawa and A. Ookawa
consider the system of (1.1a), (1.1b), (1.2) with ¢ = 3V instead of (1.3) to study the
morphological stability of polyhedral crystal as an extension of idea of [Se]. However,
we believe the curvature term in (1.3) is important at least when the crystal is small.
Also the kinetic cocfficient 4 in (1.3) is allowed to depend on the orientation of the

crystal surfaces.

Let us comment on the Cahn-Hoffman vector € For smooth surfaces S and

smooth energy density function v we have

§(x) = Vr(n(z)),



which is a well-defined quantity, and + : IR" — IR is a l-homogeneous function.
However, for energy density functions v which are only Lipschitz continuous and
surfaces S with corners some care is necessary while defining &, (see [GMR] for a
related study).  We shall assume that + is convex. For a convex function v its
subdifferential 9 is a well-defined nonempty convex set. But in general 0+ is not a
singleton, thus we have only that £(2) € dy(n(z)).

Here however, we do not consider the evolution problem in its full gencrality, we
are interested in the growth of perturbed Wulff shapes. We do so for the sake of
the feasibility of present analysis and having in mind establishing further qualitative
properties of solutions. We assume that the Frank diagram F., (see |G, Section 7.2]
for a definition) is a sum of two straight cones with height £, base radius p, having a
common base. Hence the Wulff shape is a cylinder. By the term a ‘perturbed Wulff
shape’ we mean a cylinder of different proportions. In this way, the problem becomes
axis symmetrical which leads to some simplifications of the subsequent analysis.

If we suppose that the initial surface is a cylinder, then the question is under
what circumstances it stays a cylinder through the evolutions. The exact conditions
are to be established and this is a topic of an ongoing research. However, in order
to start the discussion we consider a simplification of (1.3). Namely, we replace this
condition by its averages over facets forming S(4). Since the velocity V' is forced to
be constant on each facet S; equation (1.3) becomes

— | odH*=T,— 3V, on &S,. (1.3")

Js;

This paper is devoted to establishing the existence of solutions to (1.1)-(1.2)
coupled to (1.3') and augmented with an initial position of the crystal. This is
achicved in §3. In Section 2 we explain our notation and we formulate the weak
form of (1.1)-(1.2), (1.3"). Tt should be mentioned here that a formally similar
planar problem was studied in [R] for polygonal interfaces. The main difference
is that in [R] a two-phasc problem was considered. We may expect that different
methods will be effective here. We explain it momentarily. Our first step is to reduce
the problem of interface evolution to a system of ordinary differential cquations for
the radius R(t) and height 2L(t) of the growing cylinder Q(¢). A similar procedure
is applied in [R].

To show unique existence of local in time solutions it is crucial to establish the

Lipschitz continuity of a mapping

(R, L) /Q ViV de,
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where f; solves Af; = 0 in Q°, fi(o0) = 0, with Neumann boundary conditions
df;/0v =1 on S;, and 0f;/0v = 0 clsewhere, where S; is either lateral, top, bottom
of crystal surface 92 and v is the inner normal. The author of [R] uses Green
function for this task. This was cffective, because of a fixed bounded domain. This
is not the case here. Instead, we develop a method to cut off contributions near the
crystal surface and compare functions in variable domains.

Let us finally comment on relevant mathematical literature. Apparently, little
has been published on one-phase Stefan problem (or its quasi-steady approximation)
with Gibbs-Thomson relation and kinetic undercooling. Actually, if we are interested
in a multi-dimensional setting, then we are aware only of papers dealing with kinetic
relation alone. We have two articles in mind. Friedman—Hu, [FH], consider evolution
of a free boundary which is a graph of a function over IR. Liu-Yuan, (sce [LY]) deal
only with classical solutions.

We also point to the fact that the Hele-Shaw problem resembles ours. One of the
closer studies seem to be [DE] and [A]. The authors of [DE] consider the Hele-Shaw
problem with Gibbs-Thomson relation and kinetic undercooling and the coefficients
are anisotropic. They apply the technique of parabolic regularization to obtain
existence of smooth interface.

On the other hand, R.Almgren in [A] considers the problem for polygonal inter-
faces, which move by crystalline curvature (no kinetic undercooling). He relies on
complex variable methods in his studics.

These problems are rather different from ours and we will not use methods
employed in the above mentioned papers.

Notation. For vectors a, b in IR* we denote their inner product by a - b.

2 Weak formulation

Let us denote an evolving crystal by Q(¢), Q¢ = IR*\ € is its exterior, and S(t) = 9%
is its surface. As we have already mentioned, our basic premise here is that our

growing crystal Q(¢) is a cylinder at all times. Specifically,
Q) = {(z1,29,2) € R af + 23 < R*(t), |2] < L(1)}.

We shall distinguish three subsets of S(t), namely

Sp = {(21, 22, 2) : :L'f + .Ig < R?(zﬁ)7 z=L(t)}
Sp = {(:L'1,J;27Z) : :L'f +;1;§ < RQ(t)7 y = —L(t)}
Sp={(en e 2) s of vy = RA); |2 < L)

4



We will call them facets. The set of indices {T, B3, L} will be called I, but sometimes

we will use numbers instead of letters, namely L =1, T =2, B = 3.

We assume that the supersaturation o is axially symmetric i.e. o(xy,29,2) =

o(r,z), where 72 = 22 + 23, and also o is symmetric with respect to the plane

{z =0}, 1e. o(r,z) =0(r,—2).

We shall write (1.1)-(1.2) in a weak form in ¢, Since ¢ is an unbounded domain
we shall seek o in the space L'2(Q¢). We recall (see [HK]) that for a domain D of
IR? the space L?(D) is defined by

LY*(D) ={ucD'(D): Vuc L*(D)}.

We also recall that by a domain we mean an open and connected subset of IR*, and
D'(D) denotes the space of Schwartz” distributions.

By [HK, Theorem 5] for all v € L"*()°) we have a unique representation
v =1y + v,

where vy € LM (Q°) and lim, o0 vo() = 0, v € IR. The same result implies that
the space

H(Q) ={uc LY(Q: lim u(x) =0}

is a Hilbert space equipped with an inner product
(u,v)rr2 = | Vu(x) - Vo(z)de.
Jae

Multiplication of (1.1) by a test function h € H(2°) and integration by parts lead

us to

‘ © Jo )
= — AR T 1 Ay T ! 21
0 ./Qc V(T(.I) Vh<l)dl+.aﬂc (91/<L>}L(L) dH ’ ( )
where v is the outer normal to 0Q° i.c. ¥ = —n. Hence (2.1) becomes
0—=— / Vo(r) Vh(r)ds — Z / Vih(z) N2 (2.2)
Joe = s

for all h € H(Q°).

We have already mentioned that (1.3) should be considered with care, especially
if we want that S(t) be a cylinder at all time instances. In this paper we consider
(1.3"), i.e. (1.3) averaged over cach facet,

—/ 0:—/ div&é— 0
S; /s,

i

S

Vi, i€ {BT.L} (2.3)

Ot



where we explicitly assume that V; is constant on S;, ¢ € {B,T, L} and since £ is
basically defined on S we consider the surface divergence divg € in the formula above
and subsequently on. We recall that |S;| denotes here the two-dimensional surface
arca of S;.

A condition like (2.3) appears in a model of crystal growth developed by Gurtin
and Matias [GM], there —o is temperature and (2.3) is the balance of capillary
forces.

Let us stress that our assumption that S(¢) will always be a cylinder requires
justification. In general we expect a facet breaking phenomenon. This question will
be addressed in a separate paper.

Divergence operator in (1.3) or in (2.3) should be understood as a surface diver-
gence. The problem of interpreting —dive € in (1.3) would be casier if there were no
supersaturation field o. Then, V; would be constant over S; provided that —divg €&
were constant. We expect that —divg £ is related to a curvature. Indeed, we shall
see that for a choice of a Lipschitz continuous Cahn Hoffman vector field £, —divg &

is equal to the “mean crystalline curvature” which may be defined as

LN 24)

where h is the amount of motion of S; in the direction of the outer normal to S(t);
AF is the resulting change of surface energy, and AV is the change of volume.

Let us now calculate s, k7, using (2.4). For this purposc we specify some data.
We need to know the values v(n,) and v(ny), where ny is the outer normal to the
top disc of the Wulff shape (it is parallel to the rotation axis of F.,). Vector ny, is
perpendicular to n, and it is an outer normal to the lateral part of the Wulff shape.
Due to our choice of F, the number v(ny) is independent of a sclection of ny. Let
us note that £ = 1/v(ny) and p = 1/v(ny).

We first deal with xy, let us note that ky = kg, the parameter b in (2.4) describes
the amount of motion of St the direction of ny. We can casily sce that for a cylinder

of radius R and height 2L we have
AE = 2rnhRy(np), AV = hrlR?,

thus
. AFE 2v(ny)
kr = —lim — = — .
h—0 AV R
For calculations of k7, we note that h is the change in the radius of the cylinder

thus AE = 2[(R+ h)* — R?]y(ny)w + 27 - 2L(R + h — R)v(n,) where we take into

6



account that the energy of both S; and Sy changes. Finally we see
AV =2x[(R + h)’L — R?].

Thus N .
k; = — lim = — /() — —~(ny,).

h—0 AV L R

We now can make the relation between surface divergence —divgé and k more trans-

parent.

Proposition 1. IfS =00, Q = {(z,,74,2) : 27 + 23 < R,|2| < L}, then there
exists a Lipschitz continuous Cahn Hoffman vector field & such that

z

*dl.VSé_ — K 1= T L./ B.

Proof.  Weset € = (a-xy, a-xy, bz), where a = v(ng)/R, b = v(nr)/L. Tt
is clear that & is smooth. The surface divergence of &, restricted to S;, is cqual
—r; for i = T, B, L and for H* a.e. all z € S, £(x) € Ov(n(x)), where O is the

subdifferential of ~ and finally

-n;, = max (-ny
8 (coy(nr) ¢
£-nr= max (-nr U
¢edy(n,.)

Thus (2.3) becomes

7

_ / =T, — 8V
J S,

where T'; = |S;|k;, where |S;| denotes the surface area. Let us note that I'y = T'y is
a smooth function of R ounly, while I';, depends smoothly upon L as well as R.

Let us note that a solution of (1.1-1.2) and (2.3') is given if a position of the
free boundary S(t) is specified and the supersaturation field ¢ on Q¢(¢). While the
position of S(t) is specified if R(¢) and L(t) are known, the difficulty with o is that
it is defined on a variable domain. Summarizing, a weak solution to (1.1 1.2), (2.3')
is a triple (R(t), L(t),o(#)) such that R, L € C'([0,T)) o(t) € L¥2(Q°(1)) for all ¢,
and the dependence t — o(t) is continuous in a sense to be specified later. Moreover
Vi(t) = LR, Vo(t) = Va(t) = LL(t) satisfy

0=— / Vo(z) - Vh(z)de — YV / h(x)dH?, Vhe H(Q) (2.5a)
Jae = s
f/ o(2)dH2 =T; — GVilSi, ic I, R(0)= Ro,L(0) = Lo. (2.50)
Si



3 Existence of weak solutions

We shall transform (2.3) to obtain a problem which is easier to handle. We shall
apply the approach used in [R] for a 2-phase quasi-steady modified Stefan problem.
Our problem looks like 1-phase Stefan problem, but o is not defined in €, thus o
has a variable domain of definition.

Let us notice that
LY Q%) > hvs / h(z)dH* € R
s,

is a continuous functional on H () thus, by Riesz’ Representation Theorem there
exists a unique f; € H(Q) i € {T, B, L} such that

/s o(r) dH? = / Vo(z) - Vfi(z)de, for all ¢ € H(Q°). (3.1)

Sy JQe

Formally, f; € H(Q°) is the unique solution to the Neumann problem,

—Af;, =0 inQ°

Gr o =05 on Sy,

where 9,5 is the Kroncker delta and v is the inner normal.

Taking (3.1) into account we can write (2.3a) as
0= —/ Vo(z) - Vh(z)de =YV / Vfi(x) - Vh(x)de for all h € H(Q). (3.2)
Qe el J Qe

Since a function ¢ in L'#(€¢) has a representation o = oq + 0>, where oy € H ()

and 0™ is a real number, and f; € H(Q2°) we deduce from (3.2) that

o=-> Vifj+o>. (3.3)

el

We may insert this into (2.5b) to obtain

Z ‘f/(f/ fi)[,l-,Z — |Si|(700 =I,— 05

jel

S,

Vi, icl.

If we set A = {(fi, f;)}ijer and D = diag {5.|S.|, B¢

write the system above for V.= (Vi Vi, Vi) in a simple form

Spl, BsSp|}, then we may

7

V=(A+D)'B (3.4)



where

B — (FL + (TOO|SL|./ FT + UOC‘STL FB + (TOO‘SBD.
Let us change the notation slightly and call the variable L by L,. We introduce a
dummy variable L,. It will be equal to L. In this way we may expose the symmetric
structure of (3.4). Let us also write z = (R, Ly, Ls), thus

dz dR dL, dL,
V=—=(—.—.—>),
dt (dt/dt/dt>/
then
dz O -
m = (A(z) + D(z))  B(z). (3.9)

Our object of study is this system of ODE’s. In order to obtain existence and

uniqueness of solutions to (3.5) it is sufficient to establish that the functions
2> (filz), fi2)rr2, 2 [Si(z)]. 2 Ti(z)

arc locally Lipschitz continuous. The last two claims arc casy, we shall only deal
with the first one. We faced such a problem in [R], here we will proceed in a different
way without using Green’s function. On the way we shall derive more information
on f;’s.

Let us introduce three cut-off functions 7; € C°(IR?), 1 > > 0,0 € 1. We
require that 1z |<cp = 0 = 1] (z24025,23 for some € > 0 and sufficiently large p, and
1y, restricted to the set {r e [R —c, R+¢]} N {|z] <5} is 1.

We need that

() — { 0 1f 2 <0 orr?+ 22> p?
1 ifzellL e L+el andr <4

finally np(r, z) = nr(r, —2). We also define

fr(r.2) = —np(r,2)Rlnr
Jr(r,z) = —nrz,  [p(r,z) = —npz.

Obviously f; € C* and if v is the inner normal to €2, then

of; { 1 on S;

oy | 0 on S;, J#u.

Subscquently, we define v, i € 1 to be a unique solution in H () to

/ (Vs -Vh— ALR) de =0 Vh e H(QY). (3.6)
Qe

9



Existence and uniqueness of solutions to (3.6) follows from the Riesz’ representation

formula provided that we check that

HOQ) 3 hvs [ AThda

J Qe

is a continuous lincar functional. Indeed, by Holder incquality, smoothness of f; and

boundedness of support of Af; we obtain that

‘/ Azh dx hH[/i < CHhHm,z./
J Qe

< IAT I 4]

where we used in the last inequality [HK, Theorem 5.
Since v, € H(Q) formally solves Ay, = Af; in Q¢ with d,;/0v = 0 on 9,
we observe that
Ji =T+ (3.7)
To show this rigorously we have to check that (3.1) holds if we set f; = f, +v,. By
(3.7) we have
/ Vfi-Vodr = / (Vf, +V,) - Vodr, forall pc HQ), icl.
Joe Js

Qe

Because of smoothness of f, we can integrate by parts, then we use the definition

of v,

, : , - df; .
Vi -Vode =— | Afjode+ /i wdr + Vg, - Vodx

JQe J Qe J o0 (91/ o0«

- / (V], Vo — AT,)da +/ £dS = / 0dS. O
J 00 Si Si
Subsequently, we study here how f;’s depend upon S;. We investigate the function
7z fi(z), 1€l

We need

Lemma 1.  Let us suppose that Ay = (a);)},_,, af; € L®(Q°), Ay > A > 0,

k=1,2, 91,92 € LE(Q°) N LAQ) and uy,us € L¥2(Q°) are solutions of

/. Ap(x)Vug(z) - Vh(z) de = / gr(x)h(z)de, k=1,2. (3.8)
Joe

J Qe

for all h € LY%*(Q¢). Then

(Collgr — goll 5 + 11 A1 — Ao [ || Vi [[12).

> =

[[Vuy — Vuy|[r2ge <

10



Proof. We take difference of (3.8) for £k =1 and k = 2, thus

| A\Vu, - Vhdr — | AsVuy - Vhdr = / (91 — g2)hdx, for all h € H(Q).
Joe

J Qe J Qe

We rearrange the above identity

/‘ (A; — Ay)Vu, - Vhdr + Ay(Vuy — Vuy) - Vhdr = / (g1 — g2)hdx.
Jae e

J Qe

We take h = u; — us, positivity of A, yields
MIVur = Vusl[72 < gy — gall, 5 |Jur — sl 1s + [[Ar — As|[ 1o [[Vur | 2 ]|V (ur — )] 2

We again use the embedding L'*(D) — L°(D) (see [HK, Theorem 5]), thus the
above inequality becomes
)\||Vul _VUQH%Q
< Gyllgr — 'GQHL%

V(ur = up)|r2 + [ A1 = AL |[Vu|[ 12|V (w1 = uz) ]2
And this inequality implies our lemma.

Now we can prove the key Lemma. Its statement is similar to [R, Lemma 3]. How-

ever, the proof is completely different.
Lemma 2.  The mappings

R? >z (fi(z), fi(z)2€R
for i, € I are locally Lipschitz continuous.

Proof.  Let us take 7z’ close to z. For the sake of brevity we write f; = f;(z),

1= fi(2'). By the definition of f; and some algebra we arrive at

!

(For Fi)ure — (1, fe = {/2 VF, -V, du —/Q(‘(Z,)Vfi.Vf'jd;L}

{ I V@d:ﬁ—/ i v dr}
0 (z : Q¢ (z')
{ VT dr / VU VT, dr}
0 (z Qe (z')
{ Vz/ dr — / VL' a’r}
Q“(Z)
E[l+]2+[3+[4

11



Our goal is to show that |I,| < C|z — 2|, k =1.2,3,4. It is easy to show that
1| < Clz— 7).

We leave the straightforward calculations to the reader.
In order to estimate the remaining integrals we have to change variables, so that
we can consider a difference of integrals over the same domain, let us introduce an

affinc isomorphism H : IR* — IR* given by

R/ L/
H(r, z) = <E7 Zf) :

H maps {r <R, |z| < L} onto {r <R, |z| < L'}. Now, we write for any function

u

u(x) = u'(H(z)).

We note that if y = H(x), then the chain formula vector yiclds
Vyu' = (Vi) Dyx = (V,a)" A (3.9)

where we wrote V4 as a column, and

R R L
A = diag <R o L’> = diag(aq, aq, a3)
thus . . N )
/ VuL_: : Vuflf dy = VLL_L A’V f . det Adax.
Joey 7T Je(z) J

We also recall the equation satisfied by 10,. Since
/ Vi - Vhdr = / Afihdz,  for all h e H(Q%z'))
JQe(2') JQe(2')

then (3.9) yields

% 2 0% f;
oy, <R’> T 02?2

and finally v satisfics

3

Z 2 L0 b det Ada.
k=1 97Tk

/ﬁ AZVLfY -V, h det Adr = /
Jar(a)

Qc(z

12



We are now in a position to complete estimates for I,
L :/ V7, -V, a’r—/ vﬂ-v@’jd.«p
0e(z Qe (2!
/ (VF,- V0, — VF,- A2V, det A)dr

= Joi V¥ (VF, — V[ A% det A) + VA2 (Vi — Vi, )det A] da

- / VU, - (Vf, = V[ + VI,(Id — A2det A)) + V[, A2- (Vi — Vo) det A] da.
Thus

L < VOV fi = Villee + IV Fil [ 12][1d — A2 det Al|~)

+HV?ZA2 det / Vﬁl |72.
One may directly establish that
VS, =V il <Clz—72]. (3.10)

It is also clear that
[Id — A%det A||p~ < Clz — 2|
Because of its compact support it is obvious that V. f, € LP(Q°), for all 1 < p < oc,

thus in order to estimate

Vo, — V][> we use Lemma 1 and identity (3.6). Since
A is a linear isomorphism, then A% > min o (A%)I > 0, with o(A?) > 0, where o(A?)

denotes the set of cigenvalues of A2, Thus, this vields

V%, =4l
Zf
alk

< ; ’VCPHAT]' - Z

Id — A%det .
~ mino(A?) L “ H +H ¢ de

| IS

Next, after straightforward calculations we arrive at

V¢, = V|| < Clz— 2|, (3.11)

Thus we may conclude that
|I5] < ¢|z — 7|

since the structure of 15 is the same as that of 1o we infer that
|I3] < c|z — 7'|.
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The remaining term is [, proceeding as before we obtain
IV (VT — A2 @z ) A2V )
Iy = ./s*zc[vwi (Vi — AV, det A) + (Vi — V) - A% Vi, detA] d.
Thus,

L] < (VG112 (1V8; — Gl + [[V0l]2][1d — A2 det Al )

IV, — V12| A4 et Allp| V5|12

|12
using incquality (3.11) we infer that

|Ii| < |z —7'|.
The Lemma follows. O

The Lemma above tells us that we actually may compare elements of func-
tion spaces defined on different domains, which are related by fixed diffeomorphism
H, thus, we may adopt the notation, if u € L'2(Q%z)), v’ € L"*(Q(2")) and

lim g o0 t(x) = im0 w'(2), then
d(u,u') = [|Vu — A det AVT||1200(2))
where we keep the notation of Lemma 2. We would like to say that a function
teu(t) € LY Q1))
is continuous (Hélder continuous). We shall adopt the following definition
tesu(t) € L'2(Q%z(t)) is continuous (Holder continuous)
if the map ¢+ z(1) is continuous and if
t s Vu(t)A?(H)det A € LV*(Q°(0))

is continuous (Holder continuous). In this language, due to (3.10) and (3.11) we
may write

d(fi(z), fi(2)) < Clz — 2|, (3.12)

we are now in a position to state and prove our existence result.

Theorem 1.  Let us supposc that an initial cylinder S(0) is given. Then there

exists a unique local in time solution to (2.5) such that
z € CYY(0,T),IR*), o € C™([0,T), L"*(Q(z(1))).

14



Proof. ~ We have already reduced the problem to (3.3), i.e.

dz , .
— = (A(z) + D(2)) ' Blz). (3.13)

By Lemma 1 the RHS is locally Lipschitz continuous, thus the ODE has a unique

local in time solution, and since the RHS of (3.13) is locally Lipschitz we obtain
z ¢ CH1([0,T),IR?)
On the other hand, we have established (see 3.3) that

o=— Z Vifi + 0~
icl

thus it is easy to see that

3

3
d(o(t),o(t') <D Vilt) = Vit I fill 2oy +
i—1

Vit ld(fi. fi).

i=1

Lemma 1 and (3.12) yield
d(o(t),o(t') < Clz(t) — z(t) < Clt = ] =
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