Spiral solutions for a weakly anisotropic
curvature flow equation

Yoshikazu Giga, Naoyuki Ishimura, and Yoshihito Kohsaka

Series #529. June 2001



#503

#504

4505
4506

4507

#508

HOKKAIDO UNIVERSITY
PREPRINT SERIES IN MATHEMATICS

Y. Giga, 5. Matsui and O. Sawada, Global existence of two-dimensional Navier-Stokes flow with nonde-
caying initial velocity, 19 pages. 2000.

A. Inoue and Y. Kasahara, Partial autocorrelation functions of the fractional ARIMA processes with
negative degree of differencing, 14 pages. 2000.

T. Nakazi, Interpolation probiem for £} and a uniform algebra, 12 pages. 2000.
R. Kobayashi and Y. Giga, On anisotropy and curvature effects for growing crystals, 38 pages. 2000.

A. Aral, Instability in the spectral and the Fredholm properties of an infinite dimensional Dirac operator
on the abstract Boson—Fermion Fock space, 6 pages. 2000.

A. Arai, Supersymmetric methods for constructing soliton-type solutions to multi-component nonlinear
Schrédinger and Klein-Gordon equations, 22 pages. 2000.

Y. Tonegawa, Phase field model with a variable chemical potential, 30 pages. 2000.

Y. Giga, Shocks and very strong vertical diffusion, 11 pages. 2000.

S. Izumiya & N. Takeuchi, Special curves and raled surfaces, 18 pages. 2001.

S. Tzumiya, Generating families of developable surfaces in R®, 18 pages. 2001.

S. Izumiya, K. Maruyama, Transversal topology and singularities of Haefliger foliations, 8 pages. 2001.
S. Jzumiya, D-H. Pei & T. Sano, Singularities of hyperbolic Gauss maps, 27 pages. 2001.

S. Izumiya, N. Takeuchi, Generic special curves, 12 pages. 2001.

S. Izumiya. D-H. Pei & T. Sano, Horospherical surfaces of curves in hyperbolic space, 9 pages. 2001.
R. Yoneda, The composition operators on weighted bloch space, 8 pages. 2001.

M. Jinzenji, T. Sasaki, N = 4 supersymmetric Yang-Mills theory on orbifold-T*/Z,, 18 pages. 2001.
Y. Giga, Viscosity solutions with shocks, 58 pages. 2001.

A. Inoue, On the worst conditional expectation, 10 pages. 2001.

Yumiharu Nakano, Efficient hedging with coherent risk measure, 10 pages. 2001.

T. Nakazi, Toeplitz operators and weighted norm inequalities on the bidisc, 15 pages. 2001.

T. Mikami, Covariance kernel and the central limit theorem in the total variation distance, 80 pages.

2001.

K. Yamaguchi and T. Yatsui, Geometry of higher order differential equations of finite type associated
with symmetric spaces, 43 pages. 2001.

T. Suwa, Residues of Chern classes, 20 pages. 2001.
V. Anh and A. Inoue, Dynamic models of asset prices with long memory, 21 pages. 2001.
T. Izawa and T. Suwa, Multiplicity of functions on singular varieties, 21 pages. 2001.

T. Nakazi and T. Yamamoto, Two dimensional commutative Banach algebras and von Neumann inequal-
ity, 18 pages. 2001.



SPIRAL SOLUTIONS FOR A WEAKLY ANISOTROPIC
CURVATURE FLOW EQUATION

YOSHIKAZU GIGA, NAOYUKI ISHIMURA, AND YOSHIHITO KOHSAKA

Abstract. The presence of steps associated with screw dislocations plays a key role
for the growth of crystal surfaces. In geometric model the motion of curves describing
location of steps is governed by curvature flow equations with a driving force term. We
show the existence of spiral-shaped solutions for such an equation when anisotropic effect
is small. Such a spiral-shaped solution is shown to be stable and unique up to translation
of the time.

1 Introduction

More than 50 years ago Frank [4] claimed that the presence of dislocations in a crystal
plays a key role in the growth of crystal surfaces; sce also [1]. Monomolecular steps on a
crystal surface associated with a dislocation move by supersaturation of molecules outside
crystal. In geometric model the location of the steps on a crystal surface is represented
as a curve ['(¢) depending on time £. In [2] it was proposed that the evolution of T'(¢) is
governed by a curvature flow equation with a driving force term :

V = Vo(1 + dor). (1.1)

Here V' and  denotes the normal velocity and the curvature of ['(¢) respectively in the
direction of the unit normal vector field n of I'(¢) and Vj and d is a positive constant. If 0
is the only dislocation, we consider (1.1) in R?\ {0} such that one of the end point of T'(¢)
is zero. In [2] it is suggested that there is an essentially unique rotating solution for (1.1).
Such a solution is called a spiral (-shaped) solution. In modern analysis this problem can
be solved by a shooting method as suggested in [18, Appendix AVI, p.190-203]; see also
[17].



In this paper we study the existence of spiral (-shaped) solution when the growth
equation (1.1) takes the anisotropy into account. Such an extension is very natural in the
theory of crystal growth. For technical reasons we postulate that the dislocation is not a
point but a closed disk B and that crystal surface D is a large disk having common centers
with dislocation disk. Moreover, we postulate that I'(¢) is orthogonal to the boundary of
the crystal surface D and B. Under these assumptions evolution of I'(#) in an annulus
Q={reR?*p<|z|] < R}= D\ B) is governed by
{ V = M(n)(Doky + Vy) on I'(2), (1.2)
[(¢) Log2, ’

Here k. denotes the anisotropic curvature of I'(¢) in the direction of n. It is defined by
Ky = —div,Vy(n), (1.3)

with the interfacial energy density v : R* —» R* = {0 € R;0 > 0} which is positively
homogeneous of degree one, i.e., v(Ap) = A\y(p) for all p € R* and A € R"; V denotes
the gradient and div, denotes the surface divergence. For a vector field f on a curve in
R? the surface divergence is defined by

divy f := (0, f, T),

where J; is the derivative with respect to arclength and 7 is the unit tangent vector to
the curve; (,) denotes the inner product of R% The function M(m) > 0 is called the
mobility and it depends on m; Dy is a positive constant. If M = 1 and v(p) = |p|,
then the curvature flow equation in (1.2) is nothing but (1.1) with Dy = dyVy. For more
applications of these equations the reader is referred to a nice monograph of M. E. Gurtin
[6] and a review article by J. Taylor, J. Cahn and A. Handwerker [21].

Our goal in this paper is to seek a spiral-shaped solution. Contrary to isotropic case
there might be no rotating solution. For anisotropic case it is natural to say that ['(¢)
is spiral-shaped solution il T'({) is a periodic-in-time solution of (1.2). In this paper we
consider more special spiral solution of the form

I'(t) = {(rcosb(r,t),rsind(r,t)) | p<r <R} (1.4)
where r = |z] and 6 represents the argument or the angle of x € R2.

Definition 1.1. We call T'(t) a spiral solution of (1.2) of 0(r,t) in (1.4) if 0(r,t) is
monotone with respect to r, and periodic in ltime t, that s, there exists T > 0 such that
O(r,t +T) =0(r,t) + 2x for all t > 0.

We remark that other kind of spirals, such as those are not included in above category,
do exist in reality; certain crystals usually involve facets, where the angle 6 is not a
monotone function of r. It is not expected that a spiral solution of form (1.4) always
exists unless anisotropic effect is small. We here confine ourselves to investigating the
existence of spirals within the above somewhat restricted family when anisotropic effect
is small. Our main results read as follows.



Theorem 1.2. (Existence of a spiral solution). Assume that M and vy are smooth on
a unit circle. Assume that the equation (1.2) is close to isotropy in the sense defined in
Section 3 below. Then there exists a spiral solution f(t) of (1.2), which is unique up to
translation of time.

The assumption that (1.2) is close to isotropic is necessary to obtain the solution of form
(1.4).

If there is no driving force term, i.c., V5 = 0 in (1.2), then we can proceed a little
further and are able to determine what ['(£) precisely is. The shape of T'(t) is unrelated
to M(n), which is stated in the next corollary.

Corollary 1.3. If Vy = 0, then a spiral solution f(?‘) 15 a straight line independent of
time .

By definition ['(Z) is of the form

() = T\ = {(rcosf., rsind.) | p < r < R}

with some constant é*

We briefly describe our strategy of the proof. First, we derive the equation for 6(r,t)
appeared in the formula (1.4), and establish its gradient estimates under the condition
that the equation (1.2) is close to isotropy in some sense. The precise assumption is
presented properly in Section 3. The gradient estimate is a consequence of the use of the
weak maximum principle, and plays a key role to obtain a global-in-time solution to (1.2).
Next, we show a time-monotonicity of the infimum of (r,t) on [ == {r c R | p <r < R}
and an order-preserving property of §. The strong maximum principle is involved in the
proof. Based on the gradient estimate as well as these properties on § we apply the
theory developed in [17] to obtain a time-periodic solution é(r, t), which is unique up to
translation of time. Finally, the result for V) = 0 is established by virtue of the Lyapunov
functional, which is the length of the interface I'(¢).

In [17] they studied the Neumann problem for the Allen-Cahn type equation

w=Au+glu—1=0), e

when ¢ is 2m-periodic function. Here 6 denotes the angle of x. The function ¢ is the
derivative of a multi-well potential and [ g(v)dv > 0. They proved the unique existence
of a spiral traveling wave solution u in the sense that u is of the form

uw(z,t) = p(r,0 — wt) + wt

with some w > 0 (independent of 2 and ¢) and a function ¢ with r = |z|. To construct
such a solution they use strong maximum principle in a smart way. We shall use their
argument in the proof of Theorem 1.2 as mentioned in the previous paragraph. In [17] they
also prove the existence of rotating solution for (1.2) when it is isotropic (i.e. v(p) = |p|,
M = 1) by a shooting argument for an ordinary differential equation. We remark that
such an ODE argument does not work when the equation is anisotropic.

We take this opportunity to mention several related works on spirals. There are
numerical calculations based on the Allen Cahn equation by A. Karma and M. Plapp
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[12], R. Kobayashi [13]; the latter also treats the case when there are several dislocation.
In this case two steps may collide. To treat such a phenomena two level set methods
are proposed numerically by P. Smereka [20] and analytically by T. Ohtsuka [19]; their
methods are different each other. Other aspects of spiral shaped solutions for various
interface equations, we refer for instance to [7, 8, 10, 11, 22] and references therein.

This paper is organized as follows. In Section 2, we derive the equation for (r, t).
In Section 3, we clarify the meaning of “weakly anisotropic” and establish the gradient
estimate of 6(r,¢). In Section 4, we prove the existence result of a spiral solution to (1.2).
Section 5 is devoted to the analysis in the case of V = 0.

2 Derivation of the equation

In this section, we derive the equations for #(r,t) in the expression (1.4) of T'(¢).
Since v is homogeneous of degree 1, we first get

(Vv(p),p) =(p)- (2.1)
for p € R2. Let pt be rotation of p by —m/2. We observe that
L

_ PP o
Vy(p) = (Vy(p), |p|> ] +(Vv(p), |pL|> pt

Since |p| = |p*|, we obtain
PPV (p) = (VA (), p)p + (V) 0 )0 (2.2)
Combining (2.1) and (2.2), we are led to
PPV (p) = v(p)p + (V(p), p )0 (2.3)

Here, the unit normal vector m and the unit tangent vector 7 of I'(¢) is represented as

1 <— sinf — r, cos 9)

n =00 =

cosf —rf,.sind
1 <(:0s 0 — rf, sin 9)

_ . €L
7= 7(r0,0,) = (n(r,0,0,))" = W sin @ + rf, cos 0

This implies

on_ o
o0 T 0
Setting Y(0) := v(n(-,6,-)), we find
Ny on
¥ (0) = (Vr(n), 55) = ~(Vy(n), 7) (2.4)

where ' denotes the derivative with respect to §. Thus, by virtue of (2.3) and (2.4), we
are led to
Vy(n) =y(n)n —5(0)T = (0)n - 4'(0)T. (2.5)
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We also note

o 1 on 70y + 1207 + 20,

gTY == e e T T,
(1 + r202)1/2 or (1 + r262)3/2
B 1 or  rl., + r20% + 20,

O = TP P ar — (1% 2007

Then, by (1.3) and (2.5), we derive

Ky = —lee(?() 7(0)7)
= —(0:(7(0)n () ):T)

70y, + 120% + 20,

(
) { 0 (1 + 7262)3/2 ’aﬁ’(e)}w.

On the other hand, differentiating the both sides of (2.4) with respect to the arclength
parameter s, we deduce that

70r + 120% + 20,

0 O) = = rageyire

{(V*y(n))T,7) = (V7(n),n)}. (2.6)

Morcover, differentiating the both sides of (2.4) with respect to 6, we obtain
¥'(0) = {(V*y(n)T,7) = (Vy(n), n). (2.7)
Thanks to (2.6) and (2.7), we are led to

(1+ 1202)372

0:7'(0) = 7).

from where we conclude that

70p + 12607 + 26,

= (%(0) +4"(0)) (1 + 1202)3/? (2.8)
Consequently, since the normal velocity of I'() is
aF T()t
V = (— e R
o™ = Gy ey
the interface equation (1.2) become
0, = M(n) a(n)(r6,, + 20} + 26,) N Vo(1 + r262)1/2
: (1 + r262) r ’ (2.9)
0,(p,t) = 0.(R,t) = 0.

where a(n) := Dy(v(0) ++v"(0)) = Do{|V?y(n)]T, ).



Remark 2.1. (Eristence and uniqueness of the solution of (2.9)). We describe the
existence and uniqueness of the solution of (2.9). By using the optimal regularity theory
of analytic semigroups as in [16], we get a unique and smooth local-in-time solution of
(2.9) with existence time 7', which depends on 1/|6g||c1+e(;y. This implies that if we
obtain C'*-a priori estimate of the solution (-, ¢) for ¢ > 0, there exists a unique global-
in-time solution of (2.9). We find the gradient bound under some assumptions in Section
3 and derive the estimate of 8 in Section 4. According to the theory of parabolic equations
(see [3, 14, 15]), the Holder norm of the gradient is estimated by a constant depending
on the maximum norm of the gradient and some given constants in the assumptions for
M(n) and a(n). This means that the gradient and 6’s estimates assure the existence of
the global-in-time solution of (2.9). O

We conclude this section with the following proposition which will be invoked in Section

D.

Proposition 2.2. Let L[['(t)] be the length of T'(t), that is,
R . . .
LI = / (1 -+ 7262)/2dr.
Jp
If T'(t) is a solution of (1.2), the following formula is valid :

EL[r(t)] = ,/,)R M(n)(1 + 7262 *(a(n)k* + £Vy)dr.

Proof. By mecans of the direct calculation and the integration by parts with the boundary
condition 6,(p,t) = 0,(R,t) = 0, we are led to

d "R 7‘29 .Ra 7.20
—L[D(t :/ e :—/ o el b
o= f 1+ r202)i2 T, 87'{(14—7'202)1/2} o

On the other hand, we see that

%) 720, B {20,(1 + 720%) + r0,. (1 + 20%) — r0,.(r6? + r%6,0,,)}
or { (1 r262)1/2 } - (1 + r262)3/2

70, + 1202 + 20,
T T gz

Note that & is the usual curvature. Applying Dok, = a(n)x, which is derived by (2.8)
and the definition of a(n), and using the equation (2.9), it follows that

[ R 1+ r202)1/2
iL[F(t)] = _/ TK - uM(ﬂ)(a(n)ﬁ—i—Vo)dr
dt p r
R
- —/ M(n)(1 + r202)Y2(a(n)r? + kVo)dr
p
The desired formula is thus established. O



3 Gradient estimate

The goal of this section is to obtain the gradient estimate. For this purpose, we first
provide the precise assumption that the equation of (2.9) is close to isotropic.
For A, i, ¢ > 0 and A < oo, we set

(AY ) A< M(n)<Aand p<a(n) < Aforallne S

(Va(n),7)

a(n

(4) ‘ <-

+ ‘

If (A®) holds for small & > 0, this implies that M and «a are close to isotropic. The next
proposition is the main ingredient of our current exposition.

Proposition 3.1. (Gradient estimate). Assume that M(n) and a(n) satisfy (A3, ). Let

€. be
P 212 RV,
€4 = where d =1+ — [ 2+ > 1).
SRVy(d+ VB 1) o C 2 < A

Assume that M (n) and a(n) satisfy (A°) for some e € (0,e,]. Then if 6(r,t) is a solution
of (2.9) with the initial data 6(-,0) = Oy salisfying —L < 6y, < 0 for L € [L;, Ly|, the
gradient estimate —L < 0,(-,t) < 0 holds fort > 0. Here, constants L1, Ly (0 < Ly < Ly)
are solutions of quadratic equation

2 R%) N (1 25%) Vo
o+ =) L2 | = - L+ —%~ =0. 3.1
p( Iz R pp p? (3.)

Remark 3.2. If 0 < ¢ < ¢,, the quadratic equation (3.1) has two positive real-valued
solutions. Indeed, (3.1) has two positive real-valued solutions if and only if

1 2eV

2 pp

1 2%\’ 2
>0, and (—— 5V°> —4-—€<2+%>-L‘120.

 qup p wo) pp?
If € satisfies 0 < & < &, these conditions holds. We also stress that € in (A%) is determined

a posteriori from ¢, in Proposition 3.1.

Proof. Differentiating both sides of (2.9) and setting v := 6,,, we have

Mo

¥ ,t 7-7-‘}‘3 ,t r ,t - — s
afr, t)v Br,t)v, +y(r,t)o — v, r2(1 4 r2v2)i/2 =

where
M(n)a(n)
147202 7

2 4 rtt — 2rdvn, — r2v?
e t — M —
ﬁ(“ ) (n)a(n) T(l + T2v2)2

7

a(r,t) =




(VM(n), ) (Va(n),7)\ r*v, + 2rv(2 + r?v?)
~M(nja(n) ( M(n) + a(n) ) r(1+ r2v?)?
Mt (, (900
(1 + r202)1/2 M(n)
iy = MRy i)

~ M(n)a(n) ((VM(n),T> N <Va(n),7‘>) (2 + r*v?)?v
M(n) a(n) (1 + r202)2r
‘/’0(1 + 7'22)2)1/2(2 + 7‘21}2)
r(1 4 r2v?) '
Since a(r,t) > 0 and |a(r,t)|, |B(r, t)], |v(r,t)| < 0o, we can appeal to the weak maximum
principle; we deduce that v(-,¢) < 0 for ¢t > 0 if the initial data of v satisfies v(-,0) < 0.
That is, we are led to 6,(-,t) <0 for ¢ > 0 if the initial data 6, satisfies 6y, < 0.
Next, we prove that if the initial data 6y satisfies 6y, > ~L for L € [Ly, Lo], the
minimum of 6,(-, ) is estimated by —L for ¢t > 0. To prove this, we set w := —v — L.
Then w satisfies

G, Dywpr + B0, wy 4+ A(r, Hw — w,

—(VM(n),7)

L

B M(n)a(n)( 1+ 3r?(w + L)? )
B (1+72( w+L
Va(

~ M(n)a(n) ((VM( n), > n), ) ) (2 + r*(w+ L)?)? g2
r M(n) a(n) (14 r2(w + L)?)?
+M(n)vo(1 +ri(w+ L") (VM(n),7) 2+7°(w+ L)? I
r M(n) 1+ r2(w+ L)?
M(n)Vy

‘7'2(1—1—7-2(w+L)2)1/2
1 de s 2W(A+Rw+L), Y }
2 p 1P pp?

where &, (8, 4 are the terms evaluated at r, w, ete. Transposing the term of w in the right
hand side to the left hand side, we see that

. 2e RVLL
a(r, )wpy + B(r, t)w, + (&(7‘, t) + il ) w—w,

Hp
e G Bl R I
— —M(n)a(n)Q(L).

According to the condition of L, we find that Q(L) < 0. Since M(n) and a(n) are
positive, it follows that

25 RV, L
1P
8

a(r, ywy, + B(r, t)w, + (@(r, t) + ) w—w, > —M(n)a(n)Q(L) > 0.



Using the weak maximum principle for this equation, we obtain that w(-,#) <0 for ¢ > 0
if the initial data of w satisfies w(-,0) < 0. The proof is now complete. a

4 Existence of spiral solutions

In this section, our goal is to obtain a periodic solution of (2.9). For this purpose, we
shall apply the idea of [17]. To do so, we first derive the useful properties on 6.

Lemma 4.1. (i) (Monotonicity for time). Let m(t) := <in£R0(/r, t) and assume that
p<r

0,(-,1) < 0 for each t > 0. Then there ezists a constant v > 0 such that

d
%m(t) >v fort>0.
(ii) (Order-preserving). Let 0 (- 1), 0P (- 1) be solutions of (2.9) with the initial data
9(()1), 9[()2) respectively. If 9[()1) < 9[()2) with 9(()1) * 0((]2), then the order is preserved for t > 0.
In fact,

OV (-, t) <P (1) fort>D0.

Proof. We first prove (i). By virtue of the assumption that 6,.(-,¢) < 0 for each ¢ > 0, we
are led to
inf 0(r,t) = (R, t)(=: m(t)).

p<r<R

Letting r T R in (2.9), we have

1%
@m@:wm@w%w@+ﬁ) (4.1)
Now, we claim that
0,-(R,t) >0 fort > 0. (4.2)

In fact, suppose that 6,.(R,t) < 0. Then there exists a constant § > 0 such that 8,..(r,t) <
0 for R — 9 <r < R. Since 0,(R,t) = 0, we sce that 6,(r, 1) > 0 for R —0 <r < R. This
contradicts 6,(r,t) < 0 for p <r < R, which verifies (4.2). In view of (4.1) and (4.2), we
thus obtain

Vo _ AW

Since 0 is a C'-function with respect to ¢ for t > 0, the desired inequality is established.
(ii) is proved by using the strong maximum principle. We may safely omit the details.
O

Moreover we obtain the estimate of # as follows.

Lemma 4.2. Assume that 6,(-,t) <0 for each t > 0. Then we have
Oo(R) + it < O(-,t) < Oy(p) + 1t fort > 0.

where vy = AVy/R and vy = AVy/p.



Proof. By means of the assumption that 6,(-,t) < 0 for each £ > 0, we sce that
O(R,t) <O(r,t) <O(p,t) for p<r<R.

It follows from Lemma 4.1(i) that 6y(R) + 11t < 8(R,t). On the other hand, applying the
similar argument to the proof of Lemma 4.1(i), 6,,(p,t) < 0 is verified. Letting r | p in
(2.9), we have

\% Vi AV
bulp,1) = Min) (a(nm‘(p, o —“) < M(m)"0 < V.
p p T op
This implies that 0(p,t) < 0y(p) + v»t and completes the proof. a

We set
D={yeC™(I)| ~ L <y <0, ¢(p) = ¢(R) = 0}

where I = {r € R| p <r < R} and define the map ®; on D as
®,(0y) = 0(-,t) for cach t >0 (4.3)

where 0(-,t) is the solution of (2.9) with the initial data (-,0) = 6,. It follows from
Proposition 3.1 and Lemma 4.2 that if the initial data is in D, there exists a unique
global-in-time solution of (2.9) (see Remark 2.1) and this solution stays also in D. The
definition of the mapping ®; and the uniqueness of the solution of (2.9) imply that a
family of the mappings ®; from D to itself satisfies the semigroup property :

Do) =6 forall@ € D, P,0d, =Py, foranyt,sée[0,00). (4.4)
The invariance of (2.9) for 27-periodicity and the uniqueness of the solution of (2.9) justify
®,(0 + 2nm) = ®y(0) £ 2nw forany ¢ >0, 0 € D and n € N. (4.5)

In addition, the standard parabolic estimate implies that &, is a compact map on D for
each ¢ > 0. Recalling Lemma 4.1(ii), ®, is also order-preserving for each ¢ > 0, which
means that 6, < 0, implies ®,(0,) < ;(6,) for each ¢ > 0. To obtain a periodic solution
of (2.9), we need the following proposition.

Proposition 4.3. Let {®/}icj000) be a family of mappings ®, defined by (4.3). Then
there exists a unique Ty > 0 such that o + 21 = Oy, () for a function ¢ € D.

In order to prove this proposition, we apply the idea of [17].

Proof. Let 6 be a solution of (2.9) with the initial data 6(-,0) = 6y € D. According to
Proposition 3.1, we have

max{0(r,t) | r € I} —min{f(r,t) |r € [} <2LR for t > 0.
Set O(r) := 0(r, k) — 27ng and choose ny € Z satisfying

Ox(r) € [0,2LR + 27].
10



Note that 6, € D. Let s € (0,1) be fixed. Since {®,(f;)}72, is relatively compact
in C1(I) for cach s € [e,1) where € > 0 is arbitrary, there exists a subsequence
{®s(0k,)}52) C {Ps(0k)}32, and a function ¢ € C'*(I) such that

H(DS(ij) — g0|’01+a(f) — 0 as } — OX.

Note that also ¢ € D because a constant L > 0 is independent of time %.

We first show that ¢ + 27 < ®(¢p) for a T' > 0. Lemma 4.1(i) implies that 6, + 27 <
0(-,T) for a T > 0. Using Lemma 4.1(ii) and (4.4), @514, (00) + 27 < @y, 47(6h). Adding
—2mny; to the both side of this inequality and recalling @44, (0y) — 27ny;, = @4(0y,), we
have

(].—.)S(Hk;j) + 21 < (I)l(q)g(gk]))

Letting j 1 0o, we see ¢ + 21 < $p ().
Now we define
Ty :=1inf{t > 0 | ¢+ 2rx < O, (¢)}.

It is the completely same argument as in [17, Section 3] to prove that ¢ + 27 = &7, (¢)
and Ty > 0 is unique. However, we present its proof for the reader’s convenience. By
definition 0 < Ty < T and ¢ + 27 < $4, (). Suppose that ¢ + 217 £ Py, (p). Then by
Lemma 4.1 (ii)

CI)(;(QO + 27T) = (I)(;(QO) + 21 < (I>T0+5((~/9) inl/
for any 6 > 0. Thus for sufficiently large ky we sce that

DPiysit(Or) + 27 < Prypspsere(f,) in I, t>0

for sufficiently small € > 0. We now add 27ny, — 27y to both sides and put ¢ = 4, — 1, — 0
to get P(0) + 21 < Ppp,_(Py(0)). Sending k£ T oo yields ¢ + 27 < g, _(¢) which
contradicts the definition of Ty. We have thus proved that ¢ + 27 = &4, (¢).

It remains to prove the uniqueness of Tj. Assume that ¢; + 27 = & (¢;) (1 = 1, 2) for
some @; € D. Suppose that T} # T,. We may assume that T} < Ty and that ¢ < @9 by
translating its value modulo 27. By definition of 7} and Ty it follows that ®;(¢) > ®;(p9)
for sufficiently large ¢ > 0. This would contradict the order preserving property. O

Proposition 4.3 implies the following theorem.

Theorem 4.4. (FEzistence of a periodic solution). There ezists a periodic solution 6 of
(2.9) satisfying 0(-,1) € D for t € R, which is unique up to translation of time.

Proof. Choose ¢ € D, which satisfies ¢ + 27 = &4, (), as the initial data. Then, we can
obtain a solution 6 of (2.9) with (-,0) = ¢ and 6(-,¢) € D for ¢ > 0. This solution fulfills

O, 1) + 21 = &y(p) + 21 = &y(p + 2m) = &,(Dr, (9) = Sy (0) = O, + T).

That is, 0 is a periodic solution of (2.9) for ¢ > 0. Using the uniqueness of the solution of
(2.9) and the periodicity of the map ®;, we can extend this periodic solution € to ¢ < 0.
Note that @, is also order-preserving for ¢ < 0.
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Finally we prove that this periodic solution is unique up to translation to the ¢-direction
for t € R. The argument is essentially similar to that of [17, Section 3]. However, since the
argument in [17] is based on an abstract theory, we reproduce their idea directly without
appealing the abstract theory. Assume that 0, (-,2) € D (i = 1,2) are the periodic solutions
of (2.9) with the period Ty > 0. We can take Hl(r —kTy) < 04(r,0) for sufficiently large
k € N. Rewrite 0,(r,t — kTp) as 6 (r,t). Then 0,(r,0) < 0,(r,0). The order-preserving
property implies él (rt) < éz(r, t) for r € I and t € R. We may consider the attainable
time ¢ in the time-interval [0, Tp] instead of R by the periodicity. Set

so=sup{s > 0| 0,(r,t +s) < Oy(r,t), r eI, t €[0,Ty]}.

Clearly 6, (r,t 4+ so) < 05(r,t) and it follows from the compactness of T x [0,Ty] that
there exists (rg, to) € 1 x [0, Tp] satisfying 0, (rosto + so0) = éz(ro,fo) Applying the strong
maximum principle, we have 0y (r, 1 + s9) = 0y(r, 1) for all » € I and t < ty. Using the
weak maximum principle as the initial time o, we see 0 (r,t + s¢) = 03(r, t) for all v € T
and ¢ > ty. Thus, we obtain the desired result. O

Consequently, by virtue of Theorem 4.4, we can obtain the spiral solution of (1.2) of the
form (1.4), which completes the proof of Theorem 1.2.

Remark 4.5. (Stability of the spiral solution). We can derive the stability of the spiral
solution given by Theorem 1.2. That is, for any €y > 0 there exists a §g > 0 such that if
d(I'(0),1(0)) < &, then d(I'(£),T(t)) < & for all t > 0. Indeed, by means of applying the
similar argument as in [17, Section 3], we deduce that for any e¢ > 0 there exists a g > 0
such that ||6(-, 1) — 6(-, Ol < o for all £ > 0 whenever [|0(-,0) — o(-, 0)[|¢py < do- Since

d(U(t), 1) < Cl0(,t) — 0(,t)||lery for all £ >0

where C' is a positive constant independent of ¢, it follows that the spiral solution given
by Theorem 1.2 is stable. O

5 Problem with no driving force term
In this section, we discuss the special case : Vi = 0 in (2.9). That is,

0 — M(n)a(n)(r6,, +r?6? + 26,)
‘e r(1 4 r202) (5.1)
0,(p,t) = 0,(R,1) = 0.

We first derive the gradient estimate of (5.1)

Proposition 5.1. (Gradient estimate for the case Vo = 0). Assume that M(n) and a(n)
satisfy (A3 ,). For each & >0, let

p
~ 4eR?

Then if 6(r,t) is a solution of (5.1) with the initial data 0(-,0) = Oy satisfying |6y, < L,
the gradient estimate |0,(-,t)| < L holds for t > 0.
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Proof. Set w := —0, — L and recall the proof of Proposition 3.1. Putting V = 0 in (3.3),
we are led to

A 2e RV, L
a(r, twe, + Blr, Hw, + (’Ay(r, t) -+ —8——0) W — Wy

fip

> —Mumu)(kafﬁL>— _M(n)a(n) - %i<L—4£p)zu

It follows from the weak maximum principle that w(-,t) < 0 for ¢ > 0 if w(-,0) < 0.
That is, we sce that 6,.(-,¢) > —L for t > 0 if 0y, > — L. Applying the same argument to
w =0, — L, we derive the desired result. O

Using the weak maximum principle, the following lemma is verified.

Lemma 5.2. (Boundness for the case Vo = 0). Assume that M(n) and a(n) satisfy
(A} ) and that 0(r,t) is a solution of (5.1) with the initial data 0(-,0) = by. Then we
have

max |0(r, )| < max |0y(r)].
Jnax [0(r, )] < max [0 (r)]

Note that Proposition 5.1 and Lemma 5.2 assure the solvability of (5.1) and the standard
parabolic estimate for the time-interval which does not include ¢ = 0.
Setting Vy = 0 in Proposition 2.2, we obtain the following Lyapunov function for (1.2).

Proposition 5.3. Let L[I'(t)] be the length of U'(t). If I'(t) is a solution of (1.2) with
Vo = 0, the following formula is valid :

E t :—/ n)(1+ r?6%)' 2 k%dr < 0.

Now we are ready to prove Corollary 1.3. It first follows from Proposition 5.3 and the
assumption (A} ) that

/ / k2drdt < C) < oo

JO Jp

where a constant Cy (> 0) depends only on A, g and L[I'g]. Recalling the equation (1.2),
we are led to

o rR
/ / O2drdt < Cy < oo (5.2)
0 Jp

where a constant Cy (> 0) is independent of time ¢. We consider the sequence of function
{0} defined on E = [p, R] x (0,1) with

Op(r,t) =0(r,t + k), keN.

Applying the similar argument as in [9, Section 4] and [5, Section 2] with (5.2), we see that
a subsequence {0, } C {0;} converges uniformly to a function ., which is independent
of time ¢ and a solution of
sy + 720> +20,, =0, 0.,(p) = 0..(R) = 0. (5.3)
13



Solve (5.3) as the ordinary differential equation of f... We find that 6,, = 0 is a unique
solution of (5.3). This means that é* is also independent of r. That is, (j* 1s a constant.
It remains to argue the uniform convergence of € to a constant 0, along the full sequence
of time. For each ¢ > 0 there is sufficiently large j that satisfies

|0, (r, ) — 0. <6 forall (r,t) € E.
In particular, we have
0. — 06 < 04, (r,0) = 0(r,k;) <0, +3 forallrepR]
Since 6, + ¢ is a solution of (5.1), the comparison implies
0. — 06 <O(r,t) <0, +6 forallt>k;, repR)

This means that 6(r,t) converges uniformly to 6, as ¢ — oo in [p, R] and completes the
proof of Corollary 1.3.
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